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Abstract

There is the significant interest nowadays in developing the frameworks for parallelizing the processing of
large graphs such as social networks, web graphs, etc. The work has been proposed to parallelize the
graph processing on clusters (distributed memory), multicore machines (shared memory) and GPU devices.
Most existing research on GPU-based graph processing employs the vertex-centric processing model and
the Compressed Sparse Row (CSR) form to store and process a graph. However, they suffer from irregular
memory access and load imbalance in GPU, which hampers the full exploitation of GPU performance. In this
paper, we present WolfGraph, a GPU-based graph processing framework that addresses the above problems.
WolfGraph adopts the edge-centric processing, which iterates over the edges rather than vertices. The data
structure and graph partition in WolfGraph are carefully crafted so as to minimize the graph pre-processing
and allow the coalesced memory access. WolfGraph fully utilizes the GPU power by processing all edges in
parallel. We also develop a new method, called Concatenated Edge List (CEL), to process a graph that is
bigger than the global memory of GPU. WolfGraph allows the users to define their own graph-processing
methods and plug them into the WolfGraph framework. Our experiments show that WolfGraph achieves
7-8x speedup over GraphChi and X-Stream when processing large graphs, and it also offers 65% performance
improvement over the existing GPU-based, vertex-centric graph processing frameworks, such as Gunrock.

Keywords: GPGPU, Graph Processing, CUDA, Parallel Processing

1. Introduction

The demand for efficiently processing large-scale
graphs has been growing recently. This is be-
cause graphs can be used to describe a wide
range of objects, and computations on graph-based
data structures are the core of many applica-
tions. Motivated by the need to process very large
graphs, many frameworks have been developed for
processing large graphs on distributed systems.
Such frameworks include Pregel[1], GraphLab[2],
PowerGraph[3], GraphX [4], Chaos [5] and Gem-
ini [6]. However, since developing efficient dis-
tributed graph algorithms is challenging, some re-
search studies aim to design the graph processing
systems that can handle large graphs (with bil-
lions of edges) on a single PC. The results of these
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studies are Wonderland [7], Mosaic [8], PathGraph
[9], GraphQ [10], LLAMA [11] and GridGraph [12],
GraphChi[13]. However, these systems suffer from
limited degree of parallelism provided by conven-
tional processors. To overcome this problem, much
research employs GPU to accelerate graph process-
ing due to its massively parallel architecture, such
as Tigr [14], Frog [15], GTS [16], Gunrock [17],
CuSha [18], MultiGraph [19] and Virtual Warp [20].

Currently, using GPU for efficient graph pro-
cessing remains a challenging and open problem
due to the following reasons. First, although GPU
provides a massive degree of parallelism compared
to CPU, its hardware architecture requires reg-
ular data access pattern (coalesced memory ac-
cess) to achieve the peak performance. However,
most graphs are of highly irregular structure, which
leads to the problems of irregular (random) mem-
ory accesses and load imbalance in GPU and conse-
quently limits the performance of graph algorithms
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on GPU. For example, most existing graph process-
ing techniques [21] [22] [23] [24] employ the vertex-
centric processing and rely on the CSR (Com-
pressed Sparse Row) graph representation. Due to
the poor locality in the CSR representation, vis-
iting a node’s neighbours usually leads to random
memory access. Second, the existing work of GPU-
based graph processing assumes the entire graph
can fit into the global memory of GPU. However,
some large-scale graphs are even bigger than GPU
memory, which makes these work infeasible to pro-
cess those graphs. Third, because GPU has the
limited global memory space compared with CPU,
it requires frequent data copying between device
memory and host memory, which also results in
poor performance. Finally, as pointed out by [25],
[26], [27] in the state-of-the-art graph processing
systems, the time spent in reading a graph from
hard disks to CPU memory and constructing the
necessary data structure in memory for processing
the graph, which is called the pre-processing time,
constitutes a big proportion of the total processing
time for a large graph. Reducing this pre-processing
time will significantly improve the overall perfor-
mance of graph processing frameworks.

In this paper, we present WolfGraph, a frame-
work for processing large graphs on GPUs, to ad-
dress the above problems. The framework parti-
tions a graph, construct the data structures to store
the graph, and parallelize the graph processing on
GPU. WolfGraph provides the interface for the pro-
grammers to implement their own graph processing
algorithms using CUDA (e.g., the Breadth-First-
Search algorithm). WolfGraph then loads the graph
to be processed from the hard disk to the host mem-
ory, partitions the graph into blocks of graph edges
(each of which is called an edge block in this pa-
per) with minimal pre-processing time, launches the
kernel function (containing the programmers’ graph
processing implementation) with blocks of threads,
and uses thread blocks to run edge blocks in paral-
lel.

WolfGraph adapts a recently introduced graph
processing model, known as edge-centric process-
ing [28] to efficiently process the graphs on GPUs.
In this model, the graph is represented as an un-
ordered list of edges. The processing iterates over
edges rather than vertices. More specifically, af-
ter the graph is split into edge blocks, each edge
block contains an unordered list of edges, which are
contiguously stored in memory, and a set of ver-
tices associated with the edges in this block. Each

edge block is processed by a thread block in GPU
and multiple thread blocks are processed by edge
blocks in parallel. Within each thread block, the
edges are processed in parallel by the threads. Such
allocation of edge blocks to thread blocks enables
the coalesced memory access to the edges in GPU
global memory. In WolfGraph, the access to ver-
tices are still random. But the data structure for
holding vertices is placed in the shared memory of
GPU, the access to which is much faster than to
the global memory. Moving the data structure of
vertices to the share memory also significantly re-
duces the synchronization overhead among threads
during the graph processing.

In most existing work, the graph is preprocessed
before the graph processing algorithm is applied.
The idea is that although it takes the time to pre-
process a graph, the execution of the graph process-
ing algorithm will take much less time than without
preprocessing and therefore the overall processing
time will be reduced significantly. Our survey shows
that pre-processing a graph consumes a big propor-
tion of the total processing time of the graph. The
main novelty and contribution of this work are de-
signing a GPU-based graph processing framework
that endures minimal preprocessing. We carefully
analyze the benefits brought by the existing graph
preprocessing methods in both GPU-based [18] and
CPU-based [13] graph processing frameworks, and
then develop a new GPU-based method to accom-
plish the efficient execution with minimal prepro-
cessing. The new method includes careful design of
the GPU data structure for graph processing, full
exploitation of GPU memory hierarchy and thread
synchronization, and crafty strategy of thread par-
allelization and consequent coalesced memory ac-
cess by threads. Comparing with the existing GPU-
based framework [18][20], our method can achieve
similar execution time although minimal prepro-
cessing is carried out. Therefore, our graph process-
ing framework reduces the overall processing time
significantly.

The above processing handles the graph that can
fit into the GPU global memory, which is called
“in-memory” graph processing. For a graph larger
than the GPU global memory, we develop the “out-
of-memory” processing. The method developed for
in-memory processing still acts as the core of the
out-of-memory processing. However, we first par-
tition the graph into sub-graphs with minimal ef-
forts. Each sub-graph can fit into the global mem-
ory. Each sub-graph is processed in the edge-centric
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manner by GPU. The advantage of such method
is its minimal pre-processing time. However, it
is at the expense of potential frequent copying of
sub-graphs between GPU global memory and host
memory. To address this problem, we develop a new
method called the Concatenate Edge List (CEL),
which is inspired by GraphChi [13], for out-of-
memory processing. When the CEL method loads
a sub-graph into the GPU global memory, for each
vertex that is a destination vertex in this sub-graph,
it also loads into GPU the edges that have this ver-
tex as a source. With the CEL method, we only
need to load each sub-graph into GPU once. New
supporting data structure is also designed in order
to enable efficient construction of the concatenated
edge list.

We have implemented a prototype of WolfGraph.
WolfGraph employs the iterative graph processing
model, where a given computation function is it-
eratively applied on every edge in the graph un-
til a convergence condition is met. WolfGraph al-
lows the developers to concentrate on programming
graph processing algorithms, which will be auto-
matically parallelized by WolfGraph.

The rest of this paper is organised as follows. Sec-
tion 2.1 provides an overview of GPU hardware and
CUDA programming model. Section 2.2 presents
the edge-centric processing model on GPU for the
graphs that can fit into GPU memory. Section 3
presents the details of the WolfGraph framework
including how to split the graph into edge blocks,
the allocation of edge blocks to thread blocks and
the core APIs provided by WolfGraph. Section 4
presents the graph partition and CEL method for
the graphs larger than GPU memory. Experimen-
tal results are presented and analyzed in Section 6.
Sections 7 presents related work. Finally, Section 8
concludes this paper.

2. Background

2.1. GPGPU and CUDA

Using GPU as a general computing unit has at-
tracted considerable attention [29] [30] [31] [32].
GPU provides massive parallel processing power.
As the host for the GPU device, CPU organizes and
invokes the kernel functions that execute on GPU.
As shown in Figure 1a, a GPU device consists of
a number of streaming multiprocessors (SM), each
comprising simple processing engines, called CUDA
cores in the NVIDIA terminology [33]. Each SM
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Figure 1: GPGPU architecture and thread execution model
in Cuda

has its own shared memory, which is equally acces-
sible by all CUDA cores in the SM. At any given
cycle, the CUDA cores in a SM execute the same
instruction on different data items. SMs communi-
cate with each other through the global memory of
GPU.

