
This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License. 

This is a postprint version of the following published document:

Martín, I. & Hernández, J. A. (2019). CloneSpot: Fast 
detection of Android repackages. Future Generation 
Computer Systems, 94, 740–748. 

DOI: 10.1016/j.future.2018.12.050

© 2018 Elsevier B.V. All rights reserved.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.future.2018.12.050


CloneSpot: Fast detection of Android Repackages

Ignacio Mart́ına,∗, José Alberto Hernándeza
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Abstract

Repackaging of applications is one of the key attack vectors for mobile mal-
ware. This is particularly easy and popular in Android Markets, where applica-
tions can be downloaded, decompiled, modified and re-uploaded at a very low
cost. Detecting clones and victims is often a hard task, especially in markets
with several million of applications to analyze, such as Google Play Store. This
work proposes CloneSpot, a novel methodology to efficiently detect Repackaged
versions of Android apps using Min-Hashing techniques applied to applications’
meta-data publicly available at Google Play. We validate our approach by ana-
lyzing 1.3 Million of applications collected from Google Play in September 2017,
from which around 420K are detected as potential repackaged or victim versions
of other applications.
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1. Introduction and Motivation

By design, Android applications’ code, based on Java, can be easily decom-
piled, modified and uploaded to application markets again, enabling easy and
fast creation of duplicated versions with additional code chunks that modify in
some way the original application behavior. This process is typically referred to
as repackaging of Android applications. Repackaging has become the most ex-
tended method for disguising and distributing malware applications in Android
markets, including Google Play [23].

Many Android markets allow repackagers to easily upload and disguise their
modified versions into them, often imitating as much as possible the victims’
meta-data to increase their chances of luring users to get it installed. This
meta-data or meta-information refers to those descriptive elements regarding
an application available for users prior to download that give a description of
the application functionality and requirements. Meta-data includes items like
title, description, snapshots of the application, etc.

Hence, the ability of cloning any application from an Android market is
within reach of anyone. In spite of its importance, the addition of malware, such

∗Corresponding author
Email address: ignmarti@it.uc3m.es (José Alberto Hernández)
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as botnets, APTs or phishing, is not the only target for developers to repackage
any application; repackaging can also be used to introduce advertisements in
an ad-free application or even swap the advertisement account of a legitimate
developer by that of the repackager aiming at monetary gain.

Consequently, there has been an explosion on the development of repackaged
applications or application clones, involving a large number of developers, areas
and potential victims, which has become an issue for the Android Platform; for
instance, 80% out of the top 50 most downloaded applications in the market have
a repackaged version online1. While many researchers have typically addressed
this problem by analyzing and inspecting application code, in this work, we
consider a different approach targeting meta-information only.

Generally, repackagers’ ability to alter meta-information with respect to that
of the victim is very limited, since many repackaging applications or clones
solely rely on being almost identical to their victims. This way, many users
will be tricked to install a clone under the belief that they are installing the
legitimate application. For instance, many repackaged applications are uploaded
into markets with a very tiny change in the title (i.e. Capitalization changes,
tildes or even tailing dots).

As a result, many repackaged applications are near-exact imitations of legit-
imate applications sometimes capable of fooling even advanced users. Conse-
quently, comparing application’s meta-information could unveil potential cloned
applications, as their meta-data will be largely alike. Besides, this approach
might discover any type of plagiarism as well, since applications with similar
meta-data may be legitimate but copycats from a conceptual viewpoint.

This work proposes CloneSpot, a repackaging detection approach that targets
applications’ meta-information. Concisely, we use the Min-Hashing algorithm
to aggregate similar applications together within the meta-data of 1.3 Million
applications downloaded from Google Play in September 2017. Accordingly, ap-
plications will be ranked in terms of their local similarity to enhance application
analysis by targeting first similar applications. Finally, the applicability of this
approach will be demonstrated through a Proof of Concept (PoC) consistent
on a lightweight real-time web-service capable of retrieving similar applications
from the 1.3 million applications of the Google Play collection.

