
MOF-BC: A Memory Optimized and Flexible
BlockChain for Large Scale Networks

Ali Dorri

The School of computer science and engineering, UNSW, Sydney and DATA61 CSIRO,

Australia.

Salil S. Kanhere

The School of computer science and engineering, UNSW, Sydney, Australia.

Raja Jurdak

DATA61 CSIRO, Brisbane, Australia.

Abstract

BlockChain (BC) immutability ensures BC resilience against modification or

removal of the stored data. In large scale networks like the Internet of Things

(IoT), however, this feature significantly increases BC storage size and raises

privacy challenges. In this paper, we propose a Memory Optimized and Flexi-

ble BC (MOF-BC) that enables the IoT users and service providers to remove or

summarize their transactions and age their data and to exercise the ”right to be

forgotten”. To increase privacy, a user may employ multiple keys for different

transactions. To allow for the removal of stored transactions, all keys would

need to be stored which complicates key management and storage. MOF-BC

introduces the notion of a Generator Verifier (GV) which is a signed hash of a

Generator Verifier Secret (GVS). The GV changes for each transaction to pro-

vide privacy yet is signed by a unique key, thus minimizing the information that

needs to be stored. A flexible transaction fee model and a reward mechanism

is proposed to incentivize users to participate in optimizing memory consump-

tion. Qualitative security and privacy analysis demonstrates that MOF-BC is

Email addresses: ali.dorri@unsw.edu.au (Ali Dorri), Salil.kanhere@unsw.edu.au
(Salil S. Kanhere), Raja.Jurdak@csiro.au (Raja Jurdak)

Preprint submitted to Journal of LATEX Templates January 16, 2018

ar
X

iv
:1

80
1.

04
41

6v
1

 [
cs

.C
R

]
 1

3
Ja

n
20

18

resilient against several security attacks. Evaluation results show that MOF-BC

decreases BC memory consumption by up to 25% and the user cost by more

than two orders of magnitude compared to conventional BC instantiations.

Keywords: Blockchain, Auditing, Privacy, Internet of Things.

1. Introduction

BlockChain (BC) is a disruptive technology which has attracted tremendous

attention from practitioners and academics in different disciplines (including

law, finance, and computer science) due to its salient features which include

decentralization, security and privacy, and immutability [1]. In BC, a transac-

tion forms the basic communication primitive that allows two nodes to exchange

information with each other. A digital ledger of transactions is shared and syn-

chronized across all participating nodes. Using a consensus algorithm which

involves solving a resource demanding hard-to-solve and easy to verify puzzle,

a secure trusted network is established among untrusted nodes. BC users may

choose to employ changeable Public Keys (PK+) as their identity which prevents

them from being tracked, thus increasing their privacy [2]. Multiple transac-

tions are collated to form a block which is appended to the ledger by following

the consensus algorithm. Each block includes the hash of the previous block in

the ledger. Any modifications to a block (and thus transactions) can be readily

detected as the hash maintained in the subsequent block will not match. The

immutable nature of the BC affords auditability of all stored transactions.

BC was first introduced in Bitcoin [3], the first cryptocurrency system. Since

then, it has been widely applied to non-monetary applications, e.g. securing

and distributing sharing economy for renting properties [4] and securing vehicle

to vehicle communications [5]. Recently, there has been increased interest in

adopting BC to address security and privacy challenges of large scale networks

including the billions of connected devices that form the Internet of Things [6].

2

1.1. Motivation

Although BC offers a secure, private, and auditable framework for IoT, the

immutable nature of the BC raises significant challenges. First, the large num-

ber of IoT devices will undoubtedly generate an equally substantial number of

transactions which in turn would significantly increase the memory footprint at

the participating nodes that store the BC. To give some context, the current

Bitcoin BC which comprises 280 million transactions requires 145GB of stor-

age space [7]. Arguably, an IoT BC would rapidly outgrow the Bitcoin BC.

The nodes that store transactions in the BC, known as miners, are offered a

monetary reward which is paid by the transaction generators in the form of the

transaction fee [3]. In IoT, the costs associated with a perpetually increasing

BC would also be prohibitive for the users. Second, IoT applications are likely

to have diverse storage requirements. For example, a smart device may provide

its data to a Service Provider (SP) for a fixed period (e.g., a one year sub-

scription to a service) and thus the associated transaction record may only be

needed for this duration. As another example, a user may progressively install

multiple IoT devices at a facility and may wish to summarize all transactions

associated with these devices into a single consolidated transaction representing

the entire facility. Such flexibility is not afforded by current BC instantiations

wherein transactions are stored permanently and cannot be altered. Third,

permanently storing transactions of all devices of a user in the public BC could

compromise the user privacy by: i) linking attack [8] whereby the identity of

the user is exposed by linking multiple transactions with the same identity, or

ii) monitoring the frequency with which a user stores transaction even if the

transaction content is encrypted [9]. Consequently, privacy concerns may moti-

vate users to exercise their right to be forgotten and not store records of certain

IoT devices in the BC.

1.2. Contributions

In this paper, we propose a Memory Optimized and Flexible BC (MOF-BC)

that affords greater flexibility in storage of transactions and data of IoT devices.

3

The aforementioned examples illustrate instances where the user must have full

control over the management of the stored transactions in the BC. One can also

envisage use cases where the SP may need to exert this control. For example,

the power company may install sensors and smart metering equipment on the

client’s premises but would still wish to exert control over these devices. MOF-

BC introduces User-Initiated Memory Optimization (UIMO) and SP-Initiated

Memory Optimization (SIMO) which allow either the user or the SP where

appropriate to remove or summarize stored transactions and to age (compress)

the data of an IoT device which may be either stored within the BC or off-the-

chain in the cloud. However, the SP or user may not need to be burdened with

management of stored transactions for all their devices. MOF-BC thus provides

a way to offload these functions to the BC network by introducing the notion of

Network-Initiated Memory Optimization (NIMO). This is realized by specifying

the Memory Optimization Modes (MOM) in the transaction when it is created.

MOM can be of the following types: (i) do not store: transaction is not stored,

(ii) temporary: the network removes a transaction after a specific period of time

which conceptually is similar to removing a transaction in UIMO and SIMO,

(iii) permanent: transaction is stored permanently, and (iv) summarizable: the

network summarizes multiple transactions to a single summary record in the

same way as the user or the SP summarizes transactions in UIMO or SIMO.

The removal of stored transactions is fundamental to implementation of the

aforementioned MOM. However, the immutable nature of conventional BCs does

not permit this operation since the hash of a block is computed over the contents

of all transactions within the block. The MOF-BC addresses this challenge by

computing the hash of the block over the hashes of constituted transactions

and not their contents. This allows a transaction to be removed from a block

without impacting the hash consistency checks. Moreover, the existence of the

hash of a transaction that is no longer present in the BC allows for posthumous

auditability.

A previously stored transaction can be removed only by the transaction

generator, i.e., the node that knows the corresponding PK+/Private Key (PK-),

4

to prevent another node from either maliciously or erroneously removing its

transactions. As noted earlier, a node (user or SP) may choose to change the

PK+ used in its transactions to enhance its privacy. The node will thus have to

store a large number of keys to be able to remove stored transactions at a later

point in time, which complicates key management and storage. To address

this challenge, MOF-BC adds a Generator Verifier (GV) in each transaction

which is a signed hash of a Generator Verifier Secret (GVS). The GVS is a

secret that is known only to the entity generating the transaction. It can be a

string similar to a password or an image or even biometric information such as

a fingerprint scan. The GVS changes for each transaction by applying a simple

pattern known only to this entity, e.g. incrementing the GVS by a fixed value,

which thus makes the corresponding GV unique. This affords the same level

of privacy as with a changeable PK+. Moreover, the GVs in all transactions

generated by a node are encrypted using a single PK+. Thus, to verify that a

node can remove a stored transaction, it only has to furnish the PK+ and the

GVS (and the corresponding GV) for that transaction.

The removal of a transaction requires each participating node to locate this

transaction in the BC, which can in the worst case incur a delay of O(N) where

N denotes the number of transactions in the BC. To amortize this overhead,

rather than removing transactions on an individual basis, MOF-BC processes

transaction removals in batches over a periodic Cleaning Period (CP). To facili-

tate the removal process, multiple agents are introduced which reduce the packet

and processing overhead associated with multiple memory optimization meth-

ods available in MOF-BC. To encourage users to free up space, MOF-BC grants

rewards to users that do so and introduces a flexible transaction fee based on the

duration for which a transaction is stored. The rewards can be either used to

pay the storage fee of new transactions or exchanged to Bitcoin. The increased

flexibility and savings in storage have an associated cost of reduced account-

ability as the transaction content is either removed or consolidated which leads

to loss of some information. Multiple benefits and implications of MOF-BC are

studied in this paper.

