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Abstract 
It is a big challenge for resource-limited mobile devices (MDs) to execute various complex and 
energy-consumed mobile applications. Fortunately, as a novel computing paradigm, edge computing 
(MEC) can provide abundant computing resources to execute all or parts of the tasks of MDs and 
thereby can greatly reduce the energy of MD and improve the QoS of applications. However, 
offloading workflow tasks to the MEC servers are liable to external security threats (e.g., snooping, 
alteration). In this paper, we propose a security and energy efficient computation offloading (SEECO) 
strategy for service workflows in MEC environment, the goal of which is to optimize the energy 
consumption under the risk probability and deadline constraints. First, we build a security overhead 
model to measure the execution time of security services. Then, we formulate the computation 
offloading problem by incorporating the security, energy consumption and execution time of workflow 
application. Finally, based on the genetic algorithm (GA), the corresponding coding strategies of 
SEECO are devised by considering tasks execution order and location and security services selection. 
Extensive experiments with the variety of workflow parameters demonstrate that SEECO strategy can 
achieve the security and energy efficiency for the mobile applications.  
 
Keywords: mobile edge computing, workflow scheduling, security modeling, energy efficient, genetic 
algorithm (GA) 
 

1. Introduction 
Recently, MDs (e.g., smart phones and tablets) have become an integral part of our lives due to their 
portability and compactness. For a single MD, there may be various mobile applications executing on it, 
such as virtual reality (VR) and face recognition [1-4]. To process these complex mobile applications 
efficiently, it requires MDs to be resources-riched ( i.e., high computing capacity and battery power) [2, 
3]. Unfortunately, MDs are usually resource-constrained due to their physical size. The conflict 
between the ever-growing resource requirements of mobile applications and the limited resource 
capacity of MDs impose a big challenge for mobile application execution and drives the transformation 
of computing paradigm [5]. 

Many mobile applications, such as image process applications and augmented reality (AR) 
applications [6], are typical workflow models. Generally, a workflow is composed of multiple 
procedures/components, and it can be partitioned into a sequence of precedence-constrained tasks [7, 8]. 
Due to insufficient MD resource, it is impractical to execute complex and energy consuming 
applications on MD. To address this problem, MDs can offload all or partial tasks of workflow to the 
cloud in mobile cloud computing. However, since MDs are logically and spatially distant from cloud 
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servers, the bandwidth between cloud servers and MDs have very limited connectivity, which leads to 
huge communication latency.  

Mobile edge computing (MEC) has emerged as a solution to limitations of mobile cloud 
computing. Fig. 1 shows the architecture of MEC, which mainly includes evolved NodeBs (eNB) and 
MDs, where eNBs represent network edge equipments (e.g., wireless access points (APs) or base 
stations) with enormous computation and storage resources. These eNBs can provide computing 
services to MDs. Since eNBs are in close proximity to MDs, MDs can offload tasks to eNBs directly 
through pervasive wireless access network, thereby which can significantly reduce the transmission 
latency [9, 10]. Hence, it is very appropriate to offload partial computation tasks of workflows to MEC 
servers, which can greatly reduce MDs’ energy consumption.  
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Fig.1. The architecture of computation offloading in mobile edge computing 
 

In addition to the MD’s energy consumption, security is another critical concern for mobile 
applications on cloud computing [11-17], mobile cloud computing [18-20] and mobile edge computing 
[21-25]. A recent survey reveals that one of the top concerns is security in mobile edge computing 
[21-26]. In particular, these tasks offloaded to the edge servers are vulnerable to hostile attacks from 
outside. For example, the information passing between eNBs and MDs can be tampered from hostile 
actors. However, to the best of our knowledge, few researches consider the security problem of 
workflow scheduling in MEC. Hence, it is an urgent need to employ the security service to ensure the 
safety of the security-critical workflow applications in MEC. However, using security services 
inevitably incurs lots of extra computation time overhead, which will increase energy consumption of 
MD and the makespan of workflows.  

To meet the aforementioned challenges, we propose a security and energy efficient computation 
offloading (SEECO) strategy for service workflows in MEC environment, the goal of which is to 
optimize the energy consumption under the risk probability and deadline constraints. First, in order to 
measure the execution time of security services (i.e., integrity service and confidentiality service), we 
model the security services overhead under different performance parameters, such as the CPU cores 
and computation frequency of MEC servers and the size of protected dataset. Then, we take into 
account the MD’s energy consumption, the security requirement and deadline of workflow application, 
and formulate the security and energy efficient computation offloading problem. Finally, since this 
problem is NP-hard, a SEECO strategy based on the genetic algorithm (GA) is proposed, and the 
corresponding coding strategies of which are devised by considering tasks execution order and location 
and security services selection. Extensive experimental results and analysis demonstrate that SEECO 
strategy can minimize MD’s energy consumption under the risk probability and deadline constraints. In 
conclusion, the main contributions of this paper can be summarized as follows:  
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 We build a security overhead model which takes the influence of different performance 
parameters into account, such as the size of protected dataset, the CPU cores, computation 
frequency of MEC servers.  

 We mainly focus on the computation offloading for workflow type mobile applications, 
which is much more complex in comparison to the ones with independent tasks.  

 We propose a SEECO strategy to minimize the MD’s energy consumption under the risk 
probability and deadline constraints. In particular, SEECO strategy can achieve the security 
guard for the security-critical tasks in MEC. 

We organize this paper as follows. Section 2 summarizes the related work. Section 3 builds a 
security overhead model that is used to measure the quantity value of security overheads. Section 4 
describes problem formulation. Section 5 presents a SEECO strategy for workflow applications to 
minimize the MD’s energy under deadline and security constraints. Section 6 describes the 
experimental setup and analyzes experimental results. Section 7 concludes this paper and identify 
future directions. 

 
2. Related work 
There exist lots of work on workflow scheduling problem in the cloud and mobile cloud computing. In 
particular, in [27], an evolutionary multi-objective optimization (EMO)-based algorithm is proposed to 
minimize the makespan and execution cost of workflow in the cloud. In [28], a particle swarm 
optimization (PSO)-based algorithm is introduced to optimize the execution cost of workflow under 
deadline constraints. In [29], a Heterogeneous Budget Constrained Scheduling (HBCS) algorithm is 
designed to minimize the workflow execution time. In [30], MOHEFT is proposed to schedule 
workflows in Amazon EC2. In [31], using cloud-based computing resources, some analytical models 
are constructed to quantify the network performance of scientific workflows, and a task scheduling 
problem to minimize the makespan while meeting a user-specific budget constraint is formulated. In 
[32], a budget-aware workflow scheduling method is presented in cloud computing environment. 
However, these scheduling methods above don’t take into account the security problem for workflow 
applications.  

With the escalation of the security threatens of data in the cloud or mobile cloud environments, 
some measures have been implemented to protect security-critical applications. Specifically, in [16] a 
task-scheduling framework with three feature is presented for security sensitive workflow framework. 
In [17], a SCAS scheduling scheme is proposed to optimize the workflow execution cost under the 
makespan and security constraints in clouds. In [11], a SABA scheduling scheme is designed to 
minimize the makespan under the security and budget constraints. In [33], a security-aware workflow 
scheduling framework is designed to minimize the makespan and execution cost of workflow while 
meeting the security requirement. However, to the best of our knowledge, all methods above are mainly 
designed for the workflow scheduling in cloud computing or mobile cloud computing environment. 
They are not suitable for workflow scheduling in MEC. 

As an emerging paradigm, MEC has attracted considerable attention in the literature [9, 34]. Some 
works considering computation offloading for MEC have been done, which can be divided into three 
categories: (i) latency based computation offloading [35-38], (ii) energy based computation offloading 
[39, 40] and (iii) energy and latency based computation offloading [41-46]. 

For latency based computation offloading, the objective is to reduce the execution time of mobile 
applications. Specifically, in [35], a dynamic offloading strategy is proposed to minimize the makespan 
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of mobile applications. In [36], an offline heuristic approach is designed to optimize the average 
makespan of all users. In [37], a heuristic load-balancing program-partitioning algorithm is proposed. 
In [38], a polynomial-time approximate algorithm is presented to guarantee performance. 

For energy-based computation offloading, the objective is to reduce the MD’s energy consumption 
by offloading computation tasks to edge servers. In particular, in [39] a joint optimization framework is 
proposed for the radio and computational resource usage by both considering energy consumption and 
latency. In [40], an OFDMA (time-division multiple access and orthogonal frequency-division multiple 
access) scheme is designed to minimize the multiple MD’s energy consumption. 

For energy and latency based computation offloading, the objective is to optimize the MD’s 
energy consumption and the execution time of mobile applications. In particular, in [41], some general 
guidelines are proposed to minimize the energy consumption and execution time. In [42], a locally 
optimal algorithm is proposed to optimize the MD’s energy and latency. In [43], an algorithmic is 
designed and implemented using graph theory. In [44], a semi-mobile devices platform framework is 
proposed to minimize the energy consumption and execution time. In [45], a Lyapunov 
optimization-based algorithm is introduced to optimize the execution energy and latency. In [46], 
another Lyapunov optimization-based algorithm is proposed for cloud offloading scheduling and cloud 
execution output download scheduling. 
    However, none of the above work considers the impact of task dependency on computation 
offloading and the security issue for mobile applications. In fact, many mobile applications consist of 
multiple processes/components (for example, computing components in AR applications), and 
dependencies between different processes/components cannot be ignored. Because it greatly affects the 
offloading process. In addition, security cannot be ignored, because it is a key issue in MEC. Therefore, 
the above schemes are not suitable for security-aware workflow scheduling in MEC. In this paper, we 
mainly focus on security awareness and energy-efficient workflow scheduling in MEC. We try to 
minimize the MD’s energy consumption under the risk probability and deadline constraints. 

 
3. Security Overhead Model 
Various safety threats are escalating. Not surprisingly, one of the top concerns is security in mobile 
edge computing environment [24, 25, 47-49]. Malicious attacks greatly diminish the benefits of mobile 
edge computing. Hence, it is urgent to need employ various types of security services to protect 
security-critical workflow application executing in mobile edge computing from malicious attacks. 
There are three different types of malicious attacks, such as snooping, alteration, and spoofing. To 
protect the workflow applications against these attacks, three security services, such as authentication 
service, integrity service, and confidentiality service, can be flexibly selected to form an integrated 
security protection. 

Since security services incur security overheads and the security overhead is node dependent, it is 
critical and fundamental to measure the quantity value of security overheads for multi-level security 
service on heterogeneous edge servers. Unfortunately, existing security overhead models [16, 50, 51], 
only take into account the relationship between the amount of data to be protected and the security 
overheads with a given number of processor cores and processor frequencies, which are not 
sophisticated enough yet to consider the node heterogeneity problem. To address this issue, we explore 
the relationship between the number of processor cores, the processor frequency, the secured data size 
and the security overheads. And we build an effective security overhead model to approximately 
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measure the security overheads. According to the security overhead model, schedulers enable to 
incorporate security overheads into workflow scheduling problem. 

Since the security overhead of authentication service is a constant value and very small, it usually 
can be negligible [16]. To examine the security overhead incurred by tasks on heterogeneous edge 
servers, we test confidentiality service and integrity service, respectively. According to the experiment 
data, we build a quantitative model to measure the relationship between the security overhead and the 
secured data size, the number of processor cores, the processor frequency. 

 
3.1 The computation of security levels 
This section mainly illustrates how to compute the cryptographic speed and the security level according 
to the security overhead of two security services, respectively. For the sake of simplicity, 
confidentiality service and integrity service can be represented by 𝑐𝑐𝑐𝑐 and 𝑖𝑖𝑖𝑖, respectively.  

The cryptographic algorithm sets for confidentiality service and integrity services are denoted as 
CIj={cij

1,cij
2,…,cijl,…cij

N(j)}, 𝑗𝑗 ∈ {𝑐𝑐𝑐𝑐, 𝑖𝑖𝑖𝑖}, where 𝑁𝑁(𝑗𝑗) represent the count of cryptographic algorithms 
for 𝑗𝑗th security service, 𝑐𝑐𝑖𝑖𝑗𝑗𝑙𝑙  represents the 𝑙𝑙th cryptographic algorithm of the 𝑗𝑗th security service. A 
certain cryptographic algorithm 𝑐𝑐𝑖𝑖𝑗𝑗𝑙𝑙 ∈ 𝐶𝐶𝐶𝐶𝑗𝑗  can be denoted as a triple 
〈𝑠𝑠𝑙𝑙�𝑐𝑐𝑖𝑖𝑗𝑗𝑙𝑙�, 𝑠𝑠𝑠𝑠�𝑐𝑐𝑖𝑖𝑗𝑗𝑙𝑙�, 𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐(𝑐𝑐𝑖𝑖𝑗𝑗𝑙𝑙 , 𝑐𝑐𝑠𝑠𝑐𝑐𝑗𝑗𝑘𝑘 , 𝑐𝑐𝑗𝑗𝑘𝑘 ,𝛼𝛼𝑖𝑖)〉, where 𝑠𝑠𝑙𝑙�𝑐𝑐𝑖𝑖𝑗𝑗𝑙𝑙� represents the security level of 𝑐𝑐𝑖𝑖𝑗𝑗𝑙𝑙 , 𝑠𝑠𝑠𝑠�𝑐𝑐𝑖𝑖𝑗𝑗𝑙𝑙� 
represents the cryptographic speed of 𝑐𝑐𝑖𝑖𝑗𝑗𝑙𝑙 , and 𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐(𝑐𝑐𝑖𝑖𝑗𝑗𝑙𝑙 , 𝑐𝑐𝑠𝑠𝑐𝑐𝑗𝑗𝑘𝑘 ,𝑐𝑐𝑗𝑗𝑘𝑘 ,𝛼𝛼𝑖𝑖)  represents the security 
overheads of tasks 𝑐𝑐𝑖𝑖 with security level 𝑠𝑠𝑙𝑙�𝑐𝑐𝑖𝑖𝑗𝑗𝑙𝑙� on edge server 𝑣𝑣𝑣𝑣j

k, respectively. Moreover, 𝛼𝛼𝑖𝑖 
represents the secured data size (in bits) of task 𝑐𝑐𝑖𝑖, 𝑐𝑐𝑠𝑠𝑐𝑐𝑗𝑗𝑘𝑘  represents the number of processor cores of 
edge server 𝑣𝑣𝑣𝑣𝑗𝑗

𝑘𝑘, and 𝑐𝑐𝑗𝑗𝑘𝑘  represents the processor frequency of edge server 𝑣𝑣𝑣𝑣𝑗𝑗
𝑘𝑘, respectively.  

For aforementioned cryptographic algorithms, their computational overheads are measured on a 
Dell R530 server, who is configured with one CPU (2.2GHz 8 Core). In the case of a single 
core 2.2GHz CPU, it performs these cryptographic algorithms for 100 megabytes (MB) of data. Table 1 
shows the security overheads of confidential service, and Table 2 shows that of integrity service.  

