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Smart Fog Based Workflow for Traffic Control Networks

Abstract

In this paper, we propose a novel traffic control architecture which is based on fog computing paradigm
and reinforcement leaning technologies. We firstly provide an overview of this framework and detail the
components and workflows designed to relieve traffic congestion. These workflows, which are
connecting traffic lights, vehicles, Fog nodes and traffic cloud, aim to generate traffic light control flow and
communication flow for each intersection to avoid a traffic jam. In order to make the whole city's traffic
highly efficient, the fog computing paradigm and a distributed reinforcement learning algorithm is
designed to overcome communication bandwidth limitation and local optimal traffic control flow,
respectively. We also demonstrate that our framework outperforms traditional systems and provides high
practicability in future research for building the intelligent transportation system.
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Abstract

In this paper, we propose a novel traffic control  ~chitectur which is based on fog
computing paradigm and reinforcement leaning w “hnoiuzies. We firstly provide an
overview of this framework and detail the cor . ..cuw aud workflows designed to re-
lieve traffic congestion. These workflows, which are « >nnecting traffic lights, vehicles,
Fog nodes and traffic cloud, aim to generate -a’.ic light control flow and communica-
tion flow for each intersection to avoid « "1. ic ). m. In order to make the whole city’s
traffic highly efficient, the fog cor ~*ing | aradigm and a distributed reinforcement
learning algorithm is designed to overco.. ~ communication bandwidth limitation and
local optimal traffic control flo ., 1c. >actively. We also demonstrate that our framework
outperforms traditional syste.. ~ and p ovides high practicability in future research for
building the intelligent tr aspr -tatiou system.

Keywords: Fog Comrutn,, Tra’ ic Congestion, Reinforcement Learning, WorkFlows

1. Introduction

With the developi. mt of urbanization, ever-growing vehicles bring huge convenience
to people’s mot {ity, on the other hand, lead to traffic jams, causing several serious so-
cial problems: . « er driving time, more fuel consumption and heavier air pollution [1].

For e: ample, t, = loss of extra driving time and gasoline due to traffic congestion in the
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US was already up to 121 billion US dollars in 2011, and carbon diox ‘e p- oduced
during congestion was 25,396 tons, while there were 24 billion US ac.™»rs lo. and
4,535 tons carbon dioxide in 1982, respectively [2].

Growing vehicles, shortage of traffic infrastructures, inefficien. - fic signal con-
trol and insufficient online traffic condition information (for ¢ .ample whether traffic
jams or accidents have happened on planned routes for vehici <), are * rimary factors
for traffic congestion. It is unrealistic to ban increasing v chicle~ ~t invest more traffic
infrastructures, especially for developing countries like C.una. T, address this issue,
the relatively practical methods is to focus on the last two .. ~tors. Thus, our research
motivation is to (1) make real-time traffic condition in.. “mat’ Hn available for every ve-

hicle on the intersection and (2) improve the efficiency . € traffic light signal control.

In recent years, as the rapid developme ‘to: .0 ‘mation and communication tech-
nologies (ICT) and the advances of the ” *ernev ~f Things (IoT) [3], equipping vehicles
with wireless communication capabilities, ~as . 2en a new standard for car makers, es-
pecially in electric vehicles. The vehic. - is no onger a relatively closed-system, instead
nowadays they can connect to the Internet and even other vehicles. Connected vehicles
network could get traffic situ .don aro. 1d and ahead for vehicles, which could help ve-
hicles to alter their route ¢, namic. ' to detour around the traffic jam [4]. Meanwhile,
with the significant pro; 'ess Jf ev' iution of Al technologies, autonomous driving cars
have appeared on the road in . ,eral cities in the US, it is easier and more precise for
a vehicle to tune it route . © any time [5]. Moreover, traffic lights signal controls have
significantly be’ a in >roved owing to deep reinforcement learning [6]. For example,
reinforcement alg. ‘thms can be applied to control the green light timing and red light

timing ade stive’y.

1 spite ¢~ a great diversity of technologies having improved the current traffic
system, “~+- are still a few unresolved problems. Such as: (1) high latency com-
1 wnicatic \ for vehicles with the number of vehicle growing; (2) some reinforcement
lea,. =7 algorithms merely making one intersection traffic flow smoother rather than

fo tne local region or even the whole city [7]; (3) lastly, multi-agent reinforcement
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learning algorithms are designed to address problem (2) above are limite by r ymmu-
nication bandwidth to apply the real traffic infrastructures [8].

An integrated solution for traffic congestion is designed to ac .res <man traffic
on a crossroad in the real world. As for contribution this paper, we . ~.d focus on op-
timizing connected vehicles network and reinforcement learn’.ag methods, which are
the key players to the evolution to the next generation of intell,_-ent trar sportation sys-
tems. In this paper, we propose a novel traffic control a chite~ -ve, which integrated
workflow based fog computing paradigm and a distributeu ceinfc cement learning al-
gorithm. We will give an overall solution to traffic congesu. 1, which is more suitable
for driver-less vehicles to some extent. The framewo.. is ¢- mposed of three compo-
nents, including connected vehicles network as termin..~ at the bottom, intelligent fog
computing nodes in the middle and traffic cloua « ~nter on the top. Connected vehicle
network component, is designed to send th 1. ... ' information of a vehicle such as
its current speed, destination. And it re ~ives v = outside information flow from intel-
ligent Fog Nodes, which are applied to hey,> the vehicle inner system or driver to make
better decision in order to avoid traffic ;~m. 1ntelligent fog computing node component
generates dynamic traffic light control flow and delivers traffic condition information
flow to control traffic lights, .ad also , \form vehicles traffic condition information, re-
spectively. Traffic cloud enter . 2’ yzes the data flowed from local Fog Nodes and
produces generalized cc trol .low ack to Fog Nodes to help them to jump out of local
optimal, which mear = optimi.. g one or a few traffic lights on crossroad not all traffic
lights in the city. It also o *vers the traffic information to the Fog Node that requires it
for the specific - chic 2, so that every vehicle has its own information from the cloud.

