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A Pareto-Based Approach for CPU Provisioning of
Scientific Workflows on Clouds
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aIntracom SA Telecom Solutions, Greece
bSchool of Computer Science, University of Manchester, UK

Abstract

As of recently, cloud providers have started offering CPU resources that can be
selected from a wide range of different CPU frequencies. CPU resources at higher
frequencies have a higher price than CPU resources at lower frequencies that are
available at a lower price. When executing applications, such as large scientific
workflow applications, multiple CPU resources are required. In this case, this new
pricing scheme allows users to choose from a large number of possible CPU con-
figurations that may include relatively fast and relatively slow CPUs. However,
such an option raises the problem of how to select appropriate CPU frequency
configurations that strike a good balance between cost and execution time perfor-
mance. As the search space is large with a wide range of choices that have differ-
ent trade-offs, the problem becomes how to choose Pareto-efficient solutions with
respect to execution time and (monetary) cost to use the (CPU) resources. This
paper proposes an algorithm to efficiently explore alternative CPU configurations
for a given number of resources and identify Pareto-efficient solutions for cost
and execution time trade-offs. The algorithm is evaluated through simulation us-
ing three different pricing models to charge for CPU provisioning according to the
allocated CPU frequency and four widely used scientific workflow applications.

Keywords: Cloud computing, Pareto-efficient scheduling, scientific workflows,
resource provisioning, CPU frequency

1. Introduction

Several cloud providers now allow users to select computational capacity from
a large number of options that charge CPU provisioning based on the selected
CPU frequency of each resource. For example, providers such as ElasticHosts [1]
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and CloudSigma [2] offer a large number of different CPU frequency and price
combinations (ranging from tens to hundreds per core). More powerful and faster
resources (which operate at higher frequencies) are charged at a higher price,
which means that even a small increase of some MHz in the CPU frequency may
incur a small but still higher monetary cost. With the emergence of this new pric-
ing scheme, users can achieve varying (monetary) cost and execution time trade-
offs for the execution of large applications such as scientific workflows [3, 4],
which typically need to run on multiple cloud resources (multiple cores and/or
servers). By simply opting for different CPU frequencies in the provisioned re-
sources, applications can make use of configurations that contain both relatively
cheap but less powerful resources (which operate at low CPU frequencies) and
expensive and more powerful resources (which operate at high frequencies).

It should be noted that even if users provision less powerful resources (i.e.,
resources running at a low CPU frequency), which are offered at a lower price
per unit of time, selecting low frequencies may not necessarily lead to an overall
low cost for the user. This is because CPU frequency reduction may significantly
affect overall execution time of the application. For example, a CPU-bound appli-
cation can be very sensitive to CPU frequency changes, performing significantly
worse at low frequencies. This means that the benefits of a lower cost per unit of
time (because lower CPU frequencies are used) may be outweighed by the slow-
down in overall application execution time, which may lead to an overall higher
cost for the user. In other cases, lower frequencies may lead to an overall longer
execution time for an application but at a much lower overall cost: some reason-
able performance degradation may be tolerated in favor of high monetary savings.
These remarks lead to the observation that underpins the work in this paper: dif-
ferent CPU frequency configurations for a given number of provisioned resources
may result in different values in terms of cost and execution time. From the range
of these different values, the pairs of values for cost and execution time that are
not dominated by other pairs (i.e., pairs of values that are not inferior in terms
of both cost and execution time compared to any other pair) form a Pareto set of
cost-performance efficient configurations. Clearly, finding the Pareto set from all
different configurations is a challenge, as the Pareto set may vary depending on:
(i) the application; (ii) the number and type of resources used; and (iii) the pricing
policy associated with the use of these resources.

This multi-objective optimization problem of identifying CPU frequencies for
cost-performance efficient configurations becomes particularly challenging when
the applications of interest consist of interdependent tasks, as it is the case with
scientific workflow applications [3, 4]. In such applications, typically represented
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by Directed Acyclic Graphs (DAGs), gaps of idle time may occur between the ex-
ecution of two different tasks due to data or flow dependencies. In addition, as the
different interdependent tasks of a scientific workflow may have different charac-
teristics, some tasks may be predominantly CPU-bound (that benefit from running
at high frequency CPUs) but some other tasks may be predominantly I/O-bound
(that are not significantly affected if they run at low frequency CPUs). Both the
presence of idle time and tasks of different characteristics suggest that resources
running at different CPU frequencies may indeed provide cost-performance effi-
cient configurations to run scientific workflows on the cloud.

