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Abstract

The MAX-MIN Ant System (MMAS) is one of the best-known Ant Colony Optimization (ACO) algorithms
proven to be efficient at finding satisfactory solutions to many difficult combinatorial optimization problems.
The slow-down in Moore’s law, and the availability of graphics processing units (GPUs) capable of conducting
general-purpose computations at high speed, has sparked considerable research efforts into the development
of GPU-based ACO implementations. In this paper, we discuss a range of novel ideas for improving the
GPU-based parallel MMAS implementation, allowing it to better utilize the computing power offered by
two subsequent Nvidia GPU architectures. Specifically, based on the weighted reservoir sampling algorithm
we propose a novel parallel implementation of the node selection procedure, which is at the heart of the
MMAS and other ACO algorithms. We also present a memory-efficient implementation of another key-
component — the tabu list structure — which is used in the ACQO’s solution construction stage. The proposed
implementations, combined with the existing approaches, lead to a total of six MMAS variants, which are
evaluated on a set of Traveling Salesman Problem (TSP) instances ranging from 198 to 3,795 cities. The
results show that our MMAS implementation is competitive with state-of-the-art GPU-based and multi-core
CPU-based parallel ACO implementations: in fact, the times obtained for the Nvidia V100 Volta GPU were
up to 7.18x and 21.79x smaller, respectively. The fastest of the proposed MMAS variants is able to generate
over 1 million candidate solutions per second when solving a 1,002-city instance. Moreover, we show that,
combined with the 2-opt local search heuristic, the proposed parallel MMAS finds high-quality solutions for
the TSP instances with up to 18,512 nodes.

Keywords: parallel MAX-MIN Ant System, weighted reservoir sampling, Ant Colony Optimization, GPU,
CUDA

1. Introduction

Ant Colony Optimization (ACO) is a population-based metaheuristic inspired by the social behavior
of ants [15]. It has been successfully applied in solving many NP-hard problems, including the Traveling
Salesman Problem (TSP), the Quadratic Assignment Problem, and the Sequential Ordering Problem [40,
43, 44]. Being metaheuristic, the ACO does not guarantee finding an optimum solution, however it is often
able to offer satisfactory approzimate solutions within an acceptable time compared to exact methods [28].
However, even metaheuristics can be prohibitively time consuming if faced with a large enough problem
instance. For this reason, a lot of research attention has been devoted both to improving the effectiveness of
the ACO search process, and to speeding up its execution [33]. The idea of applying GPU-based computing
to the ACO is an example of the latter. In recent years, the use of graphics processing units (GPUs) to speed
up scientific computations has become commonplace. This has been, in part, dictated by the slow-down in
Moore’s law, and the progress made in the GPU architecture development, which has resulted in more
computing capacity, flexibility, and ease-of-use [46]. In fact, currently a significant proportion of the world’s
fastest supercomputers is equipped with GPUs to accelerate their computations [42]. Still, the efficient use
of the computing capacity offered by GPUs remains a difficult task [23].
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In an ACO, a population of agents (ants) construct, in parallel, a set of solutions to the optimization
problem begin tackled. Unfortunately, the inherent parallel nature of the ACO does not translate easily
into an efficient GPU-based parallel implementation [7, 12, 39]. The difficulties arise partly from the fact
that not all of the ACO computations are independent, e.g., pheromone trail updates; as well as from
the computing restrictions inflicted by GPU architectures. Although considerable research attention has
been devoted to using GPUs to speed up the ACO-based algorithms, both the improved computational
capabilities of successive generations of GPUs as well as novel algorithmic ideas, offer new opportunities for
greater progress.

In this paper, we present a GPU-based parallel implementation of the MAX-MIN Ant System (MMAS),
which is one of the best-performing ACO variants for solving various optimization problems including the
production-distribution scheduling problem [22], the blocks relocation problem [24], the routing and schedul-
ing of home health care caregivers problem [13], and the traveling purchaser problem [41]. Building on
existing research we show how each of the essential MMAS components can be parallelized to allow the
efficient use of the significant computing power offered by the current generation of GPUs.

