
Improving fog computing performance via
Fog-2-Fog collaboration
Article

Accepted Version

Creative Commons: Attribution-Noncommercial-No Derivative Works 4.0

Al-Khafajiy, M. ORCID: https://orcid.org/0000-0001-6561-0414,
Baker, T., Al-Libawy, H., Maamar, Z., Aloqaily, M. and
Jararweh, Y. (2019) Improving fog computing performance via
Fog-2-Fog collaboration. Future Generation Computer
Systems, 100. pp. 266-280. ISSN 0167-739X doi:
https://doi.org/10.1016/j.future.2019.05.015 Available at
https://centaur.reading.ac.uk/88467/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing .

To link to this article DOI: http://dx.doi.org/10.1016/j.future.2019.05.015

Publisher: Elsevier

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement .

www.reading.ac.uk/centaur

CentAUR

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

Central Archive at the University of Reading
Reading’s research outputs online

Improving Fog Computing Performance via Fog-2-Fog Collaboration

Mohammed Al-khafajiya, Thar Bakera, Hilal Al-Libawyb, Zakaria Maamarc, Moayad Aloqailyd,
Yaser Jararwehe

aDepartment of Computer Science, Liverpool John Moores University, Liverpool, UK
bDepartment of Electrical Engineering, University of Babylon, Babylon, Iraq

cCollege of Technological Innovation, Zayed University, Dubai, UAE
dGnowit Inc., Ottawa, ON, Canada

eJordan University of Science and Technology, Irbid, Jordan

Abstract

In the Internet of Things (IoT) era, a large volume of data is continuously emitted from a plethora of
connected devices. The current network paradigm, which relies on centralized data centers (aka Cloud
computing), has become inefficient to respond to IoT latency concern. To address this concern, fog
computing allows data processing and storage “close” to IoT devices. However, fog is still not efficient
due to spatial and temporal distribution of these devices, which leads to fog nodes’ unbalanced loads.
This paper proposes a new Fog-2-Fog (F2F) collaboration model that promotes offloading incoming
requests among fog nodes, according to their load and processing capabilities, via a novel load balancing
known as Fog Resource manAgeMEnt Scheme (FRAMES). A formal mathematical model of F2F and
FRAMES has been fomulated, and a set of experiments has been carried out demonstrating the
technical doability of F2F collaboration. The performance of the proposed fog load balancing model
is compared to other load balancing models.

Keywords: Internet-of-Things, Fog computing, Fog-2-Fog collaboration, Offloading

1. Introduction

In the last few years, major advances in Information and Communication Technologies (ICT) have
been witnessed. Such advances are anchored to different paradigms such as Information Centric Net-
work (ICN) (e.g., mainframe), Software Defined Network (SDN), and Data Center Network (DCN).
ICN shifted inter-networking to a cloud-based computing model, as reported in Cisco Cloud In-5

dex (2013-2018) [1]. Since most Internet traffic originates and/or terminates to/from the cloud [1] [2], it
is predicted that nearly two-thirds of total workloads obtained from traditional IT services (e.g., data
aggregation and processing) will be processed on the cloud [1] [3]. Cloud computing enables users to
access a variety of configurable facilities such as data storage, processing, infrastructure, and applica-
tions [4], providing Everything-as-a-Service (*aaS) in return of a fee. Embracing the clouds, Internet10

service providers and corporate IT service providers have become more motivated to adopt cloud com-
puting; they can obtain a wide range of services with minimal administration [4] [5]. The inclination
to use the clouds coincides with the improvement of Network Function Virtualisation (NFV) tech-
nique which reduces cloud CAPital EXPenditures (CAPEX) and OPerating EXpenditures (OPEX),
and improving the flexibility and scalability of an entire network [6]. Similarly, NFV has been used to15

address the problem of deploying replica servers in clouds by proposing an algorithm based on spectral

∗Corresponding author: Thar Baker
Email addresses: M.D.Alkhafajiy@2016.ljmu.ac.uk (Mohammed Al-khafajiy), T.Baker@ljmu.ac.uk (Thar Baker),

eng.hilal_al-libawy@uobabylon.edu.iq (Hilal Al-Libawy), zakaria.maamar@zu.ac.ae (Zakaria Maamar),
Moayad@gnowit.com (Moayad Aloqaily), YiJararweh@just.edu.jo (Yaser Jararweh)

Preprint submitted to Future Generation Computer Systems May 6, 2019

clustering theory [7]. The performance of the proposed solution on large-scale setup has shown lower
deployment costs and improved data fusion.

Within the emerging Internet of Things (IoT), a large number of “smart” devices and objects
(e.g., wearable) are, nowadays, connected to the Internet [8], generating high volumes of data every20

second. In the IoT area, the word “thing” could be anything refers to everything that can connects to
a network and exchanges data over this network [9] with other stakeholders (e.g., users, applications,
and peers). Cisco IBSG estimates that approximately 50 billion devices (i.e., things) will be connected
to IoT networks by 2022 [10] [11]. Although cloud can provision efficient data storage and processing
facilities, the ever-growing volume of data will result in a high energy consumption, heavy burden on25

the communication bandwidth [1] [12], and ”unacceptable” latency [13] [4] [14]. In addition, since the
cloud is relatively “far” from IoT devices, by the time the data reaches the cloud for storage and/or
processing, its importance and freshness could deprecate [15] [16]. To address cloud limitations with
focus on latency in IoT, Cisco has come up with the concept of Fog in 2014 [1]. Security of mobile
edge and fog is one of the major challenges for successful implementation and deployment of IoT30

infrastructure. For example, researchers in [17] [18] [19] explore how to protect critical system (i.e.,
fog and edge) from unauthenticated or malicious attacks. However, the security aspect is part of our
future work and has not been considered in the current work.

Simply put, fog is described as a highly virtualised platform that provides similar cloud facilities
in terms of storage, processing, and communications at the edge of the network, “closer” to things35

compared to cloud; i.e., between things and clouds [20], making these facilities fast, secure, and reli-
able [21] [15]. Fog is not a substitute to cloud but a complement [1] since both are expected to work
together [2] [22]. In general, the fog can support, serve, and facilitate services that are not appropri-
ately served by cloud such as, (i) latency-sensitive services (e.g., healthcare and online gaming) [13];
(ii) geo-distributed services (e.g., pipeline monitoring) [23]; (iii) mobile services with high speed con-40

nectivity (e.g., connected vehicles) [24]; and (iv) large scale distributed control systems (e.g., smart
energy distribution and smart traffic lights) [1]. Despite the appealing benefits of fog computing, some
concerns are undermining its adoption. This includes how to specify Cloud-2-Fog (C2F) collabora-
tion and Fog-2-Fog (F2F) collaboration. This paper addresses F2F by promoting service offloading
among fog nodes so, that, minimal latency for IoT services is achieved.45

1.1. Problem Statement

Although fog nodes are placed “closer” to IoT things so, that, latency is “taken care” of [13] [25],
these nodes can quickly become congested when the number of requests soliciting their services exceed
their capabilities [13] [24]. OpenFog [26] reports that, although fog computing provides extensive peer-
to-peer interconnection for communication purposes with the clouds, its nodes run in silos, where no50

collaboration capability, for job processing, is available. Therefore, fog resource management is needed
to unlock the silos and free them from the historical stovepipes working pattern. In fact, poor resource
management can cause latency and inefficiency for services within the fog [27] [28].

1.2. Research Contributions

Our contribution is threefold:55

1. F2F collaboration model that achieves a near optimal workload among the collaborating fog
nodes (Section 3.1).

2. A Fog Resource manAgeMEnt Scheme (FRAMES) that promotes load balancing to address
the latency concern of service request’s received from things. We adopt the notion of fog-as-
a-service [29] where each fog node hosts local computation, networking and storage capabili-60

ties. (Section 3.2).

3. A formal mathematical model that backs the decision of load balancing among fog nodes (Sec-
tion 4).

2

1.3. Paper Organization

The remainder of this paper is organized as follows. Section 2 discusses the related work of fog65

computing and services offloading. Section 3, describes the system architecture and management of
fog nodes alongside our offloading approach in detail. Section 4 presents system design and modelling.
Extensive simulation results and evaluations are presented in Section 5. Section 6 concludes the paper
and discusses future work.

2. Related Work70

Current research efforts into fog tackle the following challenges:

• Heterogeneity: fog nodes are diverse in terms of processing, storage and communication capabil-
ities.

• Elasticity: the ever-growing number of IoT devices would trigger fog elastic.

• Federation: despite fog elasticity, making fogs collaborate is an option, when this elasticity be-75

comes insufficient. However, heterogeneity is an obstacle to their collaboration.