2. Previous Work

Many researchers have targeted repackaging detection from different flanks.
One of the main tracks has been the search for similarities in application code:
the authors in [2] compute the Control Flow Graphs of each application’s code
and cluster them to find apps with similar execution flows; Andarwin [5] com-
putes features out of applications’ code through Local Sensitive Hashing and

1See https://blog.trendmicro.com/trendlabs-security-intelligence/

a-look-into-repackaged-apps-and-its-role-in-the-mobile-threat-landscape/, last
access: October 2018
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groups the application through Min-Hashing on a subset of such features.
At the interactive level, User Interface (UI) code and displays have also been

targeted. Chen et al [3] develop a large-scale system which compares UI code to
detect similar structures and intersections. The authors in [20] propose a novel
approach based on analyzing the UI birthmarks of each application, clustering
them based on Local Sensitive Hashing (LSH) and detect the application pairs
with the highest similarity. In addition, RepDroid [24] automatically detects
duplicates by extracting their Layout Group Graph (LGG) from UI traces.

Execution patterns of applications have been explored too. In [9], the au-
thors propose MIGDrodid, a system based on the comparison of Method Invo-
cation Graphs of each app that assign to each of them a threat score. Guan
et al [7] propose a system to detect similarities in the input/output’s symbolic
representations of each app. Furthremore, the authors in [6] propose to look for
repackaging indicators by detecting anomalies introduced by Smali decompilers
in the data section of the dex code.

At market scale, many authors have addressed the problem by proposing
scalable solutions, such as Andradar [16], which monitors several markets on
real-time and tracks application deletions and other changes. Indeed, many of
the proposed solutions are scalable [3, 8], able to cope with the daily-increasing
pace of malware generation. In addition, the author in [12] performs large-scale
analysis of 200, 000 android apps to determine which ones have been cloned.

Lately, there has been some focus on meta-data. The authors in [22] inspect
such features and provide some insights on suspicious general-type malware
apps, providing some regular patterns specially focused on permissions. In ad-
dition, the authors in [8] develop a system which checks incoming APKs with
a whitelist database of applications and compares application icons in case no
match is obtained. In [13] the authors propose computing pairwise metrics of
different meta-information fields to detect application copies, even though it is
unclear what the computational complexity of the approach is.

Actually, many authors have studied the risk different sensitive applications
have to become victims of repackaging, such as bank applications [10], messaging
applications [17] or even Android Home devices [4]. Nevertheless, some authors
have attempted to use repackaging to enhance security or audit applications,
like in [1], where the authors propose including a privacy reporter component in
applications to audit the use of personal data or in [21] that proposes injecting
a user-level sandbox into applications through repackaging.

Other countermeasures have been proposed to prevent repackaging: The
authors in [19] propose an anti-plagiarism mechanism based on Copyright Wa-
termarking that embeds applications with a way to verify authorship; Zhou et
al propose in [26] a system to reproduce and watermark an Android applications
based on dynamic graph mechanisms. Similarly, the authors in [11] propose to
give applications self-protection capabilities by introducing detection codes into
bytecode of apps. In a very recent approach [25], malware-style Logic Bombs are
introduced to protect applications by corrupting their code upon repackaging
detection.

A recent survey on repackaging detection methods can be found in [18]. In-
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terestingly, there are not many works analyzing repackaged applications and
their origins, except from the work from Li et al [15] where the authors perform
an extensive analysis of piggybacked apps to understand their basic characteris-
tics.

CloneSpot is an innovative approach targeting meta-information of applica-
tions extracted from Android application markets instead of actual application’s
code or execution patterns. Thus, CloneSpot yields better time performance at
market scale as compared to code inspection approaches [2, 5, 9]. CloneSpot
outputs sets of potentially repackaged applications that can be feed other sand-
boxing applications to further conclude whether there is indeed a real clone
or not; ultimately, a malware analyst should manually verify whether or not
suspicious applications are truly clones.