5

To analyze the security of MOF-BC, we consider six of the most relevant

attacks and outline the defence mechanisms employed to prevent them. We

develop a custom implementation of MOF-BC and show that it decreases the

BC memory footprint by up to 25% and the cost that the users are required to

pay to store their transactions by more than two orders of magnitude compared

to conventional BC instantiations. We also provide comprehensive evaluations

on the effects of the CP on the BC size.

1.3. Paper Overview

The rest of the paper is organized as follows. Section 2 discusses related

work. Section 3 outlines the details of employed memory optimization methods.

Section 4 discusses the removing process. Section 5 presents evaluation results.

Section 6 concludes the paper.

2. Related work

This section presents a brief overview of BC and outlines related work. Fig-

ure 1 represents the basic structure of a transaction in BC. Note that differ-

ent instantiations of BC might have some slight variations in the transaction

structure. TID represents the unique identifier of the transaction which is the

hash of all other fields of the transaction. P.TID denotes the ID of the previous

transaction which effectively establishes the link between successive transactions

created by the same node (or entity), thus forming a ledger. The first trans-

action in each ledger is known as the genesis transaction. It is possible that

there exist dependences between transactions whereby certain fields generated

in one transaction (outputs) are referenced as inputs in another transaction.

The inputs and outputs are stored in the Input and Output fields. In most BC

instantiations, a node changes the public key (PK+) used for encrypting each

transaction that it creates as a way to increase anonymity and thus ensures

privacy. The hash of this PK+ is stored in the PK field. The reason for stor-

ing the hash of the PK+ is to reduce the size of the transactions as well as to

6

future proof transactions against possible attacks where malicious nodes may

attempt to reconstruct the Private Key (PK-) using the PK+ . Finally, the Sign

field contains the signature of the transaction generator, created using the PK-

corresponding to the PK+.

Figure 1: The structure of a transaction.

All transactions are broadcast to the network. Special nodes, known as

miners, verify each transaction by validating the embedded signature using the

corresponding PK+. Next, the existence of the P.TID is checked. Finally, the

other fields in the transaction are verified depending on the specific rules of

the BC instantiation. The verified transactions are added to a pool of pending

transactions. Each miner collates pending transactions into a block when the

size of the collected transactions reaches to a predefined size known as the

block size. The miner generates a Merkle tree [10] by recursively hashing the

constituted transactions of the block, which are stored as the leaves of the tree,

as shown in Figure 2. The root of the Merkle tree is stored in the block header

to speed up the process of verifying membership of a transaction in a block.

Figure 2: The structure of the Merkle tree.

The miner mines, i.e., appends, the block into the BC by following a consen-

sus algorithm, examples of which include Proof of Work (POW) [3] and Proof

of Stack (POS) [11]. The consensus algorithm ensures BC consistency between

participating nodes as well as randomness among the miners. The randomness

7

prevents malicious miners from continuously mining blocks, thus increasing BC

security. A mined block is broadcast to all nodes. Each node appends the new

block to its local copy of the BC after validating the constituent transactions.

In recent years, there has been a growing interest in the adoption of BC

technology in IoT. IBM introduced a new BC instantiation for IoT known as

Hyperledger [12], which is a permissioned BC, wherein only authorized nodes

can participate in BC. The authors in [13] proposed a new method to manage

IoT devices using Ethereum smart contracts. Each device is managed by a

contract in Ethereum. In [14], the authors proposed a BC-based Software De-

fined Network (SDN) architecture for IoT. A rule table which defines the rules

for access permissions in the network is stored in the BC. Participating nodes

can validate access requests using the BC. The authors in [15] proposed a new

ledger based cryptocurrency called IoTA. By eliminating the notion of blocks

and mining, IoTA ensures that the transactions are free and verification is fast.

The key innovation behind IoTA is the ”tangle”, which is essentially a directed

acyclic graph (DAG). Before a node can generate a transaction, it has to ver-

ify two randomly chosen transactions generated by other nodes. Thus, IoTA

throughput, i.e., the number of transactions validated in the ledger, increases

as the number of participants increases.

In [16], the authors proposed a distributed secure and private IoT data man-

agement platform using BC. The data of IoT devices are stored off-the-chain,

i.e., in a separate cloud storage, while the hash of the data is stored in the

BC. The access permissions for the data is stored in the BC. The authors in

[17] proposed a BC-based multi-tier architecture to share data from IoT devices

with organizations and people. The proposed architecture has three main com-

ponents namely: data management protocol, data store system, and message

service. The data management protocol provides a framework for data owner,

requester, or data source to communicate with each other. The messaging sys-

tem is used to increase the network scalability based on a publish/subscribe

model. Finally, the data store uses a BC for storing data privately.

Despite the benefits of the BC in IoT in the above mentioned works, the

8

BC memory footprint still remains an unsolved issue considering the large scale

of IoT. As new services are introduced in IoT by SPs and with the passage of

time, the number of transactions generated by the large number of connected

devices that make up an IoT network will significantly increase. Consequently,

the BC memory footprint will increase infinitely. The authors in [18, 16] pro-

posed to store the older blocks of the BC off-the-chain to address the BC storage

challenge. Although this method reduces the resource requirement on the par-

ticipating nodes, it incurs delay in querying the transactions from the cloud.

Moreover, the issue of ever expanding storage is simply offloaded to the cloud.

Additionally, as the user data still is permanently accessible by all participants,

the user privacy is endangered. MOF-BC tackles these challenges by affording

the users flexibility to remove older transactions or consolidate multiple trans-

actions as one and age stored data in the cloud or transactions.

The authors in [19] were the first to propose a modifiable BC that allows

users to modify or remove a stored transaction. They use a Chameleon hash

function to generate the block hash, by hashing the block content, such that

a collision can be found in the hash. The modification of BC is performed by

one central node or a group of distributed nodes known as modifier(s). The

modifiers are aware of a secret trapdoor key that is used for creating a collision

in the hash of a block such that H(m, ξ) = H(m′, ξ′) where H(x) indicates the

hash of x, m is the block content, and ξ is a check string. The check string is

adjusted by the modifier to find a collision in the block hash.

This method faces multiple challenges in an IoT setting. To modify the

content (i.e., transactions) of a chain of blocks, the chain is sent to the modi-

fier(s). The modifier(s) broadcast the modified chain to all nodes. Each node

verifies all new blocks and replaces the corresponding blocks in its copy of the

BC with them. However, this approach is unlikely to scale for the large IoT

network eco-system, where one can envision a large number of modification re-

quests, due to significant (processing and packet) overheads associated with the

aforementioned steps. Moreover, their approach does not keep the consistency

of the transactions before and after modification as the hash of the transac-

9

tion after modification would not match with the stored hash in the transaction

header. Finally, there isn’t any provision to remove information from the BC.

Conversely, in MOF-BC only the transaction generator can modify its transac-

tion. A range of memory optimizations including not storing, removing, and

summarizing transactions and aging of data are afforded and there is flexibil-

ity for initiating these optimizations either by the user or the SP. In addition,

the responsibility of these optimizations can be offloaded to the network by

generating transactions with specific optimization modes. MOF-BC introduces

multiple agents and a shared indexing service that significantly reduces the as-

sociated overheads. We also propose to use central index database to manage

the removal process and introduce multiple rewards to incentivize users to free

up space in BC.

3. Optimizing Blockchain Memory Consumption

In this section, we discuss memory optimization methods employed by MOF-

BC. We first provide an overview of the MOF-BC framework in Section 3.1. In

Section 3.2, we introduce the notion of a storage fee as part of the transaction

fee to reward the nodes that are involved in storing the BC for the amount of

storage space contributed. Finally, in Section 3.3, we outline how the underlying

mechanisms that form the basis of user-initiated, SP-initiated, and network-

initiated memory optimizations are implemented.

3.1. An overview of the framework

Figure 3 proposes an overview of the MOF-BC framework. The MOF-BC

uses multiple agents for achieving efficient execution of several key functions.

Summary Manager Agent (SMA) manages all the processes related to summa-

rization of multiple transactions into one consolidated transaction. A Reward

Manager Agent (RMA) computes the rewards offered to the nodes that partic-

ipate in memory optimization and free up memory. The rewards are sent to a

Bank to be claimed by the user. Storage Manger Agent (StMA) collects the

10

storage fees and distributes the collated amount proportionally among the min-

ers. A Patrol Agent (PA) monitors the claims made by the miners by randomly

migrating to a miner and checking the storage resources expended in storing the

BC. Blackboard Manager Agent (BMA) manages a central read-only database

that acts as a repository of information required for bookkeeping e.g., a list of

miners, and a list of transactions paid by rewards. A Service Agent (SerA) is

responsible for processing transaction removals. It maintains an updated ver-

sion of the BC during the removal process, which is passed on to the miners at

the conclusion. A Search Agent (SA) searches newly mined blocks for particu-

lar, e.g., summarizable transactions and sends them to relevant agents such as

the SMA and RMA. The outlined agents may need to generate transactions to

action memory optimization, e.g. the SMA generates a summary transaction in

place of multiple summarized transactions.