Agarwal et al. [30] focus on resource allocation in a fog context. They propose a 3-layer architecture,
client, fog, and cloud, that allows to distribute the workload between the cloud and fog nodes. In fact,
the authors check whether enough processing is available on the fog node so, that, all or some tasks
are executed or even postponed. Tasks could also be directed to cloud nodes. Agarwal et al.’s work80

tackles well the heterogeneity challenge but neither scalability nor federation challenge are tackled.
Beate et al. [31] propose a job placement and migration approach for providers of infrastructure

that incorporate cloud and fog. The approach ensures end-to-end latency restrictions and reduces
network usage by planning load migration ahead of time. The authors also discuss how the application
knowledge of Complex Event Processing (CEP) can reduce the required bandwidth of Virtual Machines85

(VMs) during their migration. However, the presented work does not consider offloading load among
fogs; fogs are assumed able to perform computationally intensive tasks, which might not always be
the case. In addition, with regard to the above challenges, the authors indicate that the approach can
be employed at large scale in real world so, that, scalability is met. However, they seem overlooking
heterogeneity and federation. Vehicular ad-hoc networks (VANET) have reached the maturity stage in90

term of communication reliability with the benefits of information transmission between vehicles and
surrounding fog and edge nodes [32] [33]. The quality of communication between vehicles and those
nodes is being investigated. Many researchers have found that physical factors can impact this QoS
especially in the presence of buildings and other obstacles (i.e., signal fading). A candidate solution is
to utilize parked vehicles for routing communication [34].95

A collaborative resource sharing and utilization among fog/edge was introduced recently with very
promising solution employing 5g and composition techniques [35] [36]. Abedin et al. [35] propose
resource sharing among fog nodes by defining a utility metric for these nodes that accounts the com-
munication benefits in case resources are shared among them. First, the authors determine an organised
list of preferences that paires fog nodes for each node. Then, each node in the fog places a request100

of pairing with its preferred pairing nodes. At the reception side, depending on the preference and
benefits of the previously received requests, a target node decides either to accept or to reject the
request. The limitation of this work is that the pairing decisions are made based on communication
cost without considering time and location. The authors do not also take the Quality-of-Service (QoS)
(such as latency and bandwidth) in consideration as part of the resource sharing decision. Abedin et105

al. considers the heterogeneity of nodes, as the resource limitation of fog nodes (e.g., CPU) has been
considered during load allocation. However, the evaluation is conducted over a small scale making the
scalability limited and hence, not met. In addition, federation is not relevant for this context, since the
developed algorithm targets a single fog domain.

3

Lina et al. [37] propose a fog computing based resource allocation policy using Priced Timed Petri-110

Nets (PTPNs). A simulation was developed to evaluate the proposed resource allocation strategy using
parallel machines and Linux cluster. The outcomes were that the proposed resource allocation policy
can provide efficient resource selection for autonomous task scheduling and improve the use of fog
resources. The limitation of this work is the small-scale context related to online shopping, and the
process of resource allocation is not automated calling for user assistance. While the authors meet115

federation, scalability and heterogeneity are not met.
Sun et al. [38] propose Cloud-of-Things and Edge Computing (CoTEC) scheme for traffic man-

agement in multi-domain networks. CoTEC direct the traffic flow through service nodes. The authors
assign a critical egress point for each traffic flow in the CoTEC network using multiple egress routers to
optimize the traffic flow; this is known as Egress-Topology (ET). Therefore, the proposed ET incorpo-120

rates traditional multi-topology routing in the CoTEC network to address the inconsistencies between
service overlay routing and border gateway protocol policies. Furthermore, Sun et al. introduce several
programmable nodes that can be configured to ease the ongoing traffic on the network and realign
services among other nodes in multi-domain networks. In regard to the above challenges, the federation
is only met with edge-cloud, however the congestion of clouds or edges not discussed. Also, they seem125

overlooking heterogeneity (i.e., device’s capacity) and scalability.
Despite all efforts mentioned beforehand, and to the best of our knowledge, a systematic framework

for F2F collaboration that tackles heterogeneity, elasticity, and federation is still absent. This paper
serves as a starting point for defining such a collaboration model.

3. Fog-2-Fog Collaboration Model130

Before we dive into the proposed F2F collaboration model, we highlight the adapted fog comput-
ing architecture. This architecture is similar to other large-scale computing architectures (e.g., cloud
computing) have either application specific architecture or application agnostic architecture. However,
there is no a standard architecture for the systems that use fog computing [1] [12] [39]. In this pa-
per, we adopt a general fog computing architecture that is in-line with the architectures presented135

in [1] [2] [4] [12] [13]. Understanding the fog computing architecture topology helps obtain a bet-
ter insight into the main functionality and benefits of using fog computing. The main layers in fog
architecture are thing, fog, and cloud (Figure 1).

Thing layer: also called perception layer, ensures data availability by hosting networked de-
vices (e.g., heart-rate and blood-oxygen sensors). Each device has a communication protocol (such140

as IEEE 802.15.4, WiFi, Bluetooth, MQTT, etc.) so, that, it transmits the generated data to the fog
layer in the form of data processing service request.

Fog layer: contains a number of distributed fog nodes that should ideally be located “next” to
data sources. This layer refines and processes the data that the things layer submits. Fog has the
potential to reduce the amount of things’ data transmitted to the cloud layer by acting on these data.145

Each fog node is equipped with onboard computational resources, data storage, alongside network
communication facilities to bridge things and cloud within the IoT network [13].

Cloud layer: enables omnipresent, convenient, and proper network access to shared resources (e.g., stor-
age and services processing) over the IoT network.

150

In the following, we define an IoT network as {T, F,C, L}, where:

• T is a set of things {t1, t2, .., tn}; tn is a 3-tuple format 〈n, ty, d〉 where n is a thing identi-
fier (e.g., IP address), ty is a thing’s type according to the packet’s payload size1 generated from
the thing (e.g., heavy-packet and light-packet), and d denotes the destination from tn to the

1A payload size of 1024 Bytes can be transported without any fragmentation through a normal not constrained
network; otherwise, it is fragmented into lighter tasks [40]

4

Figure 1: IoT fog architecture composed of things, fog, and cloud layers

nearest fog node (i.e., the first fog node that receives a service request from tn) within the fog155

layer, and this is subject to change according to tn’s location.

• F is a set of fog nodes {f1, f2, .., fi}; fi is a 4-tuple format 〈i, `, s, }, r〉 where i is a fog identifier
(e.g., IP address), ` denotes a fog node location, s and } refer to services (e.g., image process-
ing) provided by the fog node and hardware capability (i.e., CPU frequency) of the fog node,
respectively, and r is a set of all “reachable fogs”2 from fi.160

• C is a set of cloud nodes, each c is defined using a 3-tuple format 〈i, `, s〉 where i is the cloud
identifier, ` denotes the cloud location, and s denotes the cloud services (e.g., processing and
storage).

• L is set of communication links among the layers, such that,
L ⊆ {〈n, ǹ, q〉|(n, ǹ) ∈ (T, T)(T, F)(F, F)(T,C)(F,C)(C,C)(C,F)(F, T)(C, T)

∧
(q ∈ Q)}.165

This means, L is a sub-/set of available links between Thing ←→ Fog ←→ Cloud. Each link is
associated with its q from Q set, which refers to the QoS properties (e.g., upload b↑ and download
b↓ bandwidth).

The standardised approach in which IoT systems (with a fog layer) operate is as follow: tn generates
and gathers data periodically from the surroundings and sends it to either the fog layer or the cloud170

layer for processing/manipulation. In the fog layer, fi can serve tn’s request instantly or offload it to
another fog node (e.g., fj) in the same domain if fi is congested and may delay processing tn’s request.
To this end, fi (or fj) responds back to tn and reports to cloud ci for data archiving. Similarly, when
packets are sent to ci, it will be processed at this level and a response goes back to tn. It is worth noting
that the importance of fog layer location (i.e., in-between thing and cloud layers), makes fogs more175

accessible/reachable for both things and clouds. Therefore, fog can be used horizontally (i.e., Fog-2-
Fog) and vertically (i.e., Thing ←→ Fog ←→ cloud) in the network to provide the desired services
with high QoS. However, this paper’s focus is only on processing service’s requests dispatched from the
things layer to fog layer in which the latter layer adopts the proposed F2F collaboration for efficient

2we focus on the processing jobs at the fog layer; therefore, “reachable” clouds are out of the scope of this work.

5

data processing. The following sub-sections present the fog load balance by answering when and where180

to offload a request, and then, discuss the fog resource management scheme.

3.1. Fog load balancing

Considering a scenario where a fog node accepts a data processing request from a thing; it will
process the request and respond back. However, when the fog node is busy processing other requests,
it may only be able to process part of the payload and offload the remaining parts to other fog nodes.185

There are two approaches to model interactions among fog nodes. First, the centralised model, which
relies on a central node that controls the offload interaction among the fog nodes. Second, in which
each fog node runs a protocol to distribute their updated state information to the neighbouring nodes.
Then, each fog node holds a dynamically updated list of best nodes that can serve the offloaded tasks.
We envisage that the distributed model is more suitable for scenarios where things are mobile objects190

(i.e., Internet of moving things [41]) as to support the mobility and flexibility of data acquisition.
Therefore, we adopt this model of interactions in our F2F collaboration model.

