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Abstract

Large scale decentralized systems, such as P2P, sensor or IoT device networks are becoming increasingly common,

and require robust protocols to address the challenges posed by the distribution of data and the large number of peers

belonging to the network. In this paper, we deal with the problem of mining frequent items in unstructured P2P net-

works. This problem, of practical importance, has many useful applications. We design P2PSS, a fully decentralized,

gossip–based protocol for frequent items discovery, leveraging the Space-Saving algorithm. We formally prove the

correctness and theoretical error bound. Extensive experimental results clearly show that P2PSS provides very good

accuracy and scalability, also in the presence of highly dynamic P2P networks with churning. To the best of our

knowledge, this is the first gossip–based distributed algorithm providing strong theoretical guarantees for both the

Approximate Frequent Items Problem in Unstructured P2P Networks and for the frequency estimation of discovered

frequent items.
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1. Introduction

Large scale decentralized systems, such as P2P (Peer

to Peer), sensor or IoT (Internet of Things) device net-

works are becoming increasingly common. As an ex-

ample, P2P based systems underlie popular sharing

platforms allowing data exchange among a large num-

ber of users. However, dissemination and delivery of

valuable data and information is complicated by the dis-

tributed nature of the network. The lack of a central au-

thority in charge of administration forces the need for

fully decentralized protocols in which the peers interact

and collaborate towards a common goal.

In the case of structured P2P networks, the underly-

ing topology may be exploited in the design of a dis-

tributed protocol. However, for unstructured networks,

the lack of a specific topology must be also taken into

account. A possibility, commonly found in many proto-

cols, is to impose a topology: these protocols rely on the
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construction of a spanning tree, which is then used for

information dissemination. A popular alternative is the

use of gossip–based communication mechanisms. In-

formally, a gossip–based protocol can be though of as a

sequence of rounds in which each peer randomly selects

one or more peers, exchanges its local state information

with the selected peers and updates its local state by us-

ing the received information.

Owing to the randomized choices made by the peers

in each round of the distributed computation, it may ap-

pear somewhat surprising that gossip–based protocols

can provide a fast and accurate solution to the problem

of providing a consistent global view of the information

locally stored at each peer.

In this paper, we deal with the problem of mining fre-

quent items in unstructured P2P networks. Mining of

frequent items (also known as heavy hitters) is a prob-

lem of fundamental importance, both from a theoretical

and practical perspective, as witnessed by the consid-

erable attention and recognition received, which led to

a huge number of related publications. Different scien-

tific communities refer to the problem as market bas-

ket analysis [2], hot list analysis [30] and iceberg query

[27], [1].

Among the many possible applications, consider a

large P2P network such as BitTorrent and the need to

collect useful statistics on the service, such as the most
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frequently accessed files. The relevant information is

distributed amongst the peers, therefore applications

that need a global view of such information/statistics

encounter particular difficulties to operate, and a dis-

tributed algorithm is required to solve the problem. The

optimization of cache performance in distributed stor-

age systems and the performance improvement of dis-

tributed information retrieval in search engines obvi-

ously require the knowledge of the most frequently ac-

cessed data and, respectively, metadata. Distributed fre-

quent items algorithm can also help detecting Internet

worms or DDoS (Distributed Denial of Service) attacks

to a network, by respectively tracking frequently recur-

ring bit strings, or frequently accessed web servers, and

reporting frequencies above a specified threshold [40].

The problem of detecting superspreaders, which are

sources that connect to a large number of distinct desti-

nations, is also useful in P2P networks, where it could

be used to find peers that talk to a lot of other peers

without keeping per-peer information as in traditional

approaches.

Other possible applications concern frequent queries,

globally across the whole network:

• Popular products. The input may be the page views

of products on Amazon yesterday; heavy hitters

are then the most frequently viewed products;

• Popular search queries. The input may consist of

all of the searches on Google yesterday; heavy hit-

ters are then searches made most often;

• TCP flows. The input may be the data packets

passing through a network switch, each annotated

with a source-destination pair of IP addresses. The

heavy hitters are then the flows that are sending the

most traffic.

We recall here other applications, including network

traffic analysis [21], [26], [44], analysis of web logs

[13], Computational and theoretical Linguistics [29].

The problem can be solved by designating one of

the peers as a central manager, and letting each peer

communicate its local information to the manager peer.

Once the whole dataset has been obtained, the manager

peer solves the problem sequentially by scanning and

processing as required the dataset, in order to aggregate

the information. However, this kind of solution incurs

considerable communication; besides, it may also be

slower. Therefore, this kind of approach is not practical

for large datasets, since in this case the central manager

becomes a bottleneck.

Our P2PSS algorithm can be briefly described as fol-

lows. Each peer processes, by using the Space-Saving

algorithm, its local stream of data (or, alternatively, its

local dataset) and determines its local frequent items.

In order to retrieve the global frequent items, the peers

engage in a gossip–based distributed averaging proto-

col. In each round, they exchange and update their local

state, consisting of their Space-Saving stream summary

data structure and their current estimate of the number

of items in the union of the local streams (or datasets)

and of the number of peers in the network.

The contributions of this work are the following ones:

(i) we design P2PSS, a fully distributed and gossip–

based protocol for frequent items discovery, leveraging

the Space-Saving algorithm [41]; (ii) we formally prove

the correctness and theoretical error bound of P2PSS;

(iii) extensive experimental results clearly show that

P2PSS provides very good accuracy and scalability.

This paper is organized as follows. We present in

Section 2 preliminary definitions and concepts that shall

be used in the rest of the manuscript. Next, we present

our P2PSS algorithm in Section 3. We provide an in–

depth theoretical analysis of the algorithm, formally

proving its correctness and theoretical error bound, in

Section 4. We present and discuss extensive experimen-

tal results in Section 5, and recall related work in Sec-

tion 6. Finally, we draw our conclusions in Section 7.

2. Preliminary definitions

In this Section we introduce preliminary definitions

and the notation used throughout the paper. We first

introduce the frequent items problem, both in its exact

and approximate form, and then we recap the definitions

related to the gossip-based protocols.

2.1. Frequent items problem

Let n be the number of items in the input N =

{s1, s2, . . . , sn}, and U = {1, 2, . . . ,m} a universe set

from which items are drawn. Therefore, m = |U| is

the maximum number of possible distinct items in the

input. In the sequel, we shall use the notation [m] to

denote the set 1, 2, . . . ,m.

Definition 1. Given an input N consisting of n ele-

ments, the frequency of an item i ∈ [m] is the number of

occurrences of i in N , that is, fi =
∣

∣

∣{ j ∈ [n] : s j = i}
∣

∣

∣.

We denote by f = ( f1, . . . , fm) the frequency vector,

i.e. the vector whose ith entry is the frequency of item i.

It is worth noting here that ||f||1, which is the 1-norm of

f, is by definition the total number of occurrences of all
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of the items; for this particular setting of the problem,

||f||1 = n (in other settings the input may consist of pairs

{(si,wi)}i=1,2,...,n where each occurrence si is associated

to a weight wi; the definition of frequency of an item

changes accordingly).

Letting 0 < φ < 1 be a support threshold, we can

define φ-frequent items as follows.

Definition 2. Given an input N consisting of n ele-

ments, and a real value 0 < φ < 1, the φ-frequent items

of N are all those items whose frequency is above φn,

i.e. the elements in the set F = {s ∈ [m] : fs > φn}.

We are now ready to state the problem of finding the

exact φ-frequent items of an input stream.

Problem 1. (Exact Frequent Items Problem) Given an

inputN consisting of n elements and a value 0 < φ < 1,

the Exact Frequent Items Problem requires finding the

set F = {s ∈ [m] : fs > φn} of all the φ-frequent items.

Problem 1 is hard or not feasible with limited time

and memory resources. In particular, it requires space

linear in n. Therefore, we shall refer to an approximate

version of the problem that accepts the presence of false

positives, but can be solved with limited space.

Problem 2. (Approximate Frequent Items Problem)

Given an input N consisting of n elements drawn

from the universe [m], a value 0 < φ < 1 and a value

0 < ǫ < φ, the Approximate Frequent Items Problem

consists in finding a set H, such that:

1. H contains all of the items s with frequency fs > φn

(φ-frequent items);

2. H does not contain any item s such that

fs ≤ (φ − ǫ)n.

In this paper, we are concerned with the Approximate

Frequent Items Problem in the context of unstructured

P2P networks, formally defined as follows.