The fifth column of Table 1 and Table 2 respectively show the security overheads for five 
encryption algorithms of confidentiality service and five hash functions of integrity service. Based on 
the experimental data for the security overhead, the cryptographic speed (MB/s) for these 
cryptographic algorithms can be calculated, and are shown in the fourth column of Table 1 and Table 2. 
Similar to [16, 50, 51], the security level of these cryptographic algorithms is normalized in a range 
from 0 to 1. According to the cryptographic speed, the strongest yet slowest encryption algorithm is 
assigned the security level 1, and then the security level for the rest of the cryptographic algorithm can 
be calculated.  

For example, we use the confidentiality service to show how we calculate the encryption speed 
and the security level for each security algorithm according to the computation overhead.  

First, the encryption speed can be computed by Eq. (1). 
𝑠𝑠𝑠𝑠�𝑐𝑐𝑖𝑖𝑗𝑗𝑙𝑙� = 𝛼𝛼𝑖𝑖 𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐(𝑐𝑐𝑖𝑖𝑗𝑗𝑙𝑙 , 𝑐𝑐𝑠𝑠𝑐𝑐𝑗𝑗𝑘𝑘 ,𝑐𝑐𝑗𝑗𝑘𝑘 ,𝛼𝛼𝑖𝑖)⁄ , 𝑗𝑗 ∈ {𝑐𝑐𝑐𝑐, 𝑖𝑖𝑖𝑖}, 1 ≤ 𝑙𝑙 ≤ 5.                       (1) 

where 𝛼𝛼𝑖𝑖 = 100 𝑐𝑐𝑠𝑠𝑐𝑐𝑗𝑗𝑘𝑘 = 1 𝑐𝑐𝑗𝑗𝑘𝑘 = 2.2. And then the strongest yet slowest encryption algorithm, IDEA 
(see Table 1) is assigned the security level 1. Security levels of the encryption algorithms are 
proportional to their computation overhead. Hence, security levels for the rest of the encryption 
algorithms can be computed by Eq. (2). 

   𝑠𝑠𝑙𝑙�𝑐𝑐𝑖𝑖𝑗𝑗𝑙𝑙� = 𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐(𝑐𝑐𝑖𝑖𝑗𝑗𝑙𝑙 , 𝑐𝑐𝑠𝑠𝑐𝑐𝑗𝑗𝑘𝑘 ,𝑐𝑐𝑗𝑗𝑘𝑘 ,𝛼𝛼𝑖𝑖) 𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐(𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐1 , 𝑐𝑐𝑠𝑠𝑐𝑐𝑗𝑗𝑘𝑘 ,𝑐𝑐𝑗𝑗𝑘𝑘 ,𝛼𝛼𝑖𝑖)� , 𝑗𝑗 ∈ {𝑐𝑐𝑐𝑐, 𝑖𝑖𝑖𝑖}, 1 ≤ 𝑙𝑙 ≤ 5.       (2) 
where 𝛼𝛼𝑖𝑖 = 100 𝑐𝑐𝑠𝑠𝑐𝑐𝑗𝑗𝑘𝑘 = 1 𝑐𝑐𝑗𝑗𝑘𝑘 = 2.2. Similarly, the computation overhead for the integrity service is 
listed in Table 2. In accordance with the computation overhead, the hash speed can be computed by Eq. 
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(1). According to the hash speed, the strongest yet slowest hash function Tiger is assigned the security 
level 1, and the security levels for the other hash functions can be computed by Eq. (2). 
 

Table 1. The encryption algorithms for confidential service 
Symbols 
𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐𝑙𝑙  

Encryption 
Algorithms 

Level 
𝑠𝑠𝑙𝑙(𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐𝑙𝑙 ) 

Speed(Mb/s) 
𝑠𝑠𝑠𝑠�𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐𝑙𝑙 � 

Computation Overhead 
𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐(𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐𝑙𝑙 )(s) 

𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐1  IDEA 1.0 11.76 8.50 
𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐2  DES 0.85 13.83 7.23 
𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐3  AES 0.53 22.03 4.54 
𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐4  Blowfish 0.56 20.87 4.79 
𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐5  RC4 0.32 37.17 2.69 

 
Table 2. The hash functions for integrity service 

Symbols 
𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙  

Hash 
Functions 

Level 
𝑠𝑠𝑙𝑙(𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙 ) 

Speed(Mb/s) 
𝑠𝑠𝑠𝑠�𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙 � 

Computation Overhead 
𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐(𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐𝑙𝑙 )(s) 

𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖1  TIGER 1.0 75.76 1.32 
𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖2  RipeMD160 0.75 101.01 0.99 
𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖3  SHA-1 0.69 109.89 0.91 
𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖4  RipeMD128 0.63 119.05 0.94 
𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖5  MD5 0.44 172.41 0.58 

 
 
3.2 The computational overheads for the secured data size 
In this section, we explore the influence of the secured data size on the security overhead. We tested the 
different secured data size on a Dell R530 server with a single core 2.2GHz CPU. The mean size of the 
secured data varies from 100 MB to 1000 MB. Fig. 2(a) shows the security overheads for five 
encryption algorithms of confidential service, and Fig. 2(b) shows the security overheads for five hash 
functions of integrity service.  

From Fig. 2(a), we can observe two important features. First, with the secured data size increasing, 
the computational overheads for these five cryptographic algorithms (IDEA, DES, AES, Blowfish and 
RC4) increase linearly. Second, when the size of secured data is constant, the relationship of the 
computational overhead for these five cryptographic algorithms: IDEA>DES> Blowfish>AES>RC4. 
The computational overhead of the encryption service experienced by different size of secured data can 
be computed by Eq. (3).  

𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐�𝑐𝑐𝑖𝑖𝑗𝑗𝑙𝑙 , 𝑐𝑐𝑠𝑠𝑐𝑐𝑗𝑗𝑘𝑘 ,𝑐𝑐𝑗𝑗𝑘𝑘 ,𝛼𝛼𝑗𝑗� = 𝛼𝛼𝑗𝑗 ∗ 𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐�𝑐𝑐𝑖𝑖𝑗𝑗𝑙𝑙 , 𝑐𝑐𝑠𝑠𝑐𝑐𝑗𝑗𝑘𝑘 , 𝑐𝑐𝑗𝑗𝑘𝑘 ,𝛼𝛼𝑖𝑖� 𝛼𝛼𝑖𝑖⁄ , 𝑗𝑗 ∈ {𝑐𝑐𝑐𝑐, 𝑖𝑖𝑖𝑖}, 1 ≤ 𝑙𝑙 ≤ 5.          (3) 
where 𝛼𝛼𝑗𝑗  represents the size of secured data, 𝛼𝛼𝑖𝑖 = 100 , 𝑐𝑐𝑠𝑠𝑐𝑐𝑗𝑗𝑘𝑘 = 1  and 𝑐𝑐𝑗𝑗𝑘𝑘 = 2.2 , 
𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐�𝑐𝑐𝑖𝑖𝑗𝑗𝑙𝑙 , 𝑐𝑐𝑠𝑠𝑐𝑐𝑗𝑗𝑘𝑘 ,𝑐𝑐𝑗𝑗𝑘𝑘 ,𝛼𝛼𝑖𝑖� represents the computational overhead experienced by the 100 megabytes of 
data with security level requirements 𝑐𝑐𝑖𝑖𝑗𝑗𝑙𝑙  on an edge server with a single core 2.2GHz CPU. 
    Fig. 2(b) shows the experimental results for these five hash algorithms. We observe from Fig. 2(b) 
that the security overheads of these five hash algorithms (TIGER, RipeMD160, SHA-1, RipeMD128 
and MD5) increase linearly with the secured data size increasing. Moreover, when the secured data size 
is constant, the relationship of the computational overhead for these five hash algorithms: 
TIGER >RipeMD160>SHA-1>RipeMD128 >MD5. The computational overhead of the five hash 
algorithms experienced by different size of secured data can be computed by Eq. (3).  
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(a) The relationship between data size          (b) The relationship between data size 
and the security overhead                  and the integrity overhead 

Fig. 2. The security overhead with different data size 
 

3.3 The computational overheads for the number of processor cores 
To examine the influence of different processor cores on the security overhead, in the set of 
experiments, the processor cores are varied from 1 to 8 with increments of 1. We measured the quantity 
value of security overheads experienced with 100M security-required data on a Dell R530 server with a 
2.2GHz CPU. The security overheads of confidential service obtained with experiments are shown in 
Fig. 3(a), and that of hash functions for integrity service are shown in Fig. 3(b).  

Fig. 3(a) shows that when the processor frequency and the secured data size are constant, the 
computational overheads for these five cryptographic algorithms (IDEA, DES, AES, Blowfish and RC4) 
decrease with the number of processor cores increasing. On the other hand, when the number of 
processor cores and the processor frequency are constant, the relationship of the security overhead for 
these five cryptographic algorithms experienced by the same data size: IDEA>DES> 
Blowfish>AES>RC4. Therefore, when the processor frequency and the amount of data are constant, 
the security overheads for the encryption algorithms are inversely proportional to the number of 
processor cores, which can be computed by Eq. (4). 

   𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐�𝑐𝑐𝑖𝑖𝑗𝑗𝑙𝑙 , 𝑐𝑐𝑠𝑠𝑐𝑐𝑗𝑗𝑘𝑘 ,𝑐𝑐𝑗𝑗𝑘𝑘 ,𝛼𝛼𝑗𝑗� = 𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐�𝑐𝑐𝑖𝑖𝑗𝑗𝑙𝑙 , 𝑐𝑐𝑠𝑠𝑐𝑐𝑗𝑗𝑘𝑘 ,𝑐𝑐𝑗𝑗𝑘𝑘 ,𝛼𝛼𝑖𝑖� 𝑐𝑐𝑠𝑠𝑐𝑐𝑗𝑗𝑘𝑘� , 𝑗𝑗 ∈ {𝑐𝑐𝑐𝑐, 𝑖𝑖𝑖𝑖}, 1 ≤ 𝑙𝑙 ≤ 5.           (4) 
where 𝑐𝑐𝑠𝑠𝑐𝑐𝑗𝑗𝑘𝑘 = 1, 𝑐𝑐𝑗𝑗𝑘𝑘 = 2.2, 𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐�𝑐𝑐𝑖𝑖𝑗𝑗𝑙𝑙 , 1, 2.2,𝛼𝛼𝑖𝑖� represents the computational overhead experienced 
by the 𝛼𝛼𝑖𝑖 megabytes of data with security level requirements 𝑐𝑐𝑖𝑖𝑗𝑗𝑙𝑙  on an edge server with a single 
core 2.2GHz CPU. 

Fig. 3(b) shows the experimental results for these five hash algorithms. We observe from Fig. 3(b) 
that when the processor frequency and the secured data size are constant, the computational overheads 
for these five hash algorithms (TIGER, RipeMD160, SHA-1, RipeMD128 and MD5) decrease with the 
increased number of processor cores. Moreover, when the number of processor cores and the processor 
frequency are constant, the relationship of the computational overhead for these five hash algorithms 
experienced by the same size data: TIGER >RipeMD160> SHA-1>RipeMD128 >MD5. Therefore, the 
computational overheads of the hash algorithms are inversely proportional to the number of processor 
cores when the processor frequency and the amount of data are constant, which can be computed by Eq. 
(4). 
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(a) The relationship between processor cores    (b) The relationship between processor cores 

and the security overhead                   and the integrity overhead 
Fig. 3. The security overhead with different processor cores 

 

3.4 The computational overhead for the processor frequency 
To examine the influence of different processor frequency on the security overhead, in the set of 
experiments, the processor frequency is varied from 30% to 100% with increments of 10%. We 
measured the quantity value of security overheads experienced with 100M security-required data on a 
Dell R530 server with a single core. The security overheads for confidential service obtained with 
experiments are shown in Fig. 4(a), and that of hash functions for integrity service are shown in Fig. 
4(b).  
    Fig. 4(a) shows the experimental results for the computational overhead of these five 
cryptographic algorithms. We observe from Fig. 4(a) that when the processor cores and the secured size 
are constant, the computational overheads for these five cryptographic algorithms (IDEA, DES, AES, 
Blowfish and RC4) decrease as the processor frequency increases. On the other hand, when the number 
of processor cores and the processor frequency are constant, the relationship of the computational 
overhead for these five cryptographic algorithms experienced by the same data size: IDEA>DES> 
Blowfish>AES>RC4. Therefore, when the processor cores and the secured data size are constant, the 
computational overheads of the encryption algorithms are inversely proportional to the processor 
frequency, which can be computed by Eq. (5). 

   𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐�𝑐𝑐𝑖𝑖𝑗𝑗𝑙𝑙 , 𝑐𝑐𝑠𝑠𝑐𝑐𝑗𝑗𝑘𝑘 ,𝑐𝑐𝑗𝑗𝑘𝑘 ,𝛼𝛼𝑗𝑗� = 𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐�𝑐𝑐𝑖𝑖𝑗𝑗𝑙𝑙 , 𝑐𝑐𝑠𝑠𝑐𝑐𝑗𝑗𝑘𝑘 ,𝐹𝐹,𝛼𝛼𝑖𝑖� ∗ 𝐹𝐹 𝑐𝑐𝑗𝑗𝑘𝑘� , 𝑗𝑗 ∈ {𝑐𝑐𝑐𝑐, 𝑖𝑖𝑖𝑖}, 1 ≤ 𝑙𝑙 ≤ 5.           (5) 
where  𝑐𝑐𝑠𝑠𝑐𝑐𝑗𝑗𝑘𝑘 = 1 , 𝛼𝛼𝑖𝑖 = 100 , 𝐹𝐹  is the maximum operating frequency of the processor, and 
𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐�𝑐𝑐𝑖𝑖𝑗𝑗𝑙𝑙 , 1,𝐹𝐹, 100� represents the computational overhead experienced by the 100 megabytes of data 
with security level requirements 𝑐𝑐𝑖𝑖𝑗𝑗𝑙𝑙  on an edge server with a single core 𝐹𝐹 GHz CPU. 