The main contributions presented in this paper can be summarized as follows:

e We present a novel parallel implementation of the next node (proportional) selection procedure used in
the MMAS and other ACO algorithms. The implementation is based on the weighted reservoir sampling
algorithm and fits well within the parallel computing model of contemporary GPU architectures.

e We present a novel, memory-efficient implementation of the tabu list structure used by the ACO
solution construction process. The implementation allows for the better utilization of fast, but very
size limited, shared memory of GPUs.

e Combining these novel ideas and the solutions from the literature, we present a total of six MMAS
variants and evaluate their computational efficiency based on two subsequent generations of Nvidia
GPUs, namely Pascal and Volta.

e The computational evaluation based on a set of TSP instances ranging from 198 to 3,795 cities shows
that the proposed GPU-based MMAS is competitive with state-of-the-art GPU-based [11, 12, 8] and
multi-core CPU-based [53] parallel ACO implementations. The times obtained were up to 7.18x and
21.79x smaller, respectively.

e Acknowledging, that the ACO algorithms are typically paired with an efficient, problem-specific local
search (LS) method, we combine the proposed GPU-based MMAS with a parallelized 2-opt heuristic.
The computational experiments that consider the TSP instances of up to 18,512 nodes show that the
proposed implementation is able to generate high-quality solutions, i.e., within 1% from an optimum,
in a relatively short time.

The remainder of this paper is organized as follows. In Section 2 we provide a brief description of
the MAX-MIN Ant System and short piece on the characteristics of general-purpose GPU computations.
Section 3 summarizes the existing work on applying GPUs in speeding up ACO computations, including the
MMAS. Our main ideas on the efficient implementation of the GPU-based MMAS are presented in Section 4;
while Section presents an analysis of the computational experiments we conducted in order to evaluate the
proposals, and compare them with the work described in the literature. Finally, we summarize our findings
and provide a few ideas for future work in Section 6.

2. Background

2.1. MAX-MIN Ant System

The ACO metaheuristic belongs to a group of swarm-based metaheuristics (SBMs) in which the problem-
solving abilities are a result of the interactions of simple information-processing units (agents) [25]. The
inspirations for the SBMs often come from biological systems including ant colonies, swarms of bees, flocks
of birds, and schools of fish, among others [18]. Typically, the agents in the SBMs follow simple rules and
are given a certain degree of autonomy, e.g., in selecting the next action to perform. The agents may also
interact with each other, e.g., by transferring data about the solutions found, or with the environment, e.g.,



by depositing artificial pheromone trails that can be read by other agents (indirect communication). In
addition to ACO, one of the most-successful SBMs are particle swarm optimization (PSO) and artificial bee
colony algorithms.

In the MMAS, a number of ants (agents) iteratively construct solutions to a combinatorial optimization
problem (COP) [43]. In this paper, we focus on the TSP, following the existing research on parallel ACO |3,
11, 12, 14, 51, 8], although, in principle, the ACO algorithms can be applied to any COP [15].

The TSP can be defined using a complete graph G = (V, A), where V is a set of nodes numbered
from 0 to n — 1 (n being the number of cities), and A as the set of edges (arcs) between the nodes, i.e.,
E = {(i,j) : i,j € V,i # j}. The set of nodes represents a set of cities to be visited by a salesman,
while each edge in F corresponds to a road between a pair of cities. Additionally, for every edge, (i,7), a
positive value, d;;, is given, which represents the distance (weight) between the cities, ¢ and j. If the TSP is
symmetric, then d;; = dj;, otherwise the instance is asymmetric (ATSP) and the distance from i to j might
not equal the distance from j to i. Typically, the distances between the nodes in graph G satisfy the triangle
inequality but, in general, they may be arbitrary. Solving the TSP is equivalent to finding the minimum
weight Hamiltonian cycle in graph G. In general, solving the Hamiltonian cycle is an NP-hard problem
and finding the optimum to the TSP is at least as difficult. A comprehensive overview of both exact and
approximate approaches to solving the TSP can be found in the work of Applegate et al. [2].