This paper proposes an algorithm, the Pareto-efficient Stepwise Frequency Se-
lection Algorithm (PSFS), to provision CPU frequencies for a predefined number
of CPU resources that aims to find cost-efficient, Pareto-optimal solutions for dif-
ferent execution time and cost trade-offs. As the search space may potentially be
very large, the idea is to start with a small number of CPU frequency configu-
rations to develop an initial Pareto set for the selected number of resources and
then to gradually improve this initial Pareto set by iteratively reducing the CPU
frequency per resource when solutions with higher cost savings can be achieved.
The proposed approach builds upon previous work in [5], which aimed to find
the cheapest CPU configurations to complete execution within a deadline. In this
paper, the proposed approach is extended to return a Pareto set that meets dif-
ferent cost-performance trade-offs, something that allows the user to select CPU
frequency configurations according to different requirements.

The rest of the paper is organized as follows. Section 2 summarizes related
work. A description of the problem and the assumptions made follow in Sec-
tion 3. Section 4 presents the provisioning algorithm proposed, while Section
5 describes the experimental setup and provides a range of experimental results.
Finally, Section 6 concludes the paper.

2. Related Work

Lots of work addresses the problem of optimizing scientific workflow execu-
tion in distributed environments, such as grids or clouds, considering different op-
timization objectives, such as execution time or monetary cost [6, 7, 8, 9, 10, 11].
In terms of optimizing execution time and finding an appropriate schedule of
workflow tasks onto parallel resources, the problem is equivalent to the well-
known problem of scheduling Directed Acyclic Graphs (DAGs), which has a long
history and a significant amount of literature exists [6, 12, 13, 14]. Among the
various DAG scheduling heuristics, HEFT [6] is a well-known heuristic that has
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been widely applied to schedule scientific workflows. Its aim is to minimize over-
all workflow execution time following an approach that prioritizes workflow tasks
and then uses this prioritization to assign each workflow task to the resource where
it is estimated to have the earliest finish time.

Focusing on scientific workflows, there is a considerable body of work that for-
mulates the problem of optimizing scientific workflow execution as a constrained
bi-objective problem [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25], where com-
monly considered objectives include application deadlines or budget constraints.
In other work, bi-objective optimization techniques combine conflicting objec-
tives into some sort of a weighted function to generate a single execution plan that
achieves a good trade-off between the different objectives [9, 10, 26]. Of particular
interest is the work in [9, 10] which points out to the likelihood that fine-grained
pricing models of resources may have to be considered. In [9], HEFT is extended
to incorporate the monetary cost when making decisions to find slots with a bal-
ance between execution time and cost assuming a fine-grained pricing model in
which cloud resources with a higher processing capability are offered at a higher
price. The different combinations of VM capacities and prices are also considered
in [10] to select proper configurations. Their algorithm makes an initial alloca-
tion of the workflow tasks favoring cheaper VMs and then modifies the execution
schedule by reassigning non-critical tasks (tasks that are not in the critical path) to
less expensive VMs to improve overall cost when task runtimes can be stretched
without extending overall workflow execution time.

Pareto-based approaches that compute a set of solutions with different cost
and execution time trade-offs, as in [27, 28, 29], are more directly related to the
approach proposed in this paper. In [27], two single-objective approaches for cost
and execution time minimization on clouds are combined into a Pareto-based ap-
proach to select non-dominated solutions. MOHEFT [28] extends HEFT by keep-
ing a set of non-dominated solutions at each step rather than a single allocation.
The problem addressed in our paper is similar to the aforementioned approaches
but differs in that our objective is to select CPU frequency combinations for a
given number of resources, assuming the user has already selected the number of
CPU resources to provision based on some performance estimation model as, for
example, the model described in [30]. It is noted that finding a Pareto set may
be a computationally demanding exercise; as also noted in a useful early classi-
fication of multi-criteria workflow scheduling problems [31] Pareto sets may be
large. However, as several Cloud providers nowadays offer users a large number
of possible configuration choices and fine-grained pricing of their resources, it
becomes essential to investigate such Pareto-based approaches to allow users to
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make reasonably efficient and informed choices and avoid sub-optimal provision-
ing solutions.