3.1.1. When to offload a request?

The decision of a fog node to support the processing of a received service’s request, part of the
request or offloading the entire request to another fog is based on computing the response time of195

that fog. The response time of each fog will be computed periodically based on the fog’s current load
(i.e., queue size) and service’s request travel time (minimal latency always preferable). The procedure
of offloading a received request by a fog is as follows: once a service request(s) is received by the fog
node, it checks the request payload size (i.e., heavy or light) and calculates the potential response time
based on the current requests that are waiting, and also under-processing, in its queue. Meantime, the200

fog sends requests for collaboration to all neighbouring nodes within its domain. It is worth noting that
request-and-response times are considered part of the service latency. However, it is very low and even
neglectable in the overall service latency as the link rate among fogs is usually around 100 Mbps [13],
which is very high. The collaboration request among fog nodes includes information about the type of
service request received and/or awaiting processing; whereas the response from other fog nodes to the205

sending fog will be with time estimation for processing that request. Thereafter, if the estimated time
by the fog is less than the expected response time by the thing (i.e., service deadline), the service will
be accepted for processing and enter the queue of the fog. Otherwise, the fog will offload the service to
another fog, which provides the lowest latency estimation, or redirects the service request to cloud in
case no fogs are available to handle the service. Simply put, offloading happens when a fog node has210

heavy load. In the other extreme case when all fog nodes have heavy load, offloading becomes useless.
Thereof, it is more effective when there is a high load variance among participant nodes.

3.1.2. Where to offload a request?

Each fog has a list of best-suitable nodes with whom it can collaborate (i.e., reachability features
table including the estimated computing and response time), when needed. This list is generated215

based on nodes’ locations and their neighbouring nodes. When a node is about to get or become
congested3, it can share the load with nodes from the list based on the payload size received. The list
of best neighbouring nodes is maintained periodically by each node. Fog node location’s privacy and
fog services location’s privacy are important in the network [42]. However, privacy does not fall into
the scope of the current work and it will be handled as future work.220

The best node selection and offloading algorithms are explained in Section 4.6. It is worth noting
that the list of best neighbouring should be updated not only periodically but also upon scenarios where
a significant change occurs, such as, adding or removing node(s) to or from the fog domain. This helps
keep the list accurate and avoid issues of inconsistency when there are changes within the fog domain.

3The term “congested node” applies to any node that has a high traffic, which may cause a latency issue for the
incoming service requests.

6

Figure 2: Overview of the Fog Resource manAgeMEnt Scheme

Therefore, the list should be updated on the following offloading occasions: (i) when the fog sends225

request of status updates to other nodes; (ii) adding a new node to the fog domain; (iii) removing a
node from the fog domain; and (iv) node goes off-line. These interactions and management are handled
by the FRAMES, which is proposed and described Section 3.2.

3.2. Fog resource management scheme

The fog layer in the IoT architecture consists of heterogeneous devices clustered together and230

forming what so called fog domains. Each fog device has it is own coverage range where the desired
fog services are provided. In fact, due to node heterogeneity, service’s types and sizes (e.g., processing
speed and storage capacity) vary from one fog node to another. This section discusses FRAMES,
which involves managing fog resources status and provides network analysis and statistics for fog
resource provisioning and consumption. Figure 2 shows the conceptual diagram of FRAMES. The235

main functionality is to periodically monitor fogs’ statuses and network loads.
FRAMES is based on the fog node distribution architecture [2] [4], which is similar to the distribu-

tion of WiFi access point topology [4] (i.e., installing routers in a distributed manner with respect to
coverage range). Thus, network administrators install multiple interconnected networks of fog nodes
in public places (e.g., cities) and private places (e.g., homes) to distribute fog services. This way of240

fog services distribution is achieved through collaboration between cloud providers, IoT operators, and
network infrastructure providers. FRAMES can manage the distribution of fog nodes as well as the
monitoring of performance and resources managements in the fog layer. FRAMES includes three main
parties which take over the process of managing fog services and coherence as per Figure 3.

• Fog Portal: is a distributed software, which is located within each fog domain and forms an245

intermediate connector between the fog nodes and services’ users. The procedure of declaring
new/existing fog services via the fog portal starts when the fog owner connects the actual fog

7

FRAMES

Attache Fog node to local network

Register node

Fog nodeUser / Admin Portal Pinger

User Confirmation

Assign IP

Verify node
Open Session

Ping IP

Respond

Confirm node

loop

Set Ping

Service

Ping IP

Respond

Declare Services

Assign Services

Service Initiated

Nodes status report

Figure 3: Sequence diagram showing FRAMES interactions

node to the IoT network. Thus, as soon as the node is up and running, it will be detected by the
local network and assign unique static IP address to the device, and at this point the node will
ping the portal to register device details in the fog portal. During the registration process, all250

device information and capabilities of the device are required, such as, device CPU clock, storage
size, network capacity, MAC addresses identifier alongside with the IP address assigned by the
network which will be used to identify the node.

• Fog Pinger: is an automated ping process, which runs by FRAMES on a periodic schedule to
check the status of registered fog nodes in each individual domain. The outcome will be reported255

to the main management portal upon which action are taken in case of fog node is down.

• Network Monitor: Part of the FRAMES duties is to monitor and control the computing resources
of the fogs within the network. FRAMES tracks fog’s resource consumption, maintains resource
availability of each fog, and periodically reports to administrator with an analytical report.
Providing analytic and processed statistics to the services provider helps to efficiently maintain260

nodes resources and conditions to deliver services with high performance.

4. Fog-2-Fog Coordination Model

This section discusses the network model that supports F2F coordination. It also discusses potential
sources of delays that could impact this coordination. Mostly used notations in this paper are given in
Table 1.265

4.1. Network Model

Communication between nodes in the context of F2F coordination is modelled as an undirected
graph with all nodes are reachable from each other. Having G = 〈N,L,W 〉, where N is a set of thing,

8

Table 1: Notations used in the paper

Symbol Description

t, n, T thing, index of t, set of things
f , i, F fog, index of f , set of fogs
λ service arrival rate to fog layer
µ fog node service rate
ρFi probability of sending the request to the fog
ρCi probability of sending the request directly to the cloud
ρIi probability that t processes the data locally
Dt transmission delay
Dp propagation delay
ps propagation speed
Dc computational delay
Dque queuing delay
Dproc processing delay
lp packet size in bits
b ↑ upload bandwidth
dtsfc

i
total delay by fi to process task ts, and c refer to fi capacity

S, s Set of services, one service
sw service workload
sd service deadline
τs total time required to process a service
τque is the queuing time
τproc service processing time
ρ system usage
%size queue size
τsique queuing time for s at the resources of fog fi
fw fog workload
f ci processing capacity of the fog node Fi
τfisw time to process sw on fi
nSl number of light services
nSh number of heavy services

9

Figure 4: Four sources could delay service processing

fog, and cloud nodes. Thus, G = N I ∪NF ∪NC ; L denotes the set of communication links between
the nodes; W is the set of edge weights between nodes, according to the distance between them; the270

longest the distance, the highest the weight is. Thus, Dp is dependent on the edge weight between two
nodes.

4.2. Service Delay

A request can be defined as a set of tasks that is processed completely to meet the desired service’s
requirements. Processing a request (i.e., service) can happen over any of the 3 layers (i.e., thing, fog,275

and cloud). Hereafter, we calculate the total delay taken to process a service. Service delay (Sd) for tn
request is expressed as follows:

Sd = ρIi ∗ SIp
+ ρFi ∗ [DF

t +DF
p +DF

c]

+ ρCi ∗ [DC
t +DC

p +DC
c]

(1)

Where ρIi is the probability that tn processes the data locally at the things layer, ρFi is the probabil-
ity of processing the service at the fog layer, and ρCi is the probability that the service is processed at
the cloud layer; ρIi + ρFi + ρCi = 1. SIp is the average processing delay of the tn when it processes data.280

DF
p is propagation delay, and DF

t is the sum of all transmission delays (see Figure 4). Similarly, DC
p is

propagation delay for cloud server, and DC
t is the sum of all transmission delays to the cloud. Figure 4

shows 4 delay sources that could impact services and cause latency. To correctly calculate the delay,
we should be clear about where the service will be processed and what parameters are involved in the
processing. Therefore, our focus is on minimising service processing latency over the fog layer, via F2F285

collaboration, based on service transmission delay (Dt), propagation delay (Dp), and computational
delay (Dc) which includes both queuing delay (Dque) and processing delay Dproc).

4.2.1. Transmission Delay

Dt is the time taken by a sender to transmit the data packets over the network. To calculate the
transmission time that is required by a particular thing, we should know the packet size lp in bits and290

data rate (i.e., upload bandwidth) b ↑. Thus, the sum of transmission delay Dn
t for tn is calculated

using Equation 2.

