

UPCommons
Portal del coneixement obert de la UPC

http://upcommons.upc.edu/e-prints

Aquesta és una còpia de la versió author’s final draft d'un article
publicat a la revista Future generation computer systems.

URL d'aquest document a UPCommons E-prints:

https://upcommons.upc.edu/handle/2117/127096

Article publicat / Published paper:

Greco, L., Ritrovato, P., Xhafa, F. An edge-stream computing
infrastructure for real-time analysis of wearable sensors data. "Future
generation computer systems", Abril 2019, vol. 93, p. 515-528. DOI:
10.1016/j.future.2018.10.058

© 2019. Aquesta versió està disponible sota la llicència CC-BY-NCND
3.0 http://creativecommons.org/licenses/by-nc-nd/3.0/es/

http://upcommonsdev.upc.edu/
http://upcommonsdev.upc.edu/
http://upcommons.upc.edu/e-prints
https://upcommons.upc.edu/handle/2117/127096
https://doi.org/10.1016/j.future.2018.10.058
http://creativecommons.org/licenses/by-nc-nd/3.0/es/

An edge-stream computing infrastructure for real-time

analysis of wearable sensors data

Luca Grecoa, Pierluigi Ritrovatoa, Fatos Xhafab

aDept. of Computer and Electrical Engineering and Applied Mathematics (DIEM),
University of Salerno, Italy

bDept. de Ciències de la Computació Universitat Politècnica de Catalunya Barcelona,
Spain

Abstract

The fast development of IoT in general and wearable smart sensors in par-
ticular in the context of wellness and healthcare are demanding for definition
of specific infrastructure supporting real time data analysis for anomaly de-
tection, event identification, situation awareness just to mention few. The
explosion in the development and adoption of these smart wearable sensors
has contributed to the definition of the Internet of Medical Things (IoMT),
which is revolutionizing the way healthcare is tackled worldwide. Data pro-
duced by wearable sensors continuously grow and could be spread among
clinical centers, hospitals, research labs, yielding to a Big Data management
problem. In this paper we propose a technological and architectural solution,
based on Open Source big data technologies to perform real-time analysis of
wearable sensor data streams. The proposed architecture is composed of
four distinct layers: a sensing layer, a pre-processing layer (Raspberry Pi), a
cluster processing layer (Kafka’s broker and Flink’s mini-cluster) and a per-
sistence layer (Cassandra database). A performance evaluation of each layer
has been carried out by considering CPU and memory usage for accomplish-
ing a simple anomaly detection task using the REALDISP dataset.

Keywords: Internet of things, Edge Computing, Big Data.

1. Introduction

Nowadays, the use of information technologies in Healthcare has led to
an improved quality of treatments and a reduction of expenses, especially
for patients whose diseases can be remotely screened. Thanks to the ever

Preprint submitted to Elsevier June 8, 2018

reducing costs in the production of powerful embedded computing systems,
Internet of Things (IoT) technologies are spreading rapidly and have become
a far-sighted investment to enhance both medical and financial services, con-
sidering that most countries spend at least 10% of their GDP in Healthcare
[16].

The interest in IoT technologies for healthcare is well motivated by their
capability to effectively address monitoring tasks that would alleviate or pre-
vent critical events (for example heart stroke and ischaemic heart disease,
which are the most frequent causes of death in the world [18]). The explo-
sion in the development and adoption of smart medical sensors for healthcare
has contributed to the definition of the Internet of Medical Things (IoMT),
which is revolutionizing the way healthcare is tackled worldwide.

In this paper we propose a technological and architectural solution to per-
form real-time data analysis from wearable sensors. Technically, a wearable
sensor is a device that can be worn or mated with human skin to continuously
and closely monitor an individual’s activity without interrupting or limiting
his motion [19]. In 2014 more than 15 million wearable smart devices were
sold [20]; in 2015 69% of US citizens made use of sensors to track their health
status; the same statistics in UK reached 70% [21].

Sensors such as heart-rate monitoring chest strap, accelerometers and
gyroscopes are commonly used to measure vital signs or tracking motion,
becoming a smart solution in a large variety applications such as fall risk
assessment and statistical study on patient’s habits. Data produced by this
kind of sensors continuously grows (at an overwhelming speed) and could
be spread among clinical centers, hospitals and research labs, yielding to a
Big Data management problem, since it’s naturally characterized by velocity,
volume, variety and veracity (due to inconsistency) [10].

IoT technologies in healthcare also benefit from the use of Semantic Web
technologies [5] as an effective way to associate meanings to raw, and some-
times apparently useless, data produced by sensors that would be otherwise
discarded and unused. The semantic annotation of data streams is carried
out using terms available in existing ontology like the MIMU-Wear [6], an ex-
tensible ontology that comprehensively describes wearable sensor platforms
consisting of mainstream magnetic and inertial measurement units (MIMUs).
MIMU-Wear describes the capabilities of MIMUs such as their measurement
properties and the characteristics of wearable sensor platforms including their
on-body location. As we can see in the experimentation the Semantic anno-
tation process contributes to increase the data size to be analyzed.

2

The rest of the paper is organized as follows. First, we give some back-
ground and report a selection of relevant works about IoT technologies so-
lutions for e-Health (Section 2). Then, in Section 3, we describe our layered
architecture, giving some details about each block. Section 4 presents results
coming from an evaluation of the system and, finally, the Section 5 contains
some final considerations on the proposed architecture and indicates future
works.

2. Related works and background

The idea of remotely monitoring patients’ health status from wearable
sensors has been subject of investigation from the scientific community for
more than ten years. First solutions involved PC based stations like in [23],
where a system to remotely monitor patients using data from ECG and
accelerometers is described: such application would report to clinicians peri-
ods of elevated heart rate and filter expected critical situations. Nowadays,
the interest towards technological solutions enhancing healthcare provision
has substantially grown and the maturity of IoT technologies has led to the
production of several solutions involving IoT-based healthcare network ar-
chitectures and platforms. In fact, IoT systems prove to address effectively
healthcare at different levels: pediatric and elderly care, chronic disease su-
pervision, private health and fitness management [11].

Most works in literature explore the advances in the main enabling tech-
nologies for the Internet of Medical things domain, that include cloud com-
puting (ubiquitous access to shared resources), grid computing or cluster
computing, Big Data analytics (increase the efficiency of relevant health di-
agnosis), communication networks, ambient intelligence (learn human be-
haviour), augmented reality (surgery and remote monitoring), use of wear-
able medical devices, but also energy consumption models for cooperative
transmission strategies [9]. Typical solutions involve the use of powerful
micro-controllers and embedded systems to collect data from wearable sen-
sors. Among the available devices on the market, Raspberry Pi and Arduino
are often preferred choices because of their price and versatility.