Finally, a considerable body of work in service-oriented applications (SoA)
deals with the problem of workflow scheduling as a service composition problem,
where different service providers can be combined into a composite service. The
challenge of selecting a proper set of services which meet the desired QoS level
of users is addressed to develop self-adaptive mechanisms that can sustain the
different requests of a single or different users [32, 33, 34, 35]. However, the
selection of suitable service providers is mainly based on the QoS constraints of
individual tasks (or services). In contrast, our work mainly targets specific QoS
requirements of the whole workflow that interact with each other, also taking into
account task constraints and their data dependencies which need to be respected
during execution.

3. Preliminaries

3.1. Problem Description
In the problem considered, the user is interested in executing a scientific work-

flow on a given number of CPU resources that will have to be obtained from a
cloud provider. Each CPU resource of the cloud provider can be offered at a range
of CPU frequencies. The provider will charge for the use of each CPU resource
on the basis of the selected CPU frequency, with high frequencies costing more
than low frequencies. As a result, different choices made by the user are expected
to vary both in terms of the overall (monetary) cost and the application execution
time. Choosing the highest frequency for all CPUs may result in fastest execution
time but at a high cost. Other choices may result in slower execution time but may
also cost less. Clearly, many choices are expected to return suboptimal results, in
the sense that they are dominated by at least one choice which delivers both better
cost and better execution time. The results of some choices may lie on the Pareto
front, meaning that such a choice strikes a good balance between cost and exe-
cution time. Results on the Pareto front are non-dominated, in the sense that no
other choice achieves both better cost and better execution time at the same time.
The problem considered in this paper boils down to choosing a CPU frequency
for each resource so that the resulting overall cost and execution time lie on the
Pareto front of the solution space formed from the multitude of all different CPU
frequency choices (configurations).

The different trade-offs in terms of cost and execution time depend both on
the (scientific workflow) application characteristics and the pricing model used.
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Overall, using high CPU frequencies may result in good performance, in terms of
execution time, but increased cost, as expensive CPU resources are used. Using
a lower CPU frequency per resource, the cost may be reduced. However, this
may not always be the case, as CPU frequency reduction may significantly impact
application execution time. As a result, in some cases this increase in execution
time may surpass the savings from the reduced price per time unit (by choosing
cheap CPU resources at a lower frequency), leading to an increase of the overall
cost. Hence, it is important to build an understanding of the whole solution space,
as specified by the different trade-offs, in order to identify solutions that lie on the
optimal Pareto front. Clearly, the Pareto front will differ for each scenario (e.g.,
type of scientific workflow application, pricing model, etc).

To illustrate the complexity of the problem, Figure 1 shows the cost and execu-
tion time performance achieved when executing a Montage workflow of 25 tasks
on three resources. The results include all the alternative CPU frequency combi-
nations when five CPU frequencies (1-3GHz with a step of 0.5GHz) are available
for each resource (this makes 35 different combinations/configurations in total).
The price for each resource changes linearly with frequency using the same lin-
ear pricing model that is described later in the experimentation in Section 5.1.
What is important at this stage is to appreciate the trade-offs that may result even
with a relatively small number of different configurations. Labels next to each
result plotted in the graph show the mean frequency (in GHz) of the three CPU
resources used in each case. It can be seen that even for resource configurations
with the same mean frequency different trade-offs are achieved. For example,
for a mean frequency of 2.17GHz, the best cost (£3.9·10−3) and execution time
(99.9sec) are achieved when resources run at 2.5GHz, 2.5GHz and 1.5GHz. The
solution also belongs to the optimal Pareto front as there is no other configura-
tion with better performance for both cost and execution time. On the other hand,
when running the resources at 3.0GHz, 2.0GHz and 1.5GHz (again with a mean
frequency of 2.17GHz) a cost of £4.1·10−3 and an execution time of 103.4sec are
achieved; hence, this configuration should not be preferred as it is dominated by
better solutions. Finally, it is also noted that the Pareto front consists of only four
points: essentially all solutions with a mean CPU frequency less than 2.17GHz
are worse in terms of both execution time and cost than (at least) one of the four
non-dominated solutions.