Dt =
lp
b ↑

10

Figure 5: Three types of service processing

Dn
t =

∑ lnp
b ↑

(2)

b ↑ is the upload bandwidth which refers to the maximum data rate in bps (bits per second) at
which the sender can send packets along the network link. The transmission delays between other
layers, such as fog to cloud, are calculated using the same approach based on lp and b ↑.295

4.2.2. Propagation Delay

Dp is the time required to transmit all data packets over a physical link from source (e.g., thing)
to destination (e.g., fog). The delay will be computed using the length of the physical link (calculated
using the latitude and longitude of the thing and fog) to destination ld and propagation speed ps.
Thus, Dn

p for tn is calculated using Equation 3.300

Dn
p =

lnd
ps

(3)

The propagation delays between other layers, such as fog to cloud, are calculated using the same
approach in Equation 3 based on ld, and ps.

4.2.3. Computational Delay

This is the total time taken by fi to compute a service requested by tn. This time includes both
queuing delay (Dque) and processing delay (Dproc). Dque is the period of time spent by a packet inside305

the queue/buffer until it is served by the fog. And, processing delay is the time consumed to process
the received data/packet(s) by the fog. Moreover, as mentioned before, IoT requests can be defined as
a set of sub- /tasks, thus, these tasks can be processed in a sequential manner, parallel manner, or mix.
Figure 5 demonstrates the different possible approaches for processing a service. For a service with
sequential task the process delay is the sum of all tasks delay, while the process delay for a parallel310

processing will be the maximum latencies among all tasks. Therefore, the proceeding delay for a service
that can be processed immediately without waiting in the queue will be calculated using Equation 4.

Ds
proc = maxq→Qs

(
∑
t∈Qq

s

dtsfc
i
),∀q ∈ Q,∀c ∈ C (4)

11

Figure 6: Queuing system

Where dtsfc
i

is the total time delay consumed by fi to process task ts, which belongs to the service s

with processing sequence q, and c denotes the total capability (i.e., CPU) of fi. As mentioned before,
Equation 4 is used to calculate the total time-delay when a service is immediately processed by a fog.315

Next we discuss the scenario when the service arrives to the fog and has to wait in a queue due to
the fog’s current load. When the fog is congested (i.e., busy) the arrived services are queued in the
fog buffer until the fog becomes available to process the service. In this case the key factor for service
latency will be the average waiting time of a service at the buffer, which is based on the length queue’s,
in addition, the processing time for the service as per Figure 6, where λ is the average service arrival320

rate and µ is the average serving rate for a fog.
In a queuing system a network can be modelled by three parameters A/P/n, i.e., Erlang-C [1],

where A is service arrival rate, P is the service time probability density, and n the number of fog
nodes. Therefore, we model our system as M/M/n. where the first M is the services arrival rate
according to Poisson process with average rate λi for fi. The second M is the indication of service325

rate exponentially distributed over n number of fog nodes and having the mean service of 1/µ. In
our system n is the set of heterogeneous fog nodes with different capabilities. Thus, when n > 1 the
first service in the queue will be served by the fog that is currently available (i.e., queue = φ) and will
process the service, or offloaded to the first node that becomes available through a periodic checking for
the reachability table within the fog. The total time for a service τs = τsque+ τpro where τproc is service330

processing time, and τque is the queuing time. Thus, the total time for τs can be compute by Equation 5.

τs =

[
n−1∑
x=0

(nx)!(1− ρ2)

(nρ)n−x
+

1− ρ
ρ

]−1
(5)

where ρ is the system utilisation, obtained using Equation 6.

ρ =
arrivalRate

serviceRate
=

n∑
x=1

λ

µx
(6)

The µ can be obtained by µ =
lp
Lc

having lp average packet size in bits, and Lc is the link transmis-
sion capacity (unit is bits/second). It is worth to note that inverse of service rate is the average service
time Lc

lp
. To find a queue size and compute the average number of service’s packets in the queue we335

use Equation 7:

%size =
ρ(

[Pw
s (n,ρ)](nρ)n

n!(1−ρ))

1− ρ
(7)

Where Ps is the probability of number of services packets in the fog system and calculated using

12

Equation 8:

Pws (n, ρ) =

[
n−1∑
x=0

(nρ)x

x!
+

(nρ)n

n!(1− ρ)

]−1
(8)

Equation 8 provides the probability of the newly arrived packets that are not processed immediately
in the fog layer and, thus, have to wait. Hence, to obtain the probability of packets that are directly340

processed we use Equation 9.

P ds = 1− (Ps(n, ρ)) (9)

Next, we calculate the average delay for a service’s packets in a fog’s queue. This will help evaluate
the performance of fog by the FRAMES and point out the congested node based on %size and queuing
time for a process τque. Thus, the queuing time for a service computes is calculated using Equation 10.

τsique =
ρ(
Pw

s (nρ)n

n!(1−ρ))

λ− λρ
(10)

Where τsique is the queuing time τque for service s at the resources of fog node i, λ is the service rate345

and ρ is the system utilisation. To compute the total time for a service in our system, its by adding
the processing delay to τsque as per Equation 11.

τsic = τsique +
1

µ
(11)

4.3. Fog Workload

Fog workload fw refers to the overall usage of a fog node’s CPU (cycles/second), which is consumed
during the processing of a particular service. Thus, there are constraints on a node’s capability. This350

leads to a limitation on the ability of processing different types of services (i.e., heavy or light).
Therefore, the workload assigned to a fog node fw should not exceed the total capacity of the fog
node f ci .

fw ≤ f ci ,∀f ∈ F (12)

A service that operates on a fog node can serve several end-users in the network. Thus, the total
ratio of CPU usage by the service (or services in case of parallel processing) should not exceed the355

allocated resources allocated for a service because the allocated resources are considered to be the
total fw can be handled by a fog. Equation 13 computes the total resources (rs) allocated to pro-
cess all tasks ts for a service s.

fsrs = sw =

n∑
t=1

Cfits , dse ≤ f ic,∀s ∈ S, ∀t ∈ Ts (13)

The total fog’s workload capacity (fc) depends on the actual hardware specification of the allocated
device. The assignment variable sw (i.e., total service workload) is set so that total service processing360

workload does not exceed fc, as per Equation 13, where Cfits denotes the total resource (CPU in
consumption in hertz, having hertz=cycles/second) consumed by a service’s tasks on fog node fi.

For more realistic scenarios, we have separate between services workloads depending on the type of
service’s request type, having a heavy-weight and low-weight service’s request depends on a service’s
packets size. For instance, when a service only processes small data from sensors, this will consume low365

computational power, thus, the workload on fog is low. While, in services that performs heavy real-
time video processing, the workload will be high on the fog node. Therefore, services workload (sw)
on fogs can vary for each service, depends on service’s type. The fw for all services is the sum of each

13

service workload multipled by λ as per Equation 14. Thus, fw should be less than the fc assignment
variable (i.e., fw <= fc).370

fw =

n∑
x=1

swx .λs,∀s ∈ S (14)

4.4. Average Delay in a Fog Node

Fog node is a device located within the local network and equipped with communication protocol
and computation power. We assume that nodes at the fog layer receive service packets from IoT nodes
for processing and it has enough buffer size for incoming packets. Thus, the services arrival traffic λ
to fogs according to Poisson and processing rate of fog is exponentially distributed over fogs according375

to light-services processing (µ) and heavy-services processing rate (µ′). To compute the waiting
for a service on a specific fog node, it will be through calculating the total time for processing the
current heavy and light services in the fog queue. For instance, to obtain the average waiting time
for a service s that arrived at fi it will be done through the total time consumed by fi to process
all current services. Having nSh refer to the number of heavy-services and nSl refer to the number of380

light-services, Equation 15 computes the average waiting time for a newly arrived service on fi:

nSh =
∑

sfih ,∀sh ∈ S

nSl =
∑

sfil ,∀sl ∈ S

τfisw =
nSh
µ′

+
nSl
µ

(15)

It is worth to mention that, if fi queue is not empty (i.e., we have nSh + nSl 6= φ), then we have
(nSh + nSl − 1) mix types of services in the queue and one service is currently in processing.

4.5. Problem Formulation and Constraints

It is crucial to guarantee minimal service delay to end-users during service processing at the fog385

layer. The four sources of delay mentioned in Figure 4 are included in the latency minimising schema.
The total latency for a service sent from tn to fi is computed by adding the time of uploading a
service’s packets (τ�) to the waiting time for the service in the fog queue (τque) until it gets processed.
The delay for processing the service (τproc) and the time to respond back (τ�) to tn is also added
to the total latency for the service as per Equation 16. For simplification, we assume that(τ�=τ�),390

having ([τ�=τ�]=2τ��) because logically the returned packet contents normally is similar or smaller
than the sent packet.