From the programmers’ perspective, the CUDA
model [33] is a collection of threads running in par-
allel. A collection of threads (called a block) runs
on a multiprocessor at a given time. Multiple blocks
can be assigned to a single multiprocessor and their
execution is time-shared. A single execution on
a device generates a number of blocks. A collec-
tion of all blocks in a single execution is called a
grid (Figure 1b). All threads of all blocks execut-
ing on a single multiprocessor divide its resources
equally amongst themselves. Each thread and block
is given a unique ID that can be accessed within the
thread during its execution. The code running on
GPU is actually executed in groups of 32 threads,
what NVIDIA calls a warp. The threads within the
same warp can run simultaneously on a streaming
multiprocessor (SM). The programmer decides the
number of blocks and threads to be executed. If the
number of threads is more than the warp size, they
are time-shared internally on the multiprocessor.

2.2. An Overview of Edge Centric Processing on
GPU

It has been shown that because it allows sequen-
tial access to the edges, the edge-centric approach
can improve I/O performance for disk-based graph
processing, which requires frequent disk accessing
during the execution [28]. Similarly, the sequential
access to the GPU memory is critical to the per-
formance of GPU applications [18]. This is because
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Figure 2: An exemplar graph and its edge centric represen-
tation

the sequential access guarantees the coalesced ac-
cess to the global memory on the GPU device [18].
This section first gives an overview of edge centric
graph processing on GPU and introduces the data
structure used to represent the graph, and then fur-
ther presents the computation model used in Wolf-
Graph.

2.3. Edge centric Graph data structure

The input data of the edge centric processing is
an unordered set of directed edges (an edge in undi-
rected graphs can be represented by a pair of di-
rected edges, one in each direction). A graph is rep-
resented in memory by an edge list, which consists
of three one-dimensional arrays: the vertex array,
the source array and the destination array. The
vertex array is used to store the state of each ver-
tex. This array is indexed by the vertex ID, that is,
ith entry of the vertex array contains the state of
the vertex with ID i (e.g., the distance of the path
connecting to vertex i). The source array and the
destination array are used to store the source and
destination vertices of each edge respectively. The
ith entries in the source array and the destination
array form an edge in the graph. In addition, if it
is needed, an array of edge weights can be added to
this graph representation structure. Figure 2 illus-
trates the edge-centric representation of a sample
graph, in which there are 6 vertices and 9 edges.

Unlike other data structure for graphs, the edge-
centric graph representation does not require any
pre-processing of the data because of the way the
edge list is constructed in the memory. When con-
structing the edge list, an edge is read from the raw
data in the disk each time. The edge is stored in
the same order in the edge list as it is in the raw
data. Therefore, the raw data is only read sequen-
tially once to construct the edge list in the mem-
ory. Consequently, the time spent in constructing
the graph data structure in memory is minimized.

2.4. Computation model

The read-compute-write iterative processing
model has been used in literature to process graphs.
The advantage of this model is that the graph edges
can be processed in any order without affecting the
correctness of the final result. Therefore, the graph
processing can be parallelized.

The read-compute-write model works in the fol-
lowing way. The model runs a loop of iterations
to update the vertex/edge values until none of the
vertex/edge values in the graph changes in an it-
eration. Each iteration consists of three phases:
read, compute and write. The read phase first gath-
ers the source and destination vertex for each edge
(stored in the source and destination arrays in the
edge list), and then uses the IDs of the fetched ver-
tices to obtain the corresponding vertex values from
the vertex array. The compute phase uses the data
gathered in the read phase to update the values
of corresponding edges/vertices. The write phase
writes the updated values back to the vertex array
so that the updated values can be used in next iter-
ation. Note that an iteration in the read-compute-
write iterative processing model is different from an
iteration in the vertex-centric processing model. In
an iteration in the vertex-centric model, the model
expands as many edges as possible from a vertex.

In each iteration of the read-compute-write
model, all edges in the graph need to be processed
and the edge/vertex values are updated. The com-
putations of the edges are unordered, i.e., indepen-
dent of each other. Therefore, the edge computa-
tions in each iteration can be performed in parallel.
It is straightforward to evenly distribute the work-
load across threads in such an unordered model.
Note that on the contrary, the vertex-centric model,
which visits the graph by vertex and represents the
graph by the adjacency list, is inherently difficult
to be load-balanced among threads, because each
vertex is connected to a different number of edges.

3. In-memory processing engine in Wolf-
Graph

The in-memory engine is designed for process-
ing the graphs which can be fitted in the global
memory of GPU. When designing the in-memory
engine, the key is to achieve a good degree of paral-
lelism. Therefore, in this section, we first describe
how to map the workload to the GPU threads and
parallelize the computation process, and then dis-
cuss how to exploit the memory hierarchy of GPU
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to improve the performance. We also present the
APIs provided by WolfGraph and demonstrate how
to program with these APIs at the end of the sec-
tion. The in-memory processing engine will serve
as the core component for processing the graphs
whose sizes are bigger than the global memory of
GPU, which we call out-of-memory graph process-
ing and will be discussed in Section 4.

3.1. Parallel processing in WolfGraph

As discussed in the previous section, WolfGraph
is based on the read-compute-write iterative pro-
cessing model, and the edge computations in each
iteration can be processed in parallel on GPU. To
facilitate efficient graph processing, it is crucial to
develop a suitable strategy to allocate the workload
to GPU threads.

In WolfGraph, an edge is allocated to a thread
and the continuously indexed threads process the
edges that are stored in the contiguous memory
space. This way, the coalesced memory access to
the edges can be achieved in GPU. Once a thread
completes the computation in an iteration (i.e., up-
dates the value of a vertex), it writes the updated
vertex values to the corresponding locations in the
vertex array.

We identify two problems that need to be ad-
dressed in the write phase. First, since a single
vertex array is shared by all GPU threads, multi-
ple threads may write to the same memory loca-
tion during the write phase. To address this prob-
lem. WolfGraph uses the CUDA atomic opera-
tion to synchronize potential simultaneous writes
by threads.

Second, the vertex array is constructed in the
CPU memory and copied to the GPU global mem-
ory at the beginning of the graph processing. When
the threads write the newly computed data to the
corresponding locations in the vertex array in each
iteration, these locations may not be contiguous,
which causes the random access to the vertex ar-
ray in global memory. Our benchmarking experi-
ments show that this is a factor that impairs the
performance. To mitigate the performance degra-
dation caused by the random access to global mem-
ory, WolfGraph does not write the newly updated
data directly to the global memory, but write them
(and synchronize, if necessary) to the shared mem-
ory first and then launch a separate kernel to write
the new data to the global memory. It has two ben-
efits by doing so. First, the number of random ac-
cesses to the global memory is significantly reduced.
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Figure 3: The Edge block representation of graph in Figure
2a

Although the writes to the shared memory is still
random access, they are much faster than the ran-
dom access to the global memory. Therefore, the
overall performance is significantly improved com-
pared with writing the new data directly to the
global memory. This benefit is analyzed in detail
later in this section and is also supported by our
experiments in the later part of this paper. Second,
by writing the new data first to the shared mem-
ory, some of the necessary data synchronizations
are moved from the global memory to the shared
memory. We have conducted the benchmarking ex-
periments about this. We made two observations
from the experimental results: 1) synchronization
in shared memory is faster than synchronization in
global memory when the degree of synchronization
(i.e., the number of threads that write the data si-
multaneously to the same location in memory) is
less than a threshold ; 2) caching the new data in the
shared memory can reduce both the degree of syn-
chronization and the number of synchronizations in
global memory.

3.2. In memory data structure of WolfGraph

Our research shows that the graph representation
presented in Section 2.3 does not exploit the GPU
memory hierarchy effectively. In this section, we
present the extension to the data structure and also
discuss the memory usage.

One aim of this work is to minimize the pre-
processing time of a graph. We have discussed in
Section 2.3 that the time spent in constructing the
edge list is minimized. We also discussed that the
read-compute-wirte iterative model enables us to
process the edges in an unordered way, i.e., the pro-
cessing of the edges can be parallelized.
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Once the size of the edge block (i.e., the number
of edges in an edge block) is known, the edge list
can be split with minimal effort. We will present
the method of determining the edge block size later
in this paper.