The paper’s « atribution is (1) designed to make real-time traffic condition infor-
mation ave (@abl- to vehicles and (2)improve the efficiency of traffic signal control with
low latency cu. v nication delay.

" he rema. \der of this paper is organized as follows: Section 2 introduces prelimi-
narv ana ~'~*.d works, such as fog computing, connected vehicle network, traffic lights
¢ gnal cor Tol. Section 3 describes our smart traffic network architecture components.
Sec.’ ™~ . details the intelligent workflows based on fog computing paradigm. Section

5 nows the evaluation of our architecture in comparison with traditional frameworks.
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Section 6 concludes the paper and addresses the future work.

2. Preliminary and Related works

This study is primarily related to two broad categories of rese=rch, v. ~ on the IoT,
another on Al technologies. In this section, we briefly introdt e cloud ‘omputing and
fog computing paradigms, connected vehicles network, veb:~1lar . * _.nation and rein-
forcement learning methods for traffic lights control anc the _clat d works to address

the traffic congestion.

2.1. Internet of Things

The IoT, which based on Wireless Sensor Ne*-~ * 77"_.N) and communication tech-
nologies, connects millions of physical devices, ve..‘~les, home appliances and other
items embedded with electronics, and enab: s t".ese objects exchange data [3]. It has
primarily scaled up the traditional Intern. 1, ~om »erson to person’ to *person to things’

even 'things to things’.

2.1.1. Connected Vehicles Network

Connected vehicles network .s one o1 basic components of IoT, which pays close at-
tention to the network of ehicles ~ d traffic infrastructures. It refers to the wireless
connectivity enabled vc icle, the can communicate with their internal and external
environments and su' ports the "ateractions of V2S (vehicle-to-sensor on-board), V2V
(vehicle-to-vehicle,, V21  ~hicle-to-infrastructure) [9]. Anda et al. proposed VGrid,
which was a pr.sem d vehicular network for traffic control [4] in 2005. Dresner et
al. [10] propnsea . <ystem to achieve automated vehicle intersection control using a
reservatior app’ vach in 2008. Jackeline Rios et al. proposed online connected vehicles
at mergino roa. "t produce a smooth traffic flow without stop-and-go driving [11] in

2015.

72 1.2. C.~ud Computing
C. d cr aputing is a paradigm for enabling ubiquitous, convenient, on-demand net-

we .. ccess to a shared pool of configurable computing resources (e.g., networks,
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servers, storage, applications, and services) that can be rapidly provisi ned .nd re-
leased with minimal management effort or service provider interactio.. "12]. Now,
many cloud service providers, including Google, Amazon, IBM, P .cr soft, are cur-
rently nurturing this popular computing paradigm as a standard co.. ™ .ing infrastruc-
ture. Vehicular cloud is a specific form of cloud computing, ¢ splies y noled resources
and dynamically serves vehicles from conventional cloud con. ruting. (u et al. intro-
duced a content-based routing, that allows vehicle clour appl* -tions to store, share
and search data entirely within the cloud [13]. Currently, uue to * ie limitation of net-
work bandwidth and computing power, it is challenging fo1 - »nnecting and increasing

number of vehicles to the cloud and computing all tra.. ~ dat . centrally.
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Figure 1: An illustration of fog computing paradigm.

2.1.3. 1.~ C nputing
( loud co. puting is geographically bounded by dispersed but also relatively central-
ize.. ~-.al servers which locate far from the end devices or users. However, real-time

ar 4 lailency-sensitive computation service requests often need to be immediately re-
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sponded. The distant cloud center usually causes substantial round-trip d ‘ay, * etwork
congestion, and service quality degradation. To resolve these negative 1s. “=s for loud
computing, a new paradigm named fog computing as shown in Fig.” nas recentiy been
proposed, which extends the cloud computing paradigm to the eu_~ f the network.
Fog computing can create a new generation of applications an . servic>s [14]. It is not
necessary to send everything to the cloud, the Fog Node near . “e end r :vices or users
can also compute, store, filter data and make decisions loc .ly. © 'v when it needs help

from the cloud center, it sends filtered data to it.

2.1.4. Cloud Workflows

A workflow can usually be described using formal o, ~formal flow diagramming tech-
niques, showing directed flows between procc. “'ng steps. Single processing steps or
components of a workflow can basically be *~fned by three parameters: input descrip-
tion, transformation rules, output description (he advantages of keeping workflows
in the cloud are stacking up fast. For e.. 1., 'e, it can be tailored to your Needs; all
data is stored in one Location; red. ~u -+ xdency on IT and so on. Yuan et.al and

Xu et.al have presented algorithms and sti..egies to make cloud workflows more effi-

cient [15] [16].