τs = τ� + τsque + τproc + τ�,∀s ∈ S

τs = τsque + τproc + 2τ��,∀s ∈ S (16)

We address the problem of having an optimal workload on fog nodes alongside with achieving
minimal delay for IoT services. Thus, achieving reasonable load includes executing/processing the
desired services within the threshold limit of fog capability. In addition, low latency for IoT services395

includes delivering the services results within the required period, i.e., before service deadline (sd) with
the desired QoS. Therefore, the research problem can be defined as follows:

14

P : min[τs] 6 sd,∀s ∈ S (17)

s.t. fminc 6 fw 6 f
max
c (18)∑

λs 6
∑

µf (19)

P ds (n, p) > serviceLevel (20)

λs
min[Dp]−−−−−→ fi (21)

τs 6 sd,∀s ∈ S (22)

The constraints on this research are to reduce service latency. Therefore, our constraints are written
with focus on achieving minimal service delay. In constraint (18), we indicate that (fw) is strictly bound
by an upper limit (fmaxc) and lower limit (fminc) which is related to fog capabilities based on CPU400

frequency (unit hertz). Constraint (19) imposes that the total traffic arrival rate (λs) to a fog domain
should not exceed the service rate (µf) of this fog domain. Constraint (20) imposes the probability
of directly processed services should be greater or equal to the desired service level. Constraint (21)
impose the first destination for the IoT services traffic generated at the IoT Things layer will be to a
fog node with minimal cost of propagation delay within the fog domain (ideally, lowest propagation405

delay is for the nearest fog node). Finally, constraint (22) is strictly bound by the service time τs that
should be within the limit of service deadline sd.

4.6. Offloading Model

The offloading model proposes to balance the load within the fog domain by distributing service
traffics from the congested fog nodes to other fogs within the domain. To balance services traffic in fogs410

domain, we assume that fogs at any giving location are reachable to each other within the same fog
domain as per our network model in Section 4.1, which models the fog network as a mesh network; this
assumption in line with the work in [24] and [43]. In this research, we consider a real-world scenario
of services flows where services arrival rates can significantly vary from one fog node to another [24]

depending on fog location, since we have λs
min[Dp]−−−−−→ fi constraint that is services are directed to415

nearest fog from thing for processing. For instance, in Figure 7, we demonstrate the scenario where
fogs can vary in their traffic load due to their geo-location. In a similar scenario, offloading the traffic
from loaded to idle fog can be crucial to mitigate the load and keep the service latency to the minimal.
For example, given that only mobile vehicles are considered in traditional VANET, the authors in [34]
discuss how mobile vehicles (which are loaded nodes) and parked vehicles (which are idle or semi-idle420

nodes) should work together “as fog nodes” to transmit information and process requests to minimise
the network load on mobile vehicles, increase efficiency and reduce latency.

It should be noted that the latency (time variable) and money variable have a linear relationship
with each other - they impact directly on each other. For example, in intelligent transportation system
discussed in [44], the vehicular communications prove reducing the traffic congestions and, hence, the425

Round-trip Delay Time (RDT) thereof cutting down the fuel consumption (money variable). Another
good example happens regularly in the financial market where having low-latency between placing an
order and executing the order is crucial to get the order at the favourite price.

The decision factors where a node is congested and offloading is required significantly on fog work-
load (fw), which is associated with the service traffic arrival rate (λs) and total processing rate (i.e., ser-430

vice rate µ) which is down to fog CPU frequency (i.e., node capability). In addition, service processing
time τs, which ideally should not exceed service deadline (sd). Therefore, to make the decision of
offloading by a fog is when τs > sd, as per Probability 23, having (Os) for offloading service decision:

Os =

{
1, if τs > sd

0, otherwise
(23)

15

Loaded Fog Semi Idle FogIdle Fog

City Centre Edge City Centre Car park

Figure 7: Loaded, idle and, semi-idle fog nodes based on λs
min[Dp]−−−−−−→ fi

Thus:

τs > sd,∀s ∈ S

τsque + τproc + τ� > sd

In Probability 23, Os value is set to either 0 or 1, where 0 refers to no offload is required and 1435

refers that the newly arrived service will suffer form latency and will not be able to meet the service
deadline sd. Hence, service offloading is required.

Algorithm 1 has been developed to detect the fog nodes that suffer from congestion issue, and
determining the overload. The goal of this algorithm is to answer the question of When to offload? and
What to offload?. The first part of the algorithm (Procedure 1) determines if the fog node is congested440

or not. This starts by getting fog queue size and queued services sorted by their types (i.e., heavy-
services and light-services) as per lines 1-5. Later, lines 6-8 examine if one or more services in the
queue will miss their deadline Sd, or if the service arrival rate λ is bigger than the outcome of the fog
node µ. If any of the conditions is satisfied, a flag indicates that the node is congested as per line 9.
The second part of the algorithm (Procedure 2) determines the overload by computing the number of445

services causing the congestion as per lines 24-26. The overload Ol will hold the list of services that
requires offloading to other nodes as per lines 27-28.

To balance the services on fog nodes and achieve optimal workload and minimal service delay, we
adopt the offloading to the best available node that can deliver the desired services within the scheduled
time (i.e., τ < ds). Therefore, to obtain the best node, which will handle the overload, we compute450

the service time τs for the services required offloading among all available nodes using Equation 24,
thus, having some constraints on the node that participate in the process to handle the overload such
as load limit.

min[τs] = min

n∑
i=1

[τfique + τfiproc + τ�] (24)

s.t. fminc 6 fw 6 f
max
c∑

λs 6
∑

µf

τs 6 sd,∀s ∈ S

The best available nodes are those that provide a service with minimal delay. Algorithm 2 finds
the best node to handle the overload on the congested node, and than offload the overload from the455

16

Algorithm 1: Maintain Fog Load

Input: Fog (Fi); FogCapacity (Fc); QueueSize (Qs)
Parameters : Offload (Os); OverLoad (Ol); Services (S); ServiceType (St)
Initialisation: Fi = φ; Fc = φ; Qs = φ; S = φ
Result: Determine Fog overload, if any.

1 Procedure 1. Overload Threshold by
2 Fc = F ci . Fc initiate fog

3 Qs =←− getQueueSize(Fi)
4 S = list{Qs} . get list services

5 S = sort(S, by St)
6 for each s ∈ S do
7 τsic = τsique + 1

µ

8 if (τsic ≥ Sd) || λ ≥ µ) then
9 setF lag(Os) = 1

10 break;

11 else
12 setF lag(Os) = 0
13 end

14 end
15 Fque = timeCostFun(s, τsc)
16 Fi ←− Fque
17 return (Fi, Os)

18 End
19 Procedure 2. Determine the Overload by
20 get (Fi, Os)
21 Fc = getCapaxity(Fi)

22 µ = Fc

F i
que

23 if (Os == 1 || λ ≥ µ) then
24 for each s ∈ Fque do
25 S = getServices(out : s← τsc ≥ Sd)
26 end
27 Fque = Fque − S
28 Ol = S

29 else
30 get(Fi, Os)
31 continue

32 end
33 return Ol
34 End

17

congested node. In addition, the goal of the algorithm is to answer the question of Where to offload?.

Algorithm 2: Service Offloading

Input: FogNode (Fn); FogLoad (Fl); OverLoad (Ol).
Parameters : FogCapacity (Fc); Propagation (Dp).
Initialisation: Fn = φ; Fc = φ; Fl = φ; Ol = φ.
Result: Share the Overload with best available node

1 Procedure 1. Determine best available node by
2 FL = list{φ} . FL initiate fog list

3 FL = list[Fn]←− getFogNodes(out : (Fn, Fc))
4 FL = sort(FL, by Fc DESC)
5 for each Fn ∈ FL do
6 if Fn←− (Fl ≥ Fcmax) then
7 FL = pop(Fn) . remove busy node

8 else
9 τs =

∑n
i=1[τ ique + τ ipro + τ�]

10 if (τs < sd) then
11 list.add(Fn, τs)
12 continue

13 else
14 FL = pop(Fn)
15 end

16 end

17 end
18 return FL
19 End
20 Procedure 2. Handover the Overload by
21 if FL 6= φ then
22 Fn = min[FL(τs, Dp)])
23 Fnl = Fl +Ol
24 else
25 goto:1
26 end

27 End

The first part of the algorithm (Procedure 1), shows the process of finding the best available node(s)
for handling the overload pointed in Algorithm 1. Lines 2-3 of the algorithm initiate the list of active
fogs in the domain alongside with the node’s capacity and current load (i.e., queue size). The list of
available nodes will be refined by removing the nodes that are already busy with other services (i.e.,460

λi = µi) as per lines 6-8. The remaining part of Procedure 1, lines 9-18 compute the time required for
a service to run on each of the available nodes. If the time is within the limit allowed for the service
(i.e, before Sd), the system will be keep the node in the list and log the expected service time against
the node as per lines 9-12. If the τs on Fn is less than Sd, than Fn will be removed from the list as per
lines 13-15. The second part of the algorithm (Procedure 2), receives the list of best available nodes. If465

the list is not empty, that means there is at least one fog able to take the overload. However, if there is
more than one node in the list, the system will direct the overload to a node that can provide minimal
τs and has the lowest propagation delay Dp as per lines 21-23.