In the hard disk, the graph is stored as a list
of edges. When WolfGraph reads the graph from
the hard disk, it constructs an edge list (contain-
ing three arrays: src index, dest index and edge
value arrays) and a vertex-value array in the CPU
memory as shown in Section 2 (Fig. 2), which will
be copied from CPU memory to global memory of
GPU. In a GPU, WolfGraph splits the edge list into
smaller edge blocks (We will introduce the method
of determining the size of edge blocks later in this
paper), each of which consists of a set of edges.
The threads that are processing the graph are or-
ganized in thread blocks. A thread block processes
an edge block. Multiple thread blocks process the
edge blocks in parallel. Within a thread block, an
edge is processed by a thread in parallel. When a
thread in a thread block processes an edge, it ob-
tains its global thread index (assuming the thread
index is i) in GPU and reads from the i-th ele-
ment in the edge-value array to obtain the edge
value. Then the thread obtains the index of the
source node of the edge by reading the i-th ele-
ment of the src index array and reads the value of
the source node from the vertex-value array using
the source index. After applying the user-defined
graph processing algorithm (e.g., shortest path al-
gorithm), it will generate an updated value for the
destination node of the edge. In order to achieve
the benefits discussed at the beginning of section
3 (i.e., reducing the number of random access to
GPU global memory and also reducing the number

of and the degree of data synchronization in global
memory), the thread writes the updated value of
the destination node first to the shared memory. In
order to facilitate this, WolfGraph adds two new
data structures: a shared-index array for the whole
graph and a local-vertex-value array for each thread
block. The local-vertex-value array is stored in lo-
cal memory and used to hold the updated values
of the destination nodes after processing the edges,
while the shared-index array is in global memory
and used to indicate to the thread which position
the updated value of the corresponding destination
node should be written into in the local-vertex ar-
ray. As an example, the data structure and mem-
ory allocation for the graph in Fig. 2 are shown
in Fig. 3. In the figure, the graph is divided into
two edge blocks with 5 edges in block 0 and 4 edges
in block 1, which are processed by thread block 0
and thread block 1, respectively (tidx in the thread
blocks represents the thread id). The first element
of the Share-index array is 0, which means that
the updated value of the destination node of the
edge < 2, 3 > (the updated value is denoted by x′3)
should be written in the location with the index of
0 in the local vertex array (i.e., the first element of
the array) in the shared memory.

3.3. Analysis of thread synchronization

As discussed above, our design requires the
thread synchronisation in global memory. The
thread synchronisation is implemented by the
atomic operations. When designing applications
on GPU, shared memory has been widely used to
improve the performance due to its higher access
speed than global memory. However, executing
atomic operations on shared memory is rather un-
common. There has been the research indicating
that thread synchronisation in shared memory is
slower than that in global memory [33]. We studied
this phenomenon and found that although Nvidia
does not reveal the implementation details of the
atomic operations in global memory and shared
memory, the underlying reason for this performance
discrepancy may be because the atomic operations
in global memory and shared memory are imple-
mented in different ways. In shared memory, the
atomic operations are implemented using the ex-
plicit lock and unlock. When multiple threads ac-
cess the same location in shared memory, they are
put in a mechanism like a loop and their atomic op-
erations are processed in sequence. When a thread
invokes the atomic operation to access the data, it
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locks the memory location, accesses the data and
unlocks it after the operation is completed. In the
global memory, however, the atomic operation is
optimised and implemented with a single hardware
instruction [33].

We reason that since multiple threads that are
calling the atomic operations are placed in a loop
and processed in sequence, the number of these
threads should have impact on synchronization per-
formance. Based on this reasoning, we conducted
the following benchmarking experiments and we
gain new findings.

We wrote a benchmarking program. The key ker-
nel of the program is shown in Algorithm 1. In the
kernel, each thread performs the atomicMin oper-
ation to write data into shared memory or global
memory. The atomicMin operation takes two pa-
rameters as input. The second parameter is the
data that the operation is writing while the first
is the memory location which the data is written
into. The atomicMin operation compares the data
of the first parameter with the data in the mem-
ory location of the second parameter, and then
the memory location will store the smaller value
between them two. There are two arrays, result
and location, in the program. An element in the
location array holds a location that the data should
be written into in the result array. When the ar-
rays are defined in global memory (or shared mem-
ory), the program accesses the global memory (or
shared memory). The kernel is run with a single
block of 1024 threads, which is the maximum num-
ber of threads that a thread block can support in
our GPU device (GTX 780TI). The synchroniza-
tion degree (i.e., the number of threads that are
storing the data in the same location in the result
array) is controlled by setting the element values
of the location array. The synchronization degree
varies from 2 to 512. When the degree is 2, ev-
ery two threads write to the same location of the
result array. When the conflict degree is 512, a half
of threads in the 1024 threads all write to a same lo-
cation of the result array and the other half write
to another same location. The kernel was run 10
times for both accessing shared memory and access-
ing global memory. The average time for running
the kernel with different synchronization degrees is
plotted in 5.

As can be observed from Fig. 5, the average time
spent in writing the data remains approximately
unchanged in global memory as the synchroniza-
tion degree increases, while the time for writing

Algorithm 1: Mini Benchmark

1 __device__ void benchmark(int *location ,

int *values , int *result)

2 {

3 int thread_id = threadIdx.x;

4 int v = values[thread_id ];

5 int l = location[thread_id ];

6 atomicMin (& result[l], v);

7 }
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Figure 5: The run-time of the benchmark program with dif-
ferent synchronization degree in shared memory and global
memory

data to shared memory increases as the synchro-
nization degree increases. When the synchroniza-
tion degree is higher than a certain value, writing
data in shared memory takes longer than writing
in global memory. This result can be explained as
follows. The CUDA kernel runs in groups of 32
threads, which is called a warp. When they invoke
the atomic operation for accessing shared memory,
their operations are processed in sequence by the
CUDA library. If some threads are accessing the
same memory location, they need to wait for the
lock of the memory location to be released. When
more threads are accessing the same memory lo-
cation (i.e., the synchronization degree is higher),
the longer the threads potentially have to wait and
therefore delay processing of other threads’ atomic
operations in the same warp. Although threads ac-
cess the shared memory faster than the global mem-
ory, the longer delay caused by higher synchroniza-
tion degree will eventually cancel the speed advan-
tage of share memory.

Our GPU device, GTX 780TI, supports running
maximum 2048 threads and 32 thread blocks in a
SM. Since a thread block is allocated with the sep-
arate shared memory space, running a GPU kernel
with a higher number of thread blocks will lead to
a lower synchronization degree. If the maximum
number of thread blocks is used, the number of
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threads in each thread block is 2048/32 = 128,
which means that the maximum synchronization
degree in theory is 128. As shown in Figure 5,
only when the synchronization degree is more than
approximately 256, will the synchronization over-
head in shared memory become higher than that
in global memory. Therefore, we hypothesize that
caching data access (and therefore synchronization)
in shared memory will benefit the performance
when 32 thread blocks are used to run the GPU ker-
nel in a SM. The number 128 is the maximum syn-
chronization degree in theory. Note that no matter
how high the vertex degree is in a graph, the syn-
chronization degree in the shared memory is limited
to 128.

We also conducted the following experiments to
gain the insight into the realistic synchronization
degree in graph processing. In these experiments,
we are running the single source shortest path
(SSSP) algorithm with the following 3 real world
graphs, amazon0601, webgoogle and liverJournal.
The number of thread blocks are set to be 32.

In the first experiment, we record for each graph
the highest number of synchronisation among all
thread blocks in each iteration, i.e., the highest
number of threads that write the data simultane-
ously to the same shared memory location. The re-
sults are shown in Figure 6. It can be seen from the
figure that the highest synchronisation degrees are
only 12, 10 and 16 for the three graphs. This result
suggests that when processing the three graphs, the
actual synchronisation degree is much less than the
threshold (256) shown in Figure 5.

After caching the data access and synchronisa-
tion in shared memory, the synchronised data ac-
cess to global memory should be reduced. We con-
ducted the experiments to show the reduction of the
synchronised writes to the global memory. In the
experiments, we processed the three graphs by us-
ing the shared memory and also by only using the
global memory, and then recorded the number of
writes in each iteration that refer to the same mem-
ory location in both cases. The results are shown
in Figure 7. It can be seen from the figure that by
caching the data access in shared memory, the syn-
chronised writes to global memory, which is random
writes, are significantly reduced.

When we ran the experiments for Figure 7, we
also recorded the execution time of each iteration in
both cases. The results are plotted in Figure 8. As
can be seen from the figure, caching the data access
in the shared memory leads to much less execution

time, compared with performing atomic operations
entirely in global memory. These results verify our
earlier hypothesis, i.e., caching the data access and
synchronisation in shared memory can improve the
performance.
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Figure 6: Maximum conflict among all thread blocks

3.4. Two-level GPU processing and memory access
pattern

Based on the finding above, we propose a two-
level execution mode as follows to reduce random
access and the synchronization overhead in global
memory.

The iterative graph processing goes through a
number of iterations to calculate the vertex val-
ues. In each iteration, a kernel, called the edge-
processing kernel, is launched with multiple thread
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Figure 7: Conflict writes to global memory with and without
using shared memory

blocks. A thread block processes an edge block.
In a thread block, each thread processes one edge
and calculates the value of the vertex associated
with the edge in parallel. When a thread in a
thread block obtains a new value for the vertex in
the edge block, it accesses the shared index array
and applies the atomic operation to write the new
data to the local vertex-array of the edge block in
shared memory. The atomic operation will perform
synchronisation if more than one thread updates
the data in the same location. Then the edge-
processing kernel exits and another kernel, called
global-updating kernel, is invoked to write the new
values of the vertices in each local vertex array to
the corresponding locations of the global vertex ar-
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Figure 8: Execution time per iteration. (ms)

ray in the global memory. In the global updating
kernel, multiple thread blocks are generated, each
block is used to write the data in a local vertex ar-
ray to the global vertex array. In a thread block,
a thread calls the atomic operation to write a data
item to the global memory. Synchronisation is per-
formed when the threads in different thread blocks
update the data simultaneously to the same loca-
tion in the global memory. After the updating is
completed, the global updating kernel exits. Note
that the synchronisation in global memory is not
guaranteed before the global updating kernel exits.