The rest of this paper is structured as follows: Section 3 details the crawling
process of Google Play applications’ meta-data; Section 4 extensively explains
how clones are grouped and ranked. Section 5 offers some hints to validate our
approach and Section 6 summarizes the conclusions and findings of this work.

3. Data Collection and Inspection

Google Play is the official Android market and has one of the largest collec-
tions of apps. It is managed by Google and contains over a million applications.
This market is accessible through Android devices natively and also via web2.
In this web, each application has its own page where meta-data, related appli-
cations, information about the developer and installation options for each user’s
devices are displayed.

We have developed a two-stage crawler with a twofold objective: (1) quickly
elaborate a list containing the URL links of a large majority of applications
in Google Play through recursively navigating links and (2) download all the
meta-information (not the apks) contained in application URL. Firstly, our
system starts by downloading Google Play’s home page to identify and recover
all application links there; then this process is recursively repeated throughout
all the new links obtained until no new links for applications are obtained.
Usually, most links appearing at each page correspond to customized suggestions
or other apps from the developer. After some hours, we obtain a long list of
apks URLs. In the second step, we have developed a multi-machine parallel
crawler which downloads, parses, extracts and stores the meta-data of each URL
obtained in the first step, collecting nearly 1.3 Million app’s meta-information
in a few days (Intel Xeon E5-2630 server with 24 cores 190 GB RAM memory).
After removing different versions of applications, the size of the collection is
reduced to exactly 1, 288, 643 applications.

For each application, we have collected the following meta-data:

• Title: The application title.

2See: https://play.google.com, last access: October 2018

4



• Description: A textual description of the application and its features. It
can be written in different languages and has a variable extension.

• Category: The category of the application, selected among all Google
Play predefined categories.

• Developer Name: The name of the developer account.

• Identifier: The Google Play unique identifier for each application.

• Ratings: Google Play allows to rate applications between 1 and 5 stars.
For each application, we download the number of votes for each star.

4. Fast Detection of Application Duplicates

4.1. Min-Hashing for Application Clustering

Essentially, most repackagers are reluctant to undertake major modifications
to application’s meta-information, as it reduces their chances to be mistaken
for the real application. Indeed, many cloners stick to minor changes to one
or more of these meta-data fields, such as changing some pixels in logos or
subtly modifying titles or descriptions in a way that clones are almost identical,
typically relying on users passing over them and believing they are installing
the victim application.

Thus, the most straightforward and näive procedure to detect clones would
be a brute-force approach to compute the pairwise similarity of serialized meta-
data entries and rank them accordingly for manual inspection. However, this
solution is computationally costly in order to perform operations between every
pair in a set of 1.3M applications.

In this light, our approach, CloneSpot, relies on a previous stage involv-
ing similarity clustering to aggregate similar meta-data applications together
into app-sets containing potentially similar applications and reduce this way
the effective number of pairwise comparisons to compute. To perform simi-
larity clustering, there are number of techniques that can be used to identify
repackaged applications based on similar meta-data, namely:

• Text retrieval based approaches: TF-IDF ranks documents’ words accord-
ing to the inner and outer frequencies of their words and enables clustering
according to them. Concept Mining follows a similar approach of gener-
ating vector-like definitions for each text following concept-mapping and
moderated text translation approaches.

• Alternatively, modern hashing techniques, like BitShred and Min-hashing
rely on computing hashes from an input text and select some of them
as indexes or buckets into which items are assigned. The key of these
approaches is that similar enough items are forced to collide and fall into
the same bucket, being instantly grouped by similarity. In general, Min-
hashing is known to provide more adjusted similarity estimations than
BitShred.

5



The issue with text retrieval approaches is that they are conceived as a text to
number mapping approaches that need to be clustered with standard approaches
that do require defining number of clusters beforehand. On the contrary, hashing
techniques provide a very fast single-step text-similarity clustering, making them
very suitable for our purposes.