The agents are partially distributed meaning that multiple replications of

each agent are placed in the network. Synchronization methods such as in [20]

are used to synchronize the replicas. This prevents the agents from being a

bottleneck and reduces the (processing and packet) overheads in the network

compared to a fully distributed approach as in [19].

Figure 3: An overview of the MOF-BC.

Each agent is identified by a unique PK+ which is certified by a Certificate

11

Authority (CA) to verify the identity of a particular agent. Note that we rely on

a centralized approach (i.e., existing public key infrastructure) for this aspect of

identity verification. The rest of the functionality is achieved by the distributed

BC.

To enhance the network security against malicious agents and reduce the

overhead of verifying the transactions generated by the agents, the miners em-

ploy a distributed trust algorithm as proposed in [24]. The core idea behind

the distributed trust algorithm is that the stronger the evidence a node has

gathered about the validity of transactions generated by an agent, fewer of

the subsequent transactions received from that agent need to be verified. The

miners use a distributed trust table, an example is shown in Figure 4, which

specifies the probability with which a transaction from each agent must be vali-

dated (known as Validation Probability (VP)). If the transaction is checked and

is valid, then the number of validated transactions for that particular agent is

incremented (i.e. this agent is now more trustworthy), thus, the VP for the

next transaction from this agent will decrease. If the agent generates an invalid

transaction, the number of validated transactions for that agent reduces. If the

malicious agent continues with this behavior, the VP for its transactions will

be correspondingly increase. Note that the transactions always require to be

validated with a small probability even if there is strong trust that protects the

network against compromised agents. Due to large number of participants in

the BC network, it is with high probability that at least one node will check a

new transaction. Thus, the likelihood of detecting invalid transactions is very

high.

Figure 4: An example of a trust table in participating nodes.

12

3.2. Storage fee

Since the primary goal of MOF-BC is optimizing BC memory storage, it is

important to consider the associated costs and benefits of transaction mining

and storage in BC. In conventional BCs, the miner transacts a fee for all trans-

actions within a block as compensation for the resources consumed to mine the

block. This fee varies across BC instantiations. However, a storage fee is not

considered. There is now growing consensus that a fee must be assessed for

storage, particularly for large networks like IoT [21]. Billions of devices in IoT

will generate a large number of transactions that must be permanently stored

in the BC and thus requires the miners to expend significant memory resources

for storing the BC. To incentivize the miners for contributing memory space for

the BC storage, MOF-BC considers the storage fee as part of the transaction

fee:

Transactionfee = Miningfee+ Storagefee

The mining fee is as was discussed earlier. The storage fee is levied based

on the size of the transaction and the duration for which it is stored and is

discussed in Section 3.3. In MOF-BC the minimum size of a transaction is

defined as a page. For a string x we denote its size by |x|. At the minimum,

a transaction must include the following fields: PK+, Signature (Sign), hash

of the current transaction (TID), and hash of the previous transaction (P.TID).

Thus, |page|= |PK+|+|Signature|+2|hash|. It is assumed that the BC designer

sets a pre-defined value for |page|. The total number of pages required for a

transaction is determined by rounding up to the nearest integer number of pages

that can contain the transaction contents.

The storage fee of all transactions in the network is paid to a Storage Man-

ager Agent (StMA). The payments to the miners are made out in periodic time

intervals known as payment periods. When miner X joins the BC network, it

notifies the StMA of the amount of dedicated storage space that it is contribut-

ing to store the BC, known as StorageX. Similarly, when miner X leaves the

BC network it notifies the StMA. Thus, the StMA pays the miner only for the

13

duration that it has the BC stored as discussed below. The miners may store

the comprehensive BC or a specific part of the BC based on their available re-

sources and requirements [6]. At the end of each payment period, the StMA

calculates the cumulative amount of space allocated to the BC in the network

(StoreAll). The share of each miner of the collected storage fee (ShareX) is:

ShareX = StorageX ∗ Fee
StoreAll

∗ TimeX
PaymentPeriod

Where Fee is the cumulative storage fees received during the current payment

period and TimeX denotes the duration with the current payment period for

which miner X has stored the BC. The StMA may maliciously prevent paying

the storage fee to (some of) the miners. The malicious StMA can be detected by

the miners as they would not receive any payment from the StMA. Consequently,

the miners isolate the StMA and choose a new one for the network. All payment

claims made by the miners are verified by a Patrol Agent (PA). The PA is a

mobile agent meaning that it can migrate from one miner to another miner. The

PA migrates randomly between miners and examines the memory footprint used

at a miner for storing the BC. The PA informs the StMA if a discrepancy is

observed in the claims made by a particular miner. No further payment claims

are accepted from this malicious miner and subsequently no rewards are paid

out.

A PA may be compromised. A malicious PA does not report the false claims

made by the miners so that the miners will receive payment while they no

longer have the BC stored. This can be detected by the new nodes joining

the BC network. The new nodes request to download the BC from one of the

miners. If the miner rejects their request, they inform the StMA. The StMA

then generates a new PA to check the validity of the suspected miner as the old

PA is suspected to be compromised. If the new PA detects a malicious behavior

of the miner, then the old PA is removed and the miner is also isolated.

3.3. Memory optimization

In this section, we discuss multiple optimization methods employed by the

MOF-BC to optimize the BC memory footprint. As was noted in the exam-

14

ples and arguments in Section 1, either the user or the SP must have absolute

control over all stored transactions pertaining to their devices (depending on

the use case). To support this, MOF-BC introduces User-Initiated Memory

Optimization (UIMO) and SP-Initiated Memory Optimization (SIMO).

While the aforementioned optimizations offer immense flexibility, actioning

them requires the user (in UIMO) or SP (in SIMO) to explicitly create new

transactions. For example, to remove a particular stored transaction, the user

(or SP) would have to initiated a new remove transaction (details to follow in

Section 3.3.1). These entities may not wish to be encumbered with these actions

for all transactions of each and every device under their control. An option to

delegate these actions to the network is thus available via Network-Initiated

Memory Optimization (NIMO). This is achieved by specifying the appropriate

Memory Optimization Modes (MOM) in the transaction when it is created.

To be able to optimize the BC memory footprint, we introduce the following

additional fields to the transaction format:

GV ||MOM ||MOM − Setup||Pay − by − reward

GV is used by the UIMO and SIMO as discussed in Sections 3.3.1 and

3.3.2. MOM and MOM-Setup fields are used to identify the MOM and its

configuration used for the NIMO as disccussed in 3.3.3. The last field is used

to pay the storage fee by accrued rewards as per discussions in 3.3.1.

Table 1 summarizes different optimization methods which are outlined in

greater detail in the rest of this section.

3.3.1. User-Initiated Memory Optimization (UIMO)

Before we describe UIMO, we first discuss a new concept introduced for

enabling this functionality known as Generator Verifier (GV). When a user

wishes to optimize a stored transaction, he must first present evidence that the

transaction was created by him. The PK+ used to generate the transaction is

sufficient to prove ownership. However in the IoT context, users may choose

to change the PK+ used for different transactions to protect their privacy (as

discussed earlier in Section 1). Management and storage of a potentially large

15

Table 1: Summary of the different optimization options.

Who
authorizes the
optimization?

Who initiates
the
optimization?

When is the optimization
initiated?

Optimization
methods

UIMO User User The user can initiate this at a time
of his choosing by creating a
transaction.

Remove,
Summarize,
Age (data).

SIMO SP SP The SP can initiate this at a time
of his choosing by creating a
transaction.

Remove,
Summarize,
Age (data).

NIMO User/SP Network The User (or SP) must set the
appropriate MOM in the
transaction when it is created.
The network will perform the
action as per the specified rules
for the MOM.