A large number of research works of the last years concentrate on sys-
tems aimed at sensing the main physiological parameters of the human body.
For example, Orha et al. [26] present a system, based on an Arduino Uno
microcontroller, capable of recording body temperature, blood pressure, res-
piratory rate, electrocardiogram (ECG) and skin resistance from specialized

3

sensors. In the same way, Yakut et al.[24] propose a solution to measure
physiological ECG data using a Raspberry Pi and a e-health sensor platform
and save ECG data as a text file to the SD-card to allow further processing
in a Matlab environment.

Maga et al. [25] present a system based on Wireless Sensor Networks tech-
nology capable of monitoring heart rate and motion rate of seniors within
their homes. The system can remotely alert specialists, caretakers or fam-
ily members via smartphone about rapid physiological changes due to falls,
tachycardia or bradycardia. Another system for patient monitoring and
tracking relying on the PANGEA platform is presented by Villarubia et al.
[7]. This system locates (via RSSI) and monitors users (in particular their
cardiac function) allowing a simple TV interaction by means of a Raspberry
Pi connected to the Internet. ECG incorporates the necessary hardware to
send the data to the system via Bluetooth and allows a basic analysis of the
data for sending alerts.

Kaur et al. [1] also propose a system for remote monitoring of people
pulse rate, body temperature with wearable dedicated sensors by means of a
Raspberry PI. Remote Health monitoring is obtained by storing the collected
data to Bluemix cloud and allowing the doctor to access (MQTT) and analyze
it anywhere, detecting timely any anomaly and showing results in the form
of graphs at IBM Watson IoT platform.

A different solution is presented by Alwan et al. [13] showing an efficient
embedded system based of wireless health care monitoring using ZigBee.
The solution involves a data exchange between two systems: an Arduino
with ZigBee that sends signals to a Raspberry with ZigBee, that is respon-
sible for measuring patient data and sending it back to the first device. The
authors demonstrate on volunteers a case where body temperature is moni-
tored to diagnose fever in the patients. The work in [3] shows a novel signal
quality-aware Internet of Things (IoT)-enabled ECG telemetry system for
continuous cardiac health monitoring applications: a light-weight ECG SQA
method for automatically classifying the acquired ECG signal into acceptable
or unacceptable class. In particular, a real-time implementation of proposed
IoT-enabled ECG monitoring framework using ECG sensors, Arduino, An-
droid phone, Bluetooth, and cloud server is illustrated, with a validation
phase using the ECG signals taken from the MIT-BIH arrhythmia and Phy-
sionet challenge databases and the real-time recorded ECG signals under
different physical activities.

Recent works address also the problem of secure transmissions of health

4

related data such as the work in [8] whose aim is to build a secure IoT-
based healthcare system, operating through the BSN architecture. Robust
crypto-primitives are used to ensure transmission confidentiality and provide
entity authentication among smart objects, the local processing unit and the
backend BSN server. The healthcare system is also implemented with the
Raspberry PI platform, demonstrating its practicability and feasibility.

Other works investigate the use of IoT systems for limbs monitoring, such
as [14] where Mathur et al. propose a low cost mobile sensor platform to mon-
itor patients with prosthetic lower limbs. An Android mobile device captures
data from a wireless sensor unit and gives the clinician access to results from
the sensors. A Raspberry Pi Zero analyzes data used for remote monitoring
the tissue health of lower limb amputees achieved using the Gaussian process
technique. On the other hand, Villeneuve et al. [12] propose an approach to
estimate simplified human limb kinematics, based on measurements from two
low-power accelerometers placed only on the forearm. The system is consid-
ered in a Bayesian framework, with a linear-Gaussian transition model with
hard boundaries and a nonlinear-Gaussian observation model. The approach
proves that arm kinematics can be estimated from only two accelerometers
on the wrist and this is a crucial step toward in machine monitoring of users
health and activity on a daily basis.

Another interesting application is described by Chen et al. in [2], where a
trust-based approach for information sharing in a health Internet of Things
(IoT) system is proposed. Smart IoT devices share location-based informa-
tion obtained through their personal area networks (PANs) with the goal of
maximizing the safety of their human owners(e.g. a pollutant sensitive user
must determine whether or not he/she should enter a location at a particu-
lar time to avoid health related issues). There are also applications in voice
pathology monitoring: the work of Muhammad et al. [4] discuss the feasi-
bility of a voice pathology detection system using a local binary pattern on
a Mel-spectrum representation of the voice signal and an extreme learning
machine classifier to detect the pathology. Although many works have been
recently proposed in the field of health monitoring, most proposals focus on
the analysis of data related to a single individual or small communities with-
out investigating the implications of an extension of such solutions to large
numbers of users. Our aim is to propose a global approach that does not fo-
cus on the individual patient but extends to a wider context (such as medical
structures, hospitals...), also allowing to improve research and practices in
the Healthcare domain (for example by sharing statistics about effectiveness

5

of drugs and treatments).

3. The proposed system

In this paper, our focus is on cluster computing methods and technologies
that allow to reveal anomalies within data streams obtained from wearable
devices for e-health purposes. In this context, particular attention has been
given to online real-time processing.

Since the wide diffusion of personal care systems prevents to define a
standard way to handle health data and its digitalization process, we adopt
semantic web standards for data representation and propose a general mixed
architecture composed of embedded devices and cluster infrastructures. This
solution allows to deal with the huge amount of data streams expected to
be generated in a real medical scenario, trying to minimize data loss and
guarantee continuous availability required by critical applications.

To make the system reliable and prone to future re-factoring and exten-
sions, we propose a modular architecture where resources are distributed to
handle complex tasks.

In particular, we explore the feasibility of a cluster infrastructure that
could potentially be adapted to fit the requirements of hospitals, clinics and
medical organizations and allow improvements the effectiveness of diagnosis
and treatments. Then, our solution should be meant as a technologically
forefront instrument that allows clinicians to obtain more meaningful data
in shorter times.

To achieve the identified objectives, the system must be able to continu-
ously fetch data coming from a number of wearable sensors (which send data
independently) attached to patients and analyze the resulting data streams,
allowing a persistent storage. The data has to be replicated through the
cluster and it is critical to ensure a proper reaction in case of hardware fail-
ure, also with minimal data loss. Furthermore, the system must be capable
of detecting potential anomalies in almost real-time in order to predict and
identify emergencies.