With this two-level execution mode, each edge
block is processed by a thread block in the GPU
in the following 4 steps, which is shown in Fig-
ure 4. First, threads within each thread block
read all information in the edge block in parallel.
The threads with consecutive thread ID in a thread
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block read the edge information residing in contigu-
ous global memory locations, thus providing the co-
alesced global memory access. In the second step,
based on the vertex information fetched in the first
step, the threads fetch the vertex values from the
global vertex array to the shared memory of the
thread block. Here, the access to the Global-Vertex
array is random. In Step three, the threads com-
pute the updated value for the destination vertex
of each edge and write the result back to the shared
memory. Synchronisation is performed when mul-
tiple simultaneous data writing refers to the same
location. The last step performs the synchronisa-
tion between different thread blocks by writing the
local vertex values to the global vertex value array.
As can be seen, the memory access in the steps
except step 1 is not coalesced. Although the ran-
dom memory access can be eliminated by more so-
phisticated graph partitioning methods, these par-
titioning methods will increase the pre-processing
time significantly. For example, in CuSha, the
graph is first partitioned into disjoint sets of ver-
tices. Each partition (shard) stores all the edges
whose destinations are in that set. Then, the edges
in a partition are sorted based on the ID of source
vertices. By partitioning the graph in this way,
the consecutive threads can access the consecutive
memory locations in the global memory when read-
ing/writing the values of destination vertices in-
to/from the shared memory. However, such parti-
tioning method incurs much longer pre-processing
time due to the activities of sorting the edges and
finding the appropriate partition sizes.

3.5. Implementing GPU-based graph processing al-
gorithms using WolfGraph

Users can implement a broad range of graph pro-
cessing algorithms with WolfGraph. In this section,
we take the Single Source Shortest Path (SSSP) al-
gorithm as an example to show how to write a GPU-
based graph processing program using WolfGraph.

The edge-centric approach to implementing SSSP
is to iteratively update the value of the destination
vertex of every edge by adding the value of an edge
to the value of the source vertex of the edge. The
calculation repeats until the values of the destina-
tion vertices of all edges do not change any more.
Algorithm4 presents the pseudo code of the SSSP
functions.

Algorithm 2 shows the part of the pseudo code
that runs on the host/CPU. The host iteratively
launches the GPU kernels until the results converge

(i.e., not converge is true). In SSSP, convergence
means that the path distance from source to every
vertex does not change any more. At the end of
each iteration, the device copies the value of the
not converge variable back to the host memory (line
8) and the CPU then determines whether the graph
processing is completed according to the value of
not converge.

Algorithm 2: Pseudo code of host function

1 /*host function */

2 not_converge = true;

3 while(not_converge){

4 not_converge = false;

5 copy not_converge to GPU;

6 process_edge ();

7 update_vertex ();

8 copy not_converge back to CPU;

9 }

Algorithm 3 shows the kernel functions in Wolf-
Graph. Each edge block is processed by a thread
block. In the first kernel process edge, the consecu-
tive threads read the edge information and use this
information to initialize the vertex data. (Line 5-
12). The access pattern to the Global memory in
these steps is shown in Figure 4. The computation
is performed by invoking the compute method de-
fined by the user. Since multiple threads within the
block may simultaneously update the same location
in the shared memory, the atomic function is used
to update the destination vertex. Because the or-
der of function invocations is non-deterministic, the
compute function must be both commutative and
associative.

Then a second kernel update vertx is launched.
In this kernel, a flag called value updated is used to
indicates whether or not the vertex values are up-
dated. It is initially set to false (line 23). Each
thread invokes the is update method (lines 24),
which is another user defined function to check
whether or not to write the updated value back to
global memory. The threads will update the con-
tents of global memory and set values updated to
true if the not update method returns true. If val-
ues updated flag is set to true, the vertices in the
global vertex array are updated atomically with the
newly computed value and the not converge flag is
set to true. Even though the memory accesses to
global vertex array are not fully coalesced in this
case, it requires less number of memory transac-
tions than directly write to global vertex array.
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Algorithm 3: Pseudo code of kernel function

1 __global__ process_edge(src_index ,

dest_index ,shared_index , edge_values){

2 /* parallel for edge blocks:*/

3 shared share_local_vertex[N];

4 /* step 1 fetch edge information ,

coalesced access */

5 source_vertex = src_index[tid];

6 destination_vertex = dest_index[tid];

7 shared_index = shared_index[tid];

8 edge_value = edge_values[tid];

9

10 /* step 2 initialise vertex value , non -

coalesced access */

11 share_local_vertex[shared_index] = global

[destination_vertex ];

12 src_value = global_vertex[source_vertex ];

13 __synchronize;

14

15 /* step 3 compute the update vertex value

*/

16 parallel for each thread invoke:

17 compute(src_value , share_local_vertex[

shared_index], edge_value);

18 }

19

20 __global__ update_vertex(global_vertex ,

shared_local_vertex);

21 /* step 4 write back and check if the

computation is converged */

22 /* parallel for vertex in

shared_local_vertex:*/

23 value_updated = false;

24 if(is_updated(shared_local_vertex[tid],

global_vertex[destination_vertex ])

25 {

26 atomicMin (& global_vertex[

destination_vertex],

shared_local_vertex[tid]);

27 value_updated = true;

28 }

29

30 if(value_updated == true)

31 {

32 not_converge = true;

33 }

Algorithm 4 presents the functions required to
compute SSSP on a graph. In SSSP, every ver-
tex holds a value (initially set to a very large
number representing ∞) standing for the shortest
distance from the source. Source vertex value is
set to 0. At the beginning of each iteration, the
init shared vertex method loads the most updated
vertex values into the block’s shared memory. The
compute function is act on every edge, it first com-
putes the new distance for a destination vertex,
then atomically choosing the minimum distance be-
tween the current and the calculated distances. The

is update function notifies the caller to execute the
next iteration if the new distance of the destina-
tion vertex is smaller than its old value. As we can
see, the user only need to provide the compute and
is update functions; hence making it easier to code
graph processing algorithms using WolfGraph.

Algorithm 4: Pseudo code of SSSP implementation in Wolf-
Grahp

1 __device__ void compute(src_value ,

share_local_vertex , edge_value)

2 {

3 if(share_local_vertex != INF)

4 {

5 atomicMin (&( share_local_vertex ,

src_value+edge_value));

6 }

7 }

8

9 __device__ bool is_updated(

shared_local_vertex , global_vertex)

10 {

11 if(shared_local_vertex < global_vertex)

12 {

13 return true;

14 }

15 return false;

16 }

4. Out-of-memory graph processing in Wolf-
Graph

In the last section, we presented the design and
implementation of in-memory processing of Wolf-
Graph, i.e., the case where the entire graph can
fit into the global memory of GPU. However, the
size of GPU global memory is much smaller than
the host memory. The sizes of real world graphs
can vary from few gigabytes to terabytes, which
are too large to be loaded into GPU global mem-
ory all at once. Therefore, in this section, we design
an out-of-memory graph processing framework that
can process such large-scale graphs.

4.1. The graph partition method

The general idea of designing an out-of-memory
graph processing framework is to partition the
graph into sub-graphs that can fit into the GPU
memory and process these sub-graphs in GPU one
at a time. There are two key issues that need to be
addressed properly. First, we still want to minimize
the pre-processing time as we do for in-memory
graph processing. So the graph partition should
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not incur many pre-processing efforts. Second, a
common problem of processing sub-graphs one at
a time is that when a sub-graph is being processed
or after it has been processed, the graph processing
algorithm needs to access the previously processed
sub-graph to update the newly calculated results.
In the GPU environment, however, this requires the
data exchanges between GPU’s global memory and
CPU main memory, which will incur high overhead
and should be reduced as much as possible. Next,
we present the methods that we develop to address
the above two issues.

As the graph data is read into the CPU memory,
the data structure such as the one in Figure 3 is con-
structed in the CPU memory, including the edge
list and the global-vertex-value array. To address
the first issue, i.e., to minimise the time spent in
graph partitioning, the out-of-memory graph pro-
cessing framework splits the edge list into chunks
(each chunk is a subgraph) in the similar way as we
split the graph into edge blocks in the in-memory
graph processing. Namely, a graph is partitioned
into the equal-sized subgraphs in each of which the
edges are in the same order as they are in the graph
raw data. Therefore, there is no need to pre-process
the graph. In the out-of-memory graph processing,
we do not partition the global-vertex-value array.
The reasons are two folds. First, to obtain the ver-
tices for a subgraph, we have to search the global-
vertex-value array to construct the vertex sub-array
that contains the vertices in a subgraph, which in-
curs the pre-processing. Second, we argue there
is no practical need to partition the global-vertex-
value array. Since compared to the memory space
occupied by edges, the memory space required by
vertices is small. For example, in the graph ara-
bic2005 [34], the edges take 10.24 GBytes memory
space while the vertices only occupy 90.98 MBytes
space (each vertex value is stored as an integer).
The vertices of an entire graph can be easily ac-
commodated in GPU global memory, even for very
large-scale graphs.