Do not store,
Temporary,
Permanent,
Summarize.

number of keys is bound to become an issue. To address this challenge, we

introduce the notion of a Generator Verifier (GV). The GV in all transactions

generated by a user is encrypted using a unique PK+ (known as GV-PK+),

thus eliminating the need for managing multiple keys. For transaction i, GVi

is calculated as the signed hash of the P.T.IDi and a Generator Verifier Secret

(GVS). The GVS is a secret known only to the user and can be any type of

data, e.g., a string similar to a password or an image or biometric information

such as fingerprint scan. To prevent an attacker from guessing the GVS, the

same recommendations for creating strong passwords apply. The GV value for

each transaction is unique even if the same GVS is used in multiple transactions

as the P.T.ID is unique in each transaction. To further enhance the security, a

user has the option to change the GVS for each transaction by applying a fixed

pattern to it. For example, adding a fixed value to it. In this instance, the user

would need to remember this unique pattern along with the first used value of

the GVS. Once a transaction with GV is stored in the BC, the user can perform

the following memory optimizations at a later time:

1) Removal: The user can remove its stored transactions, to either optimize

the BC memory or enhance its privacy, by generating a remove transaction.

16

To remove a stored transaction, the user has to prove that it has previously

generated that transaction. To do so, the user must include the hashes used

to generate the GV, i.e., the GVS and the P.T.ID, of the transaction to be

removed and GV-PK+ in the remove transaction. The ID of the transaction

to be removed becomes the input of the remove transaction. To prove that the

user knows the PK- corresponding to the GV-PK+, the user signs the remove

transaction with this key. This transaction is subsequently broadcast to the

network.

On receipt of the remove transaction (say X), a miner verifies if the generator

of X is the generator of the transaction that is marked for removal in X (say Y).

This verification is conducted using the GV as outlined in Algorithm 1. Since

GV is a signed hash, the miner decrypts the GV in Y using the GV-PK+ in

X (lines 1,2 Algorithm 1). Next, the miner verifies if the hash of the GVS and

P.T.ID in X matches with the GV in Y (lines 4,5). Finally, the miner verifies the

signature in X using the GV-PK+ (lines 7,8). This ensures that the generator

of X knows the corresponding PK- to the GV-PK+. The verified transaction is

mined into the BC.

ALGORITHM 1: The process of verifying GV.
Input: remove transaction (X), transaction to be removed (Y)

Output: True or False

Verification :

1: if (X.GV-PK+not decrypt Y.GV then

2: return False;

3: else

4: if H(X.GVS + X.P.T.ID) != Y.GV then

5: return False ;

6: else

7: if X.GV-PK+ redeem X.Sign then

8: return True;

9: end if

10: end if

11: end if

The removal of Y requires each miner to locate this transaction in the BC,

which in the worst case incurs a delay of O(N) where N denotes the number

17

of transactions in the BC. To amortize this overhead, the miners process trans-

actions removal in batches over a periodic Cleaning Period (CP). A detailed

discussion about batch removals is presented in Section 4.

To encourage users to optimize BC memory consumption, MOF-BC rewards

users that reduce the BC memory footprint by removing their transactions. The

reward allocation process is performed by the Reward Manager Agent (RMA).

The RMA would need to search each newly mined block to find a remove trans-

action. Other agents would need to similarly search for new transactions of a

particular kind (e.g. the SMA would need to search for summarization trans-

actions). To amortize these overheads, a dedicated Search Agent (SA) is des-

ignated to search newly mined blocks for transactions related to memory op-

timization and send references for these to the relevant agents. The agents

may randomly check whether the SA sends all relevant transactions to them by

searching newly mined blocks and compare the relative transactions with the

ones sent by the SA. For removed transaction Y, the reward value is calculated

as:

Reward = Y.pages−X.pages

Where X is the remove transaction. Each transaction should be only re-

warded once, even if it is mined in multiple blocks by multiple miners. To

ensure this, the RMA records the GV of transactions that have been rewarded.

The RMA sends the GV and the corresponding amount of reward to a Bank

which collects all information of the rewards. Sending only the reward and the

GV to the bank ensures user anonymity. If a node does not receive its rewards,

i.e., the RMA is compromised, then the node informs the rest of the network to

change the RMA as per discussions in Section 5.1.

The user, i.e., the rewardee, can use his accrued rewards in two ways: i)

Exchange to Bitcoin: A user can ask the bank for his rewards to be converted

to Bitcoin at the current exchange rate, ii) Pay storage fee of new transactions:

Recall that the transaction header contains a pay-by-reward field. If this field

is set in a transaction, then it implies that the corresponding storage fee will

be paid by earned rewards. The rewardee should send a corresponding redeem

18

transaction to the bank which contains the ID of the new transaction and GV-

PK+ and hashes used to construct the GV corresponding to the accrued reward.

The bank verifies the redeem transaction as discussed in Algorithm 1. If verified,

the bank sends the ID of the new transaction to the BMA which in turn notifies

the miners and stores the ID of the new transaction in the blackboard.

2) Summarize: As was noted in the examples and arguments in Section

1, IoT users can summarize their transactions into a single consolidated transac-

tion to optimize BC memory while maintain the auditability of the summarized

transactions. The process of summarizing transactions is shown in Figure 6. To

summarize a selected set of transactions, the user creates a summary transac-

tion, which is illustrated in Figure 5.

Figure 5: The structure of summary transaction.

In Figure 5, the Time-stamp is the time when the summary transaction

is generated. The next two fields are the PK+ and signature of the transac-

tion generator. The Merkle tree root is the root of the merkle tree formed by

collating all the transactions that are summarized in this consolidated trans-

action. Recall from Section 2, that this data structure makes it is possible to

perform posthumous audits, i.e., check whether a transaction belonged to the

original group of transactions that are now summarized. If the transactions

being summarized include multiple inputs and outputs, then including all of

them in the summarized transaction would significantly increase its size. As a

compromise, we chose to only include the inputs/outputs which are not used as

outputs/inputs of a transaction in the same summarized group. Consequently,

the excluded inputs and outputs can no longer be audited. Figure 7 illustrates

this process.

The time-stamp of each original transaction is stored in the seventh field, i.e.,

summary-time. The summary-times are stored in order. However, the Merkle

19

Figure 6: The process of user-initiated summarization.

tree does not provide any information about the exact order of transactions.

To address this challenge, the smallest number of distinct bytes of the T.ID of

the summarized transactions (denoted as d) are stored in the TransOrder field.

Thus, by knowing the T.ID, the specific order of a transaction within the pool

of transactions can be found with small overhead. As an example consider the

four transactions given in Figure 8. The TransOrder field contains 3 bytes of

the ID of each transaction as the first two bytes of IDs of transactions 1 and 3

are equal.

The value of d is always 1 <= d <= |T.ID − 1|. Given the randomness

in the hash outputs it is unlikely that the hashes for all transactions in the

summarization pool have a large number of similar bytes which justifies using

the distinct bytes to reduce the size of the summary transaction compared to

20

Figure 7: The input/output of the summary transaction.

Figure 8: TransOrder field population.

storing the original T.ID. The last three fields in the summary transaction are

used to verify the GV and are discussed in the rest of this section. In these

fields X is the index of the transaction among transactions to be summarized.

The user initiates the summarization process by populating a summary

transaction (step 1 in Figure 6). To prove that it has previously generated

the transactions that are to be summarized, the user stores the hashes used to

generate the GV and the GV-PK+ for all transactions to be summarized in the

summary transaction (step 2). The summarizing node must prove its identity

by signing the hash of the ID of transactions to be summarized (step 3). Then,

it broadcasts the summary transaction (step 4).

On receiving the transaction, a miner must first verify if the summary trans-

action generator has the authority to summarize the listed transactions. This is

achieved using the GV as outlined in Algorithm 1 (steps 5-9). If the transaction

is verified, it is mined in the BC. As was noted in Section 3.3.1, transaction

removals are handled in batches, i.e., at the end of each CP. Thus, the miner

will remove all summarized transactions (discussed in detail in Section 4) from

its copy of the BC in the next CP (step 10 and 11).

Recall that MOF-BC rewards users for optimizing BC memory footprint.

Similar to how rewards were handled for removing a transaction, the RMA

calculates the rewards value (Reward) for each user using the following:

21

Reward =
∑k

i=1 ti.pages− Sum.pages

Where k is the total number of transactions that are summarized and Sum

is the summarized transaction.

3) Aging: The data of the IoT devices is either stored within transac-

tions or in a separate storage (e.g., cloud storage) with the hash of the data

stored in a transaction (i.e., the data is linked to the BC). To optimize memory

consumption, a user may decide to compress the stored data which is known

as aging in the literature [22]. However, applications and services that use the

compressed data may be impacted depending on the extent of the compression

particularly when lossy compression is used.

In MOF-BC, the users can age their data stored in or linked to a transaction.

To age data either the user or a third-party, e.g. the cloud storage, passes the

original data through an aging function as in [22]. If a third-party ages data,

it must send the aged version of the data to the user for verification purpose.

To prove that the user is the generator of the original transaction, i.e., the

transaction that contains or links to the original version of the data, the GV is

included in the aged transaction.

The user then broadcasts the aged transaction to the network. The miners

verify the transaction by verifying the GV of the original transaction as out-

lined in Algorithm 1. After verification, the aged transaction is mined in BC.