We propose an architecture, depicted in Figure:1, composed of four dis-
tinct layers:

3.1. Sensing layer

This layer is responsible for feeding the entire system. It represents the
patient-closest layer and is composed by several e-Health wearable devices.

6

Figure 1: Our layered model.

Depending on the specific sensor, different technologies can be adopted (wired
or wireless) to fetch and dispatch data.

3.2. Pre-processing layer

This layer is responsible for retrieving data produced by wearables. Here,
an unbounded data stream coming from the Sensing layer is collected and
converted from raw representation into RDFStreams. Finally, the converted
streams are sent to the cluster infrastructure for further processing and anal-
ysis.

We chose Raspberry Pi 3 as embedded board due to its large usage in
the IoT applications and its low cost. It hosts a Linux OS and a Node-Red
server providing several virtual computing nodes. We exploited the facilities
offered by Mosquitto nodes to retrieve data coming from the Sensing layer.
In particular, the use of the MQTT broker has been crucial to maintain a
technology independent communication between wearables and the board;
a temporary memory is also available to retain and retrieve data in case of
network lacks or next layers’ failures.

In Fig.2 we report an example of the designed Node-Red programming
flow, where the first node represents a Mosquitto consumer that fetches data
from the previous layer and encodes them in a simple JSON format to sent
out towards the other nodes. The second and third nodes are responsible for
parsing and converting JSON messages into JSON-LD (standard employed
for RDFStreams). Inspired by the TripleWave framework [27], we chose
to adopt W3C recommendations to represent semantic data streams and

7

convert data. To dispatch converted data to the next layer, we employ a
revised version of the node-red-contrib-kafka-node [28].

Figure 2: Node-Red programming flow example.

3.3. Cluster processing layer

This layer is responsible for collecting semantic-enriched data and detect-
ing anomalous pattern within such data. In particular, we have two main
modules at this stage: the first one is the “hub” of the application, which
must buffer data to be further analyzed; the second one has to run in real-time
an anomaly detection algorithm to reveal critical situations or emergencies
from the acquired data.

Apache Kafka has been chosen to perform the task assigned to the first
module since it is a common solution for implementing a Big Data Messaging
Hub thanks to its scalability, fault tolerance and high performances [29]. The
Kafka cluster has 3 brokers: this number is usually considered an appropriate
replication factor (from here RF) [29]. Brokers are identical and each one
hosts a number of Kafka topics depending on the number of types of sensors
used in the system. This allows all data belonging to a specific sensor to
fall in the same topic and every consumers can retrieve the right data just
indicating the appropriate sensor. Kafka is actually a bridge between the
Preprocessing layer and the processing cluster, providing an access point for
external systems to consume semantic data.

The second module is devoted to the stream processing of semantic-
enriched data coming from Preprocessing layer and collected by the Kafka
module. Among the stream processors available, the following were con-
sidered for the experimentation: Apache Spark, Apache Storm and Apache
Flink (Spark and Fink being both batch and stream processors). Spark im-
plements a technique called “micro-batching” which consists of dividing data
streams into small chunks and performing a quick batch processing on them.
Both Storm and Flink provide true real-time processing and achieve great re-
sults in terms of latencies and throughputs. Our choice for the task assigned
to the second cluster was Apache Flink thanks to the higher-level API and
better results in benchmarks exposed in [30] [31].

8

The Flink cluster is responsible for getting data from Kafka cluster and
processing it to detect potential anomalies. A distributed version of Hier-
archical Temporal Memory (HTM) algorithm [32] has been implemented on
Flink to address the problem of anomaly detection. We provide some details
about the HTM distributed implementation in Section 3.5.

Since medical values strongly depend on the time they are generated, we
associate timestamps to each physiological value (Flink Event time logic) to
allow the anomaly detection algorithm process data in chronological order.

Due to network lacks or processing latencies, there could be delays in
delivering messages to Flink. We set a fixed upper threshold for the delay
to allow Flink re-insert each delayed message in the stream correctly: if
the delay exceeds such threshold, the message is automatically discarded.
Technically, such operation introduces an additional delay, since it is not
natively provided by Flink. Anyway, it ensures a more accurate anomaly
detection limiting the number of out of order messages.

3.4. Persistence layer

This layer is responsible for storing data analyzed by the Cluster process-
ing layer to allow further analysis. It is also an access point for external
systems to retrieve stored data. For this task, we compared two common
solutions of NoSQL database management systems: Apache Cassandra and
Apache HBase. Both are column-oriented databases and can provide dis-
tributed storages but they show some differences in performance and offered
facilities. Cassandra exposes a query language, called CQL, which is very
similar to SQL, enabling easy migrations for accomplishing advanced report-
ing functionalities. It also offers a greater flexibility than HBase in terms of
consistency control [33] and allows a greater number of operations executed
per second in loading process contexts [34]. Since Cassandra has proven to
perform better than HBase in scenarios with balanced number of writes and
reads [35], it was our choice for implementing the Persistence Layer.

Actually, we need a P2P architecture that avoids single points of failures
and reaches high availability, since our cluster has a ring topology (with no
masters). Cassandra is a good choice also from this point of view: inspired
by [37], we adopt a redundancy factor of 3 with the data replication strategy
depending on the particular scenario. Since our system is meant for a group of
clinics or medical institutions (with many hospitals) a cluster geographically
spread into multiple racks seems a realistic solution.

9

We defined two NoSQL tables to achieve the best performance in re-
trieving data [37]. The first one collects all detected values, the code of the
patient, the name of the specific sensor, the observed parameter, the times-
tamp and a verbose representation of the related RDFStream. The second
table is devoted to collecting anomalous values: here an additional field that
indicates the anomaly index of the specific value is added to the ones present
in the previous table. The compound partition key for both tables is the pair
patient-sensor while the clustering key is the timestamp.

3.5. Hierarchical Temporal Memory algorithm

A general definition of anomaly is a point in time where the behaviour
of a system is unusual and significantly different from the past [38]. In our
context, we can consider an anomaly as an unusual value (or sequence of
values) in a continuous data stream. The Hierarchical Temporal Memory
algorithm is considered a foundational technology for the future of machine
intelligence. It is inspired to the biology function of the neocortex and imple-
ments continuous unsupervised learning so it does not need a training step
on data [39]. Moreover, it can be applied to almost every kind of data.