3.2. Models used
Application Model. The work in this paper focuses on scientific workflows which
are modelled by a Directed Acyclic Graph (DAG) where the nodes are tasks for
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Figure 1: Execution of a Montage workflow of 25 tasks on 3 resources with different frequency
configurations.

execution and the edges represent data dependencies between them. It is assumed
that data transfer sizes are known. In addition, it is assumed that information
about the task runtime characteristics when resources operate at maximum CPU
frequency is known. Task runtimes, when running at a frequency f lower than the
maximum, can be estimated using the performance model of Equation 1:

runtimet f = (β · ( fmax

f
−1)+1) · runtimet fmax

, (1)

where runtimet fmax
is the task runtime when running at the maximum CPU fre-

quency fmax. The parameter β takes values between 0 and 1 and captures the
task’s CPU-boundedness [36, 37]. In brief, a CPU-bound task will have values
of β close to 1, while an I/O-bound task will have values of β close to 0. CPU
frequency reduction is expected to have a more significant impact on CPU-bound
tasks rather than I/O-bound tasks. The value of β for any given task can be com-
puted through profiling [37, 38].

Cloud Resources Model. Each CPU resource is provisioned from the time the
workflow execution starts until the time the workflow execution finishes. Each
task has exclusive access to the CPU resource slot where it runs. CPU provision-
ing is charged based on the CPU frequency allocated to each resource; resources
can operate on a range of CPU frequencies uniformly distributed between a min-
imum and maximum frequency, fmin and fmax respectively, with a step f reqStep.
The cost of other (non-CPU) resources, such as disk and storage, is assumed to be
fixed, as this paper focuses on the selection of CPU frequencies.
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Figure 2: An example for each of the three types of pricing models used.

We consider three different pricing models: linear, sublinear and superlinear.
An example of each pricing model is shown in Figure 2. In the linear pricing
model, a model frequently used by Cloud providers providing fine-grained CPU
pricing, the price is linearly proportional to the frequency. The curve of the two
non-linear pricing models can be tuned depending on the provider [39].

In the linear model, the price decreases at the same rate for each pair of succes-
sive CPU frequencies while moving from a high to a low CPU frequency. The per
unit of time cost, C fr , of resource r operating at frequency fr under linear pricing
is computed by:

C fr =Cmin +Cdi f · (
fr− fmin

fmin
), (2)

where Cmin is the price of the resource operating at minimum frequency, fmin, and
Cdi f is a coefficient used to generate the charge at each frequency.

In the superlinear model, the reduction in price is significant while the fre-
quencies are still high and decreases for much lower frequencies. The per unit of
time cost under superlinear pricing is given by:

C fr =Cmin +Cdi f · ((1+
fr− fmin

fmin
) · ln(1+ fr− fmin

fmin
)). (3)

In the sublinear model the price increases abruptly while moving from low to
higher frequencies while the rate of increase gets significantly smaller for much
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higher frequencies. The per unit of time cost under sublinear pricing is computed
as:

C fr =Cmin +Cdi f · ln(1+
fr− fmin

fmin
). (4)

As can be observed from the above, each pricing model can be specified as a
function of Cmin and Cdi f , using the corresponding equation.

Finally, the total user cost for the execution of the whole workflow is computed
based on the cost for each resource as:

userCost = ∑
∀r∈plan

Costr, (5)

where Costr = C fr ·makespanplan is the cost for using resource r at its assigned
frequency fr, during the whole application execution time, makespanplan (which
is the same for all resources as all resources are provisioned for the same amount
of time).

4. Algorithm Description

In this section, we propose an algorithm to select CPU frequency combina-
tions for the execution of a scientific workflow on a predefined number of cloud
resources identifying Pareto-efficient solutions with different cost and execution
time trade-offs. The algorithm initially builds workflow execution schedules on
the given number of resources for all different combinations of a small set of
CPU frequencies (the size of this set will affect the efficiency of the algorithm) to
compute an initial set of Pareto-efficient (non-dominated) solutions. Then, an at-
tempt is made to improve the non-dominated solutions using the Cost-based Step-
wise Frequency Selection from Heterogeneous Resources (CSFS-H) algorithm to
check if better solutions can be achieved by lowering the CPU frequencies of se-
lected resources. Any new solutions are compared with the initial set of solutions
and a new Pareto front is computed. The algorithm returns the final set of Pareto-
efficient solutions identified.