On receipt of the aged transaction, miners can remove the corresponding orig-

inal transaction from the BC in the next CP (see Section 4). If the removed

transaction is the input of another transaction, then a redirection flag is set in

the hash of that transaction in the block, which implies that the corresponding

transaction is updated to a new transaction (i.e. redirected). To ensure that

users can find the reference to this new transaction (i.e., the redirected address),

we use a shared read-only central database known as blackboard. Multiple repli-

cations of the blackboard exist to reduce the risk of single point of failure and

ensure scalability. The blackboard is managed centrally by a Blackboard Man-

ager Agent (BMA). The BMA populates the blackboard with the IDs of the

22

aged transactions that have the redirection flag set. A malicious BMA may

either do not store or alter the data it receives from the nodes. However, this

can be detected by the node (or agent) that originally generates the data to be

stored in the BC.

3.3.2. SP-Initiated Memory Optimization (SIMO)

The core functions offered in SIMO are very similar to those in UIMO, i.e.

removal and summarization of transactions and aging of data. In SIMO, the SP

is aware of the GV-PK+ and GVS of the GVs used by the devices since it exerts

control over them and thus the SP can initiate the aforementioned actions. The

P.T.ID differs for each transaction, thus, the SP must generate a unique GV

for each transaction that its devices are generating as the SP is the only entity

that knows the GV-PK+ and its corresponding GV-PK-. This method will not

scale for SPs with billions of devices as they require to response to billion of

GV generation requests from their devices. To address this challenge, in SIMO

the P.T.ID is excluded from the GV generation and the GV is simply generated

using the hash of the GVS. Using the same hash for a number of transactions

leads to the same GV value for them. However, as these transactions are the

transactions of the SP and belong to a large number of users, then the privacy

of the users is protected.

3.3.3. Network-Initiated Memory Optimization (NIMO)

UIMO and SIMO afford significant flexibility to the user and SP for man-

agement of their stored transactions. However, there are certain overheads

associated with this flexibility. Actioning any of the functions (summarization,

removal and aging) requires the responsible entity to create a new transaction.

The SP in particular could potentially be responsible for managing a large num-

ber of devices and may not want to be burdened with this overhead for all of

them. Since these new transactions need to be mined into the BC, there could be

an adverse impact on the BC throughput, i.e., the number of transactions stored

in the BC per second. Finally, the removal of a stored transaction in UIMO &

23

SIMO achieves zero memory savings as the corresponding remove transaction

needs to be added to the BC.

To address these challenges, MOF-BC offers NIMO, whereby users and SPs

can offload these functions to the network. NIMO offers the following memory

optimization modes (some of which are very similar to the functions undertaken

in SIMO/UIMO):

1. Do not store

2. Temporary

3. Permanent

4. Summarizable

The MOM field in the transactions (see Section 3) indicates the optimization

mode used by the transaction with a different value identifying each MOM. The

MOM field must be set when the transaction is generated.

1) Do not store: It is not necessary to store all transactions in the BC. A

transaction may neither use the output nor be the input of another transaction,

e.g., a transaction that is generated by a home owner to monitor the security

camera of her home. It is not necessary to store such transactions if the user/SP

perceives no benefit in having an auditable record of the same. Moreover, the

lack of such a record also increases user/SP privacy. Transactions flagged as

such are not stored in the BC.

2) Temporary: Certain transactions between IoT nodes might only need

to be valid for a specified period of time known as Time To Live (TTL). For

example, a home owner may grant access to the data from a sensor to the SP

for a year’s service. MOF-BC introduces temporary transactions for such cases.

A temporary transaction is removed from BC (as discussed in Section 4) after

TTL specified in the MOM-Setup field of the transaction.

Recall from Section 3.2 that the MOF-BC applies a storage fee to all trans-

actions. To encourage the generation of temporary transactions, MOF-BC in-

troduces flexible storage fee for user/SP that do so:

Storagefee = Pages ∗ TTL ∗Rate

24

Rate is the cost of storing a page for a period of time and can be used as a

weight to adjust the transaction fee. The rate could be progressively increased

for transactions that are stored in the BC for a longer time. An estimation of

the rate can be made based on the cost of buying storage media. A 1T SSD

storage media costs around 650$. The optimal lifetime of storage media is 5

years [23]. In our experiments, a page size is 1Kbyte (see Section 5). Thus,

the cost for storing each page for 5 years is 0.00000065$. Although storage cost

of an individual transaction is small, with billions of IoT devices generating

transactions, these costs will add up significantly. The storage fee of a temporary

transaction can be paid by any rewards accrued as per the discussion in Section

3.3.1.

3) Permanent: These transactions are stored permanently in the BC. Note

that, all current BC instantiations only support permanent storage of transac-

tions. A fixed storage fee is applied, which is defined based on the application.

4) Summarizable: In NIMO, the user/SP must specifically mark trans-

actions that should be summarized when they are created. Since the network

handles the summarization process, there is no need for GV as in the case of

SIMO/UIMO. Subsequently the structure of the NIMO summary transaction is

as shown in Figure 9.

Figure 9: The structure of NIMO summary transaction.

Summary transactions are mined as normal into the BC. At the end of each

CP, a Summary Manager Agent (SMA) summarizes all summarizable transac-

tions in a ledger in a single consolidated summary transaction. Although the

summary transaction is initiated by the SMA, the user/SP first needs to permit

its transactions to be summarized by setting the MOM of its transactions as

summarizable. This ensures that the user/SP has full control over which trans-

actions should be summarized, while the network specifies when to summarize

25

the transactions to enhance the BC memory optimization. We will further elab-

orate on the choice of the CP in our experimental evaluations in Section 5.2.2.

Figure 10 outlines the main steps of summarization MOM. The SA scans

newly mined blocks for summarizable transactions and sends references to these

to the SMA. When the current CP concludes, the SMA populates a summary

transaction, as outlined in the summarizing process in Section 3.3.1, for each

ledger that has summarizable transactions. Next, the SMA broadcasts the

transaction to the network to be mined in the BC. The miners may randomly

check the summary transaction by summarizing the summarized transactions

and comparing the results with the summary transaction. This protects the

network against malicious SMA which generates fake summary transactions.

The associated processing overhead with verifying the summary transaction on

the miners is further reduced using the distributed trust algorithm outlined in

Section 3.1.

As outlined in Section 3.3.1, the RMA calculates the rewards for each user/SP

that summarized its transactions in the BC. The total value of rewards (Re-

wardT) offered to the owners of summarized transactions is:

RewardT =
∑k

i=1 ti.pages− Sum.pages

Where k is the total number of transactions to be summarized and Sum is

the summarized transaction. The share of node N (RewardN) in RewardT is:

RewardN = RewardT ∗ tN .pages∑k

i=1
ti.pages

Although the summary transaction is mined into the BC, the summarized

transactions still need to be removed. This process is performed at the end of

the CP and is discussed in Section 4.

3.3.4. Summary

In this section, we summarize key advantages and implications of using mul-

tiple MOMs employed in the MOF-BC in Table 2. These arguments are also

relevant for SIMO and UIMO, since the underlying functionality for removing

and summarizing a transaction in SIMO/UIMO is similar to the temporary and

26

Figure 10: The process of network-initiated summary transaction.

summarizable MOM in NIMO.

Table 2: Discussion about the proposed optimizations.

Optimization
mode

Benefits Implications

Do not store Suited for instances where no record of a transaction is desired;
increases privacy as no record of the transaction
is stored; zero memory footprint; no transaction fee.

Transaction cannot be referenced
in any other transaction; auditing is
not possible.

Temporary/
Removing

Suited for transactions that have a specific lifetime; transaction
is removed after the TTL freeing up memory and enhancing
privacy; Reduces memory consumption and long term fees.

The transaction is only valid for
the specified time and thus can
only be audited and referenced up
to that time

Permanent Suited for transactions that need to remain in the BC forever;
These transactions can always be referenced and audited.

Constant memory usage and higher
transaction costs.

Summarizable Suited for transactions that are related to one another; after
summarization it is still possible to verify if one of the original
transactions belongs to the group of summarized transactions;
memory savings and increased privacy is manifested after the
summarization process; reduces monetary cost; timestamps of
the individual transactions can be audited.

The content of the summarized
transactions cannot be accessed.

Aging Suited for applications where older data is not as frequently
referenced; Reduces memory consumption and monetary cost.

The accuracy of the data is reduced
and can thus impact the quality of
service from the SP.