In Fig. 3 we provide a simple schema illustrating the HTM process.
Considering Xt the current input of the system, HTM will compute two
values: a(Xt) and π(Xt). The former is a sparse binary code representation
of the current value while the latter is a vector which represents a prediction
of the a function for the future input. Using a(Xt) and π(Xt) the algorithm
evaluates a first raw anomaly score with the following equation:

st = 1− π(xt−1) · a(xt)

|a(xt)|

St represents a 0 to 1 constrained value which conveys how much the
current input is predicted, in particular 0 means fully predicted and 1 is
unpredicted. Raw anomaly scores and involved functions are computed every
time a new value arrives as input of the system. In order to detect anomalies
another step is required: a raw anomaly score is just a predictive parameter
which does not represent a reliable way to describe anomalies. Sometimes
having a spike or out-of-bound values in data flow is absolutely normal so
to obtain a useful information we have to apply a threshold method to the
raw anomaly score. Therefore, a real anomaly likelihood can be evaluated

10

considering a window of the last n-calculated raw score and computing a
normal distribution with the following average and variance:

µt =

∑i=W−1
i=0 st−1

k

σ2
t =

∑i=W−1
i=0 (st−i − µt)

2

k − 1

A threshold is applied to the Gaussian tail probability in order to decide
if it is necessary to raise or not an alarm. So, the final anomaly likelihood is
defined as the complement of the tail probability Lt:

Lt = 1−Q(
µ̃t − µt

σt
)

It is interesting that in a noisy scenario variance will be large and a spike
in values flow has no great impact on anomaly likelihood score: accordingly to
the noisy nature of the case, instead a series of abnormal value influences Lt

score and highlights an anomaly in the observed system’s behaviour. Finally
anomalies can be detected thresholding the Lt score, triggering a particular
event or alarm depending on the application. Ahamad et al. describe more
in detail use cases of HTM algorithms [32].

Figure 3: HTM anomaly detection algorithm schema [32].

A distributed version of this algorithm, called Flink-HTM [40] was em-
ployed to use HTM on the Flink cluster. The anomaly detection algorithm
actually requires a neural network to be executed. The construction of such
a network is strongly related to the data it has to analyze. We adopted a
standard template (used in most cases by the Numenta engineer) that we

11

customized to fit the provided data patterns. Particular attention was given
to the network resolution: a more accurate output implies a greater delay in
executing the analysis. The resolution strictly deals with how much regular
values can typically differ from each other: very close values require a more
fine-grained resolution to detect anomalies. A threshold also needs to be
identified in order to distinguish anomalies from regular values.

4. Experimental study

For testing our architecture, we used the REALDISP [15] dataset as a
realistic datasource to feed the system. It contains about 7 GB of data in
the form of log files from wearable sensors placed on different parts of 17
individuals. Data have been captured at 50 Hz rate. Each record contains
information about time when data was collected. The wearable sensors set
comprises accelerometers, gyroscopes and magnetometers.

The hardware used for experimentations and tests was provided by Re-
search and Development Laboratory (RDLab) [41] of Computer Science De-
partment at UPC BarcelonaTech. The physical machines employ Intel(R)
Xeon(R) CPU X5550 2.66GHz octa-core. Each node hosts an instance of
Ubuntu 12.04.2 LTS. The infrastructure is composed of 5 nodes: a node with
a single-core CPU and 4 GB of RAM hosts a Kafka broker, a cluster of 3
identical nodes with dual-core CPU and 4 GB of RAM runs a Flink instance
and finally a node with a dual-core CPU and 2 GB of RAM hosts a Cassan-
dra broker. Finally, to implement the Preprocessing layer a Raspberry Pi 3
is used.

4.1. Nodes performance

As explained in the previous section, our system is composed of four dis-
tinct layers: a sensing layer, a pre-processing layer (Raspberry Pi), a cluster
processing layer (Kafka’s broker and Flink’s mini-cluster) and a persistence
layer (Cassandra database).

Here we want to provide a performance analysis for each node, in terms
of cpu and memory usage during tasks execution. Our analysis is carried out
at different ingestion rates in order to better evaluate system behavior.

4.1.1. 50 Hz ingestion rate

A first experiment set an ingestion rate of 50 Hz which is typically a
high value for medical sensors (usually reaching 20-25 Hz rate). Such a rate
determined a time limit for the experiment.

12

INPUT OUTPUT
Raspberry 45 KB/s 400 KB/s

Kafka 400 KB/s 1.2 MB/s
Flink >1.2 MB/s 1.2 MB/s

Cassandra >1.2 MB/s n.d

Table 1: Input and output produced throughputs with an ingestion frequency of 50 Hz.

In table 1 the throughputs produced for each software are illustrated
while in Fig.4 we report performance of the pre-processing layer (Raspberry
Pi) by displaying the quad-core cpu usage and the memory amount required
to manage the process.

In particular, when the system starts, the Raspberry Pi runs an instance
of a Mosquitto broker with 8 topics and the related consumers, 8 running
javascript independent functions and 8 Kafka producers which send keyed
messages to 8 different Kafka topics. In order to get most reliable results
and to avoid to affect statistics, all non-essential interfaces and services like
bluetooth, GPIO, Serial and others were deactivated. Data originated from
the scripts (which simulate the sensors) consists of 8 sequences of messages
of 113 bytes sent with a frequency of 50Hz each one.

After a first idle situation, at sec 10 the Mosquitto broker and the Node-
Red server processes start, determining an initial peak that quickly decays.
At sec 53, when the data stream is sent and starts to be elaborated by the
Raspberry Pi, we observe a strong rise in cpu usage, up to around 60%.

The Flink’s cluster is composed of 3 nodes having the same configuration
with a dual-core cpu, 2 GB of RAM and a disk space of 200 GB. Generally,
Flink nodes can cover two roles: Job Manager(JM), which manages and
distributes the job and Task Manager(TM). Having a node covering both
roles is unusual in Flink due to the required resource sharing, but in our case
we observed that configuring a node as a Job and Task manager achieved a
good performance level. Particular attention was payed to parameter tuning:
heap size, slot number and parallelism for each TM. We tested different
configurations to find the best one. Flink runs operators and user-defined
functions inside the Task Manager JVM, so the heap amount reserved for each
TM should be as large as possible to get more benefits. Clearly, memory is
shared with other OS processes so an analysis about memory usage by the
Flink application seemed necessary. Some experiments with an increasing

13

Figure 4: The left side shows the cpu utilization in a task of around 14 minutes while on
the right we can see the memory consumption. On the y-axes there is the usage percentage
while on the x-axes the time is expressed in seconds.

amount for heap were carried out to discover the reachable limit. At the end,
we chose heap sizes for each node as shown in table 2. For node-1 memory has
been partitioned between the Job Manager and the Task Manager, reserving
a greater amount to the latter.