Problem 3. (Approximate Frequent Items Problem in

Unstructured P2P Networks) Given an unstructured

P2P network consisting of p peers, each peer l must

process an input Nl consisting of nl elements drawn

from the universe [m]. Let n =
p
∑

l=1

nl, 0 < φ < 1 and

0 < ǫ < φ. The Approximate Frequent Items Problem in

Unstructured P2P Networks consists in finding a set H,

such that:

1. H contains all of the items s with frequency fs > φn

(φ-frequent items);

2. H does not contain any item s such that

fs ≤ (φ − ǫ)n.

2.2. Gossip–based protocol

A gossip–based protocol [22] is a synchronous dis-

tributed algorithm consisting of periodic rounds. In

each of the rounds, a peer (or agent) randomly selects

one or more of its neighbours, exchanges its local state

with them and finally updates its local state. The in-

formation is disseminated through the network by using

one of the following possible communication styles: (i)

push, (ii) pull or (iii) push–pull. The main difference

between push and pull is that in the former a peer ran-

domly selects the peers to whom it wants to send its

local state, whilst in the latter it randomly selects the

peers from whom to receive the local state. Finally, in

the hybrid push–pull communication style, a peer ran-

domly selects the peers to send to and from whom to

receive the local state. In this synchronous distributed

model it is assumed that updating the local state of a

peer is done in constant time, i.e., with O(1) worst-case

time complexity; moreover, the duration of a round is

such that each peer can complete a push–pull commu-

nication within the round.

We are interested in a specific gossip–based protocol,

which is called distributed averaging, and can be con-

sidered as a consensus protocol. We are given a network

of peers described by an undirected graph G = (V, E),

where V = {1, . . . , p} is the set of peers’ identifiers, and

E is the set of edges modelling the communication links

between pairs of peers. We assume, for the purpose

of our theoretical analysis, that peers and communica-

tion links do not fail, and that neither new peers can

join the network nor existing peers can leave it (the so-

called churning phenomenon). Therefore, the graph G

describing the underlying network topology is not time-

varying. However, it is worth noting here that our al-

gorithm also works in time-varying graphs in which the

network can change owing to failures and churning and

we shall show an experimental evidence of that in Sec-

tion 5.1, in which we discuss the effect of churn.

In uniform gossiping, a peer i can communicate with

a randomly selected peer j. Instead, in our scenario the

communication among the peers is restricted to neigh-

bour peers i.e., two peers i and j are allowed to com-

municate if and only if the edge (i, j) ∈ E; we as-

sume that communication links are bidirectional: the

existence of the edge (i, j) implies the existence of the

edge ( j, i). Initially, each peer i is provided with or com-

putes a real number vi; the distributed averaging prob-

lem requires designing a distributed algorithm allowing

each peer computing the average vavg =
1
p

∑p

i=1
vi by

exchanging information only with its neighbours. Let-

ting vi(r) be the peer i estimated value of vavg at round

r, a gossip interaction between peers i and j updates

3



both peers’ variables so that at round r + 1 it holds that

vi(r + 1) = v j(r + 1) = 1
2
(vi(r) + v j(r)). Of course, for

a peer i which is not gossiping at round r it holds that

vi(r + 1) = vi(r). It can be shown that distributed av-

eraging converges exponentially fast to the target value

vavg. In general, a peer is allowed to gossip with at most

one peer at a time. In our algorithm, we allow each peer

the possibility of gossiping with a predefined number of

neighbours. We call fan-out f o of peer i the number

of its neighbours with which it communicates in each

round; therefore, 1 ≤ f o ≤ |{ j : (i, j) ∈ E}|. Therefore,

we explicitly allow two or more pairs of peers gossip-

ing at the same time, with the constraint that the pairs

have no peer in common. We formalize this notion in

the following definition.

Definition 3. Two gossip pairs of peers (i, j) and (x, y)

are noninteracting if neither i nor j equals either x or y.

In our algorithm multiple non-interacting pairs of

allowable gossips may occur simultaneously. Non-

interactivity is required in order to preserve and guar-

antee correctness of the results; in the literature non-

interactivity is also called atomic push–pull communi-

cation: given two peers i and j, if peer i sends a push

message to j, then peer i can not receive in the same

round any intervening push message from any other

peer k before receiving the pull message from j corre-

sponding to its initial push message.

It is worth noting here that our algorithm do not re-

quire explicitly assigning identifiers to the peers, and

we do so only for convenience, in order to simplify the

analysis; however, we do assume that each peer can dis-

tinguish its neighbours.

3. The P2PSS algorithm

The main idea of our P2PSS algorithm is to let each

peer determine its local frequent items by processing its

local stream of data (or, alternatively, its local dataset)

with the Space-Saving algorithm. Then, the peers en-

gage in a gossip–based distributed averaging protocol,

exchanging their local state which consists of the Space-

Saving stream summary data structure obtained after

processing the input stream, and two estimates related

respectively to the number of items in the union of the

local streams and to the number of peers in the network.

P2PSS is shown as pseudo-code in Algorithm 1. It

consists of several procedures. The initialization pro-

cedure requires the following parameters: l, the peer’s

identifier; Nl, the local dataset to be processed by peer

l; C, the convergence factor (whose role shall be ex-

plained in Section 4.1); k, the number of counters to be

used for the Space-Saving stream summary data struc-

ture; R, the number of rounds to be performed by the

distributed algorithm; p∗, an estimate of the number of

peers in the network (we only require p∗ ≥ p); φ, the

threshold to be used to determine the frequent items; ǫ,

the error tolerance and 0 < δ < 1, the probability of

failure of the algorithm. Each peer l initializes a Space-

Saving stream summary data structure with k counters,

sets the current round r to zero and its estimate ñr,l of

the average number of items over all of the peers to the

number of items in its local dataset. The variable ñr,l is

therefore an estimate for the quantity n̄ = 1
p

∑p

l=1
|Nl|.

Then, the peer whose identifier is 1 sets q̃r,l to 1 and

all of the other peers sets this value to zero. The vari-

able q̃r,l is used to estimate the number p of peers by

using the distributed averaging protocol: indeed, upon

convergence this value approaches with high probabil-

ity 1/p. Next, each peer processes its local datasetNl by

using the Space-Saving algorithm, obtaining as a result

the stream summary Sr,l containing its local frequent

items. It is worth noting here that Nl does not need to

be a locally stored dataset: indeed, the input can be a

stream and, as such, its items may be processed one at

a time in a streaming fashion, without requiring explic-

itly local storage. The peer local state is a tuple stater,l

consisting of the peer’s local summary Sr,l, and the es-

timates ñr,l and q̃r,l.

The gossip procedure lasts for R rounds. During each

round a peer increments r, the current round, selects

f o (the fan-out) neighbours uniformly at random and

sends to each of them its local state in a message of type

push. Upon receiving a message, each peer executes

the on receive procedure. From the message, the peer

extracts the message’s type, sender and state sent. A

message is processed accordingly to its type as follows.

A push message is handled in two steps. In the first

one, the peer updates its local state by using the state

received; this is done by invoking the update procedure

that we shall describe later. In the second one, the peer

sends back to the sender, in a message of type pull, its

updated local state. A pull message is handled by a peer

setting its local state equal to the state received.

The update procedure, shown in pseudo-code as Al-

gorithm 2, works as follows: the two local summaries

of peers i and j are merged by invoking the merge pro-

cedure reported in Algorithm 3, producing the stream

summary S; since we want to implement a distributed

averaging protocol, we scan the counters of the stream

summary S, and for each counter c we update its fre-

quency c. f dividing it by 2; finally, we compute as re-

4



Algorithm 1 P2PSS: P2P Space-Saving

1: procedure Initialization(l, Nl, C, k, R, f , p∗, φ, ǫ,

δ) ⊲ initialization of node l

2: r ← 0

3: ñr,l ← |Nl|
4: if l == 1 then

5: q̃r,l ← 1

6: else

7: q̃r,l ← 0

8: end if

9: Sr,l ← SpaceSaving(Nl, k)

10: stater,l ← (Sr,l, ñr,l, q̃r,l)

11: end procedure

12: procedure GOSSIP

13: for r = 0 to R do

14: neighbours← select f o random neighbours

15: for each i ∈ neighbours do

16: SEND(push, i, stater,l)

17: end for

18: end for

19: end procedure

20: procedure ON RECEIVE(msg)

21: type← msg.type

22: j← msg.sender

23: state ← msg.state

24: if type == push then

25: stater+1,l ← UPDATE(state, stater,l)

26: SEND(pull, j, stater+1,l)

27: end if

28: if type == pull then

29: stater+1,l ← state

30: end if

31: end procedure

32: procedure QUERY

33: (Sr,l, ñr,l, q̃r,l)← stater,l

34: ǫ∗ ← p∗ ×
√

Cr

δ

35: t ← φñr,l
1−ǫ∗
1+ǫ∗

36: p̃r,l ← 1/q̃r,l

37: H ← ∅
38: for each counter c ∈ Sr,l do

39: if c. f > t then

40: H ← H ∪ (c.i, c. f × p̃r,l)

41: end if

42: end for

43: return H

44: end procedure

quired by the averaging protocol the estimates ñ and q̃

and return the updated state just computed.