The size of each subgraph is determined in the
following way. Assume the size of GPU global mem-
ory size is G, and the entire graph has |N | vertices
and |E| edges. Because we put the whole vertex
array into the GPU global memory, the remaining
memory space for holding the edge list of a sub-
graph is then G− |N | ∗ sizeof(vertex) (a vertex is
represented as an integer or a floating point num-
ber depending on the graph processing algorithms).
As shown in Figure 3, an edge is represented by

Source	Array

Destination	Array

2 2 0 1 4
3 1 2 3 5

Sub	Graph	0 Sub	Graph	1

0 3 2 3
1 4 4 5

Figure 9: An example of partitioning graph in Figure 2a into
2 sub-graphs

4 elements: source index, destination index, edge
value and shared index value. Therefore the size of
an edge is 3 ∗ sizeof(int) + sizeof(edge value) (an
edge value is an integer or a floating point number
depending on graph processing algorithms). The
number of edges that GPU global memory can hold,
denoted by e, can then be calculated by

e = b G− |N | ∗ sizeof(vertex)

3 ∗ sizeof(int) + sizeof(edge value)
c (1)

This graph partition method does not require any
pre-processing. It simply puts the first e edges in
the edge list in the first subgraph, next e edges in
the second subgraph, etc, as Wolfgraph reads the
graph raw data from the hard disk into the CPU
memory. This process requires only one sequential
read of the graph from the hard disk. As an ex-
ample, the graph in Fig. 2a can be partitioned into
subgraphs shown in Fig. 9.

4.2. Out-of-memory graph processing engine

After partitioning the graph into subgraphs, the
out-of-memory graph processing engine processes
the subgraphs one by one. The processing engine
starts with loading the first subgraph into the GPU
global memory, processes the subgraph using the
in-memory processing engine presented in previous
sections, and copies the results back to the CPU
memory when the computation for the subgraph is
completed. Then the processing engine moves to
the next subgraph and repeats the process. In the
out-of-memory processing, an iteration is defined
as a round of processing all subgraphs with the in-
memory processing engine. When an iteration is
completed and there are still vertices whose values
are updated in this iteration (i.e., the graph pro-
cessing has not converged yet), the processing en-
gine enters the next iteration and repeats the above
process from the first subgraph again. This loop ex-
its when the vertices’ values in all subgraphs remain
unchanged in an iteration.
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Although the graph partition method in previous
subsection does not require pre-processing, the par-
tition may cause excessive data exchanges between
GPU and CPU during the processing of the graph,
which hampers the performance. The following ex-
ample is used to illustrate this issue.

We still use the graph in Fig. 2a as the exem-
plar graph. Assume the SSSP (Single Source Short-
est Path) algorithm is used to process this graph,
and the graph is partitioned into two subgraphs as
shown in Fig. 9. In this example, the SSSP algo-
rithm requires a loop of 3 iterations as follows to
finish the processing of the graph.

In the first iteration, subgraph 0 is processed
first. According to the edge-centric processing, the
in-memory processing engine goes through another
loop to process the edges in a subgraph in parallel
by taking as input the weights of the edges and the
current values of their source vertices. The weights
of the edges and the initial values of their source
vertices are shown in Figure 2b. In the first it-
eration of processing subgraph 0, the thread that
processes the edge < 2, 3 > updates the value of
vertex 3 to be 1 (∞ + 1 = ∞), since the weight of
the edge is 1 and the current value of its source ver-
tex (i.e., vertex 2) is ∞. Similarly, after processing
the edges < 0, 2 >, < 1, 3 > and < 4, 5 > in the
first iteration, the new values of vertices 1, 2, 3 and
5 (i.e., the destination vertices of these edges) are
shown in the row of “iteration 1” in the sub-table of
processing subgraph 0 in Table 1. Since the values
of the vertices are still not stable, the processing of
subgraph 0 moves to next iteration. In the second
iteration, the vertices will be updated with the val-
ues shown in the row of “iteration 2”. There are two
issues to note in the second iteration. First, since
the edges < 2, 1 > and < 1, 3 > are processed in
parallel, the processing of the edge < 1, 3 > takes as
input the current value of vertex 1 (∞), not the up-
dated value after processing the edge < 2, 1 > (i.e.,
18). Second, a thread that processes an edge uses
the atomic operation to write the minimal value
to the vertex value array when multiple threads are
writing the values to the same array location simul-
taneously. The edges < 2, 3 > and < 1, 3 > have
a common destination vertex (i.e., 3). Therefore,
when these two threads write the new values into
the position of vertex 3 in the vertex value array,
the minimal value, which is 13 (not ∞), is written.
Since the values are updated in the second itera-
tion, the processing goes into the third iteration.
The values of all vertices in subgraph 0 remain un-

Table 1: The Edge-centric Processing for the graph in Figure
9

Processing subgraph 0 in Figure 9
vertex 0 1 2 3 4 5
initial values 0 ∞ ∞ ∞ ∞ ∞
iteration 1 0 ∞ 12 ∞ ∞ ∞
iteration 2 0 18 12 13 ∞ ∞
Processing of subgraph 1 in Figure 9
vertex 0 1 2 3 4 5
initial values 0 18 12 13 ∞ ∞
iteration 1 0 3 12 13 18 15

changed in the third iteration. So the in-memory
processing for subgraph 0 is completed.

The out-of-memory processing engine then copies
subgraph 1 to the GPU and invokes the in-memory
processing engine to process subgraph 1. When pro-
cessing subgraph 1, vertex 1 is updated with a new
value 3. Other vertices are updated with the values
shown in the row of “iteration 1” in the sub-table
of processing subgraph 1 in table 1. After iteration
1, the values of all destination vertices remains un-
changed and therefore, the processing of subgraph
1 is completed.

After the first iteration of the out-of-memory pro-
cessing is finished, the out-of-memory processing
moves to the second iteration. In the second it-
eration, when processing subgraph 0, the engine
updates vertex 3 with the value 8. When process-
ing subgraph 1, the engine updates verices 4 and 5
with the values 15 and 10, respectively. In the third
iteration of the out-of-memory processing, the val-
ues of all vertices remain unchanged in both sub-
graphs. Therefore, the out-of-memory processing
of the graph exits, returning the shortest distance
from vertex 0 to all other vertices.

In this example, the out-of-memory processing
goes through three iterations to complete the com-
putation and consequently, the graph is copied to
the GPU three times. The CEL (Concatenate Edge
List) method is presented in next section to reduce
the number of times the graph is copied to GPU in
the out-of-memory processing.

4.3. The Concatenated Edge List representation

In iterative graph processing, the fundamental
reason behind the repetitive loading of a subgraph
is because the graph partition method essentially
partition the graph randomly and it may place an
edge and its child edges (Edge A is called the child
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of edge B if B’s destination vertex is A’s source ver-
tex) in different subgraphs. If the edge’s child edges
are processed before the edge, then the subgraph
that contains the child edges need to be loaded
and re-processed again after the parent edge is pro-
cessed.

After identifying the reason behind the repeti-
tive loading of subgraphs, a method called Concate-
nated Edge List (CEL) is designed in WolfGraph to
reduce the number of times a graph is copied from
CPU to GPU.

Inspired by Parallel Sliding Window method de-
veloped in GraphChi [13] and Concatenated Win-
dows developed in CuSha [18], we developed a
method called Concatenate Edge List (CEL) to
overcome the above problem. The first step in
the CEL method is similar as in Subsection 4.1.
Namely, we determine the number of subgraphs
that the graph has to be partitioned into, so that
each subgraph can be fitted into the GPU global
memory. Then we evenly split the edges into each
subgraph. To reduce the data exchanges between
CPU and GPU, WolfGraph transfers the concate-
nated edge list into GPU instead of transferring the
subgraph into GPU.

The CEL is built in the following way. When
WolfGraph processes a subgraph, it identifies such
edges in the this current subgraph that have succes-
sor edges in the subgraphs that have been processed
in this iteration of out-of-memory processing. Wolf-
Graph selects all successor edges of the current sub-
graph and append them to the current subgraph,
which is the CEL for the current subgraph.

Note that WolfGraph only selects the successor
edges of the current subgraph from the subgraphs
that have been processed in this iteration of out-of-
memory processing, not from the subgraphs that
have not been processed yet in this iteration. This
is because if a sub-graph that contains the succes-
sor edges of the current subgraph has not been pro-
cessed yet, the subgraph, including the successor
edges of the current subgraph in this subgraph, will
be processed later after the current subgraph in this
iteration. Adding these successor edges into the
CEL will not help reduce the number of iterations
in the out-of-memory processing.

Due to the fact that there may be the vertices
with high degrees in the graph, the constructed
CEL may be too big to fit into the GPU mem-
ory. In the event this happens, WolfGraph splits the
constructed CEL into smaller CELs until each split
CEL can fit into the GPU memory. Then Wolf-

Graph transfers the CEL to GPU and processes it
using the in-memory processing engine.

An example is shown in Figure 10 to illustrate
the construction of the CEL. In this example, we
partition the graph in Figure 2a into two sub-
graphs. The out-of-memory processing engine pro-
cesses subgraph 0 first. Since all other subgraphs
(i.e., subgraph 1 in this example) have not been pro-
cessed yet, there do not exist the successor edges of
subgraph 0 in the subgraphs that have been pro-
cessed in this iteration of out-of-memory process-
ing. Therefore, the CEL of subgraph 0 is the same
as subgraph 0. When processing subgraph 1, Wolf-
Graph first identifies all successor edges of subgraph
1 in the subgraphs that have been processed in this
iteration, which is subgraph 0 in this example. The
successor edges of subgraph 1 in subgraph 0 are
< 1, 3 > and < 4, 5 >. Therefore, WolfGraph ap-
pends these two edges to subgraph 1, which is the
CEL for subgraph 1. Then WolfGraph transfers the
CEL to the GPU memory and processes the CEL
using the in-memory processing engine.