The first experiment was initially ran using 2 slots each TM, since each
TM is equipped with a dual-core cpu. All the 8 sensor streams ingested by
Kafka were analyzed. Unfortunately, the TMs were continuously failing due
to memory overflow errors; data was ingested too fast for the neural networks
to process it and reveal anomalies in time. The reduction of the heap portion

FLINK CONFIGURATION

NODE ROLE HEAP (MB) N. SLOTS

node-1 JobManager 256 Not defined
node-1 TaskManager 1256 1
node-2 TaskManager 1512 1
node-3 TaskManager 1512 1

Table 2: The configuration chosen for each Flink node

14

allocated for Flink’s internal operations from the default value of 70% to
20% was still not enough. Another attempt concerned the distribution of
job’s tasks within the cluster. Usually, Flink distributes tasks through the
nodes trying to maximize efficiency and it tends to allocate in the same slot
operators which share data or with similar task; in our case this behaviour
could lead to an unbalanced cluster. We set the task distribution strategy
with just 1 slot per Task Manager and forcing the application to reserve a
specific slot for particular operators (Slot Sharing Group).

Therefore, to figure out the limits of the configuration, we did an exper-
iment with just 1 sensor (i.e. 3 simultaneous streams), the accelerometer
located on the left calf of an individual. Thus, each Task Manager was de-
ployed with a single slot and the SSG was adopted to have a balanced cluster.
In order to implement the analysis of 3 streams, 2 custom slots were spec-
ified to host respectively two of the network operators while the third one
was deployed by Flink in the Default Slot with all remaining operators.

Since two of the three slots are reserved, the other Flink operators are
constrained to reside in the Default Slot with no possibilities to use paral-
lelism, that would require a separate slot for each parallel instance. Although
the parallelism would provide a relevant performance boost, it requires TMs
to have more available slots or eventually employing more powerful TMs to
avoid the use of SSG.

In Figures 5 and in 6 the CPU usage percentages for the Flink nodes are
displayed: we can note that after an initial phase with high CPU usage (job
submission), the percentage hardly exceeds the 50%. The sudden low usage
period at 330 sec is due to a network lack which prevented the application to
consume data from Kafka; this insight is confirmed by the subsequent peak
showed in the graph which corresponds to a relative large number of data to
analyze. Anyway, this event confirms that Flink and Kafka address success-
fully a network lack issue. Finally, the elaboration as a whole is performed in
real-time since the CPU percentage drops exactly when the raspberry stops
to send data.

The Apache Kafka broker was deployed on a node equipped with a single
core CPU, 4 GB of RAM and a 200 GB of mass storage. The broker provides 8
topics and each one is divided in 10 partitions. In Fig. 7 the CPU percentage
usage is represented; moreover, in Fig. 8 a view of RAM usage and disk space
depletion is also provided.

Naturally, the throughput of the test depends on the number of Raspberry
units involved. Our results show that this Kafka configuration could handle

15

Figure 5: The CPU usage for the node-1 which hosts both Job Manager and Task Manager

Figure 6: The CPU usage for the other Flink nodes.

several Raspberry units easily since the CPU usage remains averagely on a
low percentage except for spikes due to a network congestion. RAM usage
is quite stable on a certain level since Kafka engine stores incoming data
directly on the mass storage, writing them sequentially. Moreover, since

16

Figure 7: The Kafka CPU usage. On the y-axe the usage percentage while on the x-axe
the time is expressed in seconds.

data on Kafka is almost never deleted, the filesystem is not fragmented and
reads are mostly executed sequentially with high rates.

Figure 8: The RAM memory employment (on the left) and the disk space depletion (on
the right). On the y-axe of the rightmost figure the disk amount is expressed in MB while
on the x-axe the time is expressed in seconds.

17

Figure 9: The CPU usage of the Job/Task Manager of the Flink cluster with 6 streams
ingested towards it. On x-axe the time is expressed in seconds. The dashed vertical line
represents the instant when the streams end.

The total disk space is 200 GB and the graph in Fig. 8 illustrates how
the space drops when the data stream arrives to Kafka.

Figures 9 and 10 show the performance of Flink nodes receiving data from
2 sensors, that means analyzing 6 streams simultaneously. The heavy usage
of CPU immediately stands out.

We observe a very delayed data processing: the vertical dashed line on
the graph represents the ending of stream ingestion. Most nodes were not
able to perform a real-time analysis and in the worst case, i.e. the node-2,
the task is completed with a delay of more than 300 seconds. Essentially,
data is queued in a long buffer on the network operators not being able to
consume in time. Clearly, this is not acceptable in a system where the real-
time analysis is essential (real medical scenario) and leads us to consider the
ingestion frequency of 50 Hz too much high for handling more than 1 sensor
with the adopted infrastructure.

Apache Cassandra (running on a dual-core CPU, 4 GB RAM and a disk
of 1 TB) is able to handle a heavier load with respect to the data amount in-
gested from Flink. Anyway, since it is placed at a lower layer, it is affected by
the limitations imposed by the Flink’s cluster. Memory usage is around 90%
even in idle state, raising to 91% max under load. CPU usage is illustrated

18

Figure 10: The 2 Flink nodes and their CPU usage expressed in percentage. On x-axe the
time is expressed in seconds. The dashed vertical line represents the time when the streams
end.

in Figure 11: it remains averagely under the 20% in both cases.

Figure 11: On the left the CPU usage for the Cassandra node in the first experiment. On
the other side the second one is showed. On x-axe the time is expressed in seconds.

It should be considered that in the second experiment, with the highest

19

INPUT OUTPUT

Raspberry 23 KB/s 200 KB/s
Kafka 200 KB/s 150 KB/s
Flink 150 KB/s >150 KB/s

Cassandra >150 KB/s n.d

Table 3: Input and output produced throughputs with an ingestion frequency of 25 Hz.

load for Cassandra, the throughput is nearly 300 KB/s whereas without
Flink’s limitations it would be at least 1.2 MB/s: these values represent
both a load widely bearable by Cassandra.