Here we briefly recap how merging works: for each

item belonging to both the local summaries of peers i

and j, we insert the item in the output stream summary

with an estimated frequency equal to the sum of its es-

timated frequencies in the two input summaries. If an

item belongs to just one of the summaries, its estimated

frequency in the output stream summary is equal instead

to the sum of its estimated frequency and the minimum

estimated frequency in the other summary. Finally, if

the output stream summary contains more than k coun-

ters (the output summary may contain at most 2k items;

this happens when all of the items in both summaries

are distinct), we prune the summary and return as out-

put summary only the first k items with the greatest esti-

mated frequencies, otherwise we return the output sum-

mary as is.

Finally, the user can issue a query procedure to an ar-

bitrary peer to retrieve the frequent items determined by

our algorithm. This is done by computing t, a threshold

that determines whether an item is a candidate frequent

or not, and p̃r,l, the estimate of p. Note that t is de-

fined in terms of ǫ∗, whose meaning shall be explained

in the Section devoted to the theoretical analysis of the

algorithm. Then, we initialize H to an empty set and

scan each of the counters in the local stream summary

Sr,l, checking whether the frequency c. f of the item c.i

stored in the counter c is greater than the threshold t or

not. For each item which is determined to be candidate

frequent, we add the tuple (c.i, c. f × p̃r,l) to H and finally

we return H.

Algorithm 2 UPDATE: Update procedure

1: procedure UPDATE(statei, state j)

2: (Si, ñi, q̃i)← statei

3: (S j, ñ j, q̃ j)← state j

4: S ←MERGE(Si, S j)

5: for each counter c ∈ S do

6: c. f ← c. f

2

7: end for

8: ñ← ñi+ñ j

2

9: q̃← q̃i+q̃ j

2

10: state ← (S, ñ, q̃)

11: return state

12: end procedure

To better explain the P2PSS algorithm, we propose

and discuss an example. Let us suppose that there are 4

peers, each with a stream summary holding 4 counters.

Figure 1a shows the state of the stream summary for
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Algorithm 3 Merge

Require: S1, S2: vector representing summaries of k

counters ordered by item’s frequency; k, number of

counters in each summary;

m1 ← S1[0]. f̂ ⊲ minimum of all of the frequencies

in S1

m2 ← S2[0]. f̂ ⊲ minimum of all of the frequencies

in S2

SM ← ∅
for each counter S1[ j] in S1 do

new counter.i← S1[ j].i

counterS2
← S2.Find(S1[ j].i)

if counterS2
then

new counter. f̂ ← 1
2

(

S1[ j]. f̂ + counterS2
. f̂

)

S2.Remove(counterS2
)

else

new counter. f̂ ← 1
2

(

S1[ j]. f̂ + m2

)

end if

SM .Put(new counter)

end for

for each counter S2[ j] in S2 do

new counter.i← S2[ j].i

new counter. f̂ ← 1
2

(

S2[ j]. f̂ + m1

)

SM .Put(new counter)

end for

SM .Prune(k) ⊲ Select k counters with the greatest

frequencies and delete the others

return SM

each peer before starting the gossip protocol. For each

item (identified by a letter), its frequency is reported.

Suppose that, during the first round, peer p0 exchanges

data with p1 and peer p2 with p3. Figure 1b depicts the

peers’ stream summaries at the end of the first round.

Supposing that in the second round p1 exchanges data

with p2 and p0 with p3, Figure 1c provides the state

of the stream summaries converged to the final values.

Each summary reports the average estimate (with regard

to the number of peers) of the items’ frequency.

4. Theoretical analysis

Before proceeding with our analysis, we need to re-

call the results by Jelasity et al. in [32] on which we

rely for our discussion. Jelasity et al. in the cited paper

propose a gossip–based algorithm for computing the av-

erage value of numbers held by the nodes of a network.

They show that the algorithm converges to the true av-

erage value and give an estimation of its convergence

factor. Their reasoning is based on a centralized algo-

rithm operating globally on the distributed state of the

system that allows simplifying the theoretical analysis

by conveniently simulating the gossip–based distributed

version of the algorithm. Even though the analysis of

[32] relies on uniform gossiping (i.e., the underlying

topology is described by a complete graph), there is no

significant difference between the performance of ran-

domized gossiping in complete graphs and sparse ran-

dom graphs [23] [28] (this has been experimentally ver-

ified by Jelasity et al.). Therefore, in this Section we

shall follow the Jelasity et al. strategy and show that

P2PSS also converges and correctly solves the Approx-

imate Frequent Items Problem in Unstructured P2P Net-

works.

4.1. Jelasity’s averaging algorithm

The centralized AVG algorithm by Jelasity et al.,

takes a vector wr of length p representing the state of

the nodes after the rth round (p is the number of nodes

in the network and each component of the vector is

a value held by a node) and produces a new vector

wr+1 = AVG(wr) of the same length, representing the

state of the system after another round of gossip. At

each elementary step of AVG, two selected nodes up-

date their state so that the vector wr becomes:

w′r = (wr,1,wr,2, . . . ,
wr,i + wr, j

2
, . . . ,

wr,i + wr, j

2
, . . . ,wr,p).

(1)

6



(a) Initial state (b) State after first round (c) Final state

Figure 1: Example of P2PSS algorithm acting over 4 peers and a stream summary with 4 counters.

After p elementary steps AVG returns the vector wr+1.

Through a proper selection of the pair of nodes, this al-

gorithm can reproduce the behavior of the distributed

gossip–based averaging algorithm introduced by Jela-

sity et al., since each call to AVG corresponds to a round

of that algorithm. We refer the interested reader to [32]

for all of the details.

Here, we only recall the results essential for our pur-

poses. The averaging protocol proposed by Jelasity et

al. and its centralized equivalent can be seen as variance

reduction algorithms. Consider a variance measure σ2
r

defined as:

σ2
r =

1

p − 1

p
∑

l=1

(

wr,l − w̄
)2
, (2)

where wr,l is the value held by peer l after r rounds of

the gossip algorithm and w̄ = 1
p

∑p

l=1
w0,l is the mean

of the initial values held by the peers. The authors in

[32] state that, if ψk is a random variable denoting the

number of times a node k is chosen as a member of the

pair of nodes exchanging their states during a round of

the protocol, and each pair of values wr,i and wr, j se-

lected by each call to GetPair are uncorrelated, then the

following theorem holds.

Theorem 1. [32] If GetPair has the following proper-

ties:

1. the random variables ψ1, . . . , ψp are identically

distributed (let ψ denotes a random variable with

this common distribution),

2. after (i, j) is returned by GetPair, the number of

times i and j shall be selected by the remaining

calls to GetPair have identical distributions,

then we have:

E[σ2
r+1] ≈ E[2−ψ]E[σ2

r ]. (3)

The random variable ψ only depends on the particular

implementation of GetPair. From eq. (3), the conver-

gence factor is defined as:

E[σ2
r+1

]

E[σ2
r ]
= E[2−ψ]; (4)

Therefore, the convergence factor depends on ψ and,

as a consequence, on the pair selection method. Jela-

sity et al. compute the convergence factor for different

implementations of the pair selection method, but we

are only interested in the one which allows simulating

the distributed gossip–based averaging protocol, which

they call GetPair Distr. This method consists in draw-

ing a random permutation of the nodes and then, for

each node in that permutation, choosing another random

node in order to form a pair. For this selection method,

the convergence factor is C = E[2−ψ] = 1/(2
√

e).

We now derive from Theorem 1 the following propo-

sition.