By using the CEL method, there is no need to
load the subgraphs again that have been processed
in this iteration of out-of-memory processing and
contain the successor edges of the subgraph that is
being processed. Hence, the number of iterations
and consequently the overall processing time can
be reduced.

To enable the fast identification of the successor
edges from other subgraphs, we assign a global in-
dex to each edge and design a mapping array to
record the relationship between a vertex and the
edges that start with this vertex. An example of the
mapping array is shown in Figure 10. In this figure,
a global index of an edge is at the left side of the
edge. For example, the edges < 2, 3 > and < 2, 1 >
have the indices of 0 and 1, respectively. The map-
ping array records the mapping between a vertex
and the edges that start from the vertex. With the
mapping array, we can quickly identify whether a
destination vertex (i.e., the vertex is the destina-
tion of an edge) in the current subgraph have the
child edges. If there are, the global indices of the
edges can be used to quickly locate which subgraphs
that these child edges are in since WolfGraph par-
titions the edges into subgraphs in their storing or-
der and WolfGraph knows how many edges there
are in each subgraph. For example, vertices 1 and
4 are two destination vertices in subgraph 1. It can
be seen from the mapping array that there is one
edge, which has the index of 3, starting from vertex
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Figure 10: An example of building the CEL (concatenated
edge list) from two sub-graphs. The gray area represent
the edges included in the CEL when processing the current
subgraph.

1 and that there is one edge, which has the index
of 4, starting from vertex 4. WolfGraph knows that
the edges with the indices 3 and 4 are in subgraph
0 and subgraph 0 has been processed in this itera-
tion. Therefore, these two edges are retrieved and
appended to subgraph 1 to construct the CEL for
subgraph 1.

The following example is used to illustrate the ef-
fectiveness of the CEL method. We still apply the
SSSP algorithm to process the graph in Figure 9.
In the first iteration of out-of-memory processing,
the processing of subgraph 0 is the exactly same
as the previous example shown in Table 1. When
processing subgraph 1, the out-of-memory process-
ing engine first constructs the CEL for subgraph 1,
the constructed CEL is shown in Figure 10. When
processing this CEL, the vertices 1, 3, 4, 5 are up-
dated with the values of 3, 8, 15, and 10 respec-
tively. In the second iteration of out-of-memory
processing, the new values computed for these ver-
tices are greater than or equal to the current values
stored for these vertices. Therefore, the engine will
not update any vertices. Namely, the values of all
vertices remain unchanged in this out-of-memory
processing. Therefore, the processing of the entire
graph exits after the second iteration. Compared
with the example presented in subsection 4.2, the
CEL method reduces the number of out-of-memory
processing iterations from 3 to 2, and therefore, re-
duces the overall processing time.

5. Implementation of WolfGraph

WolfGraph consists of three main components:
Loading Engine, Data Transfer Engine, and Com-
pute Engine. Figure 11 shows the general software
architecture of WolfGraph. In this section, we de-
scribe selected details of these components.

Graph 

Data	Transfer	Engine Loading	Engine Compute	Engine 

GPU 

Pa99on	Graph Synchronize	data 

Transfer	data Compute 

Figure 11: Architecture of WolfPath framework.

5.1. Loading Engine

The Loading Engine is responsible for (1) load-
balanced edge block creation and (2) providing
graph partitioning logics.

Designing an efficient format for storing the Edge
Block is paramount for good performance. In Wolf-
Graph, we store the Edge Block in the following
way.

We first create an array called Edge Block List,
which is a flat array of pointers, each pointer points
to an Edge Block. The Edge Block consists of four
arrays as described in Section 3.2. The size of Edge
Block List array and each Edge Block are deter-
mined by the number of edges in the graph and
number of thread blocks used in graph processing.

WolfGraph uses user defined thread block size T
to determine the size of Edge Block List array and
each Edge Block. Assume the input graph has E
edges, the size of Edge Block List B is dET e, and the

size of each Edge Block are dEB e. By computing the
size of each array, we can statically allocate memory
for them, which can reduce the significant amount
of time that used in resizing and reallocating in dy-
namic memory allocation. Then WolfGraph reads
the graph data from the hard disk sequentially, and
stores the edge information in each Edge Block in
the same order. Once it fills all edges in one Edge
Block, it moves to the next Edge Block. Therefore,
we only need to iterate the entire graph once to
construct the Edge Blocks.

5.2. Data Transfer Engine

The data transfer engine aims to transfer data
between GPU/host memory and construct the Con-
catenate Edge List if necessary.
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In data transfer engine, the data is trans-
ferred through the memory-copy operation pro-
vided by CUDA. We use CUDA stream opera-
tion to overlap the data transfer and the computa-
tion. For different Edge Block, each Stream created
by the StreamCreator inside the Data Transfer
Engine typically issues multiple MemcpyAsync()
operations and graph computation kernels asyn-
chronously. Therefore, the data transfer and the
computation is overlapped.

When building the Concatenate Edge List, each
Edge Block needs to access edges stored in other
sub-graphs. Hence, to enable fast access to edges
from other Edge Block, we give a global index to
each edge and use a mapping array to build the re-
lationship between each destination vertex and the
edges that start with this vertex. The mapping ar-
ray is constructed while loading the graph from disk
to memory. We first construct an array indexed by
the vertex ID, each array element points to a link
list. Because we read edges from disk sequentially
and write them in Edge Blocks in exact same order,
we use a counter to keep track its global index, that
is, every time we add an edge to the Edge Block, we
increment the counter by 1. For each edge added
to the Edge Block, we use its source vertex ID to
locate its position in mapping array and append
its global index value to the corresponding link list.
Therefore, the global index value stored in each link
list is in ascending order.

5.3. Computation Engine

The Computation Engine is mainly responsi-
ble for GPU in-memory computation and to send
feedback information to the Data Transfer Engine
about the results and termination condition used
for the next iteration. The detail of Computation
Engine is discussed in Section 3.4.

6. Evaluation

In this section, we evaluate the performance
of WolfGraph using two types of graph dataset:
”small” graphs that can fit into the GPU memory
(called in-memory graphs in the experiments) and
large graphs that can fit the CPU memory, but can-
not fit in the GPU memory (called out-of-memory
graphs).

In-memory graphs are used to evaluate Wolf-
Graph against other state-of-the-art GPU-based in-
memory graph processing systems, including CuSha

Table 2: Real world graphs used in the experiments

GPU In memory Graph
Graph Vertices Edges
RoadNet-CA [35] 1965206 5533214
amazon0601 [35] 403394 3387388
Web-Google [35] 875713 5105039
LiveJournal [35] 4847571 68993773

GPU Out-of-memory Graph
Graph Vertices Edges
orkut [35] 3072441 117185083
hollywood2011 [36] 2180653 228985632
arabic2005 [37] 22743892 639999458
uk2002 [38] 18520486 298113762

[18], Virtual Warp-centric [20] and Gunrock [17].
Out-of-memory graphs are used to compare Wolf-
Graph with two popular CPU-based graph process-
ing systems, GraphChi and X-Stream.

We used eight graphs, which are publicly avail-
able, in the experiments. The eight graphs are
listed in Table 2. These graphs are abstracted
from different real-world applications and natures
and cover a broad range of sizes. For example, the
Live-Journal is the directed social networks which
represent friendship among the users. RoadNetCA
is the California road network in which the roads
are represented by edges and the vertices represent
the intersections. WebGoogle is a graph released
by Google in which vertices represent web pages
and the directed edges are links. orkut is an undi-
rected social network, in which vertices and edges
represent the friendship between users. uk-2002 is
a large crawl of the .uk domains, in which vertices
are the pages and edges are links. Note that some
of the graphs we used in the experiments demon-
strate the power-law feature, i.e., a small number
of vertices in a graph have high degrees. For ex-
ample, the Hollywood-2011 graph has the average
degree of 105, but the maximum degree is 13107.
Also, the average degree of Arabic-2005 is 28, but
the maximum degree of this graph is 575618.

We choose three widely used graph processing
algorithms to evaluate the performance, including
Breadth First Search (BFS), Single Source Shortest
Paths (SSSP) and PageRank(PG). The PageRank
algorithm were set to run 10 iterations, a typical
setting used in other literature [28].

A Nvidia GeForce GTX 780Ti graphic card is
used in the experiments, which has 12 SMX multi-
processors and 3GB GDDR5 RAM. The host ma-
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chine is the Intel Core i5-3570 CPU operating at
3.4 GHZ with 32 GB DDR3 RAM, on which the
operating system Fedora 21 is installed. The algo-
rithms are programmed using CUDA 6.5. All pro-
grams were compiled with the highest optimisation
level (-O3).

6.1. Performance evaluation

6.1.1. Comparison with the GPU-based Out-of-
memory Frameworks

WolfGraph (WG) is a GPU-based graph process-
ing framework. In this section, we first compare
WolfGraph (WG) with two popular CPU-based
graph processing frameworks, GraphChi (GC) [13]
and X-Stream (XS)[28], to evaluate the speedup of
our GPU-based graph processing solution over the
CPU-based solutions. WolfGraph assumes that the
graph can be fitted into the CPU memory. The
graphs chosen in the experiments can fit in the CPU
memory, but cannot fit in the GPU memory. In
doing so, GraphChi and X-Stream do not have to
endure unfair hard disk operations compared with
WolfGraph.