Therefore, we select Min-hashing for application clustering. The hashing
trick or Min-Hashing is a very fast algorithm for estimating how similar (in
terms of Jaccard similarity) two sets are. Min-Hashing relies on splitting strings
into several chunks of the same length k called shingles and computing a unique-
output function (i.e. common hash functions like MD5 or SHA1) over each
chunk. Consequently, each signature produces a set of numbers (from the hex-
adecimal representations of hashes), of which the minimum is selected as the
Min-Hash. Then, the Min-Hash value of each application serves as the index or
bucket identifier for each different group of applications or cluster.

Min-Hashing relies on set groups theory, and specifically, it has been demon-
strated that the probability of two signatures falling in the same group is ap-
proximately equal to the Jaccard distance between them. The Jaccard distance
between two sets of shingles A and B is defined as follows:

J(A,B) =
|A ∩B|
|A ∪B|

that is, the amount of shingles present in both sets (intersection) divided by
all shingles appearing in any of the two sets (union). Consequently, Jaccard
distance is bounded between 0 and 1 and the more similar two items are, the
larger their Jaccard distance and therefore, the more likely they will output the
same Min-Hash falling into the same bucket. A detailed explanation of Min-
Hashing, Jaccard distance as well as the specific details and demonstrations may
be found in [14].

Thus, we compute a serialized field for each application which consists on
a joining its title, category, description and developer name fields using blank
spaces as a separator. Min-Hashing of this serialized field is performed using a
shingling key of k = 7 and applications obtaining the same Min-Hash value are
directly aggregated together.

Single-application groups are removed since no application similar enough
has been found within the dataset, which indicates low repackaging risk. Fur-
thermore, groups containing applications from the same developer are also re-
moved for two reasons: (1) it makes no sense for developers to wrongfully repack-
age their own applications and (2) many developers publish new versions of the
same application, which usually share most of the meta-data from their previous
versions.

4.2. Market-scale Detection of Application Duplicates

A common problem in malware analysis is the overwhelming amount of work
required to detect, identify and obtain a signature from each sample, which is
becoming even worse due to the latest advancements of malware development.
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In the case of repackaging it is even worse, since the potential victim applications
are accounted by millions and the detection and traceback of each sample to
their victim is almost impossible in such a vast ecosystem.

Following the CloneSpot methodology, potential victims and perpetrators
are aggregated together inside the same Min-Hash bucket forming an app-set.
Hence, CloneSpot not only procures victim’s traceback to analysts, but also po-
tentially cloned and victim applications in groups that can be ranked to improve
the time and effort management as the analysts just need to confirm or reject
the relations inside an app-set.

In fact, the number of app-sets containing less than 10 applications is 44, 729,
around 79% of the total. On the other side, there are 1, 273 groups containing
more than 100 applications. The number of apps in those groups suggest they
are not capturing any relevant similarity. Therefore, we remove app-sets of sizes
larger than 100, as their Min-Hashes are based on common shingles (i.e. ”the
appl”, ”applica”, etc) that have low risk of repackaging.

Consequently, we obtain a total of 54, 944 app-sets containing an overall
amount of 419, 830 applications, which directly filters out 68% of the dataset
that fell into single-sized app-sets and are not suspects of repackaging. App-sets
provide similar application groups that could be potential cloners or victims, but
these groups have to be manually inspected to verify these hypotheses. Still,
nearly 55K groups are quite many applications for one (or many) analysts to
easily deal with manually.

At this point, group-wide pairwise operations can be considered thanks to
the potential reduction of the comparison space introduced by Min-Hashing
based clustering. Indeed, groups contain an average 18.9 members, although
the median value is 2 and the third percentile (75%) is 8, indicating a generally
small app-set size that potentially contains a cloner and a victim.

In this case, performing all within app-set comparisons requires roughly 1.5
million operations (assuming 8 apps per app-set:

(
8
2

)
×54, 944 ), which is a very

manageable number as compared to the 1.6 trillion operations required just to
compute the pairwise similarities of just two applications with all the rest in the
raw dataset.

Although some degree of plagiarism in meta-data could be tolerated, it is
very unlikely that nearly-identical applications’ meta-information elements oc-
cur by chance. Therefore, we compute pairwise similarities over app-sets fol-
lowing the assumption that higher similarity scores are more likely to be clones
and consequently should be analyzed before.