Proposition 2. Let δ be a user-defined probability, wr,l

the value held by peer l after r rounds of the averag-

ing protocol, p the number of peers participating in the

protocol, C = E[2−ψ] = 1/(2
√

e) the convergence fac-

tor and w̄ the mean of the initial vector of values w0, i.e.

w̄ = 1/p
∑p

l=1
w0,l. Then, with probability 1 − δ it holds

that, for any peer l:

∣

∣

∣wr,l − w̄
∣

∣

∣ <

√

(p − 1)σ2
0

√

Cr

δ
(5)

Proof. From eq. (3) it follows that:

E[σ2
r ] = E[2−ψ]rσ2

0; (6)

where σ2
0

depends on the distribution of the initial

numbers among the peers. Through the Markov in-

equality, we have that:
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P[σ2
r ≥

E[σ2
r ]

δ
] ≤ δ; (7)

or

P[σ2
r <

E[σ2
r ]

δ
] ≥ 1 − δ. (8)

Considering eqs. (2) and (6), it holds that:

P[

p
∑

l=1

(

wr,l − w̄
)2
< (p − 1)

Crσ2
0

δ
] ≥ 1 − δ. (9)

As a consequence, with probability at least 1 − δ:

maxl∈[p]

(

wr,l − w̄
)2 ≤

p
∑

l=1

(

wr,l − w̄
)2
< (p − 1)

Crσ2
0

δ
,

(10)

which implies:

maxl∈[p]

∣

∣

∣wr,l − w̄
∣

∣

∣ <

√

(p − 1)σ2
0

√

Cr

δ
. (11)

This proves the proposition.

Eq. (5) gives an upper bound on the error made by

any peer in estimating the value w̄ after r rounds of the

Jelasity’s averaging algorithm. This bound is proba-

bilistic and it is valid with probability greater than or

equal to 1 − δ.

4.2. Merging of Space-Saving summaries

P2PSS follows the same structure of the gossip–based

averaging protocol by Jelasity et al., but it is based on

the procedure introduced by Cafaro et al. in [9] in order

to merge Space-Saving summaries. The Merge algo-

rithm has been introduced in Section 3, here we briefly

recap its properties. We shall use multisets to repre-

sent both the input streams and the corresponding sum-

maries.

Definition 4. A multisetN = (N, fN ) is a pair where N

is some set, called the underlying set of elements, and

fN : N → N is a function. The generalized indicator

function ofN is

IN (x) :=

{

fN (x) x ∈ N,

0 x < N,
(12)

where the integer–valued function fN , for each x ∈ N,

provides its frequency (or multiplicity), i.e., the num-

ber of occurrences of x in N . The cardinality of N is

expressed by

|N| := Card(N) =
∑

x∈N
IN (x), (13)

whilst the cardinality of the underlying set N is

|N| := Card(N) =
∑

x∈N
1. (14)

A multiset, or bag, is defined by a proper set (the sup-

port set) and a multiplicity function: it is a set where

elements can be repeated, i.e., an element in a multiset

can have multiplicity greater than one.

Let U = [d] be the universe from which the

items in input are drawn and let N1 = (N1, fN1
) and

N2 = (N2, fN2
) be two input multisets, where Ni ⊆ U

for i = 1, 2. Furthermore, let S1 = (Σ1, f̂S1
) and

S2 = (Σ2, f̂S2
) be two Space-Saving summaries with

at most k distinct items, corresponding respectively to

N1 and N2. Let ⊕k be the merge operation described

in [9] and shown in pseudo-code as Algorithm 3, where

subscript k indicates the maximum number of distinct

items in each involved summary. Then, the summary

SM = S1 ⊕k S2 is a summary for N = N1 ⊎ N2

with at most k distinct items that continues to guaran-

tee the same bounds on size and error of the original

summaries. In particular, the following relations hold,

for each item e ∈ N, being f̂ min
SM

the minimum frequency

in SM and f̂ min
SM
= 0 when |ΣM | < k.

|SM | ≤ |N| , (15)

f̂SM
(e) − f̂ min

SM
≤ fN (e) ≤ f̂SM

(e), e ∈ ΣM , (16)

fN (e) ≤ f̂ min
SM

, e < ΣM , (17)

f̂ min
SM
≤

⌊

|N|
k

⌋

. (18)

The properties in eqs. (15)–(18) guarantee that if

S1 and S2 respect the same properties (and it has been

proven that Space-Saving summaries do), then SM con-

tains all of the φ-frequent items of N with φ > 1/k and

solves the Approximate Frequent Items Problem in Un-

structured P2P Networks with tolerance ǫ = 1/k.

4.3. Convergence of P2PSS

Let M be the class of all the multisets with sup-

port set included in U. Let us introduce the operation

⊘d : M → M, so that ⊘d(N) = (N, fN/d)), i.e, the
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multiset ⊘d(N) has the same support set of N , but each

element has a fraction 1/d of the multiplicity it has in

N , where we explicitly allow for fractional multiplici-

ties. We have that
⊎d

i=1 ⊘d(N) = ⊘ 1
d
(⊘d(N)) = N and

it is immediate to see that if S is a summary for N ,

then ⊘d(S) is a summary for ⊘d(N). In fact, if we di-

vide by d all of the terms in eqs. (15)–(18), the same

relations continue to hold. Furthermore, it holds that
⊎d

i=1 ⊘d(S) = ⊘ 1
d
(⊘d(S)) = S.

Following the Jelasity et al. approach, we intro-

duce AVG-Merge as Algorithm 4. This is a central-

ized algorithm that simulates the distributed P2PSS al-

gorithm. AVG-Merge, through the selection method

GetPair Distr, operates on the global state of the net-

work by simulating the distributed P2PSS protocol and

allowing us to simplify its theoretical analysis.

Algorithm 4 AVG-Merge: global Space-Saving

summaries average merging

Require: Sr = (Sr,1,Sr,2, . . . ,Sr,p): a vector of Space-

Saving summaries, k: the maximum number of dis-

tinct items in each summary, p: the number of peers

l← 0

while l < p do

(i, j)← GetPair( )

Sr,i ← Sr, j ← ⊘2(Sr,i ⊕k Sr, j)

l← l + 1

end while

return Sr as Sr+1

Algorithm 4 is similar to AVG algorithm discussed

in Section 4.1, but it operates on multisets rather than

single values. Initially, each peer computes a local

summary on its input stream, through the execution of

Space-Saving with k counters, then the distributed pro-

tocol starts.

The initial distributed state of the system can be

represented by the vector of the local summaries

S0 = (S0,1,S0,2, . . . ,S0,p), where p is the number of

peers participating in the protocol. Another vector is

naturally associated to S0: the vector of the local in-

put streams N0 = (N0,1,N0,2, . . . ,N0,p). We have that
⊎p

l=1
N0,l = N , where we denote by N the global input

stream.

Each call to AVG-Merge corresponds to a round of

P2PSS. It modifiesSr, the vector of the summaries held

by the peers at the end of round r, producing the vec-

tor Sr+1. Furthermore, implicitly also N r, the vector

of local input streams to which the summaries refer,

changes to N r+1. In fact, let Sr and N r be the vec-

tors of the summaries owned by each peer and the cor-

responding partitions of the input streamN after the rth

round. Then, after each iteration of the main loop of

AVG-Merge, letting (i, j) be the pair of communicating

peers, i.e. the pair selected by GetPair, the vector of

summaries becomes:

S
′
r = (Sr,1,Sr,2, . . . ,⊘2(Sr,i ⊕k Sr, j), . . . ,

⊘2(Sr,i ⊕k Sr, j), . . . ,Sr,p),
(19)

and the corresponding vector of partitions of the input

stream shall change to:

N
′
r = (Nr,1,Nr,2, . . . ,⊘2(Nr,i ⊎Nr, j), . . . ,

⊘2(Nr,i ⊎ Nr, j), . . . ,Nr,p).
(20)

From what we said on the operations ⊕ and ⊘, after

each elementary iteration of AVG-Merge, two invari-

ants hold:

1. each peer l owns a summary Sr,l which is a cor-

rect Space-Saving summary for the portion of in-

put streamNr,l;

2.
⊎p

l=1
Nr,l = N .

These invariants remain true after each iteration of

the main loop of AVG-Merge and, consequently, after

each call to AVG-Merge, that is after each round of the

P2PSS distributed protocol, when we derive from the

vectors Sr andN r, the new vectors Sr+1 andN r+1.

We can state that, for r → ∞, the two vectors Sr and

N r converge respectively to:

S∞ =
(

Savg,Savg, . . . ,Savg

)

(21)

and

N∞ =
(

Navg,Navg, . . . ,Navg

)

, (22)

where Navg = ⊘p(N) and Savg is a correct summary of

Navg.

This means that all of the peers converge to a sum-

mary of ⊘p(N), from which, for the properties of the

operations⊕ and ⊘, a correct summary forN can be de-

rived by computing ⊘ 1
p
(Savg) (we actually need to know

the number of peers, which is not always the case, but

we shall see in the following how we can estimate p),

i.e. P2PSS converges.