2.2. Al Technologies

Al Technologies, especi.’ in ¢ zep learning, which consists of various derivatives
of artificial neural n ~vork like convolutional neural network (CNN), recurrent neural
network (RNN) and so on, 1.ave been successfully applied in the fields such as speech
recognition, ir age r.assification, machine translation [17]. Meanwhile, self-driving
cars and reir .orcemc. ¢ leaning for traffic control also mainly beneficial from recent Al

technolog -s.

2.2.1. Reinfor. sment Learning

Reinforc ~=- . Learning (RL) aims to train an agent which applies actions optimally
t» an env -onment. The goal of the algorithm is to learn an optimal policy for the
age. *~ zain maximal reward, based on the observable state of the environment. The

re" saru (either good or bad) was obtained after it applied an action (As Fig.2 shows).
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Formulaically, each time step ¢, the agent tries to maximize the expecte tots return
Ry, where T is the number of time steps until an episode completes, “hich . cans
one subsequence of agent-environment interactions between initial # «d u rminai states.
The accumulated rewards obtained after performing each action wo.'1 se: Ry = ry +
ro + ...+ 7.

In recent years, deep reinforcement learning has been [ "ying e .sential role in

games, robotics, natural language processing, etc. We ".ave + ~n witnessing break-

throughs, like human-level control through deep reinforcen.cnt lea” 1ing[ 18] and AlphaGo[19],

Hierarchical Reinforcement Learning[20], adversarial imita. “n learning[21], etc.

111
Env

\
S2

updated

F

1

R1 R2

Figure 2: An illustration of RL ager that inter. ts with its environment in discrete time steps. At each time
t, the agent receives an observation " and ch oses an action A¢, which get reward Ry after interacting
environment Env. The environn .nt move ‘c a new state Si41 and the reward Ry associated with the
transition (S¢41, A¢+1). The actor s updated for choosing a proper action to make the reward as big as
possible.

2.2.2. Vehicular Aur mation

Vehicular autom.. * mn, namely smart driver-less car, makes the use of an Al system
to assist a urive ‘s oneration, even by replacing the human driver. The autonomous
vehicles must . ~ve .he capability of perceiving its external environments. It can reduce

the tr¢ fic cong ‘stion because the Al control system could strictly obey the traffic rules.

2 2.3. Ti+ffic Lights Signal Control
1. ~ffic lis ats signal control, which dynamically alters traffic light signal time according

w ! time traffic condition in an intersection road, has been proved to be an effec-
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Figure 3: An illustration of an intersection, which has ‘wo directions: North-South and West-East and four
roads: Roadl, Road2, Road3 and Road4. A ™' agc.. ~ eracts with the intersection at discrete time steps,
t = (0,1,2,..T), T is the number of time step.. “head until one episode finishes. The goal of the agent
is to reduce vehicle staying time and the times of stop at this intersection. Specifically, such an agent first
observes intersection state Sy at the b _... ‘g of time step t, then selects and actuates traffic signals A;.
After vehicles move under actuated f affic sign. ‘s, intersection state changes to a new state Sy 1. The agent
also gets reward R at the end of .. ~= step ¢. (n time sequence, the agent interacts with the intersection

as So, Ao, Ro...St, At, R¢...S7 , Ap,+. € ach reward serves as a signal guiding the agent to choose a
proper action.

tive method to ease aa.”~ congestion, by using reinforcement learning method. Fig.3
shows the reinfor .. ~ent learning method applied on intersection road for traffic con-
trol. Prashanth * al iad proposed to use reinforcement learning method to control traf-
fic signals I' .2]. Tn 2u.7, SS Mousavi et al. used policy-gradient and value-function-
based reinic - smer . learning algorithm to optimize the traffic light signals[23]. Al-
thoug! these elated works lead to promising academic results, the prospects of de-

ployin, these ‘;ameworks into the real world is uncertain, because they ignored the

f lowin; situations:

(1) ™%~ vehicular cloud architecture will be limited by respectively high latency com-

munication due to the growing number of cars.
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(2) The traditional vehicle or even self-driving car is not well-informed t} - voa . traffic

condition information ahead.

(3) Although a few multi-agent reinforcement learning algorithmr ,, wk cn _ “iempted
to make multi-intelligent-agents to “talk to each other” for ontima. '=cision, were
designed to address the local optimal problem (as we ha ‘e menti. ned in section
1) [8], they are limited by communication bandwidth to o, =" .n the real-time

traffic infrastructures.

Hence, we design an integrated architecture based on fog c¢. puting and a distributed
reinforcement learning algorithm, applying fog and ¢.. d v urkflows, to reduce com-
munication delay and make more efficient traffic light . ~trol to avoid traffic conges-

tion for a whole city.

3. Smart Traffic Network Architectv ~

Smart traffic network architecture = *~<ion, °d specifically to address the three chal-
lenges raised above. In this section, we detail the novel framework based on fog
computing, including connectr « ver. ~le network component, intelligent fog computing
node component and cloud cu. ~nuting component as shown in Fig.4. We will describe

these individual compon ats r spectively.