Finally, we present a statistic about performance with an ingestion fre-
quency of 50 Hz, using a raising number of sensors. Except for Flink, all
systems present good performances. Several simulations were done varying
the number of sensors: from 2 to 32 for the Raspberry unit and Kafka; from
2 to 64 for Cassandra. Actually, the Raspberry unit showed processing issues
(message drop) raising the number of sensors to more than 32. Anyway, the
configuration with 32 sensors is an acceptable result considering that it cor-
responds to an input throughput of 181 KB/s and to an output throughput
of 1.6 MB/s. Kafka results are also convincing: the test with 32 produc-
ers can simulate a scenario with 4 concurrent Raspberry. For Cassandra, a
separate Flink program which simulates just the stream dispatching of the
original application was deployed in order to better test the performances of
the database. In Fig.12, from the highest to the lowest, the average CPU
and RAM memory employment for the Raspberry Pi, the Kafka broker and
the Cassandra database are shown.

Raspberry CPU usage presents a slight and gradual increment of few
percentage points also among the two higher cases (i.e. 16 and 32 sensors).
Nowadays, it is hard to find applications using so many wearables on a single
person.

4.1.2. Ingestion frequency: 25 Hz

To better realize the impact of the ingestion frequency on the proposed
system, a new experiment sending 25 messages per second was carried out,
without changing any of the other parameters. In the Table 3 the input
and output throughputs generated with an ingestion frequency of 25 Hz are
shown.

20

Figure 12: The bars represent the average values registered experimenting with an increas-
ing number of sensors.

The objective of this second attempt is to verify if, halving the ingestion
frequency, the Flink application is able to analyze 2 sensors simultaneously.

Fig. 13 shows the CPU and memory performance on Raspberry with an
ingestion frequency of 25 Hz.

The CPU usage shows only negligible differences while the memory con-
sumption is characterized by a decrease of about 6-7 percentage points. The
Kafka graph in Fig. 14 about CPU shows an average usage essentially equal
to the previous case but with a more stable trend thanks to the lesser inges-
tion frequency which avoids sudden back-pressures due to potential network
congestions. Flink nodes CPU usage is shown in Fig. 15 and Fig. 16.

Halving the ingestion frequency, CPU usage is still very high and touches
the 99%. Even in this case, the job is not completed on time and halving the
ingestion rate seems not to be enough to analyze more than one sensor data:
anyway, the delay is very reduced compared to the previous case. Finally, a
predictable decrease in CPU usage of Apache Cassandra can be observed in

21

Figure 13: The CPU and memory usage on Raspberry Pi with an ingestion rate of 25 Hz.

Figure 14: The CPU graph about Apache Kafka in the second experiments.

the Fig.17. We also note a memory consumption of about 90-95%.

4.1.3. Ingestion frequency: 15 Hz

The last experiment cuts the original ingestion frequency of 70%. In table
3 we report the input and output throughputs generated with an ingestion
frequency of 15 Hz. It should be noted that output values for Flink, Cas-
sandra and Kafka are affected by the limitations provided by the anomaly
detection algorithm (at most 2 sensors can be evaluated simultaneously).

The figures 18 - 20 depict the behaviour of Raspberry, Kafka and Cassan-
dra with the new ingestion frequency: here a slight performance improvement

22

Figure 15: The CPU graph of the first node of the Flink cluster. The dashed line represents
the instant when the stream ends.

INPUT OUTPUT

Raspberry 14 KB/s 120 KB/s
Kafka 120 KB/s 90 KB/s
Flink 90 KB/s >90 KB/s

Cassandra >90 KB/s n.d

Table 4: Input and output produced throughputs with an ingestion frequency of 15 Hz.

23

Figure 16: The CPU graph about the other two Task Managers. The dashed line represents
the instant when the stream ends.

can be highlighted. Moreover, in figures 21 and 22 we can observe how CPU
usage for Flink’s nodes is reduced, allowing the job to be completed in real-
time: the dashed lines now correspond exactly to the end of the computation.

By reducing data rate sent from 300 KB/s to 90 KB/s, we observe some
oscillations in Flink CPU graphs since periods of intensive computation are
alternated with periods of “silence”.

4.1.4. Data loss

During the elaboration, data sent and partially processed could be lost
due to different reasons. The most frequent is a network lack but it could
also be a dropping Flink. As explained in section 3.3 if a message arrives
with a delay greater than a fixed value (800 ms in the implemented case), it
is dropped since it could not be added to the stream.

Some statistics about the average data loss are depicted in Table 5. The
experiments were executed with the 3 different ingestion rates and, for the
two Flink applications, with 3 and 6 data streams. Each test was repeated
3 times for each value. Reasonably, the percentage loss decreases with the
lower ingestion rates and analyzing less sensors, thanks to the lower overhead
required to run the application.

24

Figure 17: The CPU graph about the Cassandra database within the second experiment.

AVERAGE DATA LOSS (%)

INGESTION FREQ. (Hz) 3 STREAMS 6 STREAMS

50 0.302 ± 0.02 0.366 ± 0.03
25 0.284 ± 0.01 0.326 ± 0.1
15 0.273 ± 0.01 0.293 ± 0.07

Table 5: The average data loss in the system.

25

Figure 18: The graph about Raspberry’s CPU and memory consumption with an ingestion
rate of 15 Hz.

Figure 19: The graph about Kafka CPU usage with an ingestion rate of 15 Hz.

4.2. HTM results

Although the aim of our study was to test the performance of the system,
not the accuracy of HTM, we tried to set the parameters in order to achieve
the best trade-off between accuracy and computation speed. As we explained
in a previous section, one of the most important parameters to be tuned is
the network resolution. Table 6 sums up the time required to compute the
anomaly degree for each record when testing 4 different networks with a

26

Figure 20: The CPU graph about the Cassandra database within the third experiment.

Figure 21: The usage caused by the job on the first node of the Flink cluster, finally
computed in real-time.

decreasing resolution. Our network creates a set of bins with a size fixed to
the resolution value. The algorithm computes a prediction value and puts
the obtained value in the correspondent bin. At the next step, the algorithm
compares the ”predicted” bin with the destination bin of the real value. If
the resolution is too high, the number of bins is very large and many values
will fall in bins which do not represent data adequately; moreover, if too few
bins are created, wrong predictions will fall in the same bin of the real values
leading to false negatives and returning no anomalies. The chosen network
has a resolution of 0.3.

The dataset used to represent sensor data belonging to a person is com-

27

Figure 22: The usage caused by the job on the 2 last node of the Flink cluster, finally
computed in real-time.