Precisely, we compute two different metrics for two items from each appli-
cation locally: Title and description. Next, edit distance and cosine similarity
are introduced as the similarity scores for title and description respectively and
combined into a local scoring scheme to rank application groups.

4.2.1. Edit Distance of Application Titles

Many repackaged applications attempt to make very subtle changes to their
victims’ titles to avoid detection. Those typically range from changes in the
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capitalization of some letters to the addition of tiny or unnoticeable characters
at the end, like dots. Usually, these changes are unnoticeable to the user eye
unless she is prevented.

Hence, the observation of any two applications with almost the same title and
some small changes is a pointer to potentially cloned or fraudulent applications.
In order to quantify these changes, we compute the edit distance between the
titles of applications in the same app-set.

The Edit distance between two strings a and b accounts the number of mod-
ifications to be made to a until it becomes b. For instance, the edit distance
between Hello, World and Hello, World! is 1, since only one change is required
to reach the second version: Adding an exclamation sign at the end of the first
version.

Edit Distance itself allows detecting the applications with most similar titles
within each app set and provides an insightful measurement of the changes made
to any potential victim’s title. By averaging all the edit distances in the group,
we obtain a hint on how all titles in each group are related.

4.2.2. Cosine Similarity of Application Description

Some repackaged samples tend to paraphrase as much as possible, when not
directly copy, their victim’s description. Certainly, the most similar two de-
scriptions are, the more suspicious those apps are. Repackaging is just one
possibility, but plagiarism or even unfair competition are other options for this
undesired behavior. In some repackaging cases, developers attempt to modify
their clone description somehow, but the information contained in the message
has to be practically the same anyway.

The main issue regarding descriptions is that they can be large sequences of
free text, including many words in different languages which are not trivial to
analyze. To overcome this, we simplify descriptions by transforming them into
their Bag of Words representations. Then, cosine similarity is computed over
the Bag of Words of different applications’ descriptions to obtain a simple and
language-independent measure of message similarity.

The Bag of Words (BoW) representation of each description is obtained
through tokenizing the texts into words (using blank spaces and removing trail-
ing characters, such as commas or dots) and accounting for the frequency of
appearance of each word within the description. The Cosine Similarity is com-
puted over BoWs by homogenizing them into a common space where all terms
appearing in each BoW is considered a dimension and all BoW are converted
to the same dimension space, that is, include all dimensions (adding zeros when
not present). The value for each term dimension is the number of times such
word appears and the cosine similarity is computed as the angle each pair of
vectors forms.

In this case, Cosine Similarity is bounded between 0 and 1 and produces a
broadly accepted estimation of the proximity of the two BoWs, effectively mea-
suring how similar two descriptions are (without considering word collocation).
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Cosine similarity of two applications ~a and ~b is computed as follows:

~CS(~a,~b) =
~a ·~b

‖~a‖ ×
∥∥∥~b∥∥∥

where ~a and ~b are vectors of size i, which is the total amount of unique terms
in both BoWs. Scoring a zero is equivalent to being completely different and
scoring a one is complete identity, including the appearance of the exact same
terms. In practice, any two applications obtaining a high cosine similarity score
indicates that their description’s messages are very strongly related.

4.2.3. Application Ranking

We have indicated above how to measure pairwise similarity of titles and
descriptions as sharper indicators of repackaged or plagiarized applications. In
order to rank app-sets for their inspection, both metrics need to be merged into
a single comprehensive scoring scheme that summarizes the insights provided
by both.

In this light, we define the Application Similarity Index (ASI) between apps
a and b as the division between description of median cosine similarity and
average title edit distance:

ASI(a, b) =
median( ~CS(a, b))

ε( ~ED(a, b))

where ~CS represents each pairwise cosine similarity within each app set and
~ED does the same for each pairwise edit distance. This metric modulates the

similarity of descriptions by their title similarity: if two titles are not very similar
and, thus, have a large edit distance, their description’s similarities will have
less importance.