18

5. Evaluation

In this section, we evaluate through MATLAB-based simulation the F2F model, which is about470

providing optimal fog workload with minimal latency for IoT services. A scientific and comprehensive
network latency [45] has been calculated (i.e., latency of heavy packets, light packets, mixed types of
packets and latency per node) to demonstrate the superior performance of the proposed F2F model. We
validated the results against 2 benchmark algorithms: Random Walk Algorithm (RWA) [46] [47], and
Neighbouring Fogs Algorithm (NFA) [48]. Simulation settings are presented in the following subsection475

followed by a discussion of the simulations results.

5.1. Simulation Settings

In this section, we describe the settings we adopted during the simulations. We specify the network
topology, propagation and transmission delay, with link bandwidth and fog nodes capabilities, as
follows:480

• Network topology modelled as an indirect graph represents fog mesh network at the fog layer.
15 fog nodes were considered (fn = 15) and connected together through internal communication
link. Moreover, the links between nodes are weighted based on the propagation time between
nodes, for instance, if Dp between fog1 and fog2 is one second, then the link weight between
both nodes is (fog1 1←→fog2). Similarly, the services arrived to the fog layer are assigned to fog485

based on the smallest Dp between the node and source, which has the smallest distance.

• Network bandwidth depends on the type of service. For light-packets (e.g., data packets from
sensors) the communication bandwidth is 250 Kbps [49], which is equivalent to 2.0× 106 hertz.
The communication protocol is IEEE 802.15.4, and ZigBee. For heavy-packets (e.g., data packets
from cameras) the communication bandwidth is 54 Mbps [50], which is equivalent to 4.3 × 108490

hertz [50]. The communication protocol is IEEE 802.11a/g. The transmission rate between the
fog nodes is expected to be higher ' 100 Mbps [13].

• Transmission and propagation delays, the transmission delay Dt for a packet is dependent on
the packet size lp alongside with the associated upload bandwidth b �. Therefore, we impose an
average packet size that will vary according to the type of packet (i.e., heavy and light packets).495

The average packet size for light-packets is 0.1 KB, while the average packet size for heavy-
packets is 80 KB [13]. With regard to the propagation delay Dp, we use packet round trip
time (i.e., τ��) same as in [13] by τ�� = 0.03× ld + 5, where ld is the distance with unit km, and
τ�� time unit is ms.

• Fog node capabilities consider the service rate µ that varies from one node to another. Fog node’s500

capability determinants by CPU frequency, therefore nodes are variant in CPU and the rang is
between 0.2 GHz to 1.5 GHz [51], which includes the CPU frequency of CISCO fog device.

5.2. Benchmarking

We considered 2 algorithms for benchmarking purposes:

1. Random Walk Algorithm (RWA) [46] [47], which imposes that arriving service requests are505

assigned to a nearest fog node from source; if fog is congested it will offload the service randomly
to another fog node. In this scenario, we assume that each fog node within the domain has the
same probability of being selected.

2. Neighbouring Fogs Algorithm (NFA) [48], which is imposes that congested fog will offload the
overload to the nearest fog node with bigger capacity.510

Moreover, our comparison also includes the typical service distribution based on assigning services to
the nearest node to the IoT thing with No Offloading Algorithm (NOA). We refer to our proposed
algorithm as Optimal Fog Algorithm (OFA).

19

5.3. Results and Discussion

The performance metric we used is the average service time that reflects the efficiency of service515

completion time (aka amount of latency). The lowest the average service time (min[τs]), the better
the efficiency of service QoS.

Figure 8 illustrates the performance of our OFA based on the average response time for all received
services according to a service’s packets type. We also show a comparison between results of OFA and
the results obtained from other algorithms mentioned in Section 5.2. The simulation settings for this520

experiment is as follow:

• Fog nodes with different capabilities, hence, nodes vary in their service rate µ.

• Fog nodes capability based on CPU frequency with a minimum of 200× 106 hertz, incremented
by 100 hertz until it get to maximum CPU capability of 15× 108.

• Service arrival rate λ = 3×102 packet per second as in [24], and λ is fixed during the experiment525

to ensure all algorithms have the same traffic arrival rate.

Figures 8a, 8b, and 8c are grouped by packet type (heavy-packets versus light-packets). In Figure 8a,
the packets type is mixed (MTP), having a random number of heavy and light packets. However, the
random number is fixed through out the experiment to ensure consistency across all algorithms. In
Figures 8b and 8c, the packets are set to either all heavy-packets (AHP) or all light-packets (ALP).530

This is to examine the performance based on different scenarios. In Figure 8 the vertical line represent
the average latency per algorithm to serve all arrived services, and the horizontal line is the number
of iterations carried out to insure that the obtained results are consistent and not random. It is clear
that OFA has the lowest service latency among other algorithms through all iterations and with all
types of packets. NOA also has the lowest service time because it does not consider offloading when a535

node becomes congested. Hence, we end-up having a small node capacity with large queue size (i.e.,
µi < λi), and a large node capacity with low queue size. The performance of RWA and NFA are better
than NOA but still hither than our OFA. However, RWA has the worst performance with MTP and
AHP as it randomly offloads the overload, which is relatively blind algorithm as it not considered the
current load (fw) and propagation delay (Dp).540

The next simulations were conducted based on service latency per fog node. Similar to previous
experiments, we use fog nodes with different capabilities based on CPU frequency with a minimum of
200 × 106 hertz, incremented by 100 hertz until it gets to maximum CPU capability of 15 × 108 (i.e,
Fn = 14). In this simulation, we increment the service arrival rate so, that, the total packet received
is 1 million service as in [13]. The packet type in this experiment is mixed with a random number545

of heavy-packets and light-packets. Figure 9 shows the average latency per fog node. It is clear that
OFA achieves a consistent average latency. In contrast between OFA, on the one hand, and with NFA
and RWA, on the other hand, OFA has the lowest average latency between nodes 1 to 7, but greater
average latency from node 8, and thereafter. However, the average latency differences is much higher
for NFA and RWA in comparison to OFA for nodes from 1 to 7 compared to the average latency550

differences from node 9 to 14. This difference accrues as OFA workload distribution strategy, OFA
tries to achieve balanced service distribution based on node capacity. Therefore, the work assigned to
nodes considers the overall capacity and current load before offloads a request, while NFA and RWA
are relatively blind in this manner. Hence, OFA achieves almost consistent latency on each individual
node, while the average latency for NFA and RWA vary and are inconsistent.555

To prove the optimal distribution of packet with OFA we run a new experiment and recall the
settings from the previous experiment. However, in this experiment, the vertical line represents service
usage (i.e., number of packets) as per Figure 10. The nodes are sorted from smallest capacity (i.e., lowest
CPU) to largest (i.e., largest CPU), having the first node with 200×106 hertz and node 14 with 800×106

hertz. It is clear that the packets distribution with OFA is completely different than NFA and RWA560

as it distributes packets according to the node capacity. Hence, the first node receives less number of
packets and the last node receives more number of packets. In comparison with NFA and RWA, the

20

0 5 10 15 20 25 30 35 40 45 50

Number Of Iterations

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

A
v
e
ra

g
e
 L

a
te

n
c
y
 (

s
)

NOA NFA RWA OFA

(a) Mixed types of packets (MTP)

0 5 10 15 20 25 30 35 40 45 50

Number Of Iterations

0.5

0.55

0.6

0.65

0.7

0.75

0.8

A
v
e
ra

g
e
 L

a
te

n
c
y
 (

s
)

NOA NFA RWA OFA

(b) All heavy packets (AHP)

0 5 10 15 20 25 30 35 40 45 50

Number Of Iterations

0.032

0.034

0.036

0.038

0.04

0.042

0.044

0.046

0.048

A
v
e
ra

g
e
 L

a
te

n
c
y
 (

s
)

NOA NFA RWA OFA

(c) All light packets (ALP)

Figure 8: Average latency according to offloading model

21

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fog Nodes

0

1

2

3

4

5

6

7

A
v

e
ra

g
e

 L
a

te
n

c
y

 (
s

)

NOA NFA RWA OFA

13 14

0.5

1

1.5

Figure 9: Average latency per node

packet distribution on average is steady among all nodes regardless of the node capacity, which causes
the issue of latency as, on the one hand, nodes with small CPU frequency consumes significant time to
process all received packets. While, on the other hand, nodes with large CPU frequency have already565

finished processing the received packets as per Figure 9.
Figure 11 shows the impact of increasing the number of packets on latency. During simulation,

service’s packets are varied from one packet to 10× 104 packets in Figure 11a; thus, the packet type is
fixed to heavy-packet for consistency. The service utilisation rate is incremental parameter from 1% to
100%, thus, this rate is fixed at any given timestamps, for example, if the service utilisation rate is 50%,570

all algorithms; OFA, NAF, RWA, and NOA will receive the same rate. It is obvious that increasing
the number of arrived packets (i.e., increase the service arrival rate λ) will increase the overall latency.
The total latency and performance of the algorithms vary; OFA has the lowest service latency as per
Figure 11a. The service latency is stable with small delay of approximately 0.6 second for the received
packets upto 6.5×104, thereafter, the latency start to increase significantly for NOA, RWA, and NAF.575