3.1. Problem Descr’ tion

The traffic congestion prouv.em is described as: Given intersections of a city I =
(i1,42,...inx) ¥ aere V is the number of intersections. We need to generate optimal or
suboptimal * affic u_"ts control flow Control = (conty, conts, ...conty) and traffic
condition ‘ow whic' . means the real-time traffic condition information. Condtion =
(cond+ .cnds, ... condy ) for every intersection. Traffic control flow is to control traf-
fic lig. ts and cc 1dition flow is to be routed to the vehicles that will pass the intersection
ir . future. Thus, the problem is to generate proper C'ontrol and Condition flow to

1 ake the ' ity traffic smoother.
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Figure 4: An overview of smart traffic network architecture Th~“~~+- nal device synchronously transmits
the detected intersection real-time traffic information to the . ~nd computing scheduling platform, which can
output traffic control flow and schedule traffic information flow ac ~rding to the deep reinforcement learning.

3.2. Connected Vehicle Network Comp ~ent

The connected vehicle network compoonen. focuses on a communication network for
vehicle-to-road infrastructure (Fog Nou.® We would not take vehicle-to-vehicle net-
work into consideration as it ~~ '1 add exponential growth in network complexity.
Vehicles are considered as # 'minal de ’ices located in the bottom of the framework as
shown in Fig.4. Informat on intera. .1on between vehicles and Fog Nodes will be in-
creasing the awareness «.” ve'.icles (o traffic condition information ahead and providing
drivers or self-drivir  system such information to avoid traffic jam. This component is
a one-to-many network. A .">g Node connects every vehicle at one intersection, which
has two main f .nctic as: (1) Send inner-vehicle information to Fog Node (2) Acquire

traffic condif on in.. “mation from Fog Node.

3.2.1. Send 1. “~rm (tion to Fog Node

The v hicle cc '1d send its private information automatically or manually, including its
velocity, 1=<t’ ,ation, and even particular information like, 'there is a patient in the car
1 e must . °t to the hospital as quickly as possible’. More importantly, Fog Node can

tun. *~=*.c light according to the particular information from the vehicle.

10
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3.2.2. Acquire Traffic Condition Information from Fog Node
The vehicle is able to acquire current traffic condition of its route ahead fr. ~ Fog . ‘ode.
As a result, the vehicle may avoid the looming traffic jam with tb = rou fo replanning

through its navigation system or Al system.

3.3. Fog Node Component

This component is the crucial part of the framework, wk.ch aims at producing intel-
ligent signals to control traffic light according to generar - _aditic 1 of an intersection
road, which means position and speed of vehicles inform. ‘on, any specific informa-

1

tion from vehicle (particular information), and a glou." contr JI signal from cloud cen-
ter which we will discuss later. This component levei..=s a distributed reinforcement
learning algorithm under both fog and cloud co.. ~uting paradigms, generating the in-
telligent control flow and delivering the tra 1c <. **tion flow as mentioned earlier. To
make real-time, highly efficient, relati-=ly p1. ~ise traffic control signal, we use fog
computing paradigm, which can compute anu Senerate control flow close to the data
produced by vehicles, and we use re.. “orceu.ent learning algorithm locally instead of
cloud center, which is far from real-time data. Thus, the fog computing node can al-
low low latency communicat’ yn flow ud exploit computing ability locally rather than
merely network routing. T'is co.. o™ ent has four main functions: (1) it is can to filter
raw data from local nod' s so aat i’ reduces the network load (2) it applies a distributed
reinforcement learnir s algon..” 1 to generate traffic light control flow. (3) it sends its
condition of the in’ rsec.. *n to the cloud and receives the other intersections condition
flow from cloud (4, ‘t receives, processes and responses information flow to a partic-
ular vehicle, whi ™ s useful for driver or self-driving system to alter the route to avoid

traffic jam s di .cussed as our primary design strategy.

3.4. C oud Cemputing Component

Intuitiv “lv, traf (c cloud computing paradigm collects all of the intersections’ condition
i format. »n (vehicle position and speed) and then produces dynamical control signals
to “raffic ".ghts to tune the traffic flow according to real-time traffic conditions. How-

cv. ., “1is limited by network bandwidth and cloud computation ability. It is not prac-

11
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tical that all vehicle information is sent to cloud centers and cloud center ~omr pute all
vehicles information centralizedly to generate control flow for every inw <ectio. . On
the other hand, we can not exclude cloud computing component, } y 0. v relying on
Fog Node. While Fog Node could produce traffic light control sigu. '< .o reduce wait-
ing time of the vehicles on the intersection, it could barely fo das on rne intersection.
One or even every traffic intersection optimization is not mean ngful tc the whole city
traffic optimization. It becomes a multi-objective optimiz' ¢on r ~blem to trade off fog
and cloud computing. For example, the cause of a traffic conge don on intersection
1I;, may be influenced by the problematic control of intersec. on I;. Every intersection
interplays each other, especially in near intersections. ~'oud computing component is
designed to be a bridge between intersections of the whu "~ city, which could connect all
intersections and reduce the network complexity « “ every Fog Node. Cloud computing
component gathers all critical information . o« . 7 2 intersections in the city (filtered

by Fog Node), which, in return, helps F ~ Noc s to make more intelligent decisions.