Figures 12 and 13 show the speedup of Wolf-
Graph over GraphChi and X-Stream, respectively.
It can be seen from the figures that WolfGraph
achieves an average speedup of 7.48 and 8.55 over
GraphChi and X-Stream (running with 4 threads),
respectively, although WolfGraph has to move the
data between GPU and CPU and build the Con-
catenate Edge List. To analyse the performance
in detail, Figure 14 shows the detailed time break-
down of the three frameworks. We define the pre-
processing time as the time spent in loading the
graph from the hard disk to the CPU memory and
constructing the designed data structures. Com-
putation time refers to the time taken in actual
execution of the algorithm. The time of building
CEL records the time spent in building the con-
catenated edge list. Data Transfer is time taken by
WolfGraph in transferring the data between host
and GPU. Since X-Stream does not have a sepa-
rate pre-processing stage, which overlaps the graph
loading and graph processing. So we only record
the total execution time for X-Stream.

As can be observed from the time breakdown
shown in the Figure 14, the performance improve-
ment of WolfGraph over GraphChi and X-Stream
is attributed by the following factors. First, the
computation time of WG is shorter than that of
GC by orders of magnitude. This is because
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Figure 12: Speedup over GraphChi

orkut hollywood2011 arabic2005 uk2002 AVG
0

5

10

15

20

25

S
p
e
e
d
u
p BFS SSSP PG

Figure 13: Speedup over X-Stream

the edge-centric processing model used by Wolf-
Graph can fully utilize the massive parallel process-
ing power provided by GPU, while the GraphChi
and X-Stream are CPU-based, which limits the
degree of parallelism. Second, the pre-processing
time in WolfGraph is less than half of the pre-
processing time in GraphChi. This is because the
pre-processing time of WolfGraph is almost equal to
the graph loading time and no other pre-processing
operations are needed while GC needs to convert
the raw graph into the graph stored in the “shard”
structure and sort the edges in each shard.

The experimental results with Hollywood-2011
and Arabic-2005 show that the impact of the power-
law feature on the CEL method. When the vertex
degree increases, it takes more time to construct
the CEL. However, since we establish the mapping
between the edge No. and the vertex, the time
spent in constructing the CEL only increases lin-
early as the degree increases. For example, the
Hollywood-2011 graph has the average degree 105
with the maximum degree being 13107. When pro-
cessing this graph with WolfGraph, our experimen-
tal records show that the time spent in building the
CEL is 0.89 second (the data transfer time is 0.43
second and the computation time is 0.18 second).
The average degree of the graph Arabic-2005 is 28
with the maximum degree being 575618. It takes
WolfGraph 2.63 seconds to build the CEL (1.98 sec-
ond on data transfer and 0.49 second on computa-
tion).
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Figure 14: The execution-time breakdown of WolfGraph, GraphChi and X-Stream on out-of-GPU-memory graphs. The time
is in second.

6.1.2. Comparison with the GPU-based in-memory
Frameworks

The results shown in last section demonstrated
the ability of WolfGraph in processing the graphs
that are bigger than the size of the GPU mem-
ory. Recall that the other goal of WolfGraph is
that it should perform as good as other existing in-
memory graph processing frameworks. In this sec-
tion, we examine the performance of WolfGraph for
processing smaller graphs. We compare WolfGraph
with the state-of-the-art in-memory processing so-
lutions including CuSha [18], Virtual Warp Cen-

tric [20] and Gunrock [17]. Note that we compared
with CuSha-CW (a version of CuSha) in the exper-
iments, since it is demonstrated that the version of
CuSha-CW represents the best performance for the
CuSha framework.

The performances is broken down in Figure 15.
As can be seen from the figure, WolfGraph outper-
forms other three solutions. Compared with VWC,
WolfGraph not only has the shorter pre-processing
time, but also achieves the 6.5x speedup on aver-
age in the computation time, thanks to the coa-
lesced memory access to the global memory, and the

18



maximum usage of the GPU parallelism through
the edge-centric processing model. Compared with
CuSha, the computation time between WolfGraph
and CuSha are very similar. But the graph repre-
sentation used by CuSha incurs long pre-processing
time. Hence, the overall processing time of Wolf-
Graph is much shorter than CuSha. As for the
comparison with Gunrock, the computation time
achieved by Gunrock is shorter than that of Wolf-
Graph by 10-70% with the BFS and the SSSP algo-
rithms, but is longer by 5X with PageRank. This
is because Gunrock uses a load-balancing strategy
during the traversal of the graph and only com-
putes the vertices that changed their values in the
previous iteration. However, Gunrock suffers from
the longest pre-processing time among all four so-
lutions, which makes it the slowest solution after
the pre-processing time is counted. Averagely, the
overall execution time of WolfGraph is 65% faster
than the Gunrock.

The experiments with both out-of-memory and
in-memory processing show an interesting phe-
nomenon: the computation time is much shorter
than the pre-processing time. This indicates the
need for reducing the pre-processing time, which
is typically spent in building the user-defined data
structure.

6.2. Global Memory efficiency

The reason why we adopt the edge-centric pro-
cessing and represent the graphs as the edge list is
because we aim to achieve the sequential access to
the global memory. This section evaluates the effi-
ciency of WolfGraph in terms of accessing the global
memory. We compare WolfGraph with CuSha and
Virtual Warp Centric in terms of the average global
memory load efficiency, the average global memory
store efficiency and the warp execution efficiency. In
the experiments, we process the LiveJournal graph
using the BFS, SSSP and PageRank algorithms.
The results are shown in Figure 16.

The global memory load efficiency is the ratio
of the achieved load throughput to the required
load throughput in global memory, which indicates
how well the threads within a kernel read from the
global memory (i.e., a higher value indicates that
more read operations are performed). As can be
seen from Figure 16a, the global memory load ef-
ficiencies achieved by VWC and Gunrock are only
41.4% and 61.3%, respectively, on average. This is
because VWC and Gunrock store the graph data
with the CSR format, which is difficult to achieve

the coalesced access. On the contrary, the average
global memory load efficiencies achieved by CuSha
and WolfGraph are 89.6% and 93.6%, respectively.
This is because both frameworks provide the coa-
lesced access to the global memory.

The global memory store efficiency indicates
the ratio of the global memory write throughput
achieved by the kernel to the global memory store
throughput actually needed by the kernel. This
value shows how well the threads within a kernel
write to the global memory. As we can see from
Figure 16b, the average store efficiency achieved by
VWC is 12.8%. The store efficiency achieved by
CuSha and WolfGraph are 42.8% and 42.5% respec-
tively. In both WolfGraph and CuSha, the store
operation are performed in parallel. However, in
VWC, only one thread within each virtual warp is
used to update the vertex value, which results in a
lower store efficiency. For all three frameworks, the
average global memory store efficiency is lower than
their load efficiency. This is mainly because the
store operation is not fully coalesced. On the other
hand, Gunrock optimises the store efficiency by per-
forming the coalesced writes to the global memory.
Therefore, it achieves the store efficiency of nearly
80%. However, the coalesced writes achieved by
Gunrock is at the expense of a large amount of pre-
processing.

The warp execution efficiency is defined as the
ratio of the average number of active threads in a
warp to the maximum possible number of active
threads per warp supported by the multiprocessor
in the GPU. The efficiency indicates how well the
hardware resources in GPU are utilized. As shown
in Figure 16c, The warp efficiencies achieved by
CuSha and WolfGraph are 85.5% and 96.7% on av-
erage. VWC and Gunrock delivers a much lower
warp execution efficiency of 36.9%. This is mainly
due to the imbalanced workload distribution among
the thread blocks. On the other hand, both CuSha
and WolfGraph evenly distribute the workload to
thread blocks, and consequently improve the warp
execution efficiency. Moreover, in CuSha, the warp
execution efficiency is bounded by the window size
(the set of edges in shard j that are involved in
the processing of shard i [18]). WolfGraph does not
have such a limitation because each thread block is
only responsible for the edge block assigned to it.
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Figure 15: The execution-time breakdown of WolfGraph, CuSha, VWC and Gunrock on in-GPU-memory graphs. The time is
in millisecond.

6.3. Memory occupied by different graph represen-
tations

In this subsection, we evaluate the memory con-
sumption of different graph representations, i.e., the
edge list representation used by WolfGraph, CSR
by VWC and Gunrock, and the CW representation
by CuSha.

The memory consumed by the edge List repre-
sentation is 3 ∗ |E| ∗ sizeof(index) + (2 ∗ |E| +
|V |) ∗ sizeof(V alue), which is the same as that of
the CW representation. However, the CSR rep-

resentation only consumes the memory of (|E| +
|V |) ∗ sizeof(index) + (|E| + |V |) ∗ sizeof(value).
Figure 17 shows the actual memory consumed by
WolfGraph (the edge List), Cusha-CW and VWC
and Gunrock (CSR). WolfGraph and CuSha-CW
consume 2.45x and 2.46x more space on average
than CSR. CuSha-CW uses slightly more memory
than WolfGraph. This is because the data struc-
ture overhead of a vector is slightly more than that
of an ordinary array.