While, OFA remains stable with less than 1.2 second latency for all received packets and upto 10×104

packet. Moreover, in Figure 11b, we have increased the packets utilisation to 10 × 106 to show the
continues of latency variations for the different algorithms compared to OFA. It is clear that OFA has
a sustainable packets processing with the increases of service’s packets (i.e., high traffic), in term of
latency, as it has the lowest packet’s latencies.580

From previous simulations we increase the packet arrival rate λ to 15 × 104 to monitor how the
offloading performance and service latency will be effected. Latency will be increased for all offloading
algorithms. However, the incremental rate will matter as this will reflect the sustainability of the
offloading algorithm. Figure 12 shows the maximum and average latencies for the 15 × 104 packets
(with type heavy) based on the offloading algorithms. In comparison between the maximum latencies585

for all offloading algorithms in Figure 11 and 12, it is clear that the increment of maximum latency for
NFA, NOA, and RWA is significantly more than the maximum latency for OFA, as in Figure 11 the
maximum latency for a packet with OFA is around 0.6 second, and in Figure 12 the maximum latency
is 0.8 second. Whereas, within NFA and RWA the maximum latency is 1.5 and 2 seconds, respectively,
in Figure 11, while the maximum latency is 2.7 and 3.2 seconds, respectively, in Figure 12. It is clear590

that the latency incremented by approximately more than 1 second with NFA and RWA offloading
algorithm, while the latency increment for OFA is only 0.2 second.

22

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fog Nodes

0

0.5

1

1.5

2

2.5

3

3.5

P
a

c
k

e
ts

 L
o

a
d

 (
#

C
y

c
le

s
)

10
9

NOA NFA RWA OFA

Figure 10: Average load on nodes

6. Conclusions and Future Works

Although fog computing is recognized as a computing model that suits IoT, it is still not widely
used. Due to the spatial and temporal dynamics of IoT things distribution, the computations loads on595

fogs significantly vary. Thus, nodes could be lightly loaded, while others are not causing fog congestion
then, latency. In this paper, we propose a novel Fog Resource manAgeMEnt Scheme (FRAMES) that
justifies fog distributions and management with service load allocation and computing load allocation
via service offloading among fog nodes to achieve minimal latency for IoT services. We propose a
feasible solution that enables fog traffic management via service offloading in fog-based architecture600

that serves the purpose of minimizing the average response time for real-time IoT services. Through the
extensive experiments, it is clear that the offloading significantly impacts the overall latency of services.
A proper resources managements with accurate offloading algorithm will significantly reduce service
latency and, the number of fog nodes and it’s capacities will also impact service latency. Moreover, it is
clear that the proposed OFA has the lowest service response time in comparison with RWA and NFA.605

OFA and have the potential in achieving sustainable network paradigm to highlights the significance
and benefits of adopting fog computing paradigm. In our future work, we plan to extend the simulation
using a data processing techniques (such as MapReduce or Spark) with a real dataset to evaluate the
Fog-2-Fog model. In addition, we plan to study security issues that associate with malicious fogs
since it has been considered as a critical infrastructure. Thus, develop a secure fog layer that defend610

users and services privacy, also perform security tests to understand the robustness against malicious
attacks, particularly in the Fog-2-Fog model.

[1] R. Deng, R. Lu, C. Lai, T. H. Luan, and H. Liang. Optimal workload allocation in fog-cloud
computing toward balanced delay and power consumption. IEEE Internet of Things Journal,
3(6):1171–1181, Dec 2016.615

[2] Mohammed Al-khafajiy, Lee Webster, Thar Baker, and Atif Waraich. Towards fog driven iot
healthcare: Challenges and framework of fog computing in healthcare. In Proceedings of the 2Nd
International Conference on Future Networks and Distributed Systems, ICFNDS ’18, pages 9:1–
9:7, New York, NY, USA, 2018. ACM.

[3] Qi Zhang, Lu Cheng, and Raouf Boutaba. Cloud computing: state-of-the-art and research chal-620

lenges. Journal of Internet Services and Applications, 1(1):7–18, May 2010.

23

6.5 7 7.5 8 8.5 9 9.5 10

Packet Index 10
4

0.5

1

1.5

2

2.5

3

L
a

te
n

c
y

 (
s

)

NOA NFA RWA OFA

9.95 9.96 9.97 9.98 9.99 10

10
4

1

1.5

2

2.5

(a) Packet index upto 104

8.4 8.45 8.5 8.55 8.6 8.65 8.7 8.75 8.8 8.85 8.9

Packet Index 10
6

2.4

2.6

2.8

3

3.2

L
a
te

n
c
y
 (

s
)

NOA NFA RWA OFA

(b) Packet index upto 106 to show the variations

Figure 11: Latency per packet

[4] W. Kim and S. Chung. User-participatory fog computing architecture and its management schemes
for improving feasibility. IEEE Access, 6:20262–20278, 2018.

[5] Lizhe Wang, Gregor von Laszewski, Andrew Younge, Xi He, Marcel Kunze, Jie Tao, and Cheng
Fu. Cloud computing: a perspective study. New Generation Computing, 28(2):137–146, Apr 2010.625

[6] J. Sun, G. Zhu, G. Sun, D. Liao, Y. Li, A. K. Sangaiah, M. Ramachandran, and V. Chang.
A reliability-aware approach for resource efficient virtual network function deployment. IEEE
Access, 6:18238–18250, 2018.

[7] Gang Sun, Victor Chang, Guanghua Yang, and Dan Liao. The cost-efficient deployment of replica
servers in virtual content distribution networks for data fusion. Information Sciences, 432:495–515,630

2018.

[8] Friedemann Mattern and Christian Floerkemeier. From the Internet of Computers to the Internet
of Things, pages 242–259. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

24

NFA NOA OFA RWA
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

M
a
x
im

u
m

 L
a
te

n
c
y
 (

s
)

Figure 12: Maximum latency upon heavy-packets

[9] M. Al-khafajiy, T. Baker, A. Waraich, D. Al-Jumeily, and A. Hussain. Iot-fog optimal workload
via fog offloading. In 2018 IEEE/ACM International Conference on Utility and Cloud Computing635

Companion (UCC Companion), pages 359–364, Dec 2018.

[10] Cisco Systems. Fog computing and the internet of things: Extend the cloud to where the things
are, 2016.

[11] D Evans. The internet of things: How the next evolution of the internet is changing everything.
Cisco Internet Business Solutions Group (IBSG), 1:1–11, 01 2011.640

[12] Q. Fan and N. Ansari. Towards workload balancing in fog computing empowered iot. IEEE
Transactions on Network Science and Engineering, pages 1–1, 2018.

[13] A. Yousefpour, G. Ishigaki, R. Gour, and J. P. Jue. On reducing iot service delay via fog offloading.
IEEE Internet of Things Journal, 5(2):998–1010, April 2018.

[14] Saeed Khanagha, H.W. Volberda, and Ilan Oshri. Business model renewal and ambidexterity:645

Structural alteration and strategy formation process during transition to a cloud business model.
R and D Management, 44, 06 2014.

[15] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog computing and its role in
the internet of things. In Proceedings of the First Edition of the MCC Workshop on Mobile Cloud
Computing, MCC ’12, pages 13–16, New York, NY, USA, 2012. ACM.650

[16] M. Al-khafajiy, T. Baker, H. Al-Libawy, A. Waraich, C. Chalmers, and O. Alfandi. Fog com-
puting framework for internet of things applications. In 2018 11th International Conference on
Developments in eSystems Engineering (DeSE), pages 71–77, Sep. 2018.

[17] Amandeep Singh Sohal, Rajinder Sandhu, Sandeep K Sood, and Victor Chang. A cybersecurity
framework to identify malicious edge device in fog computing and cloud-of-things environments.655

Computers & Security, 74:340–354, 2018.

[18] Safa Otoum, Burak Kantarci, and Hussein Mouftah. Adaptively supervised and intrusion-aware
data aggregation for wireless sensor clusters in critical infrastructures. In 2018 IEEE International
Conference on Communications (ICC), pages 1–6. IEEE, 2018.

25

[19] Safa Otoum, Burak Kantarci, and Hussein T Mouftah. Hierarchical trust-based black-hole detec-660

tion in wsn-based smart grid monitoring. In Communications (ICC), 2017 IEEE International
Conference on, pages 1–6. IEEE, 2017.