Thanks to the invariants discussed above, in order to

prove the convergence of the summaries to Savg, it’s

enough to verify that the local input streams implicitly

induced by the algorithm converge to Navg.
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We can represent each initial local input stream N0,l

for l = 1, 2, . . . , p, as the frequencies’ vector of the items

in that stream, f̃ 0,l = ( f̃0,l,1, f̃0,l,2, . . . , f̃0,l,d). Each value

f̃0,l,i corresponds to the frequency that item i has in the

initial local stream held by peer l. In this representation

the operator ⊘p on a multiset translates to a multipli-

cation of the frequencies’ vector corresponding to that

multiset by the scalar 1/p.

Now, the implicit transformation that the local

streams of the selected peers, i and j, undergo at each

elementary iteration of AVG-Merge, i.e., eq. (20), can

be rewritten as:

F̃
′
r = ( f̃ r,1, f̃ r,2, . . . ,

1

2
( f̃ r,i + f̃ r, j), . . . ,

1

2
( f̃ r,i + f̃ r, j), . . . , f̃ r,p),

(23)

where F̃r is a matrix whose columns are the peers’ vec-

tors of frequencies after r rounds, i.e. each f̃ r,l is the

frequencies’ vector correspoding to the the multisetNr,l.

This matrix corresponds to the vector of multisetsN r in

eq. (20).

Eventually, it can be recognized in eq. (23) the ele-

mentary step of the Jelasity’s protocol applied in parallel

to each one of the components of the frequencies’ vec-

tors of peers i and j. We already know that the Jelasity’s

averaging protocol converges to the average of the val-

ues initially owned by the peers. Thus, for r → ∞, F̃r

converges to:

F̃∞ = ( f avg, f avg, . . . , f avg) (24)

where f avg is:

f avg = ( f̄1, f̄2, . . . , f̄d), (25)

with f̄i =
1
p

∑p

l=1
f̃0,l,i, for i = 1, 2, . . . , d which is the

representation as frequencies’ vector of the multiset

Navg in eq. (22), proving the convergence.

4.4. Estimating the number of peers

As shown in the previous paragraph we need to es-

timate p, the number of peers participating in the pro-

tocol, in order to estimate the global frequencies of the

items included in the final summary of a peer.

We can do that executing in parallel with P2PSS an

instance of the Jelasity’s averaging protocol with initial

values equal to 0, except for one peer which is assigned

the value 1. In this way, the average of the values ini-

tially held by the peers is 1/p and we can estimate it

with an error which depends on the number of rounds

executed. We now analyze this error and its bound.

According to eq. (2), we have that σ2
0
= 1/p. Let p̃r,l

be the estimation of the number of peers p at round r by

the peer l, and q̃r,l = 1/ p̃r,l. From eq. (5), it holds that,

with probability 1 − δ:

∣

∣

∣

∣

∣

q̃r,l −
1

p

∣

∣

∣

∣

∣

<

√

p − 1

p

√

Cr

δ
<

√

Cr

δ
(26)

Setting ǭ =

√

Cr

δ
, we have that:

1

p
− ǭ < q̃r,l <

1

p
+ ǭ (27)

Assuming the constraint ǭ < 1/p, all of the members of

the previous relation are positive, hence it holds that:

p

1 + pǭ
< p̃r,l <

p

1 − pǭ
(28)

The problem with eq. (28) is that the estimation er-

ror bounds depend on p, but we may not know p in

advance. To overcome this problem, we introduce the

value p∗ ≥ p, that is an estimate of the maximum

number of peers we expect in the network, and we com-

pute new bounds based on this value. Under the con-

straint p∗ ≥ p, we can be confident on the new com-

puted bounds, though they may be weaker.

Let us set ǫ∗ = p∗ǭ. Given the constraint on ǭ, it holds

that 0 < ǫ∗ < 1, and, with probability 1− δ, for any peer

l = 1, 2, . . . , p:

p

1 + ǫ∗
< p̃r,l <

p

1 − ǫ∗ (29)

4.5. Gossip-based approximation

In the discussion on the convergence of P2PSS, we

have seen that, at round r and for a peer l, the summary

Sr,l held by that peer implicitly refers to a stream rep-

resented by the multiset Nr,l, or the frequencies’ vector

f̃ r,l. Thus, the eqs. (15)–(18) are valid for Sr,l with ref-

erence to Nr,l. As a consequence, we need to compute

how far the frequencies of items in f r,l are from those in

f avg, that is the vector of true average frequencies.

For what we said in the previous paragraph we can

do that by referring to the Jelasity’s protocol and eq.

(5). Let us denote by fi the global frequency of item i

and let f̃r,l,i be the estimation of the average frequency

of that item, i.e. fi/p by peer l, after round r. According

to eq. (5), with probability 1− δ for any peer l ∈ [p] and

any item i ∈ [d]:

∣

∣

∣

∣

∣

f̃r,l,i −
fi

p

∣

∣

∣

∣

∣

<

√

(p − 1)σ2
0

√

Cr

δ
(30)
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The initial distribution σ2
0

of the local frequencies of

the chosen item over the peers is not known in advance,

but the worst case happens when only one peer has the

whole quantity fi and the other p−1 peers hold the value

0. In this case, it follows that σ2
0
≤ f 2

i
/p, and hence,

with probability 1 − δ:

∣

∣

∣

∣

∣

f̃r,l,i −
fi

p

∣

∣

∣

∣

∣

< fi

√

p − 1

p

√

Cr

δ
< fi

√

Cr

δ
. (31)

Considering the definition of ǭ and ǫ∗, it holds that:

fi

p
− fiǭ < f̃r,l,i <

fi

p
+ fiǭ (32)

that is:

fi

p
(1 − ǫ∗) < f̃r,l,i <

fi

p
(1 + ǫ∗) (33)

With a similar reasoning, we can also determine a re-

lationship between the sum of all of the local items’ fre-

quencies, for any peer l, after the r-th round of the algo-

rithm, i.e., ñr,l = |Nr,l|, and the sum of all of the items’

frequencies in the global stream, n = |N|. With proba-

bility 1 − δ, for any peer l ∈ [p] and any item i ∈ [d]:

n

p
(1 − ǫ∗) < ñr,l <

n

p
(1 + ǫ∗). (34)

4.6. Space-Saving approximation

At last, let us consider again the invariants of our al-

gorithm: after a round of P2PSS, the summary held by

a peer changes and the local stream to which that peer

refers changes accordingly so that each peer continues

to hold a correct summary for its corresponding portion

of the input global stream. This means that each peer’s

summary Sr,l estimates the frequency of an item in the

redistributed local stream Nr,l within the error bounds

guaranteed by eqs. (15)–(18). Consequently, denoting

by f̂r,l,i the frequency of an item i in Sr,l and by fr,l,i the

frequency of that item inNr,l, we have that, for any peer

l ∈ [p] and any item i ∈ [d]:

f̃r,l,i ≤ f̂r,l,i ≤ f̃r,l,i +
ñr,l

k
(35)

4.7. Correctness and error bounds

We shall show here that given a summary Sr,l ob-

tained by any peer l after r rounds of P2PSS, we can se-

lect a set of items and their corresponding estimated fre-

quencies solving the Approximate Frequent Items Prob-

lem in Unstructured P2P Networks stated in Section 2.

We shall also determine the error bounds on frequen-

cies’ estimation and the relation among the number k

of counters to be used by each node and the number r

of rounds to be executed in order to guarantee the false

positives’ tolerance requested by the user.

Theorem 3. Given an input stream N of length n,

distributed among p nodes, a threshold parameter

0 < φ < 1, and a probability of failure 0 < δ < 1,

after r rounds of P2PSS, any peer can returns a set H

of items and their corresponding estimated frequencies,

so that, with probability 1 − δ:

1. H includes all of the items in N that have fre-

quency f > φn;

2. H does not include any items in N that have fre-

quency f ≤ (φ − ǫ)n;

with a false positives tolerance ǫ =
4ǫ∗φ

(1+ǫ∗)2 +
1−ǫ∗

k(1+ǫ∗) which

is bonded by the number of counters k used for the sum-

maries and the number of rounds r executed.