In the ACO, the edges of graph G correspond to the solution components from which the ants’ solutions
are being constructed. Additionally, for every edge, (i, ) € E, there is an associated pheromone trail, 7;;(t),
where ¢t denotes a (discrete) time. In nature, the pheromones are chemical substances that some ant species
use as an indirect medium of communication between individuals [15]. In ACOs, including the MMAS,
the artificial pheromone trails are stored as positive real values, and influence the probability of including
the corresponding solution components into the solutions being constructed by the ants. In the MMAS,
in contrast to other ACO algorithms, the values of the pheromone trails are bounded by limits: 7,;, and
Tmax |43]-

In the MMAS, an ant starts its solution construction process from an initial node and in each of the
subsequent steps it selects an edge (a solution component) that connect its current node with one of the
neighboring, as yet unvisited, nodes. The choice of an edge is probabilistic and depends on so-called
heuristic information (available a priori) and the values of the pheromone trails. Specifically, an ant, k,
positioned at node i selects an edge, (4, 7), leading to node j with the probability:
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where 7;;(t) is the value of the pheromone trail deposited on the edge, (7, ); n;; is the value of the heuristic
information for the edge, (4,7); o and § are parameters that control the relative influence of the pheromone
values and the heuristic information on the probability; and, finally, N¥, denotes the set of nodes that
neighbor ¢ to be visited the ant, £. The heuristic information, n;;, specifies how attractive a particular edge
(¢,7) is, and in the case of the TSP, n;; = 1/d;;, makes an edge more attractive the shorter it is. This is
based on the assumption that good quality solutions consist of edges connecting nodes located near to each
other [19]. Each ant stores the previously visited cities in a tabu list, which allows J\/;-k to be computed,
guaranteeing that only valid Hamiltonian cycles are constructed.

The pseudocode for the MMAS is shown in Fig. 1. At first, the initial pheromone trail limits, Ty,
and Tmax, are computed based on a solution constructed using the nearest neighbor heuristic. Next, the
pheromone trails values are set to Tmax (line 2). In the main loop of the algorithm (lines 4-18), each ant
constructs a complete solution to the problem starting from a randomly chosen node. After the solutions
have been constructed, the iteration best solution is selected (line 13). If it is shorter than the current
global best solution, it becomes the new global best, and the trail limits are updated accordingly. Finally,
a pheromone update is performed. This means lowering (evaporating) the values of the pheromone trails:
Tij < max (o7, Tmin), Where p is a parameter that controls the evaporation speed. The values of the
pheromone trails never drop below the minimum value, Ty, which ensures that all edges have a non-zero
probability of being selected even in the late stages of the algorithm’s execution. The pheromone trails’
values only increase if they correspond to the components of the current iteration’s best solution (line 18).



1 Calculate pheromone trails limits: Ty, and Tmax
2 Set pheromone trails values to Tiax

3 global_best + ()

4 for i+ 1 to #iterations do

5 for j < 0 to #ants—1 do

6 u+ U{0,n—1} // Select the first node randomly

7 routeant(jy [0] < u

8 Add u to tabupy(j)

9 for k< 1ton—1do// Complete the solution (route)
10 u <+ select _next_node(routean(jy [k — 1], tabupng(s))

11 routeans(j) [k] < u

12 Add u to tabupng(j)
13 iter_best +— select shortest (routeAnt(O), cee routeAnt(#ams,l))
14 if global best = () or iter best is shorter than global_best then
15 global best < iter best

16 Update pheromone trails limits 7y and Tmax using global best
17 Evaporate pheromone according to p parameter
18 Deposit pheromone based on iter best

Figure 1: The MAX-MIN Ant System.