[20] Kai Kang, Wang Cong, and Tao Luo. Fog computing for vehicular ad-hoc networks: Paradigms,
scenarios, and issues. The Journal of China Universities of Posts and Telecommunications, 23:56–
96, 04 2016.665

[21] S. Soo, C. Chang, and S. N. Srirama. Proactive service discovery in fog computing using mobile
ad hoc social network in proximity. In 2016 IEEE International Conference on Internet of Things
(iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Phys-
ical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), pages 561–566, Dec
2016.670

[22] Z. Maamar, T. Baker, N. Faci, E. Ugljanin, M. Al-Khafajiy, and V. Buregio. Towards a seamless
coordination of cloud and fog: Illustration through the internet-of-things. The 34th ACM/SIGAPP
Symposium on Applied Computing, 2019.

[23] Zakaria Maamar, Thar Baker, Noura Faci, Emir Ugljanin, Yacine Atif, Mohammed Al-Khafajiy,
and Mohamed Sellami. Cognitive computing meets the internet of things. In Proceedings of the675

13th International Conference on Software Technologies :, pages 741–746, 2018.

[24] X. Wang, Z. Ning, and L. Wang. Offloading in internet of vehicles: A fog-enabled real-time traffic
management system. IEEE Transactions on Industrial Informatics, 14(10):4568–4578, Oct 2018.

[25] A. Kapsalis, P. Kasnesis, I. S. Venieris, D. I. Kaklamani, and C. Z. Patrikakis. A cooperative fog
approach for effective workload balancing. IEEE Cloud Computing, 4(2):36–45, March 2017.680

[26] OpenFog Consortium Architecture Working Group. OpenFog reference architecture for fog com-
puting. Available at https://www.openfogconsortium.org/wp-content/uploads/OpenFog_

Reference_Architecture_2_09_17-FINAL.pdf, Last Visit: February.10.2019.

[27] S. Ningning, G. Chao, A. Xingshuo, and Z. Qiang. Fog computing dynamic load balancing mech-
anism based on graph repartitioning. China Communications, 13(3):156–164, March 2016.685

[28] C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow, and P. A. Polakos. A compre-
hensive survey on fog computing: State-of-the-art and research challenges. IEEE Communications
Surveys Tutorials, 20(1):416–464, Firstquarter 2018.

[29] Hany Atlam, Robert Walters, and Gary Wills. Fog computing and the internet of things: a review.
Big Data and Cognitive Computing, 2(2):10, 2018.690

[30] Swati Agarwal, Shashank Yadav, and Arun Yadav. An efficient architecture and algorithm for
resource provisioning in fog computing. International Journal of Information Engineering and
Electronic Business, 8:48–61, 01 2016.

[31] Beate Ottenwälder, Boris Koldehofe, Kurt Rothermel, and Umakishore Ramachandran. Migcep:
Operator migration for mobility driven distributed complex event processing. In Proceedings of the695

7th ACM International Conference on Distributed Event-based Systems, DEBS ’13, pages 183–194,
New York, NY, USA, 2013. ACM.

[32] Moayad Aloqaily, Ala Abu Alkheir, and H.T. Mouftah. Connected and autonomous electric
vehicles (caevs): A service management perspective. IT Professional, 20, 12 2018.

[33] Moayad Aloqaily, Safa Otoum, Ismaeel Al Ridhawi, and Yaser Jararweh. An intrusion detection700

system for connected vehicles in smart cities. Ad Hoc Networks, 2019.

26

 https://www.openfogconsortium.org/wp-content/uploads/OpenFog_Reference_Architecture_2_09_17-FINAL.pdf
 https://www.openfogconsortium.org/wp-content/uploads/OpenFog_Reference_Architecture_2_09_17-FINAL.pdf
 https://www.openfogconsortium.org/wp-content/uploads/OpenFog_Reference_Architecture_2_09_17-FINAL.pdf

[34] Gang Sun, Liangjun Song, Hongfang Yu, Victor Chang, Xiaojiang Du, and Mohsen Guizani.
V2v routing in a vanet based on the autoregressive integrated moving average model. IEEE
Transactions on Vehicular Technology, 68(1):908–922, 2019.

[35] S. F. Abedin, M. G. R. Alam, N. H. Tran, and C. S. Hong. A fog based system model for705

cooperative iot node pairing using matching theory. In 2015 17th Asia-Pacific Network Operations
and Management Symposium (APNOMS), pages 309–314, Aug 2015.

[36] Ismaeel Al Ridhawi, Moayad Aloqaily, Yehia Kotb, Yousif Al Ridhawi, and Yaser Jararweh. A
collaborative mobile edge computing and user solution for service composition in 5g systems.
Transactions on Emerging Telecommunications Technologies, 29, 06 2018.710

[37] L. Ni, J. Zhang, C. Jiang, C. Yan, and K. Yu. Resource allocation strategy in fog computing
based on priced timed petri nets. IEEE Internet of Things Journal, 4(5):1216–1228, Oct 2017.

[38] Jian Sun, Siyu Sun, Ke Li, Dan Liao, Arun Kumar Sangaiah, and Victor Chang. Efficient al-
gorithm for traffic engineering in cloud-of-things and edge computing. Computers and Electrical
Engineering, 69:610 – 627, 2018.715

[39] Ranesh Kumar Naha, Saurabh Garg, Dimitrios Georgakopoulos, Prem Prakash Jayaraman,
Longxiang Gao, Yong Xiang, and Rajiv Ranjan. Fog computing: Survey of trends, architectures,
requirements, and research directions. IEEE Access, 6:47980–48009, 2018.

[40] V. Sarafov. Comparison of iot data protocol overhead. Proceedings of the Seminars of Future
Internet (FI) and Innovative Internet Technologies and Mobile Communication (IITM), 2018.720

[41] K Gao, Q Wang, and Lifeng Xi. Controlling moving object in the internet of things. International
Journal of Advancements in Computing Technology, 4:83–90, 03 2012.

[42] Gang Sun, Victor Chang, Muthu Ramachandran, Zhili Sun, Gangmin Li, Hongfang Yu, and Dan
Liao. Efficient location privacy algorithm for internet of things (iot) services and applications.
Journal of Network and Computer Applications, 89:3 – 13, 2017. Emerging Services for Internet725

of Things (IoT).

[43] M. A. Salahuddin, A. Al-Fuqaha, and M. Guizani. Reinforcement learning for resource provisioning
in the vehicular cloud. IEEE Wireless Communications, 23(4):128–135, August 2016.

[44] X. Jiang, H. S. Ghadikolaei, G. Fodor, E. Modiano, Z. Pang, M. Zorzi, and C. Fischione. Low-
latency networking: Where latency lurks and how to tame it. Proceedings of the IEEE, 107(2),730

2019.

[45] V. Chang and G. Wills. A model to compare cloud and non-cloud storage of big data. Future
Generation Computer Systems, 57:56–76, 2016.

[46] Q. Zhu, B. Si, F. Yang, and Y. Ma. Task offloading decision in fog computing system. China
Communications, 14(11):59–68, Nov 2017.735

[47] Christine Fricker, Fabrice Guillemin, Philippe Robert, and Guilherme Thompson. Analysis of
an offloading scheme for data centers in the framework of fog computing. ACM Trans. Model.
Perform. Eval. Comput. Syst., 1(4):16:1–16:18, September 2016.

[48] A. Bozorgchenani, D. Tarchi, and G. E. Corazza. An energy and delay-efficient partial offloading
technique for fog computing architectures. In GLOBECOM 2017 - 2017 IEEE Global Communi-740

cations Conference, pages 1–6, Dec 2017.

[49] Y. Sahni, J. Cao, S. Zhang, and L. Yang. Edge mesh: A new paradigm to enable distributed
intelligence in internet of things. IEEE Access, 5:16441–16458, 2017.

27

[50] M. J. Canet, V. Almenar, J. Marin-Roig, and J. Valls. Time synchronization for the ieee 802.11a/g
wlan standard. In 2007 IEEE 18th International Symposium on Personal, Indoor and Mobile745

Radio Communications, pages 1–5, Sep. 2007.

[51] T. Q. Dinh, J. Tang, Q. D. La, and T. Q. S. Quek. Offloading in mobile edge computing:
Task allocation and computational frequency scaling. IEEE Transactions on Communications,
65(8):3571–3584, Aug 2017.

28

	Introduction
	Problem Statement
	Research Contributions
	Paper Organization

	Related Work
	Fog-2-Fog Collaboration Model
	Fog load balancing
	When to offload a request?
	Where to offload a request?

	Fog resource management scheme

	Fog-2-Fog Coordination Model
	Network Model
	Service Delay
	Transmission Delay
	Propagation Delay
	Computational Delay

	Fog Workload
	Average Delay in a Fog Node
	Problem Formulation and Constraints
	Offloading Model

	Evaluation
	Simulation Settings
	Benchmarking
	Results and Discussion

	Conclusions and Future Works