Pareto-efficient Stepwise Frequency Selection (PSFS) Algorithm. The algorithm
(see 1) starts by selecting initially a set containing k equally distributed CPU fre-
quencies (in this paper we choose k = 3 and take the minimum, median and max-
imum available CPU frequency modes) and computes all the possible CPU fre-
quency combinations in the set (lines 2-5). For each frequency combination, the
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Algorithm 1 Pareto-efficient Stepwise Frequency Selection.
Require: w: workflow, n: number of resources, k:number of initial frequencies
1: procedure PARETOCOMPUTATION(w,n,k)
2: for i ∈ [0,k−1] do
3: f modes.add( f modemin + d i·( f modemax− f modemin)

k−1 e) . initial CPU frequency modes to
be used

4: end for
5: f reqSets← all the different combinations of the initial CPU frequencies ( f modes)
6: for f reqs ∈ f reqSets do . f reqs: the next combination from f reqSets
7: for r ∈ [1,n] do
8: f moder = r mod k . round-robin assignment of frequencies to each resource r
9: fr← f reqsCur f moder . initial frequency configuration for each resource

10: end for
11: plancur← generateHEFT Plan( fr)

. Generate HEFT plan using a set of n resources with the frequency configurations in
f r[]

12: costplancur , makespanplancur ← cost, makespan of plancur
13: plans.add(plancur)
14: end for
15: plans← computePareto(plans) . Compute the initial pareto front of the plans
16: for plancur ∈ plans do
17: plannew←CSFS−H(plancur)

. Call CSFS−H (see Algorithm 2) for each plan at the pareto front
18: Compute costplannew and makespanplannew for plannew
19: if costplannew < costplancur then
20: plans.add(plannew)
21: end if
22: end for
23: paretoPlans← computePareto(plans) . Compute the final pareto front of the plans

return paretoPlans
24: end procedure

algorithm distributes in a round-robin fashion the CPU frequencies to the avail-
able number of resources (lines 7-10) and then generates a workflow execution
schedule (plan) using HEFT [6]. The cost and execution time of the plan are com-
puted and the plan is added to the list of potential solutions built (lines 12-13).
Once all frequency combinations are considered, the Pareto front is computed and
non-dominated solutions (solutions that are not outperformed by other solutions
in both execution time and monetary cost) are kept. For each solution kept, CSFS-
H (presented next) is used to modify the initial set of assigned CPU frequencies
in the plan when reduction in CPU frequency can lead to cheaper configurations.
The new plan built is added to the list of the solutions and the same procedure
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Algorithm 2 Cost-based Stepwise Frequency Selection from Heterogeneous Re-
sources (CSFS-H).
Require: curPlan
1: procedure CSFS-H(curPlan)
2: curMode←max f moder, ∀r . f moder: the frequency of resource r from f modes
3: while curMode > 0 do . 0 in the case of fminr ,∀r
4: currentCost← cost of curPlan . Eq. 5 for all resources and time
5: curMode−− . next available frequency mode
6: newPlan = curPlan
7: candResources = ∀r ∈ newPlan . candidate resources
8: while candResources not empty do
9: for ∀r ∈ newPlan do

10: Compute f = max fi ∈ [ frcurMode , fr) with costSavingsr > 0
11: end for
12: candResources = ∀r ∈ newPlan: costSavingsr > 0
13: Remove r ∈ candResources with the largest costSavingsr

. for the frequency f selected for resource r in line 10
Update task runtimes for each task t ∈ r using Eq. 1
Update start and finish times for each task t ∈ w in the plan (newPlan)

14: end while
15: newCost← cost of newPlan
16: if newCost >= currentCost then Reject newPlan and break
17: end if
18: Accept plan (curPlan = newPlan)
19: end while
20: end procedure

continues with the next plan in the initial Pareto front. The algorithm computes
the new Pareto front and returns the final set of non-dominated solutions kept.