4. Batch Removal of Transactions

In this section, we discuss the process for removing transactions. We also

introduce removal of a ledger. Recall that in conventional BCs, removing a

transaction breaks the block hash consistency as the hash is generated over the

27

entire contents of the block as:

BlockID = H(T 1||T 2||...||T k||block.header)

Where k is the total number of transactions in the block, Tk is the content of

the transaction, and block.header is the content of the block header. To ensure

the block hash consistency while allowing removal of transactions, in MOF-BC

the block hash, i.e., BlockID, is calculated as:

BlockID = H(T.ID1||T.ID2||...||T.IDk||H(block.header))

T.ID is the hash of the transaction content, thus, the transaction content

is included in the block hash generation. To remove a transaction, its content

is removed from the BC, however, T.ID and P.T.ID remain stored. The T.ID

ensures the block consistency while the transaction is removed. P.T.ID ensures

that the chain of transactions in the ledger is not broken after removing a

particular transaction.

Removing a ledger: In IoT, the users/SPs may demand to remove all

information of a particular device. For example, a device installed in a users

home may break. The user may no longer wish to keep a record of the trans-

actions pertaining to this device. Thus, the transaction ledger is removed using

a ledger-remove transaction. Normally as outlined in Section 3.3.1, removing

multiple transactions would require the user or SP to provide the GV of each

transaction. But since all transactions being removed are chained together in

a ledger, it is sufficient to only include the GVS and GV-PK+ associated with

the genesis transaction of the ledger. This not only reduces the size of the

transaction but also simplifies transaction processing.

Cleaning Period (CP): As outlined in removal part of the Section 3.3.1,

the miners process the removal of transactions in batches over a periodic Clean-

ing Period (CP). The CP value is application based. We further elaborate on

the choice of the CP and its impact on the BC size and the resources expanded

at each miner in the evaluations in Section 5.2.

The removal of all transactions at the end of each CP incurs processing

overhead on the miners. To reduce this overhead, MOF-BC introduces a Service

Agent (SerA) that handles the removal process and makes its updated version of

28

the BC available for all miners to download, which in turn reduces the processing

overhead on the miners. The miners (or some of them) may decide to perform

the removals by their own and compare the result with the updated version of

the BC available from the SerA to ensure that the SerA is not compromised.

Similar to SMA, distributed trust algorithm is used to decrease the processing

overhead.

5. Evaluation and Discussion

In this section we provide qualitative security analyses as well as quantitative

performance evaluations.

5.1. Security analysis

We first discuss MOF-BC security and fault tolerance. It is assumed that the

adversary can be any node in the BC network, e.g., miner, SP, agent, or cloud

storage. Adversaries are able to sniff communications, create fake transactions,

attempt to change or remove stored transactions in BC, and link a user’s trans-

action to each other to uncover the real identity of the user. However, they are

not able to compromise the standard encryption algorithms that are employed.

Security: We consider the following attacks:

Transaction Removal Attack: In this attack, the malicious node attempts

to remove the transactions generated by other nodes. Recall that in MOF-BC

3 entities can initiate the memory optimization: the user in UIMO (Section

3.3.1), the SP in SIMO 3.3.2, and the network in NIMO 3.3.3. To remove the

transactions of a user or SP, the malicious node requires: i) The GV-PK+ to

decrypt the signature of the GV which can be gained from the remove requests

generated by the true user/SP, ii) The corresponding PK- to GV-PK+ to sign

the remove request which is only known to the user/SP. In the worst case, if the

attacker somehow finds the PK-, it still requires the GVS to decipher the GV.

A brute force attack is unlikely to succeed given that a collision resistant hash

such as SHA-3 is employed.

29

In NIMO, the specific MOM is indicated within the transaction when it is

created by the user or SP making the transaction resistant against this attack.

False Storage Claim: In this attack, the malicious miner claims to have BC

stored to receive incentive from the StMA (see Section 3.2). Recall that the

PA migrates randomly between the miners that have made claims and validates

their claim by examining the space that they have dedicated to the BC. To

verify the storage claims of all miners, the PA must visit all miners at least once

during the CP. The average frequency of visiting the miners by the PA can be

defined by network designers considering the outlined implications.

Agent Isolation: An agent may become completely isolated if all the nodes

in its one-hop neighborhood collude with each other. These colluding nodes may

isolate the agent by dropping all transactions or blocks to or from the agent.

The aim of this attack is to prevent normal well-behaving nodes from receiving

services offered by the agent. To mitigate the effect of this attack, in MOF-BC

multiple replicas of each agent are positioned in different places in the network.

Thus, in case one of them is isolated, then other agents can continue to provide

service. We elaborate more on the impact of the number of isolated agents on

the service provided to the nodes while we discuss fault tolerance at the end of

Section 5.1.

Malicious SP: A SP may maliciously remove a transaction to disown re-

sponsibility. Consider the following example. Alice (the renter of a home) has

sent a transaction to Bob (the home owner and thus the SP) alerting him that

the fire alarm is broken and requesting servicing. Bob ignores the transaction.

A fire breaks out in the home causing significant damage. Bob wishing to shirk

responsibility removes Alice’s transaction and falsely alleges that she was re-

sponsible for the fire as the faulty fire alarm was not reported. Even if Bob

removed Alice’s transaction, its hash is still present in the BC. Assuming that

Alice has stored a copy of the transaction locally, she can readily verify this and

thus implicate Bob.

Reward sniffing: The attacker sniffs the communications between the users/SPs

and the bank to discover the PK+ that rewards are paid to. The attacker can

30

subsequently track the user/SP payments and compromise his privacy. The

users/SPs encrypt the redeem request using the PK+ of the bank, which en-

sures only the bank can read the GVs and the PK+ to be paid to. Additionally,

the users/SPs can exchange their earned coin or reward with any other user/SP.

Thus, even knowing the PK+ of the rewards corresponding to each user/SP does

not compromise user/SP privacy.

Malicious agents: The agents may perform malicious activities in the net-

work. It is assumed that agents are selected to run on nodes which have higher

security, e.g. the machines with high resources to perform the security tasks.

However, we conservatively assume that the agents can still be compromised.

Table 3 summarizes the key methods employed by the miners to detect misbe-

havior of the agents. Once a malicious agent is identified, the miners isolate it

and choose a new agent as a replacement.

Fault tolerance: Fault tolerance is a measure of how resilient an archi-

tecture is to node failures. In MOF-BC only the agents are vulnerable to failure

as the rest of the network that forms the BC works distributedly. To enhance

the fault tolerance of the agents, multiple replicas of the agents work collabo-

ratively. Thus, failure of one will not impact the network. Failure of multiple

replicas of an agent may affect the fault tolerance of the MOF-BC. If the total

requests generated by the participating nodes in the BC exceeds the cumulative

response rate, i.e., the number of transactions being responded, of replicas, then

the participating nodes experience delay in receiving service.

5.2. Performance evaluation

In this section we present extensive performance evaluations of MOF-BC.

We implemented MOF-BC using C++ integrated with crypto++ library and

SQLite database on a MacBook laptop (8 GB RAM, Intel core M-5y51 CPU,

1.10 GHz*4). We assume a network comprised of 900 nodes, each of which

has its unique PK+/PK- for generating transactions. Each node generates one

transaction per week. Nodes generate different types of transactions and the

network initiates the memory optimization. In BC, throughput is the defined as

31

Table 3: The employed methods to detect misbehavior of agents.

Agent The employed method

SA The agents that receive transactions from the SA randomly search

the new blocks for the relevant transactions and compare them with

the transactions sent by the SA (see Section 3.3.1).

SMA The miners randomly summarize the summarized transactions using

the same method as the SMA and validate the received summary

transaction (see Section 3.3.3).

SerA The miners verify the received blocks by ensuring that the SerA only

removed the expired transactions from the BC (see Section 4).

RMA A compromised RMA can be detected by the nodes in BC network as

they would no longer receive reward or receive partial rewards. Such

nodes inform the rest of the network of the malicious behavior of the

RMA (see Section 3.3.1).

BMA Similar to RMA, if the BMA is compromised the participating nodes

in the BC or the agents that populate the blackboard can detect the

misbehavior as the information they’ve sent to the BMA is not stored

in the blackboard (or is changed) (see Section 3.3.1).

StMA A compromised StMA can be detected by the miners as they are not

paid for their service (see Section 3.2).

PA The malicious behavior of the PA is detected by the new nodes joining

the BC. These nodes request to download the BC from one of the

storing nodes. If the request is rejected by the storing node, then the

new node informs the StMA. The StMA verifies the PA by generating

a new PA controlling the suspected storing node (see Section 3.2).

32

the total number of transactions that can be stored in BC per second. The BC

throughput in our implementation is 90 blocks per week, i.e., one transaction for

each node per week. Transactions are organized in blocks such that there are 10

transactions within one block. Since the process of mining blocks is orthogonal

to the functionality offered by MOF-BC, i.e., optimizing BC memory footprint,

it has not been implemented. Each transaction contains PK+, signature, TID,

P.TID, MOM, and MOM-setup (see Section 3.3) fields.