This way, the scoring forces that the more similar in both ways two applica-
tions are, the topmost they will appear in the ranking, following the intuition
that two almost-identical applications are more likely to be clones than two
less similar applications. Recall that this score is locally computed for each
app-set, i.e. only applications within app-sets are required, reducing computa-
tion complexity and improving computation efficiency by means of, for instance,
parallelization.

As a result, app-sets can be sorted to conform a list of potentially cloned ap-
plications dependent on local pairwise similarities once they have been scored.
The ASI metric allows CloneSpot provides a ranked list of potentially repack-
aged app-sets, ordered by their inner-similarites, helping to set near identical
applications to be inspected first. Malware analysts may therefore proceed in
order to confirm or reject whether any app-set contains repackaged applications.

Fig. 1 visualizes the scoring for all the applications in the dataset by means
of a sorted barplot and its distribution boxplot. In general terms, there are
very few applications scoring high in the ranking, as the scoring scheme is very
sensitive to large modifications on titles.
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Figure 1: App-sets ranking for the Google Play dataset

Nonetheless, this zipf-like pattern appears due to many small sized app-
sets on the top of the ranking, most of them containing only two applications
(in median and third percentile), which are very similar between them, which
increases the obtained score. These should indeed be the first groups to inspect,
as they include large similarities, even with respect to the rest of app-sets.

Figure 2: Top app-set’s applications in the ASI ranking

As an example, consider app-set number one in the ranking: Bhai dooj GIF
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2017 and Bhai Dooj GIF 2017, which scores 0.9979 in ASI, 1 in Edit Distance
and 0.9979 in Cosine Similarity. Fig. 2 depicts the Google Play’s home pages of
both applications.

This is a very illustrative case of repackaging, not necessarily for malware
introduction, but for plagiarism. The lone difference between titles is the capi-
talization of the initial letter in a middle word and the description is practically
the same except for some minor details. Moreover, it can be observed that al-
though images are not the same, the application UI structure is very similar.
Despite both applications could pass by legitimate, since their appearance is dif-
ferent and they could be thematically the same, the degree of lookalike of title
and description as well as the structural similarities in the UI points to a clear
case of repackaging where the clone could be using the legitimate application
for monetary gain through changing the original advertisement account.

CloneSpot is described in Alg. 1, which summarizes methodologically each
of the steps performed to aggregate and rank the different app-sets from raw ap-
plications to the final result. In addition, this workflow represents the minimum
steps needed to aggregate applications into app-sets for production.

Data: CloneSpot: Google Play meta-data from 1.3M applications
Result: Ranked List of app-sets
1. Min-Hashing Clustering;
forall the app in allApplications do

Split in Shingles k = 7;
Compute Min-Hash;
Send app to Min-Hash Bucket;

end
2. Clean app-set list and Compute Local ASI;
forall the app-set in groups do

if Single-sized app-set or Single developer app-set then
Remove app-set;

end
else

Compute Title Edit distance;
Compute BoWs and Cosine Similarity;
Compute ASI;

end

end
3. Sort app-sets according to ASI;

Algorithm 1: Summary of the repackaging detection pipeline

Next section evaluates the ability of this approach to detect and rank clones
within Google Play and presents a Proof of Concept(PoC) application to illus-
trate how this approach can be used in real implementations to improve security
and help analysts, application markets or even developers.
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5. Validation and Proof of Concept

After applying CloneSpot methodology to our 1.3M dataset, there are a
total of 54, 944 ranked app-sets containing potential victims or clones ordered
according to their local pairwise similarity. In this section we aim to validate
our approach through the following experiments:

• Number of applications no longer in the market by app-sets: We measure
the number of app-sets containing at least an application that has been
removed from market between September 2017 and May 2018.

• CloneSpot, a proof-of-concept web-service to demonstrate the applicability
of this approach that is able to receive an application’s meta-data and
retrieve in real-time the most similar ones.