The increased memory consumption leads to the
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Table 3: Comparing the out-of-memory processing by Wolf-
Graph with the in-memory processing by VWC due to the
difference in graph representations.

Graph BFS SSSP

orkut
WG 18.25 25.03
VWC 31.38 35.26

hollywood
WG 33.62 46.06
VWC 45.98 59.58

uk-2002
WG 51.96 70.1
VWC 58.42 74.58

following situation, it is possible that some graphs
can fit into GPU memory with the CSR represen-
tation, but cannot with the edge list representation
of WolfGraph and the CW representation of Cusha.
To test the performance of WolfGraph in this sce-
nario, we select the following three graphs, orkut,
hollywood2001 and uk-2002, to conduct the exper-
iments. These graphs can fit into GPU with the
CSR representation, but have to be split into two or
more Concatenate Edge Lists (CEL) in WolfGraph.
The benchmarking algorithms used in the experi-
ments are BFS and SSSP. The results are listed in
Table 3.

As can be seen from the table, although build-

ing the concatenated edge list and transferring the
data to GPU add the extra overhead, WolfGraph
still outperforms VWC for both benchmarking al-
gorithms. This is because WolfGraph has much
shorter pre-processing time and also faster compu-
tation due to its GPU-friendly graph representa-
tion.

6.4. Sensitivity Analysis of WolfGraph

In this section, we examine the sensitivity of
WolfGraph across different graph characteristics,
including graph size and graph sparsity. The syn-
thetic graphs are generated with the SNAP graph
library [34]. The RMAT [39] model is used to en-
sure that the generated graphs are scale free and re-
semble the characteristics of real-world graphs (e.g,
follows the power-law degree distributions).

We conduct the experiments by using WolfGraph
and the BFS algorithm to process 10 synthetic
RMAT graphs across a range of different sizes and
sparsities. The experiment results are shown in Fig-
ure 18 and Figure 19. In these figures, we only
record the kernel computation time.

Figure 18 shows the trend of the execution time
as the number of edges and vertices in the graph
increase. In this experiment, the average degree of
the graphs is fixed to be 16. As can be seen from
the figure, As the graph size increases, the computa-
tion time increases, which is to be expected. As the
graph becomes bigger, the kernel takes more mem-
ory transactions to fetch the data from the global
memory and write the results back.

In next experiment, the graphs are fixed to have
64 million edges, but the degree of the graphs in-
creases from 8 to 128. As can be see from Figure
19, the computation time decreases as the graph de-
gree increases. As the graph degree increases, the
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number of vertices in the graph decreases. Con-
sequently, the frequency of random access to the
vertex array is reduced. The kernel performance is
therefore improved.
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Figure 18: Execution time of WolfGraph as the graph size
increases (with the graph degree being fixed to 16. x× y on
the x-axis means x million vertices by y million edges
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Figure 19: Execution time of WolfGraph as the graph degree
increases (with the number of edges being fixed to 64 million)

7. Related work

7.1. In-Memory Graph Processing

Using GPU for graph processing was first intro-
duced by Harish et al. [21]. Since then, the CSR
format has become the mainstream representation
to store graphs on GPU. Merrill et al. [40] present
a work efficient BFS algorithm. They also use dif-
ferent approaches to minimize the workload imbal-
ance. Virtual Warp Centric has been proposed in
[20] to tackle the workload imbalance problem and
reduce the intra-warp divergence.

Medusha [41] is a GPU-based graph process-
ing framework that focuses on the abstractions for
easy programming. MapGraph [42] implements the
runtime-based optimisation to deliver desired per-
formance. Based on the size of the frontier and the
size of the adjacency lists for the vertices in the

frontier, MapGraph can choose different scheduling
strategies.

The graph processing solutions described above
use the CSR format to represent the graph, hence
suffering from the random access to the graph data.
CuSha [18] uses the G-Shard and the CW (con-
catenated window) representation to avoid non-
coalesced memory access. The G-shard representa-
tion is the same as the shard structure in GraphChi.
Because each G-shard is processed by one thread
block in CuSha, the threads within one thread block
will update the values of the outgoing edges in other
thread blocks after the computation. However, up-
dating vertex values in this way will cause the un-
derutilization of GPU. To overcome this problem,
CuSha develops the CW representation, which is
an array that combines all incoming and outgoing
edges of each G-shard. Similar to G-shard, each
CW is processed by one thread block. Because all
edges are grouped together, the threads do not need
to access other thread blocks’ data to update their
values. Although CuSha’s methods are effective,
such representations consume 2 to 2.5 times more
space than CSR, which can hinder the framework
from processing very large graphs. In addition, as
shown in the last section, CuSha requires a sig-
nificant amount of time to pre-process the graph,
which leads to long overall execution time. Wolf-
Graph not only simplifies the pre-processing proce-
dure, but also achieve the similar performance as
CuSha.

All of the above approaches make the fundamen-
tal assumption that the input graphs fit in the GPU
memory, which limits the usage of these solutions.
However, WolfGraph does not have such a restric-
tion.

7.2. Out-of-Memory Graph Processing

Most existing out-of-memory graph processing
frameworks are CPU based. These frameworks aim
to process the graphs that do not fit into the host
memory. For instance, GraphChi [13] is the first
graph processing framework that can handle the
large-scale graphs on a single PC. GraphChi uses
the vertex-centric model. In order to process the
graphs being loaded from the hard disk, it intro-
duces two new techniques to process large graphs
in a single PC.

GraphChi uses an innovative out-of-core data
structure called shard to reduce the amount of ran-
dom access to the hard disk. Before the computa-
tion, GraphChi first pre-processes the graph data.

22



The input data will be partitioned into sub-graphs,
each of which is called a shard. Each shard con-
tains a set of vertices and all the inward edges of
these vertices. In each shard, the edges are sorted in
the ascending order of source vertex ID. The parti-
tion method used by GraphChi guarantees that the
number of edges in each shard is similar and the size
of each shard should be able to fit in the memory.
GraphChi also developed a method called parallel
sliding windows (PSW). During the computation,
GraphChi loads the first shard into the memory,
and then searches other shards and loads out-edges
(the source vertice of these edges are the destination
vertice in the current shard) of the current shard
from other shards into memory as well. Once the
processing of the current shard is finished, it moves
to the next shard, and repeats the above process.
The whole computation terminates when all shards
have been processed. Organising the graph into
shards and computing with PSW can guarantee the
sequential read from the hard disk, and hence max-
imises the performance of the hard disk I/O.

TurboGraph [43], a more recent vertex-centric
graph processing framework designed for SSD. It
improves on GraphChi by extracting more paral-
lelism, overlapping CPU processing and disk I/O.
GridGraph [12] divides edges into smaller grids
rather than shards in GraphChi and applies a 2-
level hierarchical partitioning of the grids, which
organizes several adjacent grids into a larger vir-
tual grid. This way, GridGraph not only ensures
data locality but also reduces the amount of disk
I/O.

Mosaic [8] leverage the advantage of NVMes to
achieve high throughput during the graph process-
ing. It also employs a hybrid execution model to
perform the computation more efficiently. The fun-
damental ideas of WolfGraph are based on the X-
Stream [28]. X-Stream also uses the edge-centric
processing model and takes a binary formatted
edge-list as input, which does not require prepro-
cessing. But X-Stream is a CPU-based graph pro-
cessing framework.

Totem [44] [45] is a hybrid platform that uses
both GPU and CPU. It statically partitions the
graphs between GPU and CPU memories based on
the degree of vertices. However, as the graph size
increases, only a fixed portion of a graph can fit
in the GPU memory, resulting in the underutiliza-
tion of GPU. Groute [46] is a multi-GPU program-
ming model and framework. The framework is de-
signed to process graphs in a node with multiple

GPUs, which has different design objectives from
WolfGraph.

GraphReduce [47] also aims to process the graphs
bigger than the GPU memory. It partitions the
graph into shards, and loads one or more shards into
the GPU memory at a time. In GraphReduce, each
shard contains a disjoint sub-set of vertices. The
edges in each shard are sorted in a specific order.
Tigr [14] proposes a class of novel structural trans-
formations that can effectively reduce the irregular-
ity of graphs, so that the transformed graphs can
be processed more efficiently on GPU. Graphie [48]
overlaps the data transformation and computation,
and processes the graph asynchronously. These ar-
rangements may lead to longer pre-processing time.
Hence, we tried to avoid such designs in WolfGraph.

8. Conclusion

In this paper, we develop a graph processing
framework called WolfGraph. The framework ap-
plies the edge-centric computation model, and pro-
poses the edge list structure to represent a graph.
We demonstrate that it is more efficient to use
the edge-centric processing model and the edge list
graph representation to process the graphs on GPU.
We also propose a representation called the Con-
catenated Edge List to process the graphs that can-
not fit into the GPU memory. WolfGraph achieves
the similar performance as the existing GPU-based
in-memory processing frameworks and achieves the
significant speedup over the existing out-of-memory
implementations.

There are several future directions of our work:
(1) adding the hard disk-based solution to Wolf-
Graph, so that the graph with the size greater than
the CPU memory can be processed efficiently; (2)
extending the WolfGraph to support distributed ar-
chitecture; (3) designing an adaptive runtime sys-
tem that dynamically selects the graph representa-
tion, computation model, etc., based on the graph
data.
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