Fig. 4(b) shows the experimental results for these five hash algorithms. We observe from Fig. 4(b) 
that when the processor cores and the secured data size are constant, the computational overheads for 
these five hash algorithms (TIGER, RipeMD160, SHA-1, RipeMD128 and MD5) decrease as the 
processor frequency increases. Moreover, when the number of processor cores and the processor 
frequency are constant, the relationship of the computational overhead for these five hash algorithms 
experienced by the same size data: TIGER >RipeMD160> SHA-1>RipeMD128 >MD5. Therefore, the 
computational overheads of the hash algorithms are inversely proportional to the processor frequency 
when the number of processor cores and the amount of data are constant, which can be computed by Eq. 
(5). 
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In conclusion, the computation overhead 𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐�𝑐𝑐𝑖𝑖𝑗𝑗𝑙𝑙 , 𝑐𝑐𝑠𝑠𝑐𝑐𝑗𝑗𝑘𝑘 ,𝑐𝑐𝑗𝑗𝑘𝑘 ,𝛼𝛼𝑖𝑖�  mainly depends on the 
cryptographic algorithms used 𝑐𝑐𝑖𝑖𝑗𝑗𝑙𝑙 , the secured data size 𝛼𝛼𝑖𝑖, the number of processor cores 𝑐𝑐𝑠𝑠𝑐𝑐𝑗𝑗𝑘𝑘  and 
the processor frequency 𝑐𝑐𝑗𝑗𝑘𝑘  of the heterogeneous node 𝑣𝑣𝑣𝑣𝑗𝑗

𝑘𝑘, which can be calculated by Eq. (6): 
   𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐�𝑐𝑐𝑖𝑖𝑗𝑗𝑙𝑙 , 𝑐𝑐𝑠𝑠𝑐𝑐𝑗𝑗𝑘𝑘 ,𝑐𝑐𝑗𝑗𝑘𝑘 ,𝛼𝛼𝑖𝑖� = (𝛼𝛼𝑖𝑖 ∗ 2.2) (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑐𝑐𝑖𝑖𝑗𝑗𝑙𝑙� ∗ 𝑐𝑐𝑗𝑗𝑘𝑘 ∗⁄ 𝑐𝑐𝑠𝑠𝑐𝑐𝑗𝑗𝑘𝑘), 𝑗𝑗 ∈ {𝑐𝑐𝑐𝑐, 𝑖𝑖𝑖𝑖}, 1 ≤ 𝑙𝑙 ≤ 5.  (6) 

 

  
(a) The relationship between processor       (b) The relationship between processor 
 frequencies and the security overhead        frequencies and the integrity overhead 

Fig. 4. The security overhead with different processor frequencies  
 
4. Problem Formulation 
In this section, we first introduce a security-aware workflow model and a mobile edge computing 
model, respectively. Then we analyze the process of security-aware task execution. Next we analyze 
the energy consumption and risk probability for workflow, respectively. At last, we formulate the 
security-aware and efficient-energy workflow scheduling problem. To improve the readability, we 
summarize the notations used in throughout this paper in Table 3. 
 

Table 3. Notations 
Symbols Definition 
W 
T 
E 
𝑇𝑇𝐷𝐷  
𝑃𝑃𝑇𝑇  
𝑐𝑐𝑖𝑖  
𝑠𝑠(𝑖𝑖, 𝑗𝑗) 
𝛼𝛼𝑖𝑖  
𝛽𝛽𝑖𝑖  
𝜔𝜔𝑖𝑖  
𝑠𝑠𝑝𝑝𝑠𝑠(𝑐𝑐𝑖𝑖) 
𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐(𝑐𝑐𝑖𝑖) 
𝐴𝐴𝑃𝑃𝑗𝑗  
𝐵𝐵 
𝑣𝑣𝑣𝑣𝑗𝑗

𝑘𝑘 
𝑐𝑐𝑗𝑗𝑘𝑘  
𝑐𝑐𝑠𝑠𝑐𝑐𝑗𝑗𝑘𝑘  

The workflow model; 
The task set that compose workflow; 
The directed edges set; 
The deadline for workflow; 
The risk probability constraint for workflow; 
Task 𝑐𝑐𝑖𝑖 of workflow; 
A directed edge; 
The input data size of task 𝑐𝑐𝑖𝑖; 
The output data size of task 𝑐𝑐𝑖𝑖; 
The workload of task 𝑐𝑐𝑖𝑖; 
The predecessor set of task 𝑐𝑐𝑖𝑖; 
The successor set of task 𝑐𝑐𝑖𝑖; 
The 𝑗𝑗th wireless access point; 
The communication bandwidth between any two APs; 
The 𝑘𝑘th virtual machine in the jth wireless AP; 
The processor frequency of 𝑣𝑣𝑣𝑣𝑗𝑗

𝑘𝑘; 
The number of processor cores of 𝑣𝑣𝑣𝑣𝑗𝑗

𝑘𝑘; 
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𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐𝑖𝑖𝑙𝑙𝑖𝑖𝑐𝑐𝑐𝑐𝑗𝑗𝑘𝑘 
𝑃𝑃01
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 

𝑃𝑃01𝑈𝑈𝑈𝑈 
𝑃𝑃01𝐷𝐷𝑈𝑈 
𝐵𝐵𝑗𝑗𝑘𝑘𝑈𝑈𝑈𝑈   
𝐵𝐵𝑗𝑗𝑘𝑘𝐷𝐷𝑈𝑈 
𝑇𝑇𝑇𝑇𝑇𝑇(𝑐𝑐𝑖𝑖−1) 
𝐸𝐸𝐶𝐶𝑐𝑐𝑠𝑠𝑐𝑐(𝑐𝑐𝑖𝑖−1) 
𝐷𝐷𝐸𝐸𝐶𝐶𝑐𝑐𝑠𝑠𝑐𝑐(𝑐𝑐𝑖𝑖) 
𝑇𝑇𝐸𝐸𝐸𝐸�𝑐𝑐𝑖𝑖 ,𝑣𝑣𝑣𝑣𝑛𝑛

𝑞𝑞� 
𝑇𝑇𝑃𝑃𝑇𝑇�𝑐𝑐𝑖𝑖 ,𝑣𝑣𝑣𝑣𝑛𝑛

𝑞𝑞� 
𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑐𝑐𝑖𝑖) 
𝐸𝐸𝑈𝑈𝑈𝑈(𝑐𝑐𝑖𝑖)  
𝐸𝐸𝐷𝐷𝑈𝑈(𝑐𝑐𝑖𝑖)  
𝑃𝑃�𝑐𝑐𝑖𝑖 , 𝑠𝑠𝑙𝑙(𝑐𝑐𝑖𝑖𝑗𝑗𝑙𝑙)� 
𝑃𝑃(𝑐𝑐𝑖𝑖) 
𝑃𝑃(𝑊𝑊) 
𝑇𝑇𝑆𝑆𝑇𝑇(𝑐𝑐𝑖𝑖) 
𝑇𝑇𝐸𝐸𝑇𝑇(𝑐𝑐𝑖𝑖) 
𝑇𝑇(𝑊𝑊) 

The processor capability of 𝑣𝑣𝑣𝑣𝑗𝑗
𝑘𝑘; 

The MD’s computation power; 
The MD’s transmitting power; 
The MD’s receiving power; 
The uplink channel bandwidths between 𝑣𝑣𝑣𝑣𝑗𝑗

𝑘𝑘 and MD; 
The downlink channel bandwidths between 𝑣𝑣𝑣𝑣𝑗𝑗

𝑘𝑘 and MD; 
The transfer time of output data of task 𝑐𝑐𝑖𝑖−1; 
The total security overhead of cryptographic service of task 𝑐𝑐𝑖𝑖−1; 
The security overheads of all of the immediate processors tasks of task 𝑐𝑐𝑖𝑖; 
The execution time 𝑇𝑇𝐸𝐸𝐸𝐸�𝑐𝑐𝑖𝑖 ,𝑣𝑣𝑣𝑣𝑛𝑛

𝑞𝑞� of task 𝑐𝑐𝑖𝑖 on 𝑣𝑣𝑣𝑣𝑛𝑛
𝑞𝑞; 

The total processing time 𝑇𝑇𝑃𝑃𝑇𝑇�𝑐𝑐𝑖𝑖 ,𝑣𝑣𝑣𝑣𝑛𝑛
𝑞𝑞� of task 𝑐𝑐𝑖𝑖 on VM 𝑣𝑣𝑣𝑣𝑛𝑛

𝑞𝑞; 
The MD’s computation energy consumption; 
The MD’s upload energy consumption; 
The MD’s download energy consumption; 
The risk probability of the security service 𝑐𝑐𝑖𝑖𝑗𝑗𝑙𝑙  of task 𝑐𝑐𝑖𝑖; 
The risk probability of task 𝑐𝑐𝑖𝑖; 
The risk probability of workflow; 
The start time of task 𝑐𝑐𝑖𝑖; 
The end time of task 𝑐𝑐𝑖𝑖; 
The total execution time of workflow; 

 
4.1 Security-aware workflow model 
A security-aware workflow model can be represented by a four-dimensional tuple 𝑊𝑊 = (𝑇𝑇,𝐸𝐸,𝑇𝑇𝐷𝐷 ,𝑃𝑃𝑇𝑇). 
𝑇𝑇 = {𝑐𝑐0, 𝑐𝑐1, … , 𝑐𝑐𝑖𝑖 , … , 𝑐𝑐𝑛𝑛−1} denotes the set of 𝑛𝑛 tasks. Each task 𝑐𝑐𝑖𝑖 can be represented by a tuple 
{𝛼𝛼𝑖𝑖 ,𝛽𝛽𝑖𝑖 ,𝜔𝜔𝑖𝑖}, in which 𝛼𝛼i is the input data size (in bits) of task 𝑐𝑐𝑖𝑖, 𝛽𝛽𝑖𝑖  is the output data size of task 𝑐𝑐𝑖𝑖, 
and 𝜔𝜔𝑖𝑖 is the workload of task 𝑐𝑐𝑖𝑖, respectively. 𝐸𝐸 is the directed edge set. A directed edge 𝑠𝑠(𝑖𝑖, 𝑗𝑗) ∈
𝐸𝐸 indicates that task 𝑐𝑐𝑖𝑖 is the predecessor of task 𝑐𝑐𝑗𝑗 . It means that task 𝑐𝑐𝑗𝑗  can start being executed 
only that its predecessor tasks 𝑐𝑐𝑖𝑖  complements. 𝑠𝑠𝑝𝑝𝑠𝑠(𝑐𝑐𝑖𝑖) denotes the predecessor set of tasks 𝑐𝑐𝑖𝑖 . 
𝑠𝑠𝑝𝑝𝑠𝑠(𝑐𝑐𝑖𝑖) denotes the successor set of task 𝑐𝑐𝑖𝑖 . 𝑇𝑇𝐷𝐷  denotes the deadline of workflow 𝑊𝑊 . 𝑇𝑇𝐷𝐷  is 
specified by users according to the workflow application performance requirement. 𝑃𝑃𝑇𝑇  denotes the 
risk probability constraint of workflow 𝑊𝑊. The value of 𝑃𝑃𝑇𝑇  mainly depends on the sensitivity degree 
of the workflow in edge servers. The lower the risk probability constraint, the higher the sensitivity 
degree of the data is.  
 
4.2 Mobile edge computing model 
In mobile edge computing environment, we mainly consider the scenario where a MD can offload 
partial tasks of the workflow 𝑊𝑊 to the 𝑀𝑀  wireless APs. We denote the set of APs as 𝐴𝐴𝑃𝑃 =
{𝐴𝐴𝑃𝑃0,𝐴𝐴𝑃𝑃1,𝐴𝐴𝑃𝑃2, … ,𝐴𝐴𝑃𝑃𝑗𝑗, … ,𝐴𝐴𝑃𝑃𝑀𝑀}, where 𝐴𝐴𝑃𝑃0 denotes the MD. For the convenience of computing, we 
assume that all these APs have the same communication bandwidth B. The communication bandwidth 
between different virtual machines (VMs) in any of the 𝑀𝑀 wireless access point APs 𝐴𝐴𝑃𝑃𝑗𝑗  (1 ≤ 𝑗𝑗 ≤
𝑀𝑀) is infinite. 
    The set of VMs 𝑉𝑉𝑀𝑀𝑗𝑗 that are possessed by any of the 𝑀𝑀 wireless access point APs 𝐴𝐴𝑃𝑃𝑗𝑗  can be 
denoted 𝑉𝑉𝑀𝑀𝑗𝑗 = {𝑣𝑣𝑣𝑣j

1,𝑣𝑣𝑣𝑣j
2, … , 𝑣𝑣𝑣𝑣j

𝑘𝑘, … , 𝑣𝑣𝑣𝑣j
𝐾𝐾𝑗𝑗} , where 𝑣𝑣𝑣𝑣j

𝑘𝑘  represents the 𝑘𝑘 th VM in the 𝑗𝑗 th 
wireless AP, and 𝐾𝐾𝑗𝑗  represents the total number of VMs that are possessed by the APs 𝐴𝐴𝑃𝑃𝑗𝑗 . Each VM 
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𝑣𝑣𝑣𝑣𝑗𝑗
𝑘𝑘 has different configurations, such as the number of processor cores, the processor frequency, and 

processor capability, etc. We use a triple 𝑣𝑣𝑣𝑣j
k = {𝑐𝑐jk , 𝑐𝑐𝑠𝑠𝑐𝑐jk, 𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐𝑖𝑖𝑙𝑙𝑖𝑖𝑐𝑐𝑐𝑐𝑗𝑗𝑘𝑘}  to represent the VM 

𝑣𝑣𝑣𝑣j
k(1 ≤ 𝑗𝑗 ≤ 𝑀𝑀, 1 ≤ 𝑘𝑘 ≤ 𝐾𝐾𝑗𝑗), in which 𝑐𝑐jk is the processor frequency of the 𝑣𝑣𝑣𝑣j

𝑘𝑘 , 𝑐𝑐𝑠𝑠𝑐𝑐jk  is the 
number of processor cores of the 𝑣𝑣𝑣𝑣j

𝑘𝑘, and 𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐𝑖𝑖𝑙𝑙𝑖𝑖𝑐𝑐𝑐𝑐𝑗𝑗𝑘𝑘 is the processor capability of the 𝑣𝑣𝑣𝑣j
𝑘𝑘, 

respectively. Especially, when 𝑗𝑗 = 0, 𝐴𝐴𝑃𝑃0 denotes the MD. As the MD’ processor is seen as a VM 
in𝐴𝐴𝑃𝑃0, the value of 𝐾𝐾0 is set to 1, and the tuple 𝑣𝑣𝑣𝑣0

1 = {𝑐𝑐01 , 𝑐𝑐𝑠𝑠𝑐𝑐01, 𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐𝑖𝑖𝑙𝑙𝑖𝑖𝑐𝑐𝑐𝑐01} denotes the MD’ 
processor itself, in which 𝑐𝑐01 is the processor frequency of the MD, 𝑐𝑐𝑠𝑠𝑐𝑐01 is the number of processor 
core of the MD, 𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐𝑖𝑖𝑙𝑙𝑖𝑖𝑐𝑐𝑐𝑐01 is the processor capability of the MD, respectively. Moreover, the power 
of the MD can be represented by a triple 𝑃𝑃01 = {𝑃𝑃01

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ,𝑃𝑃01𝑈𝑈𝑈𝑈 ,𝑃𝑃01𝐷𝐷𝑈𝑈}, in which 𝑃𝑃01
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is the MD’s 

computation power (in Kbps), 𝑃𝑃01𝑈𝑈𝑈𝑈 is the MD’s transmitting power, and 𝑃𝑃01𝐷𝐷𝑈𝑈 is the MD’s receiving 
power, respectively. All of them are constant. The uplink rates 𝐶𝐶𝑗𝑗𝑘𝑘𝑈𝑈𝑈𝑈 between the MD and the 𝐴𝐴𝑃𝑃𝑗𝑗  can 
be computed by Eq. (7), and the downlink rates 𝐶𝐶𝑗𝑗𝑘𝑘𝐷𝐷𝑈𝑈 between them can be computed by Eq. (8). 