The values are increased according to: 7;; <— min (7;; + A;j, Tmax), Where

cost(iter _best)™t, if (i,j) € iter best,
Ay = .
0, otherwise .

Increasing pheromone levels for the trails corresponding to the edges (solution components) of good quality
solutions, increases the probability that, in subsequent iterations, the ants will choose these edges more often.
This process allows the algorithm to learn and construct higher quality solutions over time [15].

It is possible to use the current global best value instead of the iteration best [43]. It is worth noting, that
in contrast to the Ant Colony System (ACS), parallelization is made simpler because the MMAS lacks a local
pheromone update [39]. In fact, the pheromone trail values remain constant during the solution construction
phase, allowing a beforehand computation of the product of the pheromone trails and the heuristic values
required by Eq. (1). This optimization is in common use as it reduces both the computation time, and more
importantly, the number of loads from the memory [7, 12]. We also apply it in our work, storing the product
in a matrix called choice_info.

A single iteration of the MMAS has a O(mn?) time complexity, as each of the m ants constructs a
complete solution to the problem in n — 1 steps (assuming that the starting node is chosen arbitrarily), n
being the size of the problem instance. Each step has a complexity of O(n) as an ant has to move from the
current node to the next, chosen from up to n — 1 unvisited nodes. If candidate lists are used, the average
complexity of the solution construction process falls to O(n - ¢l) = O(n), where clis a constant that denotes
the size of the list.

2.2. General-purpose computing using GPUs

Architectural differences between the CPUs and the GPUs allow the latter to offer a higher computing
power but often at the cost of reorganizing the structure of the calculations to enable parallel execution [26].
For the sake of clarity of further discussion, it is worth clarifying the distinction between parallelism and
concurrency. Assuming that the required computations were divided into independent portions or tasks,
parallel execution refers to the case in which the available processing elements (cores) execute the tasks at
the same time. Concurrency, on the other hand, is a more general term also including the cases in which
some of the computations may not overlap in time. In the simplest case, concurrent computations require
only a single computing unit working in a time-shared manner. In other words, concurrency allows to handle



multiple computing tasks at once, while parallelism emphasises doing multiple computations at the same
time.

GPUs allow for a high degree of parallelism as they typically contain several replicated streaming mul-
tiprocessors (SMs), each comprising a number of processing elements that share control units, a register
file, caches, and shared memory. However, the number of computational tasks should typically exceed the
number of available processing elements. This is helpful in situations in which the computations get stalled,
e.g., while waiting for the data to be read from memory. In such cases, it is possible to switch to another task
for which the necessary data are available. Somewhat related is the description of GPUs as being throughput-
oriented meaning that a large number of computations can be performed in a given period of time, however,
the speed of execution of individual computations could be low compared with that of CPUs [26].

SMs schedule and execute hundreds of parallel threads in groups of 32 called warps. The warps employ
a model called a single-instruction, multiple-thread (SIMT), in which all threads start at the same program
address and typically execute the same instructions over different data (data-parallelism). However, each
thread has its own program counter and register state so its execution may diverge from the other threads in
the warp. From the performance point of view, it is best to keep the number of diverging executions as low as
possible; although, in the newer Nvidia architectures (Volta, Turing) the penalty paid is lower than previous
versions [23]. It is also worth adding that the threads within a warp have access to primitives allowing them
to access each other’s registers directly, i.e., without the need for accessing slower, shared memory.

Nvidia’s Compute Unified Device Architecture (CUDA) provides a programming model that forms an
abstract layer over the hardware architecture [1]. The CUDA divides programs into CPU (host) and GPU
(device) parts. The host and the device have separate memory spaces, but a unified memory extension exists
in CUDA 6.0 (and newer versions) that allows the CPU and GPU threads to store data in a shared address
space. A programmer can define functions, called kernels, which are executed by the GPU. Each kernel is
executed by a specified number of concurrent threads that are divided into several blocks, which in turn are
organized into a grid. Each thread-block is assigned to a single SM and can communicate through the shared
memory with the other threads within the same block. The blocks are scheduled independently; hence,
threads belonging to separate blocks can only communicate using large but high-latency global memory.