3.5. Traffic Network Control Algor.. “u.

We propose a distributed reinforcement learning algorithm under the fog computing
paradigm and the cloud comr uting p« ‘adigm to control traffic lights between intersec-
tions in a city. In this algc-ithn,, “ve (eed to find out multi-control policies for traffic
light at each intersectic .. P dcy 7¢(0) = (m1(©),m2(0),...,7n(©)), where N is
the number of intersr _tions, .-~ 9) is the j-th traffic light control policy that means
the action of chang .ng w. - traffic light current state or not, by determining the timing
of green light ar 4 u. * timing of red light at intersection j-th. We define j-th single-
intersection staw. ~« STATE; = (L;, S;,1;,C;), where L; is the length of the queue
of vehicles S; “ the sum of times of vehicles’ stop action. I; is a particular infor-
mation from ~e v nicle and Cj is the cloud control from traffic could center. We
define j-th re ward; = —(L; + S; + al; + SCj) and final goal reward function as
Globai, = iziil reward;, where o, 5 are hyper-parameters that determine the im-
[ ortance °f the particular information and cloud control flow. Our algorithm’s final

1

g0, is to qnd control policy m¢(6) to make Globalg as big as possible (the length of

tne y..ue is shorter and the sum of stops is smaller). To implement this optimization

12
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, we introduce a distributed algorithm that involves two sub-algorithms, ¢ ‘e is or Fog

Node, the other is for cloud center. They are connected by the data flow.

Algorithm 1 Cloud Control Algorithm

Ensure: To make maximum Globalr = Zf\;l reward; and to pro.. e cloud action
control flow and dynamically route traffic condition for ev/.y fog Noue.

Ensure: To deliver the Condition the Fog Node.

1: let Sy = (State!, Statel...Statet)

. Action® = (action}, action’...actionly)

p(Actiont|d, S*) is the probability to choose action

. for each episode((S?, Actiont, Global%...ST=1, Aetion™ =1 Globalk) do

for t=1 to T-1 do
Oc = 0 + Vo, log(p(Actiont|d, s'))  Floball,

end for

: end for

: send Control = (conty, conts...conty)+ «r vy, + No...FNy)

. send Condtion = (condy, conds...condy) to (¥ Ny, FN>...FNy)

R e A A TR o

-
e

Algorithm 2 Fog Control Algorithm
Require: Input traffic State S%,, = (L, S;,1},C}) C; is cloud control flow and

177
Conditon flow Condtionf,g ftv.~ civw.’ T is the number of time steps until one
episode finishes.
Ensure: To maximize the i-th F~o Node reward reward;
Ensure: To deliver the C'onc .tion u  vehicle needed.
1: p(action'|6, S%,,.) is the ~robabi .ty to choose action
: AsaFogNode i: rev urd; =  L; + S; + al; + BC;)
for each episode S}, , 7, re"')ard?...S?O_gj, mp ', reward! do
for t=1to T-1 do
0 =0+ glog(p\. tion'|0,S%,, ) * reward;
end for
end for
: send Cont» Oly, to TrafficLight

. send Cona. 7 o4 = (cond;...condy) to vehicles(vehicle; ...vehicler)

R e A A TR o

4. Sir art Tre¢fic Network Workflow

Smart ti. 6~ etwork workflows, which are mainly generated by components we de-
t iled abc e, are composed of four parts, including: (1) vehicle information flow; (2)
traw.” - ~ adition information flow; (3) Fog Node control flow; (4) traffic cloud control

flc w. rig.5 shows these workflows altogether making the whole architecture work.
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Figure 5. ... = ~ffic workflows

4.1. Vehicle Information Flow  vi."

Vehicle information flow, wh.. ™ is g¢ 1erated by connected vehicles network compo-
275 nent, contains informatic « of r ach vehicle’s speed, destination and the special informa-
tion at one intersectior wh.. ~is efined as (S, D, P); = ((S1, D1, P1), (S2, D2, Ps), .
where M is the tof a . *mber of vehicles on j-th intersection in city. (S, D, P); is
sent to the neares” “og Node F'N;. In this workflow, every vehicle is a participant at
an intersectior. We ansfer VIF to Fog Node instead of generating this information
250 flow from e juipmenu. like speed-measuring radar. Because it could reduce the time
in produci._ t'.1s ir ormation flow and some inner information might not be detected
by dev .ces ou*side the vehicle. In addition, the detection of vehicle information takes
relativ 'y more time and requires more computation power if compared to getting VIF

d'ectly.
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4.2. Traffic Condition Video Flow (TCVF) and Traffic Condition Text Flc - (Tf IF)

Traffic condition video flow is sent to Fog Node from intersection can. *as, which

-

capture traffic condition and produce video files at every intersect’ on. ~ meras post
TCVF flow to the nearest Fog Node F'N; to generate TCTF as V21, (L, Stop, A);
at j-th intersection in a city. It is processed by Fog Node using Compx “er Vision (CV)
technologies to generate continuous text flow, which could large  decr ase the file size
of TVCF but contain main information of the intersectic a co” ...’on. TCTF involves
the roads information like the dynamic queue length ~f vehicle L; and the sum of
times of vehicles’” stop on different directions (North-Sourc * and West-East) Stop;.

Whether traffic congestion or an accident happe: ~d is .* - ~_ north-south or west-east

road T'rue/False||NS/W E on the intersection

4.3. Fog Node Control Flow (FNF)

Fog Node control flow is computed b Fog 1 nde component. The j-th Fog Node
(F'N;) receives flows like VIF, TCVF an! 1 CF from vehicles, camera and traffic
cloud center respectively, where TCC.™ ‘s trauic cloud center control flow. F'N; trans-
fers the TCVF flow into continuonus row text data TCTF. Then, it sends TCTF to cloud
center. F'IN; also computes f affic lig) * control flow and delivers traffic cloud specific
information to the specifi vehic.  etting the vehicle to know the traffic condition

ahead in its previous pl- mec cout .