𝐶𝐶𝑗𝑗𝑘𝑘𝑈𝑈𝑈𝑈 = 𝐵𝐵𝑗𝑗𝑘𝑘𝑈𝑈𝑈𝑈𝑙𝑙𝑐𝑐𝑖𝑖2(1 +
𝑃𝑃𝑇𝑇𝑥𝑥ℎ𝑖𝑖𝑗𝑗𝑖𝑖

𝑈𝑈𝑈𝑈

𝜔𝜔0
).                            (7) 

𝐶𝐶𝑗𝑗𝑘𝑘𝐷𝐷𝑈𝑈 = 𝐵𝐵𝑗𝑗𝑘𝑘𝐷𝐷𝑈𝑈𝑙𝑙𝑐𝑐𝑖𝑖2(1 +
𝑃𝑃𝐴𝐴𝐴𝐴ℎ𝑖𝑖𝑗𝑗𝑖𝑖

𝐷𝐷𝑈𝑈

𝜔𝜔0
).                            (8) 

where 𝐵𝐵𝑗𝑗𝑘𝑘𝑈𝑈𝑈𝑈 is the uplink channel bandwidth, 𝐵𝐵𝑗𝑗𝑘𝑘𝐷𝐷𝑈𝑈 is the downlink channel bandwidth; 𝑃𝑃𝑇𝑇𝑥𝑥 is the 
MD’s transmission power, and 𝑃𝑃𝐴𝐴𝑃𝑃  is the APs’ transmission powers; ℎ𝑖𝑖𝑗𝑗𝑘𝑘𝑈𝑈𝑈𝑈  is the uplink channel gain, 
and ℎ𝑖𝑖𝑗𝑗𝑘𝑘𝐷𝐷𝑈𝑈  is the downlink channel gain; 𝜔𝜔0  is the white noise power level.  
 
4.3 A security-aware task execution process analysis 
Fig. 5 illustrate the security-aware task execution process. Task 𝑐𝑐𝑖𝑖 and task 𝑐𝑐𝑖𝑖+1 are the immediate 
successors of task 𝑐𝑐𝑖𝑖−1. We assume task 𝑐𝑐𝑖𝑖  and task 𝑐𝑐𝑖𝑖−1 are executed on VM 𝑣𝑣𝑣𝑣𝑛𝑛

𝑞𝑞  and 𝑣𝑣𝑣𝑣𝐶𝐶
𝐶𝐶 , 

respectively. When task 𝑐𝑐𝑖𝑖−1  is finished, the output data 𝛽𝛽𝑖𝑖−1  of task 𝑐𝑐𝑖𝑖−1  is transferred to its 
successor task 𝑐𝑐𝑖𝑖, and the corresponding transfer time 𝑇𝑇𝑇𝑇𝑇𝑇(𝑐𝑐𝑖𝑖−1) can be computed by Eq. (9).  

 𝑇𝑇𝑇𝑇𝑇𝑇(𝑐𝑐𝑖𝑖−1) =

⎩
⎪
⎨

⎪
⎧𝛽𝛽𝑖𝑖−1 𝐶𝐶𝑛𝑛𝑞𝑞𝑈𝑈𝑈𝑈⁄ , 𝑐𝑐ℎ𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐 𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑠𝑠𝑘𝑘 𝑐𝑐𝑖𝑖−1 𝑐𝑐𝑛𝑛 𝑀𝑀𝐷𝐷 𝑖𝑖𝑠𝑠 𝑐𝑐𝑝𝑝𝑐𝑐𝑛𝑛𝑠𝑠𝑐𝑐𝑠𝑠𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐 𝑉𝑉𝑀𝑀 𝑣𝑣𝑣𝑣𝑛𝑛

𝑞𝑞 ,
𝛽𝛽𝑖𝑖−1 𝐶𝐶𝐶𝐶𝐶𝐶𝐷𝐷𝑈𝑈⁄ , 𝑐𝑐ℎ𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐 𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑠𝑠𝑘𝑘 𝑐𝑐𝑖𝑖−1 𝑐𝑐𝑛𝑛 𝑉𝑉𝑀𝑀 𝑣𝑣𝑣𝑣𝐶𝐶

𝐶𝐶  𝑖𝑖𝑠𝑠 𝑐𝑐𝑝𝑝𝑐𝑐𝑛𝑛𝑠𝑠𝑐𝑐𝑠𝑠𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐 𝑀𝑀𝐷𝐷,
𝛽𝛽𝑖𝑖−1 𝐵𝐵⁄ , 𝑐𝑐𝑐𝑐𝑠𝑠𝑘𝑘 𝑐𝑐𝑖𝑖−1 𝑐𝑐𝑛𝑛𝑠𝑠 𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐(𝑐𝑐𝑖𝑖) 𝑐𝑐𝑝𝑝𝑠𝑠 𝑠𝑠𝑒𝑒𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑐𝑐𝑛𝑛 𝑐𝑐ℎ𝑠𝑠 𝑠𝑠𝑖𝑖𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝𝑠𝑠𝑛𝑛𝑐𝑐 𝐴𝐴𝑃𝑃𝑠𝑠,

0, 𝑐𝑐𝑐𝑐𝑠𝑠𝑘𝑘 𝑐𝑐𝑖𝑖−1 𝑐𝑐𝑛𝑛𝑠𝑠 𝑠𝑠𝑝𝑝𝑠𝑠(𝑐𝑐𝑖𝑖) 𝑐𝑐𝑝𝑝𝑠𝑠 𝑠𝑠𝑒𝑒𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑐𝑐𝑛𝑛 𝑐𝑐ℎ𝑠𝑠 𝑠𝑠𝑐𝑐𝑣𝑣𝑠𝑠 𝑉𝑉𝑀𝑀 𝑐𝑐𝑝𝑝 𝐴𝐴𝑃𝑃𝑠𝑠.

  (9) 

 

E H

H DE

...ti-1 βi-1 ti

ti+1

...

AP 1

AP N ...

 
Fig. 5. The task execution process with security services 

 
As Fig. 5 shows, if VM 𝑣𝑣𝑣𝑣𝐶𝐶

𝐶𝐶  and 𝑣𝑣𝑣𝑣𝑛𝑛
𝑞𝑞 are on the different APs, the output data 𝛽𝛽𝑖𝑖−1 of task 𝑐𝑐𝑖𝑖−1 

need to be transferred to its immediate successor task 𝑐𝑐𝑖𝑖+1. Before the output data is transferred, it will 
be implemented by several security services. Different security services incur distinct computation time 
overhead. First, in order to protect the output data 𝛽𝛽𝑖𝑖−1  of task 𝑐𝑐𝑖𝑖−1  from snooping attacks, 
authentication service (denoted as A) is employed to authenticate the user who intends to receive the 
output data. However, the security overhead of authentication service are negligibly small. And then to 
protect the output data 𝛽𝛽𝑖𝑖−1 of task 𝑐𝑐𝑖𝑖−1 from spoofing attacks, confidentiality service (denoted as E) 
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is employed to encrypt these data. Next to protect the output data 𝛽𝛽𝑖𝑖−1 of task 𝑐𝑐𝑖𝑖−1 from alteration 
attacks, integrity service is successively employed to implement a hash algorithm (denoted as H) to 
them, and the security overhead of encryption service and integrity service are computed by Eq. (6). 
Hence, the total security overhead of cryptographic service can be computed by Eq. (10). After task 
𝑐𝑐𝑖𝑖+1 receives the encrypted data from task 𝑐𝑐𝑖𝑖−1, the data will be decrypted (denoted as DE) and its 
integrity will be verified (denoted as IV). Otherwise, if task 𝑐𝑐𝑖𝑖−1 and its immediate successor task 𝑐𝑐𝑖𝑖 
are executed on the same VM or AP, the output data 𝛽𝛽𝑖𝑖−1 of task 𝑐𝑐𝑖𝑖−1 can be used directly without 
encrypting. The overall decryption overheads of all of the immediate processors’ tasks of task 𝑐𝑐𝑖𝑖 can 
be computed by Eq. (11).  

𝐸𝐸𝐶𝐶𝑐𝑐𝑠𝑠𝑐𝑐(𝑐𝑐𝑖𝑖−1) = ∑ 2.2 ∗ 𝛽𝛽𝑖𝑖−1 (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑐𝑐𝑖𝑖𝑗𝑗𝑙𝑙� ∗ 𝑐𝑐𝐶𝐶
𝐶𝐶 ∗ 𝑐𝑐𝑠𝑠𝑐𝑐𝐶𝐶

𝐶𝐶⁄𝑗𝑗∈{𝑐𝑐𝑐𝑐,𝑖𝑖𝑖𝑖} ).                        (10)                 
𝐷𝐷𝐸𝐸𝐶𝐶𝑐𝑐𝑠𝑠𝑐𝑐(𝑐𝑐𝑖𝑖) = ∑ ∑ �𝑐𝑐𝑠𝑠𝑐𝑐𝐶𝐶

𝐶𝐶 𝑐𝑐𝑠𝑠𝑐𝑐𝑛𝑛
𝑞𝑞⁄ � ∗ 2.2 ∗ 𝛽𝛽𝑖𝑖−1 (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑐𝑐𝑖𝑖𝑗𝑗𝑙𝑙� ∗ 𝑐𝑐𝑛𝑛

𝑞𝑞 ∗ 𝑐𝑐𝑠𝑠𝑐𝑐𝑛𝑛
𝑞𝑞)�𝑗𝑗∈{𝑐𝑐𝑐𝑐,𝑖𝑖𝑖𝑖}𝑡𝑡𝑖𝑖−1∈𝐶𝐶𝑝𝑝𝑝𝑝(𝑡𝑡𝑖𝑖) .  (11) 

The task 𝑐𝑐𝑖𝑖 cannot start its execution on a candidate VM 𝑣𝑣𝑣𝑣𝑛𝑛
𝑞𝑞 util it receives the output data from all 

of its immediate processors’ tasks, and the execution time 𝑇𝑇𝐸𝐸𝐸𝐸�𝑐𝑐𝑖𝑖 ,𝑣𝑣𝑣𝑣𝑛𝑛
𝑞𝑞� of task 𝑐𝑐𝑖𝑖 on a candidate 

VM 𝑣𝑣𝑣𝑣𝑛𝑛
𝑞𝑞 can be computed by Eq. (12). 

𝑇𝑇𝐸𝐸𝐸𝐸�𝑐𝑐𝑖𝑖 ,𝑣𝑣𝑣𝑣𝑛𝑛
𝑞𝑞� = 𝜔𝜔𝑖𝑖 𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐𝑛𝑛

𝑞𝑞⁄ .                                  (12) 
Based on the aforementioned computation in Eqs (9), (10), (11) and (12), the total processing time 
𝑇𝑇𝑃𝑃𝑇𝑇�𝑐𝑐𝑖𝑖 ,𝑣𝑣𝑣𝑣𝑛𝑛

𝑞𝑞� of task 𝑐𝑐𝑖𝑖 on a VM 𝑣𝑣𝑣𝑣𝑛𝑛
𝑞𝑞 can be computed by Eq. (13). 

            𝑇𝑇𝑃𝑃𝑇𝑇�𝑐𝑐𝑖𝑖 ,𝑣𝑣𝑣𝑣𝑛𝑛
𝑞𝑞� = 𝐷𝐷𝐸𝐸𝐶𝐶𝑐𝑐𝑠𝑠𝑐𝑐(𝑐𝑐𝑖𝑖) + 𝑇𝑇𝐸𝐸𝐸𝐸�𝑐𝑐𝑖𝑖 ,𝑣𝑣𝑣𝑣𝑗𝑗

𝑘𝑘�+ 𝑇𝑇𝑇𝑇𝑇𝑇(𝑐𝑐𝑖𝑖) + 𝐸𝐸𝐶𝐶𝑐𝑐𝑠𝑠𝑐𝑐(𝑐𝑐𝑖𝑖).    (13) 
 
4.4 Mobile device energy consumption analysis 
The MD’s energy consumption mainly consists of the computation energy consumption and wireless 
transmission energy consumption. 

(1) Computational Energy Consumption: when task 𝑐𝑐𝑖𝑖 is executed on the MD, the MD’s energy 
consumption can be computed by Eq. (14). 

     𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑐𝑐𝑖𝑖) = 𝑃𝑃01
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝐸𝐸𝐸𝐸�𝑐𝑐𝑖𝑖 ,𝑣𝑣𝑣𝑣𝑗𝑗

𝑘𝑘�, 𝑗𝑗 = 0, 𝑘𝑘 = 1.                      (14) 
(2) Wireless Transmission Energy Consumption: the MD’s wireless transmission energy 

consumption 𝐸𝐸𝑇𝑇𝑇𝑇(𝑐𝑐𝑖𝑖) which consists of the upload energy consumption 𝐸𝐸𝑈𝑈𝑈𝑈(𝑐𝑐𝑖𝑖)  and the 
download consumption 𝐸𝐸𝐷𝐷𝑈𝑈(𝑐𝑐𝑖𝑖) can be computed by Eq. (15).  

𝐸𝐸𝑇𝑇𝑇𝑇(𝑐𝑐𝑖𝑖) = 𝐸𝐸𝑈𝑈𝑈𝑈(𝑐𝑐𝑖𝑖) + 𝐸𝐸𝐷𝐷𝑈𝑈(𝑐𝑐𝑖𝑖).                                     (15) 
           𝐸𝐸𝑈𝑈𝑈𝑈(𝑐𝑐𝑖𝑖) = ∑ 𝑃𝑃01𝑈𝑈𝑈𝑈 ∗ 𝛽𝛽𝑖𝑖 𝐶𝐶𝑛𝑛𝑞𝑞𝐷𝐷𝑈𝑈�𝑡𝑡𝑖𝑖,𝑡𝑡𝑠𝑠∈𝑇𝑇∧𝑡𝑡𝑠𝑠∈𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐(𝑡𝑡𝑖𝑖)∧𝑡𝑡𝑠𝑠 𝐶𝐶𝑛𝑛 𝑀𝑀𝐸𝐸𝐶𝐶∧𝑡𝑡𝑖𝑖 𝐶𝐶𝑛𝑛 𝑀𝑀𝐷𝐷 .            (16) 

            𝐸𝐸𝐷𝐷𝑈𝑈(𝑐𝑐𝑖𝑖) = ∑ 𝑃𝑃01𝐷𝐷𝑈𝑈 ∗ 𝛼𝛼𝑖𝑖 𝐶𝐶𝐶𝐶𝐶𝐶𝐷𝐷𝑈𝑈�𝑡𝑡𝑖𝑖,𝑡𝑡𝑝𝑝∈𝑇𝑇∧𝑡𝑡𝑝𝑝∈𝐶𝐶𝑝𝑝𝑝𝑝(𝑡𝑡𝑖𝑖)∧𝑡𝑡𝑝𝑝 𝐶𝐶𝑛𝑛 𝑀𝑀𝐸𝐸𝐶𝐶∧𝑡𝑡𝑖𝑖 𝐶𝐶𝑛𝑛 𝑀𝑀𝐷𝐷 .            (17) 
where 𝐸𝐸𝑈𝑈𝑈𝑈(𝑐𝑐𝑖𝑖) and 𝐸𝐸𝐷𝐷𝑈𝑈(𝑐𝑐𝑖𝑖) are the MD’s upload and download energy consumption, respectively. If 
task 𝑐𝑐𝑖𝑖 are executed on the MD and its successor task 𝑐𝑐𝑠𝑠 is executed on the VM 𝑣𝑣𝑣𝑣𝑛𝑛

𝑞𝑞 which isn’t the 
MD, the output data of task 𝑐𝑐𝑖𝑖 are needed to upload to the VM 𝑣𝑣𝑣𝑣𝑛𝑛

𝑞𝑞, thereby, producing the upload 
energy consumption 𝐸𝐸𝑈𝑈𝑈𝑈(𝑐𝑐𝑖𝑖). Similarly, if task 𝑐𝑐𝑖𝑖 are executed on the MD and its processor task 𝑐𝑐𝐶𝐶 
is executed on the VM 𝑣𝑣𝑣𝑣𝐶𝐶

𝐶𝐶  which isn’t the MD, the output data of all of its processor tasks are 
needed to download to the MD, which incurs the download energy consumption 𝐸𝐸𝐷𝐷𝑈𝑈(𝑐𝑐𝑖𝑖). 
 