Proof. We first recap the main relations we proved

above, valid with probability 1 − δ, for all the items i

in the summary Sr,l and any given peer l, after round r:

p

1 + ǫ∗
<p̃r,l <

p

1 − ǫ∗ ; (36)

fi

p
(1 − ǫ∗) < f̃r,l,i <

fi

p
(1 + ǫ∗); (37)

n

p
(1 − ǫ∗) <ñr,l <

n

p
(1 + ǫ∗); (38)

f̃r,l,i ≤ f̂r,l,i ≤ f̃r,l,i +
ñr,l

k
; (39)

We need to select all of the items whose global fre-

quency fi is greater than the threshold φn. From the

relations (36)–(39), we can derive the following:

f̂r,l,i
p

1 − ǫ∗ > f̃r,l,i
p

1 − ǫ∗ > fi > φn > φñr,l

p

1 + ǫ∗
(40)

Thus, we do not need to output all of the items in

the summary Sr,l, but only those ones which have an

estimated frequency respecting the following relation:

f̂r,l,i > φñr,l

1 − ǫ∗
1 + ǫ∗

(41)

In order to compute the error, in terms of false posi-

tives’ tolerance, that we commit with this selection cri-

terion, we can use again eqs. (36)–(39) and prove that if

f̂r,l,i > φñr,l
1−ǫ∗
1+ǫ∗ , then, with probability 1 − δ:

fi >

{

φ −
[

4ǫ∗φ

(1 + ǫ∗)2
+

1

k

]}

n. (42)
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In fact:

f̃r,l,i +
ñr,l

k
> f̂r,l,i > φñr,l

1 − ǫ∗
1 + ǫ∗

=⇒

f̃r,l,i

ñr,l

+
1

k
> φ

1 − ǫ∗
1 + ǫ∗

=⇒

fi(1 + ǫ
∗)

n(1 − ǫ∗) +
1

k
> φ

1 − ǫ∗
1 + ǫ∗

=⇒

fi > φn

(

1 − ǫ∗
1 + ǫ∗

)2

− n(1 − ǫ∗)
k(1 + ǫ∗)

=⇒

fi >















φ −














1 −
(

1 − ǫ∗
1 + ǫ∗

)2














φ +
1 − ǫ∗

k(1 + ǫ∗)















n =⇒

fi >

{

φ −
[

4ǫ∗φ

(1 + ǫ∗)2
+

1 − ǫ∗
k(1 + ǫ∗)

]}

n

(43)

Thus, we can conclude that, with reference to the

problem definition, with probability 1−δ, no items with

frequency fi ≤ (φ − ǫ)n shall be reported in H, with

ǫ =
4ǫ∗φ

(1+ǫ∗)2 +
1−ǫ∗

k(1+ǫ∗) .

4.8. Frequency estimation error bounds

The frequency estimations in Sr,l are referred to aver-

age frequencies. Thus, in order to obtain an estimation

of the global frequency fi of an item i, we need to multi-

ply f̂r,l,i by p̃r,l. From eqs. (36)–(39) we can compute the

error bounds of this estimation. The following theorem

holds.

Theorem 4. Given an input stream N of length n, dis-

tributed among p nodes and a probability of failure

0 < δ < 1, after r rounds of P2PSS, any peer can report

a frequency estimation f s
r,l,i

of an item i ∈ [m] so that,

with probability 1 − δ:

1 − ǫ∗
1 + ǫ∗

fi < f s
r,l,i <

1 + ǫ∗

1 − ǫ∗
(

fi +
n

k

)

. (44)

Proof. From eq. (36) we have that:

1

1 + ǫ∗
<

p̃r,l

p
<

1

1 − ǫ∗ (45)

and from eq. (37) and eq. (38), we have that:

fi
p̃r,l

p
(1 − ǫ∗) < f̃r,l,i p̃r,l < fi

p̃r,l

p
(1 + ǫ∗),

n
p̃r,l

p
(1 − ǫ∗) < ñr,l p̃r,l < n

p̃r,l

p
(1 + ǫ∗).

(46)

Now, starting from eq. (39) and taking into account eq.

(45) and eq. (46), it follows that:

f̃r,l,i p̃r,l ≤ f̂r,l,i p̃r,l ≤ f̃r,l,i p̃r,l +
ñr,l

k
p̃r,l =⇒

fi
p̃r,l

p
(1 − ǫ∗) < f̂r,l,i p̃r,l <

(

fi +
n

k

)

p̃r,l

p
(1 + ǫ∗) =⇒

1 − ǫ∗
1 + ǫ∗

fi < f̂r,l,i p̃r,l <
1 + ǫ∗

1 − ǫ∗
(

fi +
n

k

)

.

(47)

and eventually, setting f s
r,l,i
= f̂r,l,i p̃r,l, the relation (44)

follows.

4.9. Practical considerations

We conclude this Section discussing how to select

proper values for the parameters k and R, which rep-

resent respectively the number of counters to be used

for the Space-Saving stream summary data structure and

the minimum number of rounds required to solve the

Approximate Frequent items Problem in Unstructured

P2P Networks. Theorem 3 proves the correctness of the

algorithm providing also a theoretical guarantee about

the bound ǫ on the number of false positives items. The

user can increase the number of rounds R and/or in-

crease the number of Space-Saving counters k to reduce

the false positives tolerance ǫ. Fixing a given tolerance

ǫ, the user has one degree of freedom to achieve it; Fig-

ure 2 plots the relationship between the values for R and

k which produce a given tolerance ǫ. The relationship

between k and R is given by eq. (48):

k =
1 − ǫ∗2

ǫ (1 + ǫ∗)2 − 4φǫ∗
=

1 − p∗
2 CR

δ

ǫ

(

1 + p∗
√

CR

δ

)2

− 4φp∗
√

CR

δ

(48)

Among all of the possible values for R and k, the user

could follow a strategy oriented to maintain the number

of rounds (hence the time) as fewer as possibile and to

choose k accordingly or viceversa to maintain the num-

ber of counters (hence the space) as lower as possibile

and to choose R accordingly. Let us now discuss both

strategies.

With the first strategy, which can be called time-

dominant, the user is interested on choosing R and k

which guarantee a given ǫ such that R is minimum. The

eq. (48) reveals that R is a monotone decreasing func-

tion with k, hence the minimum value for R is obtained

when k tends to infinity; moreover, it holds that k > 0

hence the minimum value for R can be calculated by

imposing the following constraint:
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ber of rounds to guarantee a given level of false positive tolerance ǫ.
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2
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√

CR

δ
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from which it follows that

R >

log δ + 2 log

(

2φ−ǫ−2
√
φ2−ǫφ

ǫp∗

)

log C
(50)

Since R is an integer, the minimum value of R is given

by:

Rmin =





































log δ + 2 log

(

2φ−ǫ−2
√
φ2−ǫφ

ǫp∗

)

log C





































+ 1 (51)

Substituting the vale of Rmin provided by eq. (51) into

eq. (48) for R, it is possible to obtain the value for k.

With the second strategy, which can be called space-

dominant, the user is interested to keeping the memory

footprint as lower as possibile. The eq. (48) reveals

that k is a monotone decreasing function with R hence

the minimum value for k is obtained when R tends to

infinity. Evaluating eq. (48) for R→ ∞ it holds that the

minimum value for k is given by:

k >
1

ǫ
. (52)

Considering that k is an integer value

kmin =

⌊

1

ǫ

⌋

+ 1 (53)

solving eq. (48) by ǫ∗ and using eq. (53) it holds that:

ǫ∗ =
kmin(2φ − ǫ) −

√

4φk2
min

(φ − ǫ) + 1

1 + ǫkmin

. (54)

Since ǫ∗ = p∗
√

CR

δ
, it holds that:

R =
1

log C

(

2 log ǫ∗ − 2 log p∗ + log δ
)

. (55)

Since R is an integer,

R =

⌊

1

log C

(

2 log ǫ∗ − 2 log p∗ + log δ
)

⌋

+ 1. (56)

5. Experimental results

In order to evaluate our P2PSS algorithm we have im-

plemented a simulator in C++ using the igraph library

[18], and carried out a series of experiments. The simu-

lator has been compiled using the GNU C++ compiler

g++ 4.8.5 on CentOS Linux 7. The tests have been per-

formed on a machine equipped with two hexa-core Intel

Xeon-E5 2620 CPUs at 2.0 GHz and 64 GB of main

memory. The source code of the simulator is freely

available for inspection and for reproducibility of results

contacting the authors by email.