4.4. Traffic Cloud  on. ~1 Flow (TCCF)

Traffic cloud ce .cer ollects all Fog Nodes flow (VIE, TCTF) processed and filtered
(transfer vedio .. -~ ontinuous text) locally, applying cloud reinforcement learning al-
gorithm to rod' ce overall condition control flows and route TCTF for all Fog Nodes.
These flows .. = se’ ¢ back to each Fog Node. The overall condition control flow aims
at add ng a gl Mal view that makes fog reinforcement algorithms jump out of local op-
timal. . "eanv .ile, the TCTF is routed for making vehicles well-informed the traffic

¢ ondition, ‘n its previous planning route.
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5. Simulation and Experiments

In this section we have utilized Simulation of Urban Mobility (SUMM[24, -vhich is
an open source simulator for traffic environment. Meanwhile, a Fi ..6 s} ows, we have
a5 assumed that there are six intersection nodes in one city. We have ¢ ~ducted a set
of experiments implementing the SUMO TraClI (Traffic Cont ol Intenn ce) extension,
which allows for dynamic control of the traffic lights at »~time, .4 we have com-
pared it to another traffic control frameworks. We will de 1or rate that our framework
can outperform these systems. We had not considerea . “2ffic _undition flow in these
30 experiments because it can mainly increase the cor. ~lexity o) the simulations. It is for

simplicity which will not make our experiments or « ~mpauison less valid.

Tigure 6: An illustration of city traffic in the experiments

5.1. 8 mulatior Settings

I .cersec*ion: As Fig.7 shows, an intersection has two directions (West-East and North-
S uth), fc ur nodes (nodey , nodes, nodes, nodey ), four entries (in) and four exits (out),

a. . ~=llasone traffic light nodey. Road length is set to 350 meters and road speed limit

16
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Figure 7: An intersection in the « ~eriments

is set to be 20 (m/s).

Fog Node: We apply fog reinforcement alg. “itt a mto a docker container [25], which
is logically located near the intersectic © [~omu. "nication time delay is set relatively
small). Hence, there are six docker contan >rs (Fog Node) to generate traffic control
flows.

Cloud Center: We also apply »'__ ? reinforcement algorithm into one docker container
logically located far from tk. intersec on (communication time delay is set relatively
large).

Communication Time: 2 com .aunication delay from cloud center to an intersection
is set as 10 seconds -leep 10 seconds in the code to simulate), while the delay from

the Fog Node to an intersec. on is set as 1 second.

Traffic Con’ col 1. *ng Cycle: We set traffic control timing cycle as 60 seconds, and
initially s- gre.n licat interval g; = 27 seconds , red light interval r, = 27 seconds
and yel’ . ligh.  cerval r; = 6 seconds.

Episc le: Each j;ubsequence of agent-environment interactions between initial and ter-
m’ .. stales 15 an episode. One episode time is set as 10 minutes (600 seconds), includ-
i g 10 tra ic control timing cycles.

Vehicie Simulation: At one intersection, we assume vehicles arrive at road entrances

17
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370
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ir Every

randomly following the Bernoulli process with the same probability P;,,
vehicle has a random destination node except of the entry node (we set ra.. Tom/(»s. 2d) =
11). In one episode, there are approximately 600 vehicles (there are “J ex trances in our

city map).

5.2. Simulation Evaluation

We define the time, which a vehicle enters an entry of tk_ mter<ection until it passes
through, as t,,, where m is the vehicle number. During .nula’ ons, we record the

time data for all vehicles on one intersection in every ¢, ~odes. Then, we sum all
I —M

i=1 . a=]

the time data over all the intersections, T, = > * m, to evaluate the traffic
network, where E is the number of episode, M is the ~umber of vehicles and I is the
number intersections that every vehicle will pass “hrough. We herein set £ = 200, [ =
6. We firstly trained four frameworks, inc w.l. - Static-Timing Framework, RL-only
Framework, RL-cloud Framework, Sm~*t-Fog ‘ramework. They were trained in 4000
episodes by SUMO. Then, we conductea “in.. 'ations by SUMO in these frameworks

in 200 episodes, and recorded the w. *myg ....e data for all vehicles in all simulations

episodes (test part), respectively.

5.2.1. Baseline

In the simulations, we fi+ all ' e traftic light timing that has been previously set.

5.2.2. RL-only-Frar >work
We employ RL-only framey. ork with reinforcement learning algorithm [26] to control
traffic light. T}t : del y from framework to an intersection is set 1 second which is the

same as the T'og Nou ~ (six docker containers generate traffic control signal separately).