5.1. Apps removed from Google Play

Google Play applications are constantly revised and they may be removed
from the market for different reasons, namely, developer withdrawal, non-compliance
with market’s policies or plagiarism. Removed applications are no longer down-
loadable within Google Play, being their application meta-information page un-
reachable.

In spite of their diversity, all these reasons involve some kind of shady or
undesired behavior. In the case of policy noncompliance or plagiarism it is
straightforward. Oppositely, it seems strange for a developer to be willing to
remove their own applications from the market without a clear reason or incen-
tive.

Hence, application removal can be considered a good proxy to validate the
approach. In most cases, application removal is a sign indicating something
wrong about it and, if such application belongs to a top ranked app-set, then
the CloneSpot workflow will comply with certain requirements to fight malware.

In this light, we attempt to download again the pages for the applications in
the dataset that have been indexed by CloneSpot into a valid app-set. Whenever
an application is not found in Google Play, an HTTP 404 (Not found) error code
is served, so by comparing the correct (code 200) vs Not found responses from
Google Play, we can easily infer which applications have been removed since
September 2017.

As a result, out of 419, 830 applications discovered though CloneSpot in
September 2017, we observe that 78, 164 have been removed from the market in
May 2018, the other 341, 666 potential clones were still present in Google Play
in May 2018. By October 2018, the number of removed applications has risen
to 218, 621, leaving just 198, 651 applications in total, which shows that a con-
siderable majority of applications detected by CloneSpot have had issues inside
Google Play and have thus been removed one year later. These results somehow
confirm that CloneSpot indeed identify applications that are eventually removed
by Google Play.

Fig. 3 depicts the boxplots for app-set size, that is, the number of applica-
tions initially detected per app-set and its evolution over time (May and October
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Figure 3: Distribution of app-set sizes over time

2018) as well as the distribution of removed apps per app-set. The figure re-
veals that the app-set sizes decrease over time (mainly percentiles 25, 50 and
75), showing that most app-sets contain only one, two or three applications by
October 2018.

In addition, approximately 50% of the app-sets (in concrete 29, 145 groups
out of 54, 944) have suffered application removal by May 2018 and even more,
47, 887 by October 2018. These observations indicate that the trend in the
survivor app-sets is to be left alone within their groups in such a way that
app-sets would be reduced to the original legitimate app while potential clones
or plagiarisms slowly disappear from the market. This somehow verifies that
a large number of applications detected by CloneSpot are indeed conflictive
applications, potential clones and victims together.

Moreover, when ranked according to our Application Similarity Index, most
app-sets in the top of the rank contain at least one application that has been
removed. In concrete, exactly 71 app-sets in the ASI top-100 have lost at least an
application and, after manual/visual inspection of the other 29, we believe that
17 look very much as clones of others, due to similarities in User Interfaces,
application structures, sizes and permissions. In other words, only 12 of the
initial top-100 apps spotted by CloneSpot look like false positives according to
our visual inspection.

Finally, Fig. 4 depicts another example of ”Potential Clones”, in this case, it
is clear that one of the two developers has copied entirely the application from
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Figure 4: Example of two similar applications detected by CloneSpot

the other, just changing the app logo by another one and performing slight mod-
ifications to description and title (two characters are changed). Nevertheless,
both applications are so similar that they have obtained the same Min-Hash
value of 0x21a62ee1184c08b3d8a9efba058338808cedaac.

The example above belongs to an app-set of size 4 of which the other two
applications have already been removed from Google Play. Its ASI score is
0.223, its edit distance is 4 and its cosine similarity 0.892. This application is
still in the top 100, at position 76.

At a glance, these applications look like clones, not withstanding that further
manual inspection is required to completely determine how these two applica-
tions are related: The Min-Hashing approach is capable of accurately group-
ing these similar applications together for faster inspection. Additionally, this
example illustrates that the language is not a problem for the Min-Hashing
approach, being capable of joining two applications regardless of the language
their meta-data is written in.

These results show that CloneSpot is able to quickly detect, rank and sort
accurately potential clones for manual inspection enhancing the analysis process
by reducing the time required to find potential victims or clones within a large
sample of applications.