In every experiment, a global input stream of items

has been generated (items are 32 bits unsigned inte-

gers, but the source code implementing the algorithm

can be easily modified in order to process different types

of items) following a Zipfian distribution and each peer

has been assigned a distinct part of that global stream,

thus simulating the scenario in which each peer pro-

cesses, independently of the other peers, its own local

sub-stream, and the peers collaboratively discover the

frequent items in the union of their sub-streams. The ex-

periments have been repeated 10 times setting each time

a different seed for the pseudo-random number genera-

tor used for creating the input data. For each experiment

execution, we collected the peers’ statistics relevant for

the evaluation of the algorithm (more details in the fol-

lowing). Then, with reference to each peer, we deter-

mined the average value of those statistics over the ten

executions. At last, we computed the mean and confi-

dence interval for each statistics over all of the peers and

plotted this values.
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We fixed the number of elements in the global stream

at 200 millions, and varied the skew of the Zipfian dis-

tribution, ρ, the number of peers, p, the frequent items

threshold, φ, the number of counters used by each peer

k or the fan-out f o, setting non varying parameters to

the default values. Every experiment has been car-

ried out by generating random P2P network topologies

through the Barabasi-Albert and Erdos-Renyi random

graphs models. Table 1 reports the sets of values (first

row) and default values (second row) used for the pa-

rameters.

The metrics computed are the Recall, the Precision,

and the Average Relative Error on frequency estimation

with reference to the set of frequent items candidates

reported in output. Recall is defined as the fraction of

frequent items retrieved by an algorithm over the total

number of frequent items. Precision is the fraction of

frequent items retrieved over the total number of items

reported as frequent items candidates. Relative Error

is defined as usual as
| f S − f |

f
, where f S is the frequency

reported for an item and f is its true frequency.

Figure 3 reports the Recall (Fig. 3a), the Precision

(Fig. 3b) and the Average Relative Error (Fig. 3c) vary-

ing the skewness of the Zipfian disribution from which

the input items are drawn. Recall and Precision are

always 100%, showing that the algorithm is robust

enough with regard to skewness variations in the input.

Moreover, Average Relative Errors on frequency esti-

mation are very low, and in particular we note that an

increase in the fan-out from 1 to 2 improves the accu-

racy of estimation.

Figure 4 shows how P2PSS behaves with regard to

variations of the threshold φ. The figure confirms a good

performance of the algorithm: Recall is always 100% as

well as the Precision, except for a slightly lower value

for φ = 0.01. Average Relative Errors are at the same

levels as for the skewness plots.

Figure 5 depicts the trend for Recall, Precision and

Average Relative Error with regard to the experiments

where we varied the number of peers. As we expect

from the theoretical analysis, here the Precision suffers

a reduction and the Average Relative Error increases

when the number of peers grows too much respect to

the number of counters used (the default value is fixed

to 2200) and the number of rounds executed (the default

value is fixed to 24).

The plots related to the experiments in which we var-

ied the number k of Space-Saving counters (Figure 6)

do not present particular behaviours in the interval of

values tested, showing that in this case the number of

counters used were always enough with regard to the

number of rounds executed in order to guarantee a good

accuracy.

A major sensitivity is exhibited by the algorithm

when the number of rounds executed is varied, Figure 9.

We note that the Precision grows and the Average Rela-

tive Error decreases as the number of rounds increases.

This behaviour is expected, given the theoretical analy-

sis.

Overall the experiments show that our algorithm ex-

hibits very good performance in terms of Recall, Preci-

sion, and Average Relative Error of the frequency esti-

mation when the guidance of the theoretical analysis is

taken into account in determining the number of coun-

ters used and the number of rounds to be executed. Fur-

thermore, the algorithm proves to be very robust to vari-

ations in the skewness of the input dataset and the fre-

quent items threshold.

5.1. Effect of churn

In order to verify the efficiency of our P2PSS algo-

rithm in realistic P2P networks, we have carried out fur-

ther experiments introducing churning based on two dif-

ferent models: the fail-stop model and the Yao model,

proposed by Yao et al. [50].

In the fail-stop model, a peer could leave the network

with a given failure probability and the failed peers can

not join the network anymore.

In the Yao model, peers randomly join and leave the

network. For each peer i, a random average lifetime

duration li is generated from a Shifted Pareto distribu-

tion with parameters α = 3, β = 1 and µ = 1.01.

Similarly, a random average offline duration di is gen-

erated from a Shifted Pareto distribution with the same

α and µ parameter values and with β = 2. We recall

here that if X ∼ Pareto(II)(µ, β, α), i.e., X is a random

variable with a Pareto Type II distribution (also named

Shifted Pareto), then its cumulative distribution function

is FX(x) = 1 −
(

1 +
x−µ
β

)−α
.

The values li and di are used to configure, for each

peer i, two distributions Fi and Gi. The distributions Gi

are Shifted Pareto distributions with β = 3 and α = 2di,

whilst the distributions Fi can be both Pareto distribu-

tions with β = 2, α = 2li, or exponential distributions

with λ = 1/li. Whenever the state of a peer changes,

a duration value is drawn from one of the distributions,

Fi or Gi, based on the type of duration values (lifetime

or offline) which must be generated. We carried out our

experiments with both the Pareto and Exponential life-

times variants.

In order to correctly manage the churning of the

peers, the algorithm must be modified as follows. We

assume that a peer can detect a neighbour failure, then:
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Table 1: Experiment values

ρ φ p (×103) k (×103) r f o

{0.9, 1.1, 1.3, 1.5} {0.01, 0.02, 0.03, 0.04} {1, 5, 10, 15, 20} {1, 1.8, 2.6, 3.4} {20, 22, 24, 26, 28} {1, 2, 3, ALL}
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Figure 3: Recall, Precision and Average Relative Error (mean and confidence interval) varying the skewness of the input distribution, for both a

Barabasi-Albert (BA) and an Erdos-Renyi (ER) type of network graph.

• if a peer fails before sending a push message or af-

ter receiving a pull message, that is, when no com-

munications are ongoing, then no actions have to

be performed;

• if a peer p fails before sending a pull message

to peer r in response to its push message, then

the peer r detects the failure and simply cancels

the push–pull exchange, so that its state does not

change;

• if a peer p fails after sending a push message to a

peer r and before receiving the corresponding pull

message, then the peer r detects the failure and re-

stores its own local state as it was before the push–

pull exchange.

When using the fail-stop model, we tested our al-

gorithm with the default parameter values of Table

1, varying the failure probability through the values:

0.0, 0.01, 0.05, 0.1. As shown in Figures 8a and 8b, the

recall and precision metrics are not affected at all by the

introduction of peer failures up to a failure probability

equal to 0.1. However, as expected, Figure 8c shows

that the average relative error on frequency estimations

gets worse going from about 10−6 in case of no churn to

about 10−2 when the failure probability is 0.1.

When the Yao model of churning was adopted, we

tested our algorithm with the default values of Table 1

and the parameters of churning already discussed, vary-

ing the maximum number of peers and the number of

rounds. Also in these cases, recall and precision are

not affected by the introduction of churning. Indeed,

we obtained for recall and precision varying the num-

ber of peers and the number of rounds the same plots

as Figures 5a, 5b, 7a and 7b; for this reason we do not

report these plots again. On the other hand, the average

relative error is affected by the churning, as expected:

Figures 9a and 9b are related respectively to the ARE

measured varying the number of peers and the number

of rounds with Pareto distributions for lifetimes, whilst

Figures 9c and 9d refer to the ARE measured when us-

ing Exponential distributions for lifetimes.

6. Related work

In this Section, we recall the most important sequen-

tial, parallel and distributed algorithms for the frequent

items problem. The items to be mined may belong to

either a static dataset or, in the most general setting, to

a stream. In the former case, all of the data is already

available in advance, whilst in the latter data arrives or

can be accessed only sequentially and in a given order;

no random access to the data is allowed.
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Figure 4: Recall, Precision and Average Relative Error (mean and confidence interval) varying the frequent items threshold φ, for both a Barabasi-

Albert (BA) and an Erdos-Renyi (ER) type of network graph.
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Figure 5: Recall, Precision and Average Relative Error (mean and confidence interval) varying the number of peers participating in the computation,

for both a Barabasi-Albert (BA) and an Erdos-Renyi (ER) type of network graph, and setting a fan-out f o equal to 1 and 2 in case of the ARE plot.

Sequential algorithms can be broadly classified as

either deterministic, counter–based or randomized,

sketch–based. A counter–based algorithm works by up-

dating a so called summary (or synopsis) data structure.

The summary is updated at each item arrival and re-

quires a bounded amount of memory, much smaller than

that necessary for storing the entire input. Queries are

answered using that summary, and the time for process-

ing an item and computing the answer to a given query

is limited. Sketch–based algorithms process items using

a sketch, which is a bi-dimensional array of counters.

Each input item is mapped, through hash functions, to

corresponding sketch cells whose values are then up-

dated as required by the algorithm.