Summarizing, each thread executing on the GPU has access to a memory hierarchy, with the privately-
accessed registers being the fastest, the shared memory being a bit slower, a small but cached constant
memory also offering relatively fast reads, and, finally, the global memory being the slowest. L1 and L2
caches are also present but not directly accessible to the programmer. The CUDA programming model
assumes that a large number of threads (tens of thousands) is executed concurrently to allow memory-related
latencies to be hidden.

3. Related work

Being a population-based metaheuristic, the ACO naturally exhibits some degree of parallelism [15]. For
example, there is no direct communication between the ants. In fact, the ants cooperate indirectly (stigmergy)
by modifying the values of the pheromone trails that correspond to the components of the problem they
select during the solution construction phase. If the solutions are constructed quickly, as they are in the case
of the TSP, the frequent updates of the pheromone trails become problematic from the parallelization point
of view. Overall, a lot of research has been devoted to the parallelization of the ACO, especially for execution
on multi-CPU systems aimed at both improving the quality of the generated solutions, and shortening the
execution time [34, 10, 30]. A good summary of the research was done by Pedemonte et al. [33]. Although
valuable, the CPU-based parallelization of the ACO is difficult to transfer directly to the GPUs due to
differences in the hardware architectures. In most of the approaches to CPU-based ACO parallelization, a
coarse-grained organization of computations is favored, with the multi-colony ACO being one of the most
efficient. The GPUs on the other hand, are throughput oriented and contain thousands of relatively simple
processing elements. Only recently has the increasing number of CPU cores and the availability of wide
vector instructions (e.g. AVX2) allowed for a more efficient, fine-grained approach [51]. For these reasons,
the rest of the section will focus on research that targets the GPU-based parallelization of the ACO.

The first attempts at using GPUs to speedup the ACO predate the CUDA programming framework.
Catala et al. [6] presented a parallel ACO for solving the Orienteering Problem, although some speed increases
were reported, the implementation was complicated as the authors had to use graphics generation primitives



to perform computations. A similar programming approach was used by Wang et al. [50], who proposed a
GPU-based MMAS. The authors reported a modest speedup compared to a sequential, CPU-based MMAS
implementation.

3.1. Task-based vs data-parallel approaches

One of the first attempts to speed up the MMAS using the first generation of general purpose GPUs
was made by Bai et al. [3]. This approach used multiple ant colonies with a single colony assigned to a
single thread block, and each thread within the block assigned to an ant. The distance matrix was stored in
texture memory to facilitate cache memory. Computational experiments showed the execution was around
2x faster than a reference CPU implementation when solving the TSP. This is an example of task-based
parallelism, as the threads are directly mapped to the ants. The problem with this approach is that it leads
to warp-branching, i.e., different threads within a thread-warp (using the Nvidia CUDA-based terminology)
are likely to take different execution paths as the ants follow divergent paths, causing the remaining threads
to wait.

A more efficient, data-parallel approach was proposed by Cecilia et al. [7]. In that implementation, a
single thread block is mapped to a single ant in the Ant System (AS), that is, all threads within a thread block
work on a single solution to the problem. This avoids the warp-branching present in the task-based approach
as the threads execute the same instructions but for different data, i.e., nodes. The authors considered block
sizes of 16 to 1,024 threads. The computational experiments done on the Nvidia Tesla C2050 GPU showed
that the best performance was obtained for 128 threads per block. The work’s most notable contribution was
the introduction of the so-called I-Roulette (independent roulette) method for selecting, in parallel, the next
city to be visited by an ant. This was the alternative to the proportional selection method, also known as the
Roulette Wheel Method (RWM), which was used originally. In the I-Roulette method, the probabilities of
selecting each of the unvisited nodes (assigned to separate threads) are multiplied by random numbers, and
the node that has the maximum product is selected through a parallel reduction. Although, the I-Roulette
method did not produce the same results as the sequential RWM, it was up to 2.36x faster. The authors
also considered two parallel pheromone update methods, in which the simpler one used atomic instructions
to allow the safe simultaneous modification of memory by multiple threads. Overall, the reported speedups
were up to 20x faster compared to the sequential implementation.