Recall from Section 3.3.3 that in NIMO a large portion of the optimization

tasks are performed by the network, thus, increases the (processing) overhead on

the network compared to UIMO and SIMO where the user or SP performs most

of the processing for the memory optimization. Additionally, MOMs defined

in NIMO overlap with the functionality supported in UIMO and SIMO. Thus,

we only evaluate NIMO since we expect that the associated overheads cover the

overheads incurred by other two optimization methods. Note that the optimized

memory using the aging largely depends on type of data and aging function

which are not in the scope of this paper.

We first evaluate the benefits (memory footprint optimization and monetary

cost) and implications (processing time of handling memory optimization tasks)

of using MOF-BC compared to scenario when all transactions are permanently

stored. We show that the benefits of MOF-BC far outweight the small overheads.

Next, we provide comprehensive evaluations on memory saved or expended of

choosing the CP values.

5.2.1. BC size and transaction fee

In this section, we evaluate the impact of multiple MOM on the BC size

and the transaction fee that needs to be paid by the users. It is assumed that

each node generates one transaction per week with a cumulative total of 280

transactions. All nodes generate transactions sequentially which are organized

in blocks of 10 transactions resulting in a BC that contains 25200 blocks. The

CP is set to 180 weeks. The evaluation metrics are computed once the BC

is populated with 25200 blocks. We use 3 different instances of the BC each

33

0.6552

0.16791606

0.00468

258.594816

65.711616

98.294784

0

50

100

150

200

250

300

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Permanent Temporary Summarizable

B
C

 si
ze

 (M
b)

C
um

ul
at

iv
e

tra
ns

ac
tio

n
fe

e
($

)

Transaction fee BC size

(a)

0

1

2

3

4

5

6

7

Permanent Temporary Summarizable

C
um

ul
at

iv
e

pr
oc

es
si

ng
 ti

m
e

(m
in

)

(b)

Figure 11: Evaluation of the a) cost and memory b) processing time.

using a different MOM, to evaluate each MOM separately. The CP equals to 2

weeks, i.e, 180 blocks. For temporary MOM we form three groups of nodes, each

group with 300 participating nodes. All participants of a group use the same

value as the TTL which is 26, 52, and 104 weeks for groups 1-3 respectively.

Groups sequentially generate one transaction. To measure the transaction fee,

we used the estimated storage fee in Section 3.3.3, i.e. 0.00000065$ per 5 years.

The cost for storing a temporary transaction for 20 years is considered as the

permanent transaction fee which is 0.0000026$. Mining fee is not considered in

our study as we exclusively wish to consider the storage fee as an evaluation

metric. The implementation results are shown in Figure 11. In Figure 11a the

right vertical axis shows the BC size while the left axis shows the cumulative

transaction fee which is the transaction fee paid by all nodes in the network.

Figure 11b illustrates the cumulative processing time incurred for executing the

actions associated with the 3 MOM.

Observe that, the permanent MOM is essentially similar to conventional BCs

expectedly has the highest memory footprint. The BC size of temporary MOM

is the lowest as transactions are removed after their TTL expires. With the

summarizable MOM, a sizeable fraction of the BC size is attributed to summa-

rized transactions. Consequently, the BC size is greater than with temporary.

However, the summarizable transaction incurs lower cost compared to the tem-

porary. For temporary transactions, the node pays a flexible transaction fee for

all its transactions. For summarizable transactions, each node receives a reward

34

at the end of each CP which is used to cover part of the transaction fees, thus

reducing the expenses incurred by the user. In our experiment at the end of the

first CP each node earns 1.6 rewards based on the reward calculation formula

given in Section 3.3.3. Following this, in each CP one summary transaction for

each node is stored in the BC, thus each node can only store one transaction in

the BC within the CP. The storage fee of this transaction can be paid by the

earned rewards from the optimizations employed in the previous CP. Thus, each

node only needs to pay for its first two transactions stored during the first CP

and the rest are paid by earned rewards. As shown in Figure 11b, the processing

time for summarizable transactions is greater than the temporary transactions.

This is because the transactions that are summarized need to be removed and a

new summary transaction must be mined into the BC. Note that the measured

processing time is the read/write time for updating the database and thus is

the HDD read/write time.

We next measure the cumulative monetary cost saved by the network par-

ticipants using the MOF-BC as well as the monetary cost of running MOF-BC

tasks. Thus, we require to convert the processing time incurred by the MOF-BC

to energy consumption and in turn to monetary cost. To convert the processing

time to energy consumption, we base our calculations on the energy consump-

tions measured by the authors in [25]. The consumed energy during the load

time for HDD is 8.4W. Thus, the cumulative consumed energy for temporary

and summarizable MOM is 781 and 3305W respectively. We next measure the

cost for energy. Based on the market price, the energy price is 28.52 c/Kwh

[26]. The saved and incurred costs are presented in Table 4. The saved cost is

the cost that each user saves in transaction fee and is measured by subtracting

the cost that the user pays for using the temporary and summarizable MOM

from the cost that the user would have paid for the permanent MOM, which is

essentially similar to the conventional BCs, and the cost users pay using each

MOM. The incurred cost includes the cost incurred at the miner for executing

the removal process (see Section 4).

It is evident that the cost saved by the MOF-BC is by far higher than the

35

cost incurred for processing transactions. As the memory footprint of MOF-BC

reduces significantly compared to conventional BC instantiations, the miners are

required to expend less memory to store the BC and thus can save monetary

cost of purchasing and maintaining extra storage. The exact amount of saving

depends on multiple factors including the storage space in the miner, the BC

size, and the wasted memory which are application-specific, thus, we are unable

to provide any estimation on this additional advantages of the MOF-BC.

Table 4: The saved and incurred cost by MOF-BC ($).

Temporary Summarizable

Saved cost 0.48728394 0.65052

Incurred cost 0.000374948 0.001586572

Benefit/Cost ratio 1300 410

5.2.2. Impact of varying the CP

Recall from Section 4 that in MOF-BC at the end of each CP each node

that stores a copy of BC removes all removable transactions from its BC copy.

Additionally, the SMA generates a summary transaction for all summarizable

transactions in a ledger and broadcasts it to be mined into the BC. We disregard

the delay of creating a summary transaction and the time taken for the broadcast

to propagate through the network as these have no effect on the measured

metrics. Thus, the summary transactions are immediately mined into the BC

after generation.

The cleaning process (see Section 4) and summarization (see Section 3.3.3)

tasks performed at the end of each CP directly affect the BC size. Thus, we

first measure the cumulative size of the BC while varying the CP value. In this

setup, the participating nodes are grouped in three groups, each with 300 nodes.

The nodes in each group generate transactions with a particular MOM, i.e.,

permanent, temporary, and summarizable. The nodes that generate temporary

transactions are further divided in three groups, each generating transactions

with different TTL that highlights the impact of TTL in BC size. The TTL

36

values equal to 26, 52, and 104 weeks. This configuration is referred to as the

default configuration in the rest of this section. Figure 12 plots the BC size for

3 different CP values, which are 90, 180, and 360 weeks, as a function of the

total number of blocks generated and stored in the BC. As can be inferred, with

larger CP more transactions are collected which increases the size of the BC

before reaching the CP. Recall from Section 3.3.3 that at the end of each CP,

the SMA stores new summary transactions that can no longer be optimized to

free up BC memory. Thus, with smaller CPs the frequency which the summary

transactions are generated increases. Consequently, the amount of freed up

space in the smaller CPs is smaller than larger CPs.

0

2000

4000

6000

8000

10000

12000

B
C

 si
ze

 (K
b)

Number of blocks

90 180 360

Figure 12: The impact of the CP on the BC size.

At the end of the CP, the summary transactions must be mined into the

BC. Consequently, the number of transactions generated by the users that can

be mined during the CP, referred to as throughput in the rest of this section, is

reduced. Next, we study the impact of varying the CP value on the BC through-

put. We used the default configuration and the results are shown in Figure 13.

As expected, by increasing the CP the BC throughput is also increases. The CP

impacts the number of summary transactions and the BC throughput. These

affect the BC size and number of blocks in BC, as a number of blocks have to

be mined into the BC to store the summary transactions. The number of blocks

in the BC further impacts the packet and processing overhead on the network

37

for mining and broadcasting the new blocks. In this part of our evaluations, we

measure the BC size and the number of blocks for storing a particular number

of transactions, 10,000 in our implementations, in the BC. The BC size metric

shows the impact of summary transactions on the BC memory footprint. We use

the default configuration and measure the two metrics when 10,000 transactions

generated by the users are mined into the BC. Figure 14 presents the results. It

can be seen that for storing the same number of transactions, a larger CP results

in a lower memory footprint. Additionally, fewer blocks are required to store

10,000 transactions. Arguably, the mining overhead as well as the bandwidth

consumption are decreased and the scalability is increased as fewer blocks need

to be broadcast in the network.