Cost-based Stepwise Frequency Selection from Heterogeneous Resources (CSFS-
H) Algorithm. This algorithm (see Algorithm 2) is an extension of the Cost-based
Stepwise Frequency Selection from Maximum Frequency (CSFS-Max) algorithm
in [5] that adjusts the CPU frequencies of an initial execution plan trying to
achieve cheaper configurations. CSFS-H takes as input an initial plan where the
CPU frequency per resource may vary and iteratively reduces the frequency of
each resource based on the impact of frequency reduction on overall cost savings.
The procedure used in each iteration works as follows. The next mode of the cur-
rently lowest assigned frequency between the resources is used as a lower bound
to iteratively modify the assigned configuration. For each resource the maximum
frequency f between the lower bound ( frcurMode) and the currently assigned fre-
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quency that leads to overall cost savings for the workflow is kept. For a resource
r overall cost savings from the transition to a lower frequency f are computed as:

costSavingsr = curCost fr −newCost f , (6)

where curCost fr is the cost of the workflow when the resource operates at its
currently assigned frequency, fr, and newCost f is the cost at the resulted schedule
where a lower frequency f ∈ [ frcurMode , fr) is used. Resources where the reduction
in frequency leads to cost savings are considered to be candidates to adjust their
frequency. Starting with the most cost-efficient resource, the runtime of each task
assigned to this resource is updated for the new selected frequency, f , and the
slots of all the workflow tasks are adjusted to build a new plan. The procedure is
repeated until there is no other candidate resource to adjust its configuration based
on the current available frequency mode curMode. When there are no candidate
resources in an iteration or the minimum frequency is reached for all resources,
the algorithm terminates and returns the modified plan.

The time complexity of the algorithm for the computation of the initial Pareto
front (Algorithm 1) depends on: (i) the number of the different combinations of
frequencies f reqSets= (k+n−1)!

k!·(n−1)! , where k is the number of initial CPU frequencies
per resource and n is the number of available resources; and (ii) the complexity
of HEFT algorithm (O(e · n), where e is the number of edges in the DAG). In
the second stage (Algorithm 2), the complexity to explore the available CPU fre-
quencies iteratively and compute the final Pareto front is mainly influenced by the
number of available resources n, the number of available CPU frequencies fmodes,
the number of solutions obtained in the initial Pareto front s and the number of
the workflow tasks tasks: O(n · f modes · s · tasks). However, a key idea of the
approach is that some frequency values may be skipped using a good sampling
of the search space to reduce the complexity of the algorithm. Overall, in our
experiments, the runtime of the algorithm took from several seconds (less time
consuming runs) up to a few minutes (worst-case scenarios where a larger set of
frequencies needed to be explored).

5. Evaluation

5.1. Methodology
The simulator in [40] was used to implement and evaluate the proposed ap-

proach. Resources (one-core VMs) that operate on a set of CPU frequencies
equally distributed between a minimum and maximum frequency, fmin = 1000MHz
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and fmax = 3000MHz, respectively, with a frequency step of 100MHz are as-
sumed. A network of 1Gbps is used to compute the communication cost between
tasks that do not run on the same VM.

Three different pricing models are used, as described by Equations 2, 3 and 4
(linear, superlinear and sublinear pricing, respectively). The following values for
their key parameters, Cmin and Cdi f have been chosen:
Cmin = £9.24∗10−6 and Cdi f = £3.33∗10−6, for the linear pricing model;
Cmin = £9.24∗10−6 and Cdi f = £4.44∗10−6, for the superlinear pricing model;
Cmin = £2.78∗10−6 and Cdi f = £1.2∗10−5, for the sublinear pricing model.
The values were chosen to approximate roughly the monthly charges of Elasti-
cHosts [1] for the provisioning of VMs, assuming time units in seconds.