The seminal counter–based algorithm proposed by

Misra and Gries [42] has been independently rediscov-

ered and improved (with regard to its computational

complexity) by Demaine et al. [21] (the so-called Fre-

quent algorithm) and Karp et al. [34]. Among the

counter–based algorithms, we recall here Sticky Sam-

pling, Lossy Counting [39], and Space-Saving [41].

In Particular, among counter–based algorithms, Space-

Saving provides the best accuracy whilst requiring the

minimum number of counters and constant time com-

plexity to update its summary upon an item arrival.

Notable sketch–based algorithms are CountSketch [13],

Group Test [17], Count-Min [16] and hCount [33].

Regarding parallel algorithms, [10] (slightly im-

proved in [5]) and [9] present message-passing based

parallel versions of the Frequent and Space-Saving al-
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Figure 6: Recall, Precision and Average Relative Error (mean and confidence interval) varying the number of Space-Saving counters used by each

peer, for both a Barabasi-Albert (BA) and an Erdos-Renyi (ER) type of network graph.
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Figure 7: Recall, Precision and Average Relative Error (mean and confidence interval) varying the number of rounds executed, for both a Barabasi-

Albert (BA) and an Erdos-Renyi (ER) type of network graph.

gorithms. Among the algorithms for shared-memory ar-

chitectures we recall here a parallel version of Frequent

[52], a parallel version of Lossy Counting [51], and par-

allel versions of Space-Saving [45] and [19]. Novel

shared-memory parallel algorithms for frequent items

were recently proposed in [47]. Accelerator based al-

gorithms for frequent items exploiting a GPU (Graphics

Processing Unit) include [31], [25], [3] and [8].

Some applications are concerned with the problem of

detecting frequent items in a stream with the additional

constraint that recent items must be weighted more than

former items. The underlying assumption is that recent

data is certainly more useful and valuable than older,

stale data. Therefore, each item in the stream has an

associated timestamp that shall be used to determine

its weight. In practice, instead of estimating frequency

counts, an application must be able to estimate decayed

counts. Two different models have been proposed in

the literature: the sliding window and the time fading

model.

In the sliding window model [20] [43], freshness of

recent items is captured by a time window, i.e., a tempo-

ral interval of fixed size in which only the most recent

N items are taken into account; detection of frequent

items is strictly related to those items falling in the win-

dow. The items in the stream become stale over time,

since the window periodically slides forward.

The time fading model [15] does not use a window
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Figure 8: Recall, Precision and Average Relative Error (mean and confidence interval) varying the failure probability in a fail-stop model of

churning, for both Barabasi-Albert (BA) and Erdos-Renyi (ER) random network graphs.

sliding over time; freshness of more recent items is

instead emphasized by fading the frequency count of

older items. This is achieved by using a decaying fac-

tor 0 < λ < 1 to compute an item’s decayed count

(also called decayed frequency) through decay functions

that assign greater weight to more recent elements. The

older an item, the lower its decayed count is: in the case

of exponential decay, the weight of an item occurred n

time units in the past, is e−λn, which is an exponentially

decreasing quantity. Mining time faded frequent items

has been investigated in [14], [7], [49], [4]. A paral-

lel message-passing based algorithm has been recently

proposed in [6].

Regarding the Correlated Heavy Hitters Problem

(CHHs), an algorithm based on the nested application of

Frequent has been recently presented in [36]. The out-

ermost application mines the primary dimension, whilst

the innermost one mines correlated secondary items.

The main drawbacks of this algorithm, being based on

Frequent, are the accuracy (which is very low), the huge

amount of space required and the rather slow speed (ow-

ing to the nested summaries).

In [24], a faster and more accurate algorithm for min-

ing CHHs is proposed. The Cascading Space-Saving

Correlated Heavy Hitters (CSSCHH) algorithm exploits

the basic ideas of Space-Saving, combining two sum-

maries for tracking the primary item frequencies and the

tuple frequencies. The algorithm is referred to as Cas-

cading Space-Saving since it is based on the use of two

distinct and independent applications of Space-Saving.

Let us now discuss related work focusing on the P2P

approach. Since our algorithm is designed for unstruc-

tured P2P networks and is based on a gossip protocol

[22], among the many distributed algorithms for mining

frequent items (e.g., [11], [53], [35], [38], [48], [40]) we

only discuss [46], [12], [37].

The algorithms presented in [46] and [12] are very

similar. Each peer starts with a local subset of the whole

dataset to be mined, and it is explicitly assumed that

each peer can store the whole dataset, i.e., the dataset

resulting from the union of the local datasets; the whole

dataset is obtained as a result of the periodic gossip ex-

changes, in which the peers send their local dataset, re-

ceive their neighbours’ datasets and merge them; this

is known as averaging gossip protocol. The number of

peers can be estimated by using the same approach, in

which one of the peers starts with a value equal to one

and all of the others with a value equal to zero. The

convergence properties of the averaging gossip protocol

have been thoroughly studied in [32], and it has been

shown that each round contributes to reducing the vari-

ance around the mean value that is being computed.

In order to reduce the communication complexity,

[46] suggests alternatively to exchange only the top-k

most frequent items where k is a user’s defined param-

eter. The termination condition is based on the follow-

ing convergence criterion: the algorithm stops when for

all of the peers, the subset consisting of the top-k items

does not change for a specified number of consecutive

rounds.

The algorithm presented in [12] tries to reduce the

communication complexity in a different way. It uses an

additional data structure, an hash table in which all the

items seen are stored (these items are never deleted) and

from which the algorithm randomly selects a specified

number of items corresponding to a predefined message
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size. The termination condition is based on a conver-

gence criterion requiring two user’s defined parameters:

ǫ and convLimit. If the absolute difference between the

true and the estimated frequencies of all of the itemss is

less than or equal to ǫ for at least convLimit consecutive

rounds, the algorithm stops its execution.

It is clear from the previous discussion that [46] and

[12] require space complexity linear in the length n of

the dataset; this allows solving the exact problem rather

than the approximate problem.

In [37], the authors provide a randomized approach

based on a random sampling of the items and the aver-

aging gossip protocol. A random weight in the interval

(0, 1) is assigned to each item. The algorithm maintains

and exchanges in each round a data structure consisting

of t items whose weight is the lowest, where t = 128
ψ2 ln 3

δ
,

ψ is an error threshold and δ the probability of failure.

Even though the authors prove the theoretical properties

of their algorithm, we remark here that the approach can

only detect frequent items but does not provide any kind

of frequency estimation: the algorithm returns a list of

items that with high probability (defined by δ) contains

the frequent items (with regard to the ψ threshold). Re-

garding the space used, for each of the t items the al-

gorithm stores a tuple consisting of four fields: the peer

identifier, the item index in the peer’s local dataset, the

item value and its random weight.

We remark here that [46], [12] do not solve the Ap-

proximate Frequent Items Problem in Unstructured P2P

Networks and that [37] does not provide frequency es-

timation of the discovered frequent items. In contrast,

our algorithm solves the Approximate Frequent Items

Problem in Unstructured P2P Networks, and it does so

by using very little space: each peer uses exactly the

same stream summary data structure that would be used

by a centralized algorithm. Moreover, to the best of

our knowledge, we provide the first distributed algo-

rithm for the Approximate Frequent Items Problem in

Unstructured P2P Networks using a gossip–based pro-

tocol with strong theoretical guarantees for both the Ap-

proximate Frequent Items Problem in Unstructured P2P

Networks and for frequency estimation of the discov-

ered frequent items.

7. Conclusions

In this paper, we have dealt with the problem of min-

ing frequent items in unstructured P2P networks. This

problem, of practical importance, has many useful ap-

plications. We have designed P2PSS, a fully decentral-

ized, gossip–based protocol for frequent items discov-

ery, leveraging the Space-Saving algorithm. We have

formally proved the correctness and theoretical error

bound of the algorithm, and shown, through extensive

experimental results, that P2PSS provides very good ac-

curacy and scalability, also in the presence of highly dy-

namic P2P networks with churning. To the best of our

knowledge, this is the first gossip–based distributed al-

gorithm providing strong theoretical guarantees for both

the Approximate Frequent Items Problem in Unstruc-

tured P2P Networks and for frequency estimation of the

discovered frequent items.
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Figure 9: Average Relative Error (mean and confidence interval) varying the number of peers and rounds in the Yao model of churning with Pareto

(a,b) or Exponential (c, d) lifetimes, for both Barabasi-Albert (BA) and Erdos-Renyi (ER) random network graphs.
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