4.5 The risk probability analysis of workflow 
In MEC environment, the execution of workflow is not risk-free probability, hence, it is important to 
build the risk probability model to quantitatively calculate the risk probability. 
    Without loss of generality, we assume that the distribution of risk probability follows a Poisson 
probability distribution for any given time interval. The risk probability 𝑃𝑃�𝑐𝑐𝑖𝑖 , 𝑠𝑠𝑙𝑙(𝑐𝑐𝑖𝑖𝑗𝑗𝑙𝑙)� of task 𝑐𝑐𝑖𝑖 is the 
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function of the security level 𝑠𝑠𝑙𝑙(𝑐𝑐𝑖𝑖𝑗𝑗𝑙𝑙) of the security service 𝑐𝑐𝑖𝑖𝑗𝑗𝑙𝑙  employed by task 𝑐𝑐𝑖𝑖, and can be 
denoted by Eq. (18) [52, 53]. 

               𝑃𝑃�𝑐𝑐𝑖𝑖 , 𝑠𝑠𝑙𝑙(𝑐𝑐𝑖𝑖𝑗𝑗𝑙𝑙)� = 1− 𝑠𝑠𝑒𝑒𝑠𝑠 (−𝜆𝜆𝑗𝑗�1− 𝑠𝑠𝑙𝑙(𝑐𝑐𝑖𝑖𝑗𝑗𝑙𝑙)�), 𝑗𝑗 ∈ {𝑐𝑐𝑐𝑐, 𝑖𝑖𝑖𝑖}.       (18) 
In MEC, the risk coefficient 𝜆𝜆𝑗𝑗 is different for encryption service and integrity service. Since 2.5 
alteration attacks and 1.8 spoofing attacks are usually suffered in a unit time interval, 𝜆𝜆𝑐𝑐𝑐𝑐 and 𝜆𝜆𝑖𝑖𝑖𝑖 are 
set 2.5 and 1.8, respectively. The risk probability 𝑃𝑃(𝑐𝑐𝑖𝑖) of task 𝑐𝑐𝑖𝑖 which employs these two kinds of 
security services with different security level can be computed by Eq. (19).                             

                    𝑃𝑃(𝑐𝑐𝑖𝑖) = 1−∏ 1− 𝑃𝑃�𝑐𝑐𝑖𝑖 , 𝑠𝑠𝑙𝑙(𝑐𝑐𝑖𝑖𝑗𝑗𝑙𝑙)�𝑗𝑗∈{𝑐𝑐𝑐𝑐,𝑖𝑖𝑖𝑖} .                     (19) 
Given the task set 𝑇𝑇 of the workflow 𝑊𝑊, its risk probability 𝑃𝑃(𝑊𝑊) can be computed by Eq. (20). 

                     𝑃𝑃(𝑊𝑊) = 1 −∏ 1− 𝑃𝑃(𝑐𝑐𝑖𝑖)𝑡𝑡𝑖𝑖∈𝑇𝑇 .                              (20) 
As the risk probability constraint of the workflow 𝑊𝑊 is 𝑃𝑃𝑇𝑇 , in order to satisfy its security requirement, 
this comes to the constraint in Eq. (21): 

                 𝑃𝑃(𝑊𝑊) ≤ 𝑃𝑃𝑇𝑇 .                                            (21) 
 
4.6 Problem definition 
We focuses on finding one or more feasible solution φ = (𝑂𝑂𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝,𝐿𝐿𝑐𝑐𝑐𝑐, 𝐿𝐿𝑠𝑠𝑣𝑣𝑐𝑐𝑐𝑐 ,𝐿𝐿𝑠𝑠𝑣𝑣𝑖𝑖𝑖𝑖) with minimized 
MD’s energy consumption under the total workflow execution deadline and security constraints. 
𝑂𝑂𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝 = {𝑝𝑝0 , 𝑝𝑝1, … , 𝑝𝑝𝑖𝑖 , … 𝑝𝑝𝑛𝑛−1} is the set of a task execution sequence, in which an index 𝑖𝑖 represents 
the task execution sequence and its value 𝑝𝑝𝑖𝑖 represents a task whose execution sequence index is 𝑖𝑖; 
𝐿𝐿𝑐𝑐𝑐𝑐 = {𝑒𝑒𝑗𝑗𝑘𝑘𝑖𝑖 |𝑖𝑖 ∈ [0,𝑛𝑛 − 1], 𝑗𝑗 ∈ [0,𝑀𝑀],𝑘𝑘 ∈ �1,𝐾𝐾𝑗𝑗�,𝑀𝑀,𝐾𝐾𝑗𝑗 ∈ [0,𝐹𝐹] is the set of a task execution location 
set, where 𝑒𝑒𝑗𝑗𝑘𝑘𝑖𝑖  is a hexadecimal value, 𝑒𝑒𝑗𝑗𝑘𝑘𝑖𝑖 = 0𝑒𝑒01  represents that task 𝑐𝑐𝑖𝑖  is assigned to MD, 
otherwise, is offloaded to any of the 𝑀𝑀 APs; 𝐿𝐿𝑠𝑠𝑣𝑣𝑐𝑐𝑐𝑐 = {𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐(𝑝𝑝𝑖𝑖)|𝑝𝑝𝑖𝑖 ∈ 𝑂𝑂𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝} is the set of a task 
encryption service level; 𝐿𝐿𝑠𝑠𝑣𝑣𝑖𝑖𝑖𝑖 = {𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖(𝑝𝑝𝑖𝑖)|𝑝𝑝𝑖𝑖 ∈ 𝑂𝑂𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝} is the set of a task integrity service level. 
   To meet with the deadline constraint 𝑇𝑇𝐷𝐷 , the total execution time of the workflow 𝑊𝑊 need to be 
calculated. The execution time of workflow 𝑊𝑊 depends mainly on the finish time of task 𝑐𝑐𝑛𝑛−1. The 
start time and finish time of task 𝑐𝑐𝑖𝑖  can be denoted by represent the 𝑇𝑇𝑆𝑆𝑇𝑇(𝑐𝑐𝑖𝑖)  and 𝑇𝑇𝐸𝐸𝑇𝑇(𝑐𝑐𝑖𝑖) , 
respectively. The task 𝑐𝑐𝑖𝑖 cannot start to execute until it receives the output data from all of its 
immediate processors’ tasks. This comes to the constraint below: 

       𝑣𝑣𝑐𝑐𝑒𝑒
𝑡𝑡𝑟𝑟∈𝐶𝐶𝑝𝑝𝑝𝑝(𝑡𝑡𝑖𝑖)

{𝑇𝑇𝐸𝐸𝑇𝑇(𝑐𝑐𝑝𝑝)|𝑐𝑐𝑝𝑝 ∈ 𝑇𝑇}  ≤ 𝑇𝑇𝑆𝑆𝑇𝑇(𝑐𝑐𝑖𝑖).                         (22) 

𝑇𝑇𝐸𝐸𝑇𝑇(𝑐𝑐𝑝𝑝) =  𝑇𝑇𝑆𝑆𝑇𝑇(𝑐𝑐𝑝𝑝) + 𝑇𝑇𝑃𝑃𝑇𝑇�𝑐𝑐𝑝𝑝 ,𝑣𝑣𝑣𝑣𝑛𝑛
𝑞𝑞�.                          (23) 

The total execution time 𝑇𝑇(𝑊𝑊) of the workflow 𝑊𝑊 can be computed by Eq. (24). 
𝑇𝑇(𝑊𝑊) = 𝑣𝑣𝑐𝑐𝑒𝑒 {𝑇𝑇𝐸𝐸𝑇𝑇(𝑐𝑐𝑖𝑖)|𝑐𝑐𝑖𝑖 ∈ 𝑇𝑇}.                             (24) 

According to the MD’s energy consumption analysis as mentioned in 4.4, the total execution energy 
𝐸𝐸(𝑊𝑊) of the workflow 𝑊𝑊 can be computed by Eq. (25). 

          𝐸𝐸(𝑊𝑊) = ∑ 𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑐𝑐𝑖𝑖)𝑡𝑡𝑖𝑖∈𝑇𝑇∧𝑡𝑡𝑖𝑖 𝐶𝐶𝑛𝑛 𝑙𝑙𝐶𝐶𝑐𝑐𝑙𝑙𝑙𝑙  +                            (25) 
                                                                    ∑ 𝐸𝐸𝐷𝐷𝐿𝐿(𝑐𝑐𝑖𝑖)𝑐𝑐𝑖𝑖,𝑐𝑐𝑝𝑝∈𝑇𝑇∧𝑐𝑐𝑝𝑝∈𝑠𝑠𝑝𝑝𝑠𝑠(𝑐𝑐𝑖𝑖)∧𝑐𝑐𝑝𝑝  𝑐𝑐𝑛𝑛 𝑀𝑀𝐸𝐸𝐶𝐶∧𝑐𝑐𝑖𝑖 𝑐𝑐𝑛𝑛 𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙 +
                                                                       ∑ 𝐸𝐸𝑈𝑈𝐿𝐿(𝑐𝑐𝑖𝑖)𝑐𝑐𝑖𝑖 ,𝑐𝑐𝑐𝑐∈𝑇𝑇∧𝑐𝑐𝑐𝑐∈𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐(𝑐𝑐𝑖𝑖)∧𝑐𝑐𝑐𝑐  𝑐𝑐𝑛𝑛 𝑀𝑀𝐸𝐸𝐶𝐶∧𝑐𝑐𝑖𝑖 𝑐𝑐𝑛𝑛 𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙 .                         
The primary optimization objective is to find an optimal execution sequence, allocation decision and 
security service levels for the task set 𝑇𝑇  of the workflow  𝑊𝑊  to minimize the MD’s energy 
consumption under the total workflow execution deadline and risk probability constraints. The 
constrained optimization problem can be formulated as follows: 

    Minimize: 𝐸𝐸(𝑊𝑊)                                      (26) 
   Subject to: 𝑃𝑃(𝑊𝑊) ≤ 𝑃𝑃𝑇𝑇 ,                                   (27) 
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             𝑇𝑇(𝑊𝑊) ≤ 𝑇𝑇𝐷𝐷 ,                                   (28) 
where the risk probability constraints of the workflow 𝑊𝑊 can be represented by Eq. (27), and the total 
workflow execution deadline constraints can be represented by Eq. (28). 

 
5. SEECO Algorithm Implementation 
The problem to be solved in this paper is NP-hard [54]. Typically, to solve the NP-hard problem, 
heuristic and meta-heuristic algorithms are usually used. The goal is to find an optimal approximate 
solution in an acceptable time. Genetic algorithm (GA) which developed by Dr. J. Holland is a 
meta-heuristic algorithm with reliable global search capability, in which selection, crossover and 
mutation are used to produce individuals with better fitness. The genetic algorithm doesn't have to 
calculate the reciprocal or the gradient of the objective function, and it doesn't require that the objective 
function is continuous, and the algorithm has inherent parallelism and parallel computing ability and 
the ability of global optimization characteristics, and it's an efficient method for solving optimization 
problem, and it's widely applied to numerical optimization, assembly optimization, machine learning, 
image recognition, neural networks, and fuzzy control. Moreover, the genetic algorithm is a robust 
spatial search technology, which can use the principle of evolution to obtain a feasible solution from a 
larger search space in linear time. The problem to be solved in this paper is a single-objective 
constrained optimization problem, which requires to find the approximate optimal solution in a 
relatively short time. To address this issue, we present a SEECO strategy based on an improved genetic 
algorithm. The algorithm’s process consists of the following steps:  

(1) Encoding the task execution order, task execution location, encryption service level and 
integrity service level, respectively.  

(2) Generating the initial population randomly for the first generation. 
(3) Generating a new generation of the population by selection, crossover and mutation operators. 
(4) Evaluating each individual in the population by using a fitness function and selecting the 

individuals with the best fitness value in a new population. 
(5) To continue to iterate until a specified maximum number of iterations is met.  
The related implementation steps are introduced in detail in the next sections.  
 

5.1 Encoding 
To solve the problem, the solution of the problem need to be transformed into the chromosome 
embodied by code. Here, we first make a topological sort for task execution order in the workflow 
application 𝑊𝑊, and then assign an integer index to each task according to the sorting results. The index 
starts from 0. A solution is devised as a four-tuple containing a task execution sequence set 𝑂𝑂𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝 =
{𝑝𝑝0 , 𝑝𝑝1, … , 𝑝𝑝𝑖𝑖 , … 𝑝𝑝𝑛𝑛−1}, a task execution location set 𝐿𝐿𝑐𝑐𝑐𝑐 = {𝑙𝑙𝑐𝑐𝑐𝑐(𝑝𝑝0), 𝑙𝑙𝑐𝑐𝑐𝑐(𝑝𝑝1), … , 𝑙𝑙𝑐𝑐𝑐𝑐(𝑝𝑝𝑖𝑖), … , 𝑙𝑙𝑐𝑐𝑐𝑐(𝑝𝑝𝑛𝑛−1)}, a 
task encryption service level set 𝐿𝐿𝑠𝑠𝑣𝑣𝑐𝑐𝑐𝑐 = {𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐(𝑝𝑝0), 𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐(𝑝𝑝1), … , 𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐(𝑝𝑝𝑖𝑖), … 𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐(𝑝𝑝𝑛𝑛−1)}, and a task 
integrity service level set 𝐿𝐿𝑠𝑠𝑣𝑣𝑖𝑖𝑖𝑖 = {𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖(𝑝𝑝0), 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖(𝑝𝑝1), … , 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖(𝑝𝑝𝑖𝑖), … 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖(𝑝𝑝𝑛𝑛−1)}. The task execution 
order set 𝑂𝑂𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝 is a vector containing a permutation of all tasks, in which an index 𝑖𝑖 denotes the task 
execution sequence and its value 𝑝𝑝𝑖𝑖 denotes the task whose execution sequence index is 𝑖𝑖. The task 
execution location set 𝐿𝐿𝑐𝑐𝑐𝑐 is also vector, in which an index denotes a task execution order and its 
value represents the VM on which the task corresponding execution order is executed. Similarly, the 
third set 𝐿𝐿𝑠𝑠𝑣𝑣𝑐𝑐𝑐𝑐 and the fourth set 𝐿𝐿𝑠𝑠𝑣𝑣𝑖𝑖𝑖𝑖 are two 𝑛𝑛-length vectors, in each which an index represents 
a task execution order and its value represents the encryption service level and the integrity service 
level employed by the task corresponding execution order, respectively. 
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    An example of the workflow 𝑊𝑊 is shown in Fig. 6. A valid scheduling order is shown in Fig. 7, 
and the encoding of a possible schedule for this workflow is given in Fig. 7. Moreover, the mappings 
from the tasks to the VMs and from the tasks to the two security service levels are also given in Fig. 7.  
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Fig. 6. An example of a workflow 
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      Fig. 7. Encoding scheme of a valid schedule for the workflow 
 
5.2 Genetic Operators 
5.2.1 Selection 
In the selection stage, we select chromosome recombination to generate the next population through 
crossover and mutation. The binary contest selection method is used. In tournament selection, two 
individuals are randomly selected from the population and compared according to their fitness and the 
sum of constraint violation. Better solutions are selected and kept in intermediate populations. This 
process continues until all N populations are filled. 