5.2.3. RL-clo.. 7 F7 umework

We us : RL-cle 'd-framework with RL algorithm [26] to cloud center that recognize all
inter<ec.. ™ .3 one to generate traffic control flow for each intersection (one docker
¢ ntainer. generate overall traffic control signal). The communication delay from

frai.. " .K to an intersection is set as 10 seconds.
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5.2.4. Smart-Fog Framework

We apply our framework with Fog Node and cloud center in six fog docn ~ conmw..ners

and one cloud docker container and record the waiting time for all v hic ¢

Cumulative Wating time(second)

(a) Baseline

Cumulative Wating time{second)

(c) Only-Cloud Framew.

o

Jidh, li

Episode

.  Only-RL Framework

(d) Fog Framework

F' sure 8: Tra.. ag Process of four frameworks

Model Av_rage Episode Time | Average Delay Time Delay Rate
(second) (second)
Baseline 38827.5 2977.2 7.7%
RL-Only Fr7 new rk 35789.33 45229 12.6%
Cloud-Only r..  .work 45448.03 20809.7 45.8%
Fog Fr .meworn 31340.46 6951.6 22.1%
T sle 1: .'he Average Delay Time (one episode for 600 vehicles) of four Frameworks

5.3. Ex, ~vim .t Results

I'1 the tra 1ing process of four frameworks, as Fig.8 shows, we can easily see that

the . -~ .iative waiting time of all vehicles in one episode with Static-Timing (Base-

lir 2), kL-only, RL-cloud, Smart-Fog Framework for 4000 episodes (One episode has
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385

390

approximately 600 vehicles, we add up their waiting time). Our Smar’ Fog .rame-
work performed better than others for lowering the cumulative waiting 1. =. The &, we
also compare the cumulative waiting time of all vehicles in four fr .me /orks 10r 200
episodes (for test). As Fig.9 shows, our framework makes the veh..'= wait 28% less
time than baseline. Because of the communication delay, RL- _loud Framework even
take 34% more time than the baseline.

In these experiments, we did not consider traffic ¢ snditi- flow. Because it is
relatively difficult to simulate a smart car which receives . CTF f.en change its route
to avoid a traffic jam. However, we intuitively maintain tha the TCTF will make our

framework more robust.

55000

50000

45000

40000

35000

30000

Cumulative Wating time(second)

25000

20000

~ — Fog Framework

15000 Only-Cloud Framework

~—— Only-RL Framework

—— Baseline

1000 —
0 50 100 150 200

Episode

Figure 9: The cun. 'ative waiting time for four frameworks in one episode lasting 200 episodes

6. Cor ._sions

In this , “ner. * e have proposed a novel smart traffic control architecture based on fog
¢ ymputii. - paradigm and a distributed reinforcement learning algorithm to lower the
p1. ~abils y of traffic congestion in the city. It can overcome communication bandwidth

1 ..._on among vehicles by producing smart traffic control signal locally and deliv-
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ering traffic condition signal intelligently. Workflows in the framework e d .signed
to make the architecture work efficiently. Although the framework ma.. 'v cown.jutes
locally, it could make optimal or suboptimal global control signals i .ste. d of local op-
timal control signals via our distributed reinforcement learning alge ‘¢ ms and deliver
the traffic condition information to the specific vehicle throug 1 cloud center and Fog
Node. We compared our framework with others in simulators, v hich de aonstrated that
it could make more efficient control signals to reduce traff : jarr~ "t is not only suitable
for the current vehicles but also more useful for driver-les, vehic’ :s in the future as it
will be able to plan its route much more intelligently witn “e information from Fog
Node.

As for the limitation of our approach, where the p1."bility of vehicle in the cross-
road is roughly estimated, we have planed to ma.. ~ real vehicle flow in the further re-
search. We also maintain that our model « "n v. _ “ended to real world scenarios to
solve the traffic problem on the crossr ~4. In *he future work, we will design simu-
lations on real city maps and collect more rea. traffic data to produce a vehicle gen-
eration model (taking rush hour into « nsiaeiation). Also, we will add well-informed
intelligent vehicles (dynamicallv olanning its route from road information) by smart

simulators and algorithms to dentify . \e advantages of our framework.

7. Acknowledge

This work was sur o ‘ed by National Natural Science Foundation of China under
Grant No. 614027'9 and 60973137, State Grid Corporation Science and Technology
Project under 7 +ant No. SGGSKYO0O0FJJS1700302, Program for New Century Excel-
lent Talents n Unive.. ‘ty under Grant No. NCET-12-0250, Major National Project of
High Resc. “tir a Ea' ch Observation System under Grant No. 30-Y20A34-9010-15/17,
Strates .c Priority Research Program of the Chinese Academy of Sciences with Grant

No. X DA0303' 100, Google Research Awards and Google Faculty Award.

21




420

425

430

435

440

References

(1]

(2]

(6]

[71

(8]

[9]

["y]

M. Alsabaan, W. Alasmary, A. Albasir, K. Naik, Vehicular netwerks fo,  oreener
environment: A survey, IEEE Communications Surveys Tuf srials 15 7) (2013)

1372-1388.

T. J. Schrank, The 2012 urban mobility report. http //tti.tamu.edu/

documents/ums/archive/mobility-repc rt-2"12-wappx.pdf.

L. Atzori, A. Tera, G. Morabito, The internet of ti. ~es: / - .rvey, Computer Net-
works 54 (15) (2010) 2787-2805.

J. Anda, J. Lebrun, D. Ghosal, C. N. Chuah, .. Zhang, Vgrid: vehicular ad-
hoc networking and computing grid for 1. ~lligent traffic control, in: Vehicular

Technology Conference, 2005, pp. 2¢ .. =770 Vol.5.

S. Thrun, Toward robotic cars, Cc .. “unic ‘tions of the ACM 53 (4) (2010) 99—
106.

S. Mozer, M. C, M. Hasselmo, Reimurcement learning: An introduction, IEEE

Transactions on Neural " «etwor. < 16 (1) (2005) 285-286.