A valuable comparison between the task-based and data-parallel approaches can be found in the work
of Delévacq et al. [14] who presented a GPU-based parallel implementation of the MMAS for the TSP.
In the task based approach, each ant was assigned to a CUDA thread. In the data-parallel approach, a
whole thread-block was assigned to a single ant. Moreover, the 3-opt local search for improving the ants’
solutions was also included in both approaches. The data-parallel approach was significantly faster than the
task-based one, and up to 19.47x faster than the reference sequential implementation. The inclusion of the
3-opt resulted in more modest speedups of up to 8.03x for the data-parallel implementation. The authors
concluded that the 3-opt is not well suited to GPU architecture as it has a low computation to memory
access (reads and writes) ratio.

3.2. Alternative Implementations of the RWM

The I-Roulette method used by Cecilia et al. [7] was analyzed, both experimentally and analytically, by
Lloyd and Amos [27] who concluded that it behaves in a qualitatively different way to the RWM. Specifically,
it tends to increase the probability of selecting an edge with a high pheromone value in cases where there
are a large number of edges to choose from and the majority of the pheromone is concentrated on one edge.
This results in a slight degradation in the quality of MMAS solutions for TSP instances with more than
1,000 nodes. On the other hand, there is also a slight improvement in the quality of the solutions produced
by the parallel ACS.

Another approach to speeding up the AS on GPUs was proposed by Uchida et al. [47]. In this algorithm,
the RWM was replaced by a method called the stochastic trial. The stochastic trial utilizes a matrix that
has its rows assigned to the nodes, each containing the prefix sums of the selection probabilities for the
corresponding node. During the solution construction phase, an ant located at the node, ¢, draws a uniform
number from the range [0, 1] and checks if the cell from the i-th row of the matrix corresponds to an unvisited
node. If it does, it is selected, otherwise the process is repeated a specified number of times. In the case of a



failure, the next node is selected using a (slower) parallel RWM. Together with a parallel pheromone update
method, the proposed algorithm was up to 43.47x faster than a sequential AS executed on a CPU.

The data-parallel approach was also adopted by Dawson and Stewart [12] who applied a GPU-based AS
to the TSP. The authors proposed a new, efficient parallel implementation of the RWM — the Double-Spin
Roulette (DS-Roulette) method. The DS-Roulette method consists of three stages. In the first stage, all
nodes are divided between four thread warps (128 threads). Within a warp, the yet to be visited nodes
(cities) are determined, and the threads perform a warp-level reduction of the selection probabilities that
correspond to the nodes. In the second stage, the reduced values are used by the RWM to select a winning
warp. In the third stage, the winning warp draws a second random number and performs a node selection
from the assigned nodes. The selected node becomes the final result of the DS-Roulette execution. The DS-
Roulette method avoids the block-level reduction, and its results are closer to the results of the sequential
RWM when compared to the proposals of Uchida et al. [47] and Cecilia et al. [7]. Combined with a parallel
pheromone update, the resulting algorithm was up to 82.3x faster than the CPU-based implementation when
tested on the Nvidia GTX 580 GPU.

In subsequent work, Dawson and Stewart [11] presented a parallel AS in which candidate lists were used
to speed up the node selection process. By limiting the length of the candidate list to 32 they were able to
exploit the warp-level communication primitives provided by the CUDA to efficiently implement the RWM.
Along with the tabu list compression method by Uchida et al. [47], the resulting implementation was up to
18x faster than its sequential counterpart.