In order to deal with these constraints, the superiority of the feasible solution method [55] is 
adopted, in which a set of three feasible criteria are used: (1) the optimal solution (according to the 
fitness function) is better of two feasible solutions; (2) the feasible solution is always better than the 
infeasible solution, (3) the optimal solution has the smaller sum of the constraint violation of two 
feasible solutions. In this article, we can calculate the sum of the constraint violations as follows: 

         𝑉𝑉𝑖𝑖𝑐𝑐𝑙𝑙𝑐𝑐𝑐𝑐𝑠𝑠 = 𝑣𝑣𝑐𝑐𝑒𝑒(0,𝑇𝑇(𝑊𝑊) − 𝑇𝑇𝐷𝐷) + 𝑣𝑣𝑐𝑐𝑒𝑒(𝑃𝑃(𝑊𝑊)− 𝑃𝑃𝑇𝑇).                     (29) 
 

5.2.2 Crossover 
Crossover operator is the most important genetic operation of genetic algorithm. It refers to the 
operation in which the partial structure of two parent individuals is replaced and recombined to form 
new ones. The role of crossover is to generate offspring that are better individuals by preserving partial 
individuals from the parents. Moreover, it plays the role of searching global and exploring the unknown 
space. Hence, it finds the better and better solutions by the crossover operator. In this section, 
according to the coding as mentioned in 5.1, we perform the crossover operator to the set 𝑂𝑂𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝, the 
set 𝐿𝐿𝑐𝑐𝑐𝑐, the 𝐿𝐿𝑠𝑠𝑣𝑣𝑐𝑐𝑐𝑐 strings and the 𝐿𝐿𝑠𝑠𝑣𝑣𝑖𝑖𝑖𝑖 strings, respectively. The single-point crossover operator 
procedures for the four different settings are introduce as follow.  

Definition 1. The match area: the task sequence between the first task to the cut-off position in the 
sorted tasks set.  

A valid scheduling order must meet the precedence-constraint of the tasks in workflow. For 
example, task 𝑐𝑐𝑗𝑗  is the successor of task 𝑐𝑐𝑖𝑖, 𝑐𝑐𝑗𝑗  cannot start execution until its precedent task 𝑐𝑐𝑖𝑖 
complements in a task execution order individual 𝑂𝑂𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝. The new individual which are generated by 



Page 16 of 30 
 

crossover operation must also meet these constraints. To meet the precedence-constraint of the tasks in 
workflow, in reference to the literature [27], the process of the crossover operator for the task execution 
order 𝑂𝑂𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝 is shown as Algorithm 1. First, the operator generates at random a number 𝑝𝑝 ∈ [0,𝑛𝑛 −
1] as a cut-off position, and generates the match area of 𝑂𝑂𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝1  and 𝑂𝑂𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝2 , respectively (Step 3-5). 
After that, the match area of the individual 𝑂𝑂𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝1  is prepended to 𝑂𝑂𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝2 , the match area of the 
individual 𝑂𝑂𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝2  is prepended to 𝑂𝑂𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝1 , and two temporary new individuals 𝑂𝑂𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝12  and 
𝑂𝑂𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝21  are produced (Step 7-8). Then, each temporary new individual is scanned from the beginning, 
and the repetitive tasks in two temporary new individuals are removed, and get their offsprings (Step 
9-10). An example of this operation is given in Fig. 8, in which we choose randomly the task with 
execution sequence index 1 as the cut-off position. Then, according to the Algorithm 1, it performs the 
crossover operator on 𝑂𝑂𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝1  and 𝑂𝑂𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝2 . 

 
Algorithm 1: The single crossover of task execution order 

BEGIN 
 01. Generated at random a number 𝑝𝑝 ∈[0,n-1]; 
 02. 𝑂𝑂𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝12 = 𝑂𝑂𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝21 = ∅; 
 03. for l = 0 to r do 
 04.     𝑂𝑂𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝12 = 𝑂𝑂𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝12 + 𝑝𝑝𝑖𝑖1; 
 05.     𝑂𝑂𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝21 = 𝑂𝑂𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝21 + 𝑝𝑝𝑖𝑖2; 
 06. end for 
 07. 𝑂𝑂𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝12 = 𝑂𝑂𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝12 + 𝑂𝑂𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝2; 
 08. 𝑂𝑂𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝21 = 𝑂𝑂𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝21 + 𝑂𝑂𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝1; 

09. Remove the repetitive tasks in temporary new individual 𝑂𝑂𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝12; 
10. Remove the repetitive tasks in temporary new individual 𝑂𝑂𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝21;  
END 

 

 
Fig. 8. The process of the single crossover of task execution order 

 
Analogously, the crossover operators for task execution position 𝐿𝐿𝑐𝑐𝑐𝑐, encryption service level 𝐿𝐿𝑠𝑠𝑣𝑣𝑐𝑐𝑐𝑐 
and integrity service level 𝐿𝐿𝑠𝑠𝑣𝑣𝑖𝑖𝑖𝑖 are shown as Algorithm 2. The single crossover operator of task 
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execution position first randomly selects a cut-off point 𝑝𝑝1 , and then, the match area of two parent 
individuals of the task execution position is swapped. This is similar to that of the encryption service 
level, and integrity service level. An example of this operation for 𝐿𝐿𝑐𝑐𝑐𝑐, 𝐿𝐿𝑠𝑠𝑣𝑣𝑐𝑐𝑐𝑐, 𝐿𝐿𝑠𝑠𝑣𝑣𝑖𝑖𝑖𝑖 is given in Fig. 
9. 
 

Algorithm 2: The single crossover of task execution position, encryption service level and 

integrity service level  
BEGIN 

 01. Generate at random a number 𝑝𝑝1, 𝑝𝑝2 , 𝑝𝑝3 , 𝑝𝑝4 ∈ [0, n− 1]; 
 02. 𝐿𝐿𝑐𝑐𝑐𝑐12 = 𝐿𝐿𝑐𝑐𝑐𝑐21 = ∅; 
 03. 𝐿𝐿𝑠𝑠𝑣𝑣𝑙𝑙𝑠𝑠12 = 𝐿𝐿𝑠𝑠𝑣𝑣𝑙𝑙𝑠𝑠21 = ∅; 
 04. 𝐿𝐿𝑠𝑠𝑣𝑣𝑐𝑐𝑐𝑐12 = 𝐿𝐿𝑠𝑠𝑣𝑣𝑐𝑐𝑐𝑐21 = ∅; 
 05. 𝐿𝐿𝑠𝑠𝑣𝑣𝑖𝑖𝑖𝑖12 = 𝐿𝐿𝑠𝑠𝑣𝑣𝑖𝑖𝑖𝑖21 = ∅; 
 06. for 𝑙𝑙 = 0 to 𝑝𝑝1, 𝑝𝑝2 , 𝑝𝑝3, 𝑝𝑝4 do 
 07.     𝐿𝐿𝑐𝑐𝑐𝑐12 = 𝐿𝐿𝑐𝑐𝑐𝑐12 + 𝑙𝑙𝑐𝑐𝑐𝑐1(𝑝𝑝𝑙𝑙); 
 08.     𝐿𝐿𝑐𝑐𝑐𝑐21 = 𝐿𝐿𝑐𝑐𝑐𝑐21 + 𝑙𝑙𝑐𝑐𝑐𝑐2(𝑝𝑝𝑙𝑙); 
 09.     𝐿𝐿𝑠𝑠𝑣𝑣𝑙𝑙𝑠𝑠12 = 𝐿𝐿𝑠𝑠𝑣𝑣𝑙𝑙𝑠𝑠12 + 𝑐𝑐𝑖𝑖𝑙𝑙𝑠𝑠1 (𝑝𝑝2); 
 10.     𝐿𝐿𝑠𝑠𝑣𝑣𝑙𝑙𝑠𝑠21 = 𝐿𝐿𝑠𝑠𝑣𝑣𝑙𝑙𝑠𝑠21 + 𝑐𝑐𝑖𝑖𝑙𝑙𝑠𝑠2 (𝑝𝑝2); 
 11.     𝐿𝐿𝑠𝑠𝑣𝑣𝑐𝑐𝑐𝑐12 = 𝐿𝐿𝑠𝑠𝑣𝑣𝑐𝑐𝑐𝑐12 + 𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐1 (𝑝𝑝3); 
 12.     𝐿𝐿𝑠𝑠𝑣𝑣𝑐𝑐𝑐𝑐21 = 𝐿𝐿𝑠𝑠𝑣𝑣𝑐𝑐𝑐𝑐21 + 𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐2 (𝑝𝑝3); 
 13.     𝐿𝐿𝑠𝑠𝑣𝑣𝑖𝑖𝑖𝑖12 = 𝐿𝐿𝑠𝑠𝑣𝑣𝑖𝑖𝑖𝑖12 + 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖1 (𝑝𝑝4); 
 14.     𝐿𝐿𝑠𝑠𝑣𝑣𝑖𝑖𝑖𝑖21 = 𝐿𝐿𝑠𝑠𝑣𝑣𝑖𝑖𝑖𝑖21 + 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖2 (𝑝𝑝4); 
 15. end for 
 16. for 𝑙𝑙 = 𝑝𝑝1 + 1, 𝑝𝑝2 + 1, 𝑝𝑝3 + 1, 𝑝𝑝4 + 1 to 𝑛𝑛 − 1 do 
 17.     Loc12 = Loc12 + loc2(l); 
 18.     𝐿𝐿𝑐𝑐𝑐𝑐12 = 𝐿𝐿𝑐𝑐𝑐𝑐12 + 𝑙𝑙𝑐𝑐𝑐𝑐1(𝑙𝑙); 
 19.     𝐿𝐿𝑠𝑠𝑣𝑣𝑙𝑙𝑠𝑠12 = 𝐿𝐿𝑠𝑠𝑣𝑣𝑙𝑙𝑠𝑠12 + 𝑐𝑐𝑖𝑖𝑙𝑙𝑠𝑠2 (𝑙𝑙); 
 20.     𝐿𝐿𝑠𝑠𝑣𝑣𝑙𝑙𝑠𝑠21 = 𝐿𝐿𝑠𝑠𝑣𝑣𝑙𝑙𝑠𝑠21 + 𝑐𝑐𝑖𝑖𝑙𝑙𝑠𝑠1 (𝑙𝑙); 
 21.     𝐿𝐿𝑠𝑠𝑣𝑣𝑐𝑐𝑐𝑐12 = 𝐿𝐿𝑠𝑠𝑣𝑣𝑐𝑐𝑐𝑐12 + 𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐2 (𝑙𝑙); 
 22.     𝐿𝐿𝑠𝑠𝑣𝑣𝑐𝑐𝑐𝑐21 = 𝐿𝐿𝑠𝑠𝑣𝑣𝑐𝑐𝑐𝑐21 + 𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐1 (𝑙𝑙); 
 23.     𝐿𝐿𝑠𝑠𝑣𝑣𝑖𝑖𝑖𝑖12 = 𝐿𝐿𝑠𝑠𝑣𝑣𝑖𝑖𝑖𝑖12 + 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖2 (𝑙𝑙); 
 24.     𝐿𝐿𝑠𝑠𝑣𝑣𝑖𝑖𝑖𝑖21 = 𝐿𝐿𝑠𝑠𝑣𝑣𝑖𝑖𝑖𝑖21 + 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖1 (𝑙𝑙); 
 25. end for 

END 
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Fig. 9. The process of the single crossover of task execution position,  
encryption service level and integrity service level 

 
 
5.2.3 Mutation 
The mutation operator is also a basic operator of the genetic algorithm, which plays important roles in 
improving the quality of the solution populations. The mutation operator is to slightly modify 
chromosomes to improve their fitness as well as avoid early convergence. In this section, we design the 
mutation operator for the set 𝑂𝑂𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝, the set 𝐿𝐿𝑐𝑐𝑐𝑐, the set 𝐿𝐿𝑠𝑠𝑣𝑣𝑐𝑐𝑐𝑐 and the set 𝐿𝐿𝑠𝑠𝑣𝑣𝑖𝑖𝑖𝑖, respectively. The 
processes of mutation operator for task execution order, the task execution location, encryption service 
level and integrity service level are presented in detail, respectively.  

Similar to the crossover operation of task execution order，the mutation operation of task 
execution order must also meet with the precedence constraint. The pseudocode the mutation operation 
of a task execution order is given as Algorithm 3. The execution orders of the entry and end tasks are 
certain; therefore they can’t be selected as the mutation tasks. And thus, the operator randomly chooses 
a mutation position 𝑙𝑙0 ∈ [1, 𝑛𝑛 − 2] . Starting from task 𝑝𝑝0  from an individual 𝑂𝑂𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝  of task 
execution order, the operator first forwards search a subset {𝑝𝑝0 , … , 𝑝𝑝a} in which all precursors of the 
task 𝑝𝑝𝑗𝑗  are, and then stop the search. Then, the operator backward searches a subset {𝑝𝑝b, … , 𝑝𝑝n−1} in 
which all successors of the task 𝑝𝑝𝑗𝑗  are, when some task 𝑝𝑝𝑏𝑏 is reached, stop the search. At last, choose 
randomly a new location in the set {𝑝𝑝a+1, … , 𝑝𝑝b−1} for task 𝑝𝑝𝑗𝑗 , and then perform insert operations. An 
example of the mutation of task execution order is given in Fig. 10, in which we choose randomly the 
task with execution sequence index 3 as the cut-off position. Then, according to the Algorithm 3, it 
performs the mutation operator on 𝑂𝑂𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝. 