D. Zhao, Y. Dai, Z Zhang, ~omputational intelligence in urban traffic signal
control: A survey, .“ET, Tra’ sactions on Systems Man Cybernetics Part C 42 (4)

(2012) 48549/

A. L. C.Be _. n, Opportunities for multiagent systems and multiagent reinforce-
ment lea,. ‘ng .n traffic control, Autonomous Agents and Multi-Agent Systems

18 (3) .2009) 34..

N. Tn, N. “Feng, N. Zhang, X. Shen, Connected vehicles: Solutions and chal-
“»nges, I ernet of Things Journal IEEE 1 (4) (2014) 289-299.

K. Dresner, P. Stone, A multiagent approach to autonomous intersection manage-

men ., J Articial Intelligence Research 31 (3) (2008) 591-656.

22




445

450

455

460

465

470

(11]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

[19]

J. Rios-Torres, A. Malikopoulos, P. Pisu, Online optimal control ¥ cc .nected
vehicles for efficient traffic flow at merging roads, in: IEEE Interna. ~nal C. afer-

ence on Intelligent Transportation Systems, 2015, pp. 2432-24,7.

Armbrust, Michael, Fox, Armando, Griffith, Rean, Joseph D. . ~thony, Katz,
H. Randy, Above the clouds: A berkeley view of cloud ¢ >mputin, , Eecs Depart-
ment University of California Berkeley 53 (4) (2009) S0-5¢.

Y. T. Yu, T. Punihaole, M. Gerla, M. Y. Sanadidi, C. _.ent ¥ ating in the vehicle
cloud (2012) 1-6.

F. Bonomi, R. Milito, J. Zhu, S. Addepall,, Sog . ..puting and its role in the

11
T

internet of things, in: Edition of the Mcc **'~

2012, pp. 13-16.

on Mobile Cloud Computing,

D. Yuan, Y. Yang, X. Liu, J. Cher A da  placement strategy in scientific cloud
workflows, Future Generation Comy. te. Systems 26 (8) (2010) 1200-1214.

R. Xu, Y. Wang, H. Luo, F. Wa.._ Y. Xie, X. Liu, Y. Yang, A sufficient and
necessary temporal violat:- “andling point selection strategy in cloud workflow,

Future Generation Cor ~uter Sys ems 86.

G. Hinton, L. Den’,, D. (u, 5. E. Dahl, A. rahman Mohamed, N. Jaitly, A. Se-
nior, V. Vanhour .e, k. “Tov en, T. N. Sainath, Deep neural networks for acoustic
modeling in s* eev. recognition: The shared views of four research groups, IEEE

Signal Proc ... ng Magazine 29 (6) (2012) 82-97.

M. Vol~dyn,, - K. Koray, S. David, A. A. Rusu, V. Joel, M. G. Bellemare,
G. A ex, "« Mrrtin, A. K. Fidjeland, O. Georg, Human-level control through
deer rein.. ~ ment learning, Nature 518 (7540) (2015) 529.

L Silver A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. V. D. Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, Mastering the
gam . of go with deep neural networks and tree search, Nature 529 (7587) (2016)
484-489.

23




475

480

485

490

(20]

(21]

(22]

(23]

(24]

[25]

(26]

A. S. Vezhnevets, S. Osindero, T. Schaul, N. Heess, M. Jaderbe: - D Silver,
K. Kavukcuoglu, Feudal networks for hierarchical reinforcement le. ming, JoRR

abs/1703.01161. arXiv:1703.01161.

J. Ho, S. Ermon, Generative adversarial imitation lea ~ing, CoRR

abs/1606.03476. arXiv:1606.03476.

L. A. Prashanth, S. Bhatnagar, Reinforcement lear ang with function approxi-
mation for traffic signal control, IEEE Transactions « _ (ntell gent Transportation

Systems 12 (2) (2011) 412-421.

S. S. Mousavi, M. Schukat, E. Howley, Tra.%c lig... .ontrol using deep policy-
gradient and value-function-based reinfr--- . I_arning, Iet Intelligent Trans-

port Systems 11 (7) (2017) 417-423.

D. Krajzewicz, J. Erdmann, M. Rehrisc’, L. Bieker, Recent development and
applications of sumo - simulation o1 'ru. ~ mobility, International Journal on Ad-

vances in Systems Measuremc. ‘s 5>~ © and 4) (2012) 128-138.

C. Boettiger, An introduc**  *o docker for reproducible research, ACM SIGOPS
Operating Systems Re* ~w 49 (1 (2015) 71-79.

B. Abdulhai, R. Pr agle G. T. Karakoulas, Reinforcement learning for the true
adaptive traffic ¢ gnai « ~nt' ul, Journal of Transportation Engineering 129 (2014)
278-285.

24




Highlights:

® A smart fog based workflow architecture is proposed.

® The architecture relies on the fog computing paradigm a: 1 a distributed
reinforcement learning algorithm to make real-tim. ‘rathc condition
information available to vehicles and Improve the efficienc ' of traffic signal
control with low latency communication delay.

® Workflows designed to relieve traffic conaes.oun, v hich are connecting
traffic lights, vehicles, Fog nodes and trai.'~ clou i, aim to generate traffic
light control flow and communication “c...

® The framework outperforms trac’tic 1ar systems and provides high
practicability in future research fo. b ilding the intelligent transportation

system.
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