RESOLUTION TIME PER RECORD (ms)

0.1 25.98
0.3 16.35
0.5 15.19
0.7 15.17

Table 6: Comparison of the elaboration time required to compute a single record with
several network resolutions.

posed of 180.000 records temporally separated from 20 milliseconds. The
values considered here as example match the acceleration along the X-axe.
In Fig. 24 and 26 we present a portion of the dataset (for readability), in
particular we show the first 20.000 and 50.000 records. We employ a continu-
ous learning algorithm: this means that the network does not use a learning
phase to perform anomaly detection but takes an initial time period (de-
pending on data variability) to identify the regular data pattern. Indeed,
in Fig. 25 and 27, that show respectively the anomalies found in the first
20.000 and 50.000 records, we can observe the presence of a initial phase of 1
values representing strong anomalies. This is due to the initial lack of data
knowledge for the network. In this test, after about 6 seconds, the network
is ready to evaluate the forthcoming data.

It should be noted that HTM is a memory-based system and has not abil-
ity to “understand” data meaning but evaluates repeatability and recurrence

28

of patterns. Therefore, it achieves good results in case of recurrent values.
Comparing respectively the pairs in Fig. 24 - 25 and Fig. 26 - 27 we can
observe how HTM registers high anomaly degree spikes (values closer to 1)
exactly where abnormal peaks in the dataset graph occur. It should be noted
that actually HTM do not discard anomalies but calculates an anomaly de-
gree, constrained from 0 to 1. Defining which values represent anomalies and
which not is a task heavily dependent by the application. The histogram in
Fig.23 depicts the number of anomalies found with 4 networks by varying
thresholds. Generally, resolution has to be chosen on data basis, in fact a
high number of anomalies does not necessarily correspond to a higher ac-
curacy, because false positives also increase. In this project, a value of 0.8
was chosen as a threshold to distinguish between anomalies (>= 0.8) and
standard values (< 0.8). Only values with an anomaly degree greater than
0.8 were stored into Cassandra as anomalies.

Figure 23: A summary of the consequences of using a network with different resolution
value.

5. Conclusion

In this paper we proposed an architecture for an Internet of Medical
Things scenario, where data collected from wearable sensors enable the sys-
tem to raise alarms or trigger autonomous reactions within few seconds
whenever an emergency occur. We employed latest technological frame-
works for edge and cluster computing (Apache Flink, Kafka and Cassandra)
and tested an HTM algorithm implementation to identify anomalies within
data streams. Our experimental stage suggest that all frameworks (except

29

Figure 24: The first 20.000 records of the dataset.

Figure 25: Anomaly peaks found in the first 20.000.

Flink) fulfilled the assigned task showing great performance. In our view,
the reasons for Flink low performance are mainly related to Flink-HTM im-
plementation. Anyway, the architecture provides a good solution concept to
implement a real-time anomaly detection system; in a real scenario a more
powerful physical infrastructure would be desirable. The use of semantic

30

Figure 26: The first 50.000 records of the dataset.

Figure 27: Anomaly peaks found in the first 50.000 records

technologies can help distinguishing a real emergency or the symptoms of a
disease from a natural change in physiological values.

One of the most important strengths of the architecture is its modularity:
it is simple to expand and re-factor layers, replacing frameworks or adding

31

new nodes to the processing clusters without changing the whole configura-
tion.

As a future work, we are interested in implementing and evaluating other
anomaly detection algorithms and techniques. Moreover, we mean to focus
on non-invasive wearable sensors to use for elderly and dementia patients
[17].

References

[1] A. Kaur and A. Jasuja, Health monitoring based on IoT using Raspberry
PI, 2017 International Conference on Computing, Communication and
Automation (ICCCA), Greater Noida, 2017, pp. 1335-1340.

[2] H. Al-Hamadi and I. R. Chen, Trust-Based Decision Making for Health
IoT Systems, in IEEE Internet of Things Journal, vol. 4, no. 5, pp.
1408-1419, Oct. 2017.

[3] U. Satija, B. Ramkumar and M. Sabarimalai Manikandan, Real-Time
Signal Quality-Aware ECG Telemetry System for IoT-Based Health Care
Monitoring, in IEEE Internet of Things Journal, vol. 4, no. 3, pp. 815-
823, June 2017.

[4] G. Muhammad, S. M. M. Rahman, A. Alelaiwi and A. Alamri, Smart
Health Solution Integrating IoT and Cloud: A Case Study of Voice
Pathology Monitoring, in IEEE Communications Magazine, vol. 55, no.
1, pp. 69-73, January 2017.

[5] Michael Compton, Payam Barnaghi, Luis Bermudez, Raúl Garćıa-
Castro, Oscar Corcho, Simon Cox, John Graybeal, Manfred Hauswirth,
Cory Henson, Arthur Herzog, Vincent Huang, Krzysztof Janowicz, W.
David Kelsey, Danh Le Phuoc, Laurent Lefort, Myriam Leggieri, Holger
Neuhaus, Andriy Nikolov, Kevin Page, Alexandre Passant, Amit Sheth,
Kerry Taylor, The SSN ontology of the W3C semantic sensor network
incubator group, Web Semantics: Science, Services and Agents on the
World Wide Web, Volume 17, 2012, Pages 25-32, ISSN 1570-8268.

[6] Claudia Villalonga, Hector Pomares, Ignacio Rojas, Oresti Baños,
MIMU-Wear: Ontology-based sensor selection for real-world wearable
activity recognition, Neurocomputing, Volume 250, 2016,Pages 76-100,
Elsevier.

32

[7] Villarrubia, Gabriel and Bajo, Javier and De Paz, Juan F. and Corchado,
Juan M. Monitoring and Detection Platform to Prevent Anomalous Sit-
uations in Home Care, Sensors, 14(6): 9900?9921, 2014

[8] K. H. Yeh, A Secure IoT-Based Healthcare System With Body Sensor
Networks, IEEE Access, Page(s): 10288 - 10299, 2016

[9] Y. Peng and L. Peng, A Cooperative Transmission Strategy for Body-
Area Networks in Healthcare Systems, IEEE Access, Page(s): 9155 -
9162, 2016

[10] Van-Dai Ta, Chuan-Ming Liu and G. W. Nkabinde, Big data stream
computing in healthcare real-time analytics, 2016 IEEE International
Conference on Cloud Computing and Big Data Analysis (ICCCBDA),
Chengdu, 2016, pp. 37-42.