 
Algorithm 3: The mutation of task execution order 
BEGIN 

 01. Generate at random a number 𝑙𝑙0 ∈ [1,𝑛𝑛 − 2]; 
 02. for 𝑖𝑖 = 0 to 𝑛𝑛 − 1 do 
 03.   find some task 𝑝𝑝𝑙𝑙 which meet with the constraint 𝑠𝑠𝑝𝑝𝑠𝑠�𝑝𝑝𝑙𝑙0� ⊂ {𝑝𝑝0 , … , 𝑝𝑝𝑙𝑙}; 
 04. end for 
 05. for 𝑖𝑖 = 𝑛𝑛 − 1 to 0 do 
 06.   find some task 𝑝𝑝𝑏𝑏 which meet with the constraint 𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐�𝑝𝑝𝑙𝑙0� ⊂ {𝑝𝑝𝑏𝑏 , … , 𝑝𝑝𝑛𝑛−1}; 
 07. end for 
 08. Generate the set 𝐶𝐶𝑐𝑐𝑛𝑛𝑠𝑠𝑖𝑖𝑠𝑠𝑐𝑐𝑐𝑐𝑠𝑠 = {𝑝𝑝𝑙𝑙+1, … , 𝑝𝑝𝑏𝑏−1}; 
 09. Except the current location of the task 𝑝𝑝𝑙𝑙0, choose randomly another location in  
 the set {𝑝𝑝𝑙𝑙+1, … , 𝑝𝑝𝑏𝑏−1}; 
 11. Generate the new individual 𝑂𝑂𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝 = {𝑝𝑝0, … , 𝑝𝑝𝑙𝑙} + 𝐶𝐶𝑐𝑐𝑛𝑛𝑠𝑠𝑖𝑖𝑠𝑠𝑐𝑐𝑐𝑐𝑠𝑠 + {𝑝𝑝𝑏𝑏 , … , 𝑝𝑝𝑛𝑛−1}; 

END 
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Fig. 10. The process of the mutation of task execution order 

 
Here, the mutation operation of the task execution position, encryption service level and integrity 
service level are shown as Algorithm 4. They are performed by a classical operator, respectively. First, 
generate at random three numbers 𝑙𝑙1, 𝑙𝑙2, 𝑙𝑙3 ∈ [1,𝑛𝑛 − 2]  as the mutation positions of the three 
individuals. And then generate randomly a new valid value for the execution position, encryption 
service level and integrity service level, and to replace each old value corresponding to the mutation 
positions with a small probability. An example of this mutation operation for 𝐿𝐿𝑐𝑐𝑐𝑐, 𝐿𝐿𝑠𝑠𝑣𝑣𝑐𝑐𝑐𝑐, 𝐿𝐿𝑠𝑠𝑣𝑣𝑖𝑖𝑖𝑖 is 
given in Fig. 11. 
 

Algorithm 4: The mutation of task execution position 
BEGIN 

 01. Generate at random three numbers 𝑙𝑙1, 𝑙𝑙2, 𝑙𝑙3 ∈ [1,𝑛𝑛 − 2]; 
 02. Generate at random a number 𝑙𝑙𝑐𝑐𝑐𝑐’(𝑝𝑝𝑙𝑙1) ∈ [0𝑒𝑒01,0𝑒𝑒𝐹𝐹𝐹𝐹]; 
 03. Generate at random a number 𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐′ (𝑝𝑝𝑙𝑙2) ∈ [1,5]; 
 04. Generate at random a number 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖′ (𝑝𝑝𝑙𝑙3) ∈ [1,5]; 

//Replace the 𝑙𝑙1th gene value 𝑙𝑙𝑐𝑐𝑐𝑐�𝑝𝑝𝑙𝑙1� in individual 𝐿𝐿𝑐𝑐𝑐𝑐 with 𝑙𝑙𝑐𝑐𝑐𝑐’(𝑝𝑝𝑙𝑙1); 
 05. 𝑙𝑙𝑐𝑐𝑐𝑐�𝑝𝑝𝑙𝑙1� = 𝑙𝑙𝑐𝑐𝑐𝑐’(𝑝𝑝𝑙𝑙1);  

//Replace the 𝑙𝑙2th gene value 𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐�𝑝𝑝𝑙𝑙2� in individual 𝐿𝐿𝑠𝑠𝑣𝑣𝑐𝑐𝑐𝑐 with 𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐′ (𝑝𝑝𝑙𝑙2); 
 06. 𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐�𝑝𝑝𝑙𝑙2� = 𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐′ (𝑝𝑝𝑙𝑙2); 

//Replace the 𝑙𝑙3th gene value 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖�𝑝𝑝𝑙𝑙3� in individual 𝐿𝐿𝑠𝑠𝑣𝑣𝑖𝑖𝑖𝑖 with 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖′ (𝑝𝑝𝑙𝑙3); 
 07. 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖�𝑝𝑝𝑙𝑙3� = 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖′ (𝑝𝑝𝑙𝑙3); 

END 

 

Fig. 11. The process of the mutation of task execution position,  
encryption server level, integrity server level 
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5.3 Initial population 
An improved genetic algorithm adopts heuristic random initialization population method to generate 
initial population. This method is used to schedule all tasks with the different security levels in the 
workflow to VMs on the APs. First, this method generates randomly the initial population, and then 
continue to iterate until a specified maximum number of iterations is met. The tasks execution order, 
task execution position, encryption service level and integrity service level are initialized as follow. 

Definition 2. Sortable task: a task is ready if it has no any predecessor tasks, i.e. 𝑠𝑠𝑝𝑝𝑠𝑠(𝑐𝑐𝑖𝑖) = ∅; or 
all of its predecessor tasks have been scheduled to VMs. 

Since the precedence constraint must be met between tasks in the workflow, the initialization of 
the task execution order is devised. First let the set S to keep the sortable tasks, and choose randomly a 
sortable task to sort. And then choose randomly another task to sort, and continue to iterate until a 
feasible task order is produced. Algorithm 5 shows the pseudo-code of the initialization of tasks order. 

 
Algorithm 5: The initialization of task orders 
BEGIN 

 01. 𝑆𝑆 = ∅; // the sortable tasks set 
 02. 𝑅𝑅 = {𝑐𝑐0}; //the sorted tasks set 
 03. 𝑇𝑇 = 𝑇𝑇−{𝑐𝑐0};  
 04. 𝑝𝑝0 = 𝑐𝑐0; 
 05. 𝑖𝑖𝑛𝑛𝑠𝑠𝑠𝑠𝑒𝑒 = 0; //the number of task sorted 
 06. while 𝑇𝑇 ≠ ∅ do 
 07.     for 𝑐𝑐𝑖𝑖 ∈ 𝑇𝑇 do 
 08.         if 𝑠𝑠𝑝𝑝𝑠𝑠(𝑐𝑐𝑖𝑖) ⊂ 𝑅𝑅 then 
 09.             𝑆𝑆 = 𝑆𝑆 + {𝑐𝑐𝑖𝑖} 
 10.         end if 
 11.      end for 
 12.      choose randomly a task 𝑐𝑐𝑖𝑖 from the sortable task set 𝑆𝑆;  
 13.      + +  𝑖𝑖𝑛𝑛𝑠𝑠𝑠𝑠𝑒𝑒; 
 14.      𝑝𝑝𝑖𝑖𝑛𝑛𝑖𝑖𝑝𝑝𝑖𝑖 = 𝑐𝑐𝑖𝑖; 
 15.      𝑇𝑇 = 𝑇𝑇 − {𝑐𝑐𝑖𝑖}; 
 16.      𝑅𝑅 = 𝑅𝑅 + {𝑐𝑐𝑖𝑖}; 
 17. end while 

END 
 
For the initialization of task position string, generate at random a number 𝑙𝑙𝑐𝑐𝑐𝑐(𝑝𝑝𝑖𝑖) ∈ [0𝑒𝑒01,0𝑒𝑒𝐹𝐹𝐹𝐹] for 
the task 𝑝𝑝𝑖𝑖 execution position, and continue to iterate all tasks in the same way, thereby generate the 
set 𝐿𝐿𝑐𝑐𝑐𝑐 of the initialization of task positions. Since task 𝑝𝑝0  and task 𝑝𝑝𝑛𝑛−1 are executed on the MD, 
let 𝑙𝑙𝑐𝑐𝑐𝑐(𝑝𝑝0) =0x01 and 𝑙𝑙𝑐𝑐𝑐𝑐(𝑝𝑝𝑛𝑛−1) =0x01. The initialization of the encryption service level set and 
integrity service level set are similar to that of task position string. Algorithm 6 shows the pseudo-code 
of the initialization of tasks positions, encryption service level, integrity service level. 
 

Algorithm 6: The initialization of task positions, encryption service level, integrity service 

level 
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BEGIN 
 01. 𝑙𝑙𝑐𝑐𝑐𝑐(𝑝𝑝0) = 0𝑒𝑒01;  
 02. loc(𝑝𝑝𝑛𝑛−1) = 0𝑒𝑒01; 
 03. 𝐿𝐿𝑐𝑐𝑐𝑐 = ∅, 𝐿𝐿𝑠𝑠𝑣𝑣𝑐𝑐𝑐𝑐 = ∅, 𝐿𝐿𝑠𝑠𝑣𝑣𝑖𝑖𝑖𝑖 = ∅; 
 04. for 𝑝𝑝𝑖𝑖 ∈ 𝑇𝑇 𝑐𝑐𝑛𝑛𝑠𝑠 𝑖𝑖 ≠ 0, 𝑖𝑖 ≠ 𝑛𝑛 − 1 do 
 05.    generate at random a number 𝑠𝑠𝑠𝑠 ∈ [0𝑒𝑒01,0𝑒𝑒𝐹𝐹𝐹𝐹]; 
 06.    𝑙𝑙𝑐𝑐𝑐𝑐(𝑝𝑝𝑖𝑖) = 𝑠𝑠𝑠𝑠; 
 07.    𝐿𝐿𝑐𝑐𝑐𝑐 = 𝐿𝐿𝑐𝑐𝑐𝑐 + 𝑙𝑙𝑐𝑐𝑐𝑐(𝑝𝑝𝑖𝑖); 
 08.    generate at random a number 𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐(𝑝𝑝𝑖𝑖) ∈ [1,5]; 
 09.    𝐿𝐿𝑠𝑠𝑣𝑣𝑐𝑐𝑐𝑐 = 𝐿𝐿𝑠𝑠𝑣𝑣𝑐𝑐𝑐𝑐 + 𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐(𝑝𝑝𝑖𝑖); 
 10.    generate at random a number 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖(𝑝𝑝𝑖𝑖) ∈ [1,5]; 
 11.    𝐿𝐿𝑠𝑠𝑣𝑣𝑖𝑖𝑖𝑖 = 𝐿𝐿𝑠𝑠𝑣𝑣𝑖𝑖𝑖𝑖 + 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖(𝑝𝑝𝑖𝑖); 
 12. end for 

END 
 
5.4 Workflow scheduling generation 
Algorithm 7 shows the pseudocode to convert a chromosome into a schedule. For each task  𝑐𝑐𝑖𝑖 ∈ 𝑇𝑇 of 
the workflow 𝑊𝑊, initialize its start time, end time, execution time, risk probability and transmission 
time to zero (step 1). For the workflow 𝑊𝑊, initialize its total execution energy 𝐸𝐸(𝑊𝑊), execution time 
𝑇𝑇(𝑊𝑊) and risk probability 𝑃𝑃(𝑊𝑊) to zero. Step 3-19 calculate the start time 𝑇𝑇𝑆𝑆𝑇𝑇(𝑐𝑐𝑖𝑖) of task 𝑐𝑐𝑖𝑖. The 
calculation of the start time 𝑇𝑇𝑆𝑆𝑇𝑇(𝑐𝑐𝑖𝑖) can be divided into two case. The first case is that the start time 
𝑇𝑇𝑆𝑆𝑇𝑇(𝑐𝑐𝑖𝑖) is set 0 if task 𝑐𝑐𝑖𝑖 has no parents (step 4). The second case is that the start time 𝑇𝑇𝑆𝑆𝑇𝑇(𝑐𝑐𝑖𝑖) can 
be computed by step 6-19 if task 𝑐𝑐𝑖𝑖 has one or more parents (step 6-19). The second case can be future 
subdivided into two sub-scenarios: (1) when task 𝑐𝑐𝑖𝑖 and its immediate processor task 𝑐𝑐𝑝𝑝 are executed 
on the same VM or APs (step 7-10), it needn’t transfer the data between two different APs, and task 𝑐𝑐𝑖𝑖 
can use the output data of task 𝑐𝑐𝑖𝑖−1 before encrypting. (2) when task 𝑐𝑐𝑖𝑖 and its immediate processor 
task 𝑐𝑐𝑝𝑝 are executed on different APs (step 12-18), it needs to transfer output data of task 𝑐𝑐r to its 
immediate successor task 𝑐𝑐𝑖𝑖 between two different APs, and it needs to employ three security services 
before the output data is transferred. After task 𝑐𝑐𝑖𝑖 receives the encrypted output data from all of its 
immediate processors’ tasks, it first needs to decrypt them, and compute the sum of decryption time 
according to Eq. (11) (step 20). And then, based on the decryption time, step 23 compute process time 
of task 𝑐𝑐𝑖𝑖 according to Eq. (13). At last step 24 compute end time of task 𝑐𝑐𝑖𝑖 according to Eq. (23). 
With this information, the risk probability 𝑃𝑃(𝑊𝑊) of the workflow, the total execution time 𝑇𝑇(𝑊𝑊) of 
the workflow, and the MD’s energy consumption 𝐸𝐸(𝑊𝑊) can be calculated according to Eqs. (20), (24), 
(25) (step 26-28). After this, the scheduling strategy corresponding to the chromosome is evaluated by 
the fitness value and the constraints violation. Finally, Algorithm 7 combines an improved Genetic 
Algorithm to produce a near optimal schedule scheme which is recorded.   
 

Algorithm 7: Workflow scheduling generation 
BEGIN 

 01. For each task 𝑐𝑐𝑖𝑖 ∈ 𝑇𝑇, initialize its start time, end time, execution time, risk 
probability and transmission time to zero.   