0

500

1000

1500

2000

2500

3000

3500

90 180 360

B
C

 th
ro

ug
hp

ut
 (p

ac
ke

ts
/w

ee
k)

CP

Figure 13: The impact of CP on the BC throughput.

Our results have so far shown that larger CPs improve the BC throughput

and memory requirement compared to the smaller CPs. However, using large CP

incurs storage overhead at the miners for storing expired transactions including

temporary transactions whose TTL has passed and summarizable transactions,

which is referred to as wasted memory in the rest of the paper, for a longer

period. The main aim of generating the summarizable transactions is to allow

them to be removed and thus optimize the BC storage. Thus, they can be

considered as wasted memory while they are not yet summarized. To measure

the impact of the CP on the wasted memory, we consider the default configura-

38

0

2000

4000

6000

8000

10000

12000

0

200

400

600

800

1000

1200

1400

1600

90 180 360

B
C

 si
ze

 (K
B

yt
e)

N
um

be
r o

f b
lo

ck
s i

n
B

C

CP

Number of blocks BC size

Figure 14: The impact of CP on the size and length of BC for storing 10k transactions.

tion. Figure 15 plots the cumulative amount of wasted memory in each miner

as a function of the number of blocks for different CPs. With a large CP, the

time between when the cleaning process is executed is longer and thus a greater

number of expired transactions accumulate. Consequently the wasted memory

is far greater than with a smaller CP.

0

1000

2000

3000

4000

5000

6000

7000

8000

C
um

ul
at

iv
e

w
as

te
d

m
em

or
y

(K
B

yt
e)

Number of blocks

90 180 360

Figure 15: Evaluation on cumulative wasted memory.

The wasted memory increases the monetary cost of the miners for stor-

ing wasted space. To evaluate the impact of CP on the cost, we measure the

cumulative cost each miner incurs in storing wasted memory. We based our

measurements on the estimated cost in section 3.3.3, i.e., 0.00000065$ for five

39

years. The wasted cost can be measured by multiplying the wasted memory

given in Figure 15 by 0.000000065$ that is the cost of storing one page of data,

i.e., 1KByte, for six months (which equals with 45 blocks). The latter is the

base when we measured the wasted memory.

In conclusion, for choosing a CP the trade-off between throughput memory

footprint on the one side and wasted memory and monetary cost on the other

needs to be considered.

6. Conclusion

The immutable nature of the BC makes it impossible to modify or remove

a previously stored block and thus increases BC security. However, it leads

to storage, privacy, and cost challenges for BC users particularly in large scale

networks like Internet of Things (IoT). This paper, proposed a Memory Opti-

mized and Flexible BC (MOF-BC) that empowers users and Service Providers

(SPs) to remove a previously stored transaction or reduce its size by summariz-

ing transactions or aging the data in transactions. The user/SP may decide to

offload the associated overheads for optimizing BC memory to the network us-

ing Network-Initiated Memory Optimization (NIMO). To encourage users/SPs

to employ memory optimization, MOF-BC offers flexible transaction fees and

rewards. The MOF-BC introduces a Generator Verifier (GV) which addresses

key management for large scale networks while maintains the user/SP privacy.

Security analysis show the robustness of the MOF-BC against several attacks.

Implementation results show that MOF-BC achieves lower memory consump-

tion while incurring a small processing overhead.

7. References

References

[1] M. Abramaowicz, Cryptocurrency-based law, Ariz. L. Rev. 58 (2016) 359.

40

[2] A. Dorri, et al, Blockchain: A distributed solution to automotive security

and privacy, IEEE Comm magazine. arXiv preprint arXiv:1704.00073.

[3] S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system (2008).

[4] Slock, https://slock.it/usn.html (2017).

[5] S. Rowan, M. Clear, M. Gerla, M. Huggard, C. M. Goldrick, Securing

vehicle to vehicle communications using blockchain through visible light

and acoustic side-channels, arXiv preprint arXiv:1704.02553.

[6] K. Christidis, et al, Blockchains and smart contracts for the internet of

things, IEEE Access 4 (2016) 2292–2303.

[7] BlockChain, https://blockchain.info/charts/blocks-size (2017).

[8] A. Dorri, S. S. Kanhere, R. Jurdak, P. Gauravaram, Lsb: A

lightweight scalable blockchain for iot security and privacy, arXiv preprint

arXiv:1712.02969.

[9] N. Apthorpe, D. Reisman, N. Feamster, A smart home is no castle: Privacy

vulnerabilities of encrypted iot traffic, arXiv preprint arXiv:1705.06805.

[10] R. C. Merkle, A digital signature based on a conventional encryption func-

tion, in: Conference on the Theory and Application of Cryptographic Tech-

niques, Springer, 1987, pp. 369–378.

[11] G. Wood, Ethereum: A secure decentralised generalised transaction ledger,

Ethereum Project Yellow Paper 151.

[12] C. Cachin, Architecture of the hyperledger blockchain fabric, in: Workshop

on Distributed Cryptocurrencies and Consensus Ledgers, 2016.

[13] S. Huh, S. Cho, S. Kim, Managing iot devices using blockchain platform, in:

Advanced Communication Technology (ICACT), 2017 19th International

Conference on, IEEE, 2017, pp. 464–467.

41

https://slock.it/usn.html
https://blockchain.info/charts/blocks-size

[14] P. K. Sharma, S. Singh, Y.-S. Jeong, J. H. Park, Distblocknet: A dis-

tributed blockchains-based secure sdn architecture for iot networks, IEEE

Communications Magazine 55 (9) (2017) 78–85.

[15] S. Popov, The tangle, cit. on (2016) 131.

[16] H. Shafagh, A. Hithnawi, S. Duquennoy, Towards blockchain-based au-

ditable storage and sharing of iot data, arXiv preprint arXiv:1705.08230.

[17] S. H. Hashemi, et al, World of empowered iot users, in: IoTDI, IEEE, 2016,

pp. 13–24.

[18] A. Dubovitskaya, Z. Xu, S. Ryu, M. Schumacher, F. Wang, Secure

and trustable electronic medical records sharing using blockchain, arXiv

preprint arXiv:1709.06528.

[19] G. Ateniese, et al, Redactable blockchain–or–rewriting history in bitcoin

and friends, in: Security and Privacy (EuroS&P), 2017 IEEE European

Symposium on, IEEE, 2017, pp. 111–126.

[20] D. L. Fox, System and method for verifying integrity of replicated

databases, uS Patent 5,765,172 (Jun. 9 1998).

[21] Medium, https://medium.com/ipdb-blog/

forever-isnt-free-the-cost-of-storage-on-a-blockchain-database-59003f63e01

(2017).

[22] S. Nath, Energy efficient sensor data logging with amnesic flash storage,

in: Proceedings of IPSN, IEEE Computer Society, 2009, pp. 157–168.

[23] K. Croman, et al, On scaling decentralized blockchains, in: International

Conference on Financial Cryptography and Data Security, Springer, 2016,

pp. 106–125.

[24] A. Dorri, et al, Towards an optimized blockchain for iot, in: IoTDI, ACM,

2017, pp. 173–178.

42

https://medium.com/ipdb-blog/forever-isnt-free-the-cost-of-storage-on-a-blockchain-database-59003f63e01
https://medium.com/ipdb-blog/forever-isnt-free-the-cost-of-storage-on-a-blockchain-database-59003f63e01

[25] A. Jaiantilal, Y. Jiang, S. Mishra, Modeling cpu energy consumption for

energy efficient scheduling, in: Proceedings of the 1st Workshop on Green

Computing, ACM, 2010, pp. 10–15.

[26] OriginAustralia, https://www.originenergy.com.au/ (2017).

43

https://www.originenergy.com.au/

	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Paper Overview

	2 Related work
	3 Optimizing Blockchain Memory Consumption
	3.1 An overview of the framework
	3.2 Storage fee
	3.3 Memory optimization
	3.3.1 User-Initiated Memory Optimization (UIMO)
	3.3.2 SP-Initiated Memory Optimization (SIMO)
	3.3.3 Network-Initiated Memory Optimization (NIMO)
	3.3.4 Summary

	4 Batch Removal of Transactions
	5 Evaluation and Discussion
	5.1 Security analysis
	5.2 Performance evaluation
	5.2.1 BC size and transaction fee
	5.2.2 Impact of varying the CP

	6 Conclusion
	7 References