[11] S. M. R. Islam and D. Kwak and M. H. Kabir and M. Hossain and K.
S. Kwak, The Internet of Things for Health Care: A Comprehensive
Survey, IEEE Access, Pages: Page(s): 678 - 708, 2015

[12] E. Villeneuve and W. Harwin and W. Holderbaum and B. Janko and R.
S. Sherratt, Reconstruction of Angular Kinematics From Wrist-Worn
Inertial Sensor Data for Smart Home Healthcare, Page(s): 2351 - 2363,
IEEE Access, 2016

[13] O. S. and K. Prahald Rao, Dedicated real-time monitoring system for
health care using ZigBee, Healthcare Technology Letters,Page(s): 142 -
144, 2017

[14] N. Mathur and G. Paul and J. Irvine and M. Abuhelala and A. Buis
and I. Glesk A Practical Design and Implementation of a Low Cost
Platform for Remote Monitoring of Lower Limb Health of Amputees in
the Developing World, IEEE Access, Page(s): 7440 - 7451, 2016

[15] Oresti Baños, Máté Attila Tóth, Realistic sensor displacement bench-
mark dataset, Dataset manual, 2014

[16] World Bank Group IBRD-IDA, Global Health Expenditure database,
2017 https://data.worldbank.org/indicator/SH.XPD.TOTL.ZS

33

[17] Philip Moore, Andrew M. Thomas, George Tadros, Fatos Xhafa,
Leonard Barolli: Detection of the onset of agitation in patients with de-
mentia: real-time monitoring and the application of big-data solutions.
IJSSC 3(3): 136-154 (2013)

[18] World Health Organization Statistics, 2017,
http://www.who.int/mediacentre/factsheets/fs310/en/

[19] Wei Gao, Sam Emaminejad, Hnin Yin Nyein, Samyuktha Challa, Kevin
Chen, Austin Peck et al. Fully integrated wearable sensor arrays for
multiplexed in situ perspiration analysis, Nature, 2016; 529(7587): 509-
14

[20] Shujaat Hussain, Byeong Ho Kang, Sungyoung Lee, A wearable device
base personalized Big Data analysis Model, Lecture Notes in Computer
Science, vol. 8867, 2014, Springer International Publishing Switzerland

[21] Ben Walker, Every day Big Data statistics, 2015
http://www.vcloudnews.com/every-day-big-data-statistics-2-5-
quintillion-bytes-of-data-created-daily/

[22] Tim Conrad, Lydia Ickler, Alexander Reinefeld, Florian Schintke,
Robert Schmidtke, Christof Sch?tte et al. Big Data Analytics in e-Health
using Apache Flink and XtreemFS, Berlin Big Data center, Zuse Insti-
tute Berlin, 2017

[23] Chung-Min Chen, Hira Agrawal, Munir Cochinwala, David Rosenblut,
Stream query processing for Healthcare bio-sensor applications,20th In-
ternational Conference on Data Engineering, 2004, IEEE

[24] Onder Yakut, Serdar Solak, Emine Dogru Bolat Measuring ECG Signal
Using e-Health Sensor Platform, International Conference on Chemistry,
Biomedical and Environment Engineering (ICCBEE’14), Pages: 65-69,
2014

[25] Magaña-Espinoza P., Aquino-Santos R., Cárdenas-Benitez N., Aguilar-
Velasco J., Buenrostro-Segura C., Edwards-Block A. et al. WiSPH: A
Wireless Sensor Network-based Home Care Monitoring System, Sensors,
2014;14(4): 7096-7119

34

[26] Ioan Orha, Stefan Oniga, Automated system for evaluating health status,
Design and technology in Electronic Packaging (SIITME), 2013, IEEE
19th International Symposium for, pp.219-222

[27] Andrea Mauri, Jean-Paul Calbimonte, Daniele Dell’Aglio, Marco Bal-
duini, Marco Brambilla, Emanuele Della Valle et al. TripleWave:
Spreading RDF Streams on the Web, International Semantic Web Con-
ference, ISWC 2016: The Semantic Web - ISWC 2016, 2016, pp. 140-149

[28] F. Wang, 2016 https://www.npmjs.com/package/node-red-contrib-kafka-
node

[29] Kafka Official Documentation, 2018 https://kafka.apache.org (accessed
as of January 2018)

[30] Ellen Friedman, Kostas Tzoumas, Introduction to Apache Flink, 2016,
OReilly Media

[31] Reza Farivar, Kyle Knusbaum, Performance Comparison of Streaming
Big Data Platforms, DataWorks Summit/Hadoop Summit, 2016

[32] Subutai Ahmad, Scott Purdy, Real-Time Anomaly Detection for Stream-
ing Analytics, 2016, arXiv

[33] Rick Grehan, Big data showdown: Cassandra vs. HBase, 2014,
InfoWorld https://www.infoworld.com/article/2610656/database/big-
data-showdown–cassandra-vs–hbase.html (accessed as of January
2018)

[34] Datastax, Benchmarking top NoSQL Databases, 2015, End Point

[35] Birendra Kumar Sahu, A real comparison of NoSQL databases,
2015 https://www.linkedin.com/pulse/real-comparison-nosql-databases-
hbase-cassandra-mongodb-sahu/ (accessed as of January 2018)

[36] Bogza A.G Adriana-Maria, Performance evaluation of Apache Mahout
for mining large datasets, Master Thesis, FIB, UPC 2016. Under the
supervision of Prof. Fatos Xhafa

[37] DataStax, Apache Cassandra 3.0 Datastax documentation, 2018,
https://docs.datastax.com/en/cassandra/3.0/ (accessed as of January
2018)

35

[38] Andrew Meola, Internet of Things in Healthcare: Information technology
in health, Business Insider, 2016

[39] Numenta Community, 2018, Introduction to HTM,
https://numenta.orghttps://numenta.org (accessed as of January
2018)

[40] Eron Wright, flink-htm GitHub page, 2016 https://github.com/htm-
community/flink-htm(accessed as of January 2018)

[41] Research and Development Laboratory, Universitat Politécnica
de Catalunya, Facultat de Informatica de Barcelona,
https://rdlab.cs.upc.edu/ (accessed as of January 2018)

36

	caratula elsevier hoy.pdf
	UPCommons
	Portal del coneixement obert de la UPC
	http://upcommons.upc.edu/e-prints
	Aquesta és una còpia de la versió author’s final draft d'un article publicat a la revista Future generation computer systems.
	URL d'aquest document a UPCommons E-prints:
	https://upcommons.upc.edu/handle/2117/127096
	Article publicat / Published paper:
	© 2019. Aquesta versió està disponible sota la llicència CC-BY-NCND 3.0 http://creativecommons.org/licenses/by-nc-nd/3.0/es/