5.2. CloneSpot: Fast Retrieval for Potential Clones

Previous sections have focused on grouping and ranking a large collection
of applications for market-scale analysis based on meta-data. Although fast,
analyzing an entire market requires the recollection of a market-scale dataset in
order to obtain meaningful results, not to consider the moderate requirements
of time and computing resources to complete the operation.

However, the actual computation of the Min-Hash value for a single appli-
cation requires a small number of operations over few kilobytes of data, so it
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is very fast. In addition, market-scale analysis can be carried out in an offline
fashion over a very large collection of applications, that could be one or more
markets at once, and stored in a database where Min-Hash values can serve as
an index for fast retrieval.

As a result, CloneSpot enables the search of application duplicates by query-
ing a database that can be updated and extended in parallel to that process.
The resulting system could return the app-set of similar applications to any
given tuple of title, description, category and developer in real-time.

In this light, we develop CloneSpotPoC : a real-time retrieval system of po-
tential clones given any sample application’s title, description, category and de-
veloper name. This PoC uses the Min-Hashing value obtained by the CloneSpot
methodology as a database index to optimize storage and improve query time.
Indeed, the application can be used by different stakeholders within the Android
ecosystem to reduce the incidence of plagiarism and malware at different levels:

• From a market perspective, This PoC can be used as a direct implementa-
tion of the CloneSpot approach, so any time a new application is uploaded
it can be tested for plagiarism at upload time. Furthermore, the PoC can
be extended to return the ranked list of app-sets according to the ASI
scoring scheme.

• For analysts, the CloneSpot PoC can serve as a fast recommendation
engine for potential victims to inspect when analyzing any malware sample
that returns similar apps and their similarities with the target application.

• From a developer perspective, CloneSpot PoC is an useful tool to keep
track of other similar applications as well as monitoring plagiarism and
repackaging at any time.

The application is designed as a Rest API service that has been implemented
using Java Servlets and MongoDB. The Web Service serves as a proxy for query-
ing the Min-Hash-indexed database containing all app-sets found in our Google
Play collection. The system returns for each query the title and url of every sin-
gle application that can be similar to the one provided following the CloneSpot
approach. To obtain similarity app-sets the user can send a request to any of
these two methods:

• getDuplicates: HTTP GET method that receives a Min-Hash value in
the request url and returns all the potentially similar applications to that
given, that is, the app-set corresponding to that Min-Hash.

• analyze: HTTP POST method that takes as input a JSON-encoded rep-
resentation of application meta-data (title, description, category and de-
veloper name) and returns all the similar applications by computing the
Min-Hash value of the fields and returning the corresponding app-set (if
any).
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In addition, the service provides an info method containing the user guide
and usage considerations. The reader should note that this service is presented
to demonstrate the capabilities of the CloneSpot approach and does not have
full production capabilities. The service is publicly available at: http://163.

117.192.31:8080/CloneSpot/commands/info

6. Summary and conclusions

In sum, this work has presented CloneSpot, a methodology to detect Android
repackaged applications using the meta-information available in most applica-
tion markets. In order to cluster applications according to their textual simi-
larities, we leverage the well-known Min-Hashing algorithm. CloneSpot yields
a ranked list of app-sets, groups of potentially repackaged applications, to be
either analysed by sandboxing repackaging tools or manually inspected and con-
firmed by a malware analyst.

We validated this approach by analyzing what happens to applications falling
into multiple size app-sets (more than one application), showing that half of the
app-sets have experienced a reduction in applications from September 2017 to
October 2018 in Google Play. In addition, we have developed CloneSpot PoC,
a Proof of Concept service that returns the most similar app-set when given
an application’s title, description, category and developer name in real-time to
demonstrate the potential applications of CloneSpot methodology3.

Finally, this work has shown that it is possible to quickly find potential
clones comparing application meta-information through a language independent
approach that enables within-group pairwise comparison. Future work will ad-
dress the extension of the collection of applications to other Android Markets
to enable and analyze cross-market analysis of potential clones.
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