 02. for each schedulable task 𝑐𝑐𝑖𝑖 ∈ 𝑇𝑇 
 03.   if task 𝑐𝑐𝑖𝑖 has no parents 
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 04.     Set start time 𝑇𝑇𝑆𝑆𝑇𝑇(𝑐𝑐𝑖𝑖) = 0; 
 05.   else 
 06.     for task 𝑐𝑐𝑝𝑝 ∈ 𝑠𝑠𝑝𝑝𝑠𝑠(𝑐𝑐𝑖𝑖) 

//task ti and its immediate processor task 𝑐𝑐𝑝𝑝 are executed on the same VM or APs 
 07.       if 𝑙𝑙𝑐𝑐𝑐𝑐(𝑐𝑐𝑝𝑝) = 𝑙𝑙𝑐𝑐𝑐𝑐(𝑐𝑐𝑖𝑖) 
 08.         The output data of task 𝑐𝑐𝑝𝑝 don’t need be transferred to task 𝑐𝑐𝑖𝑖; 
 09.         The output data of task 𝑐𝑐𝑝𝑝 don’t need to be encrypted; 
 10.         Obtain start time 𝑇𝑇𝑆𝑆𝑇𝑇(𝑐𝑐𝑖𝑖) = max {𝑇𝑇𝐸𝐸𝑇𝑇(𝑐𝑐𝑝𝑝)|𝑐𝑐𝑝𝑝 ∈ 𝑠𝑠𝑝𝑝𝑠𝑠(𝑐𝑐𝑖𝑖)} 
 11.       else 
 12.         if task 𝑐𝑐𝑝𝑝 isn’t traversed 
 13.           Compute process time of task 𝑇𝑇𝑃𝑃𝑇𝑇�𝑐𝑐𝑝𝑝 ,𝑣𝑣𝑣𝑣𝑛𝑛

𝑞𝑞�; 
 14.           Compute end time of task 𝑇𝑇𝐸𝐸𝑇𝑇(𝑐𝑐𝑝𝑝) =  𝑇𝑇𝑆𝑆𝑇𝑇(𝑐𝑐𝑝𝑝) + 𝑇𝑇𝑃𝑃𝑇𝑇�𝑐𝑐𝑝𝑝 ,𝑣𝑣𝑣𝑣𝑛𝑛

𝑞𝑞�; 
 15.           Compute the risk rate 𝑃𝑃(𝑐𝑐𝑝𝑝) = 1−∏ 1− 𝑃𝑃�𝑐𝑐𝑝𝑝 , 𝑠𝑠𝑙𝑙(𝑐𝑐𝑖𝑖𝑗𝑗𝑙𝑙)�𝑗𝑗∈{𝑙𝑙𝑠𝑠,𝑐𝑐𝑐𝑐,𝑖𝑖𝑖𝑖} ; 
 16.           Identify that task 𝑐𝑐𝑝𝑝 has been traversed; 
 17.         end if 
 18.         Obtain start time 𝑇𝑇𝑆𝑆𝑇𝑇(𝑐𝑐𝑖𝑖) = 𝑣𝑣𝑐𝑐𝑒𝑒 {𝑇𝑇𝐸𝐸𝑇𝑇(𝑐𝑐𝑝𝑝)|𝑐𝑐𝑝𝑝 ∈ 𝑠𝑠𝑝𝑝𝑠𝑠(𝑐𝑐𝑖𝑖)} 
 19.       end if 

 20. Compute the sum of decryption time of the output data of all the immediate 
processor tasks of task 𝑐𝑐𝑖𝑖 according to Eq. (11).          

 21.     end for 
 22.   end if 
 23.   Compute process time of task 𝑇𝑇𝑃𝑃𝑇𝑇�𝑐𝑐𝑖𝑖 ,𝑣𝑣𝑣𝑣𝑛𝑛

𝑞𝑞�; 
 24.   Compute end time of task 𝑇𝑇𝐸𝐸𝑇𝑇(𝑐𝑐𝑖𝑖) =  𝑇𝑇𝑆𝑆𝑇𝑇(𝑐𝑐𝑖𝑖) + 𝑇𝑇𝑃𝑃𝑇𝑇�𝑐𝑐𝑖𝑖 ,𝑣𝑣𝑣𝑣𝑛𝑛

𝑞𝑞�; 
 25. end for 
 26. Calculate the total execution time 𝑇𝑇(𝑊𝑊) of the workflow according to Eq. (24); 
 27. Calculate the risk probability 𝑃𝑃(𝑊𝑊) of the workflow according to Eq. (20); 
 28. Calculate the MD’s energy consumption 𝐸𝐸(𝑊𝑊) according to Eq. (25); 
 29. Record the feasible solution φ = (𝑂𝑂𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝, 𝐿𝐿𝑐𝑐𝑐𝑐,𝐿𝐿𝑠𝑠𝑣𝑣𝑐𝑐𝑐𝑐 ,𝐿𝐿𝑠𝑠𝑣𝑣𝑖𝑖𝑖𝑖). 

END 

 
 
 
6. Experiments 
6.1 Experiments parameters 
In this section, to evaluate the effectiveness of SEECO strategy, we implement and simulation our 
strategy on Python 3.6 using a Dell R530 server configured with one CPU (2.2GHz 8 cores). we set the 
experimental parameters referring to the literatures [2, 56, 57]. The parameters setting is described in 
detail as following.  
    For the APs configuration, the uplink channel gain ℎ𝑖𝑖𝑗𝑗𝑘𝑘𝑈𝑈𝑈𝑈  is set to be equal to its downlink channel 
gain ℎ𝑖𝑖𝑗𝑗𝑘𝑘𝐷𝐷𝑈𝑈 . The bandwidth among APs is set to be a constant. Each AP is configured with a VM. The 
computation capacities of these VMs are set to be 2.3GHz, 3.1GHz and 2.2GHz, respectively. And the 
processor cores are set to be 4 core, 8core and 16 core, respectively. For the mobile device, the MD’s 
computation capacity, computational power, transmitting power, and receiving power are set as 
2.36GHz, 0.5W, 0.1W and 0.05W, respectively.  
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    For mobile service workflow, the component services and control structures are generated at 
random. For each component service, the input/output data and the workload follow a uniform 
distribution. Moreover, in order to set the proper deadline of a workflow, the minimized and maximum 
makespan of a workflow with the highest security service level need to be calculated. Then, the average 
value of the minimized and maximum makespan is set as the deadline. Thereby, the scheduling scheme 
can meet the risk probability and deadline constraints. 
    For confidentiality purpose, it provides five encryption algorithms (IDEA, DES, AES, Blowfish 
and RC4) to implement confidentiality service. For integrity service, it provides five hash functions 
(TIGER, RipeMD160, SHA-1, RipeMD128 and MD5) to implement the integrity service. The risk 
coefficients of these two security services are set 𝜆𝜆𝑐𝑐𝑐𝑐 = 2.5 and 𝜆𝜆𝑖𝑖𝑖𝑖 = 1.8. 

 
6.2 Impact of generic algorithm parameters 
As our strategy is based on an improved generic algorithm, we need to evaluate the impact of genetic 
algorithm parameters. It mainly includes four parameters, population size 𝑠𝑠𝑐𝑐𝑠𝑠_𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠 , maximum 
iteration number 𝑖𝑖𝑐𝑐𝑠𝑠𝑝𝑝𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐𝑛𝑛𝑠𝑠, crossover probability 𝑃𝑃𝑐𝑐 and mutation probability 𝑃𝑃𝐶𝐶. Four parameter 
configurations shown in Table 4 are used to evaluate their impacts, which is referred to [58]. The 
population size ranges between 10 to 1000. The maximum iteration number ranges from 50 to 500. The 
range of 𝑃𝑃𝑐𝑐 and 𝑃𝑃𝐶𝐶 is between 0 and 1.  
 

Table 4. Generic Algorithm Parameters Configuration 
Configuration 𝑠𝑠𝑐𝑐𝑠𝑠_𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠 𝑖𝑖𝑐𝑐𝑠𝑠𝑝𝑝𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐𝑛𝑛𝑠𝑠 𝑃𝑃𝑐𝑐 𝑃𝑃𝐶𝐶  

Group-1 10-1000 50 0.2 0.6 
Group-2 30 50-500 0.2 0.6 
Group-3 30 100 0.1-0.9 0.6 
Group-4 30 100 0.2 0.1-0.9 

 
Fig. 12 shows the experimental results for four groups of parameter configuration. As shown in Fig. 
12(a), we observe that the MD’s energy decreases gradually with the population size increasing. The 
reason is that the larger the population size is, the greater probability of finding optimal solutions is. 
However, there is no significant improvement once the population size exceeds a certain value, e.g., 
𝑠𝑠𝑐𝑐𝑠𝑠_𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠 = 40.  
    Fig. 12(b) shows the impact on the execution energy with the maximum number of iterations 
increasing. Similarly, we can also observe that the MD’s energy gradually decreases with the maximum 
number of iteration increasing. However, the number of iterations exceeds a certain value, 
e.g., 𝑖𝑖𝑐𝑐𝑠𝑠𝑝𝑝𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐𝑛𝑛𝑠𝑠 = 150 , the algorithm converges to the optimal solution and no significant 
improvement is observed.  
    Fig. 12(c) shows the impact on the execution energy with the mutation probability increasing. We 
observe from Fig. 12(c) that the lowest MD’s energy can be obtained when 𝑃𝑃𝐶𝐶 = 0.3. The MD’s 
energy is unstable with 𝑃𝑃𝐶𝐶  increasing. The main reason is that high-quality chromosomes are 
negatively affected by the excessively large mutation probability. 

Fig. 12(d) shows the impact on the execution energy with the crossover probability increasing. We 
can observe from Fig. 12(d) that the MD’s energy decreases to a limit when 𝑃𝑃𝑐𝑐 = 0.5, and then 
increases afterward. The main reason is that the higher the crossover probability is, the more diverse 
the population is. Once it exceeds a certain value, the chromosomes will become chaotic. 
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(a) The population size’s impact          (b) The iterations number’s impact 

  

  (c) The mutation probability’s impact       (d) The crossover probability’s impact 
Fig. 12. The different parameters’ impact 

 
6.3 Comparison experiments in the execution energy 
To reveal performance sensitivities, three group different experiments are conducted for 10 tasks, 30 
tasks and 50 tasks of workflow, respectively. For each group experiment, the risk probability is varied 
from 0.1 to 1 with an increment of 0.1, and conduct these four algorithms (Local, Max_Level, 
Min_Level and SEECO) in terms of execution energy of workflow. The four algorithms are briefly 
described below: 
• Local: This algorithm considers that all tasks of a workflow are executed on the mobile device. 
• Max_Level: This algorithm sets all security levels of tasks on MEC equal to 1. As a result, the risk 

probability of each workflow is always 0. 
• Min_Level: This algorithm doesn’t incorporate any security service into tasks on the MEC. 

Therefore, the risk probability of each workflow is always 1. 
• SEECO: This algorithm minimizes the total execution energy under the deadline and risk 

probability constraints in this paper. 
The total execution energy obtained by the four algorithms in the experiment is shown in Fig. 13. 

We find that the Local algorithm can always get the maximum execution energy. The Minimum Level 
algorithm has the minimum execution energy. The Max_Level and the SEECO have moderate 
execution power, and the latter is superior to the former. Since the risk probabilities of both Max_Level 
and Mini_Level are constant, and the energy of execution is independent of the risk probabilities, the 
curves of both are flat. For SEECO algorithm, the energy of MD decreases rapidly with the increase of 
risk probability. However, when the risk probability exceeds a certain value, P (T) = 0.5, the energy 
tends to decline slowly. This lies in that the risk probability P (W) is an exponential function of Eq. (20). 
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As the risk probability of the workflow increases, all tasks performed on the MEC require a lower level 
of security services, reducing the integrity of the workflow. Since the execution energy is relative to the 
maximum completion time of the workflow, the total execution energy eventually decreases with the 
increase of the risk rate. Because in the local algorithm, all the tasks are executed on the mobile device, 
the energy is the most. The energy of the SECCO algorithm is between the Max level and the Min level. 
Therefore, the SECCO algorithm can minimize the energy consumption under the risk probability and 
deadline constraint. 

In addition, from Fig. 13, we observe that the MD’s energy increases with the number of 
workflow tasks increasing. The least execution energy incurred by the workflow with 10 tasks, and a 
moderate level of execution energy incurred by the workflow with 20 tasks, and the most execution 
energy incurred by the workflow with 50 tasks. This lies in that the more tasks it performs, the longer it 
takes to execute the workflow, resulting in more execution energy. 

 

  
(a) The workflow with 10 tasks   (b) The workflow with 30 tasks   (c) The workflow with 50 tasks 

Fig. 13. The execution energy under different risk rate constraints 
 

6.4 Impact of security service 
In order to evaluate the impact of the confidential service and integrity service on the execution energy, 
only confidentiality service and only integrity service are employed for tasks, respectively. For 
simplicity’s sake, we use Confi_Only and Integ_Only to denote only confidentiality service and only 
integrity service. 
    Fig. 14 shows that the execution energy of Confi_Only and Integ_Only algorithms decrease with 
the risk probability increasing. This is because that when the risk probability of workflow increases, all 
the tasks executed on eNBs will demand a lower security service level. The lower security service level 
is, the less the makespan of workflow is, and thereby the less the execution energy is. With the same 
reduction of the security level, the encryption speed of Integ_Only decreases even faster than that of 
Integ_Only. Hence, when the increase of risk probability is equal, the execution energy of Config_Only 
decreases even faster than that of Integ_Only.  
 

 

(a) The workflow with 10 tasks  (b) The workflow with 30 tasks  (c) The workflow with 50 tasks 
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Fig. 14. Impacts of three security services 
 

6.5 Impact of risk coefficient 
According to the Eqs. (18), (19), (20), the risk rate is a function of the risk coefficient. In order to 
evaluate the impact of the risk coefficient, we vary the risk coefficient from 0.3 to 3. Fig. 15 shows the 
execution energy of Confi_Only and Integ_Only with the risk coefficient varying. We observe from Fig. 
15 that the execution energy of Confi_Only is higher than that of Integ_Only. The reason is that when 
the risk rate is constant, the security service level increases with the increase of risk coefficient 
according to Eq. (20), which incurs increasing the execution energy of Confi_Only and Integ_Only. 
What is more, when the increase of risk coefficient is equal, the execution energy of Confi_Only 
increases even faster than that of Integ_Only. The reason is the same to the previous section. In one 
word, the risk probability of workflow is almost an exponential function of risk coefficients. 
 

 
(a) The workflow with 10 tasks   (b) The workflow with 30 tasks   (c) The workflow with 50 tasks 

Fig. 15. Impacts of three security coefficients 
 
6.6 Impact of the number of mobile edge servers 
To examine the influence of different numbers of edge servers on the execution energy, in the set of 
experiments, the number of edge servers are set from 0 to 10 with increments of 1. For simplicity, we 
use SEECO_10, SEECO _30 and SEECO _50 to represent the execution energy of SEECO for 10 tasks, 
30 tasks and 50 tasks of workflow, respectively. The result reported in Fig. 16 shows that the execution 
energy of SEECO for three workflows decrease with the increase of the number of edge servers. The 
reason is that a greater number of edge servers provide more computing resource and decrease the 
makespan of workflow, and thereby decrease the execution energy. However, when the number of edge 
servers exceeds a certain value, the execution energy has no significant reduction. Therefore, for the 
same workflow, there is no impact on the reduction of the execution energy when the number of edge 
servers excessively increase. 

  

Fig. 16. Impacts of the number of edge servers 
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7. Conclusion and future work 
In MEC environment, to quantify security overhead incurred by task on heterogeneous edge servers, 
we model a security overhead under different performance parameters, such as the CPU cores and 
computation frequency of MEC servers and the size of protected dataset. Based on this model, we 
incorporate security overheads into workflow scheduling problem, and propose a security-aware and 
energy-efficient workflow scheduling (SEECO) strategy. Our experimental results show that SEECO 
strategy can effectively decrease the MD’s energy consumption while the deadline and risk rate 
constraints are satisfied. Especially, SEECO strategy can achieve the security guard for the 
security-critical tasks in MEC. In our experiment, we mainly investigate that the risk rate of security 
service, as well as the risk coefficient and the number of edge servers influence the execution energy of 
workflow. The extensive experiments using different sizes of service workflows demonstrate the 
effectiveness of SEECO strategy. In future work, we will study the security problem in which the 
workflow applications of multiple MDs can be offloaded to multiple different APs, leading to extra 
latency. 
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