3.3. Recent Advancements

In recent work, Cecilia et al. [8] discussed several aspects of an efficient GPU-based AS implementation.
Specifically, they introduced a parallel implementation of the RWM that uses scan and stencil patterns
to efficiently select an unvisited node. To further speed up the calculations, the authors applied a partial
synchronization between the warps within thread-blocks to create a super-warp comprised of two warps (64
threads). Combined with the previous parallel pheromone update methods [7], the resulting implementation,
being state-of-the-art, was up to 8x faster than the baseline version proposed earlier.

The most recent proposals include work by Borisenko and Gorlatch [5] who presented a GPU-based
parallel implementation of the ACO, combined with Simulated Annealing (SA) for the optimization of the
multi-product batch plants used, e.g., in the chemical industry. The proposed metaheuristic was able to
quickly find near-optimal solutions, making it a viable alternative to the exact, but very time-consuming,
branch-and-bound approach. Another work, by Rey et al. [36], discusses an interesting hybrid-parallel ACO
for solving the Vehicle Routing Problem (VRP). The first stage of the algorithm consists of the MMAS
being executed on the GPU and generating TSP routes which are then combined into the VRP solutions
and improved using LS procedures during the second stage being executed on the CPU. The GPU-based
MMAS is also one of components in the recently proposed parallel framework for the Multi-population
Cultural Algorithm by Unold and Tarnawski [48].

One should also be aware that a lot of work has been done on efficient parallel implementations of other
SBMs including the PSO [31] and bees algorithm [29]. A more general summary can be found in the work
of Tan and Ding [45].

4. Implementing a GPU-based MMAS

In this section we discuss how the MMAS can be parallelized in order to achieve efficient execution on
GPUs. We devote most of our attention to the solution construction phase of the algorithm which is its
most time-consuming part.

4.1. Tabu tmplementation

In order to calculate the probabilities defined by Eq. (1) it is necessary to determine the set of nodes yet
to be visited by an ant. In the Ant System, the MMAS, and other ACO algorithms, the nodes already visited
by the ant are typically stored in a data structure called a tabu list [16]. If the nodes are added in the order
in which they are visited by the ant, then the tabu list comprises a partial solution to the problem, which,
at the end of the construction phase, becomes the complete solution. It is worth noting, that in order to



calculate the probabilities given by Eq. (1) it is necessary to determine the, as yet, unvisited nodes, however,
the relative order in which they are considered is not important. In fact, we want the tabu list to fit into
the fast but small shared memory of the GPUs’ SMs. Hence, we can generalize the notion of the tabu list
(or tabu for short — to avoid confusion) to any data structure that provides the following operations:

e mark(v) — marks node v as visited;
e is_visited(v) — returns true if the node v has already been visited by an ant, or otherwise false;

e length() — returns a number that is equal to or greater than the number of yet unvisited nodes;

e get_candidate(i) — where ¢ € {0,1,...,1length() — 1}, returns either an unvisited node u, u € V,
or a special sentinel value s, s ¢ V; we assume that if get_candidate() is executed for every i €
{0,1,...,1length() — 1} then the returned set of values contains all the nodes to be visited by an ant.

The non-obvious definition of get_candidate() allows the tabu list to be implemented using a bitmask. The
general scheme for accessing the set of nodes to be visited using the presented operations is shown in Fig. 2.

1 1 + tabu.length();
2 fori<—0tol—1do
3 | v+« tabu.get_candidate(i);
if v # sentinel then
L v can be processed;

BEES

Figure 2: General scheme for processing the tabu using the generalized scheme (see Sec. 4.1)

It is worth emphasising that the tabu is at the core of the MMAS and other ACO algorithms, and its
implementation is important for the efficiency of the whole algorithm. In case of GPUs, the tabu should be
stored in the shared (local) memory so that it can be accessed quickly [