Four real scientific workflows (LIGO [41], Montage [42], SIPHT [43] and
Cybershake [44]) are used to evaluate the proposed approach and investigate how
Pareto sets can be built for different applications. A size of 1000 was selected for
each application, based on synthetic data obtained by the workflow generator in
[45]. This size corresponds to 1000 tasks for LIGO, Montage and Cybershake and

LIGO
Job classes #Tasks β runtime(sec)

TmpltBank 242 0.9894 18.12
Inspiral 497 0.8996 461.62
Thinca 6 0.4390 5.23
TrigBank 255 0.1744 5.09

SIPHT
Job classes #Tasks β runtime(sec)

Patser 584 0.8348 1.27
Patser concate 32 0.1889 0.08
Transterm 32 0.9479 53.14
Findterm 32 0.9520 1401.20
RNAMotif 32 0.9505 35.43
Blast 32 0.9387 2288.88
SRNA 32 0.9348 370.66
FFN Parse 32 0.8109 1.54
Blast synteny 32 0.6101 33.00
Blast candidate 32 0.4361 5.41
Blast QRNA 32 0.8780 1404.97
Blast paralogues 32 0.4430 4.79
SRNA annotate 32 0.5596 1.76

Montage
Job classes #Tasks β runtime(sec)

mProjectPP 166 0.8696 13.63
mDiffFit 662 0.2839 10.59
mConcatFit 1 0.5317 52.96
mBgModel 1 0.9989 128.24
mBackground 166 0.0846 10.73
mImgTbl 1 0.0348 37.78
madd 1 0.0848 100.55
mShrink 1 0.0230 22.25
mJPEG 1 0.7714 5.73

Cybershake
Job classes #Tasks β runtime(sec)

ExtractSGT 6 0.6582 127.05
SeisSynthesis 496 0.9201 44.01
ZipSeis 1 0.0683 2.34
PeakVCOkaya 496 0.1689 1.09
ZipPSA 1 0.0289 5.31

Table 1: Workflow task characteristics.
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(d) Cybershake of 1000 tasks

Figure 3: Workflow performance for a different number of resources.

968 tasks for SIPHT. Information about task runtimes when resources operate at
the maximum CPU frequency (as mentioned above, this is 3GHz in our case) is
also provided. As the tasks of each workflow belong to one of several job classes
with common characteristics, the parameter β for each workflow task (to use in
Equation 1 to estimate task runtimes when running at a lower than the maximum
CPU frequency) was set equal to the average CPU utilization of its job class using
workflow profiling data from [46]. Information related to the characteristics of
each job class for each workflow used is provided in Table 1 and further discussed
next.

LIGO, a real scientific workflow used for the detection of gravitational waves
in the universe, mainly consists of parallel CPU-bound jobs that process large
amounts of data. Inspiral jobs with relatively high CPU utilization comprise the
largest job class (almost half of the workflow tasks) and consume the largest part
of the runtime and I/O usage. An important part of the total runtime and I/O usage
is also spent on TmpltBank tasks which are the most computationally intensive
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tasks reading significant amounts of data. The rest of the tasks have significantly
shorter runtimes with low CPU and I/O usage. Montage is a workflow used for
the creation of image mosaics of the sky. Overall, Montage spends most of the
runtime on I/O operations. Several job classes have short runtimes and low CPU
utilization such as the case of mDiffFit, mBackground and mShrink, while the sin-
gle mBgModel task has the longest runtime and CPU utilization (99.89%). SIPHT
is a CPU-intensive workflow used to search for sRNA encoding genes for bacte-
rial replicons. Overall SIPHT consists of job classes with high CPU utilization
and low I/O activity. Among them, the Blast, Findterm and Blast QRNA classes
have the tasks with the longest runtimes; only the Patser concate tasks have low
CPU usage (about 19%). Finally, Cybershake [44] is workflow that is used to
characterize earthquake hazards at a site. The majority of the runtime is spent on
the most computationally intensive tasks, the SeismogramSynthesis tasks, which
also exhibit high memory requirements.

The number of cloud resources to provision was selected to be 45, based on
workflow performance estimates obtained using the TDA modelling approach in
[30]. The objective was to find a number of resources for the given workflows
that allows scheduling and execution in a way that resource wastage is avoided.
Figure 3 shows the estimated makespan for the four workflows when a varying
number of resources (up to 90) that operate at maximum frequency is available.
The makespan obtained for the same configurations using HEFT is also included
to validate further the accuracy of the model. As can be seen, the curve converges
towards some minimum execution time and tends to get flatter as the number of re-
sources increases. This suggests that any performance improvement from the use
of extra resources becomes less significant when the number of resources becomes
larger. As with the SIPHT workflow the curve is flattened after 45 resources, this
is the number of resources that was chosen for the evaluation.

5.2. Results
First we consider the linear pricing model. Figure 4 shows the results obtained

for each workflow application. The results include the initial and final Pareto
set generated using the proposed approach, PSFS, and the solution built using
CSFS Max proposed earlier in [5]; for the latter, a long deadline is assumed so
that configurations at minimum CPU frequency can be reached. To avoid clutter,
two points from the final Pareto set are annotated with labels in the graph. One
point shows the mean CPU frequency of the configuration used by the fastest
plan (which typically corresponds to the solution generated using HEFT when
resources operate at maximum frequency), another point shows the mean CPU
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Figure 4: Workflow execution on 45 resources using the linear pricing model.

frequency of the least expensive plan. Overall, it can be seen that the solutions
obtained using the proposed approach, PSFS, outperform the solution obtained
by CSFS Max. In the case of LIGO, SIPHT and Cybershake the final Pareto
set consists of only solutions with a relatively high mean CPU frequency. This
may be because the impact of frequency reduction on task runtime and overall
makespan may be significant, as most of the tasks have high CPU utilization. In
the case of the I/O intensive Montage workflow, a more diverse set of Pareto-
efficient solutions with different trade-offs between execution time and cost can
be achieved by varying the CPU frequency of the resources.

In the case of superlinear pricing (Figure 5), the set of non-dominated solu-
tions also includes configurations with a relatively lower mean CPU frequency
compared to linear pricing. This is because, with superlinear pricing, the reduc-
tion in price decreases more abruptly with the reduction in frequency. Although
overall execution time increases while moving to lower frequencies, the overall
cost required for the workflow execution is reduced at a significant rate. Once
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Figure 5: Workflow execution on 45 resources using the superlinear pricing model.

again, Montage achieves a Pareto-efficient solution with the lowest mean CPU
frequency (1.31GHz).

In the case of sublinear pricing (Figure 6), CSFS Max fails to explore config-
urations with low CPU frequencies which are cost efficient, as the reduction in
price is insignificant while frequencies are still high. In this case, PSFS produces
a more diverse set of Pareto-efficient solutions, which include configurations with
low mean CPU frequencies for all four workflows. It is interesting that cost and
execution time between the two extreme points (the configurations with the high-
est and lowest mean CPU frequency in the Pareto set) vary more in the case of
SIPHT and LIGO which are long, CPU-bound workflows.

In summary, the results suggest that the proposed algorithm, PSFS, can iden-
tify a set of Pareto-efficient configurations, which depends on both the application
characteristics and the pricing policy. Using linear pricing, with I/O-intensive ap-
plications the Pareto set may include configurations with relatively low mean CPU
frequencies but this is not the case with CPU-bound workflows (as such workflows
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Figure 6: Workflow execution on 45 resources using the sublinear pricing model.

are affected more by CPU frequency reduction and configurations with low mean
CPU frequencies may result only in dominated solutions). This becomes easier to
achieve with superlinear and particularly sublinear pricing, which help produce a
diverse set of Pareto-efficient configurations.

6. Conclusion

This paper proposed an approach to select Pareto-efficient CPU frequency
configurations for the execution of scientific workflows on a selected number of
cloud resources. The main idea has been to prune the search space by carefully
selecting a small set of initial CPU frequencies to build an initial Pareto front,
which a subsequent algorithm attempts to improve. The proposed approach was
evaluated through simulation for three different pricing models that charge re-
source provisioning based on the selected CPU frequencies. The key findings
suggest that the outcome depends on both application characteristics and the pric-
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ing model used.
Future work could investigate how to refine the initial set of CPU frequency

configurations to take into account specific application characteristics and the
provider’s pricing model. This, for instance, may suggest that an initial, unevenly
distributed set of CPU frequencies may enable the algorithm produce better re-
sults. In addition, given the sensitivity that heuristics such as HEFT may exhibit,
different scheduling algorithms may be used to build execution schedules on re-
sources and obtain the initial Pareto set. Further work could also assess the impact
of the scheduling algorithm used for mapping tasks onto resources with respect to
the quality of the final Pareto set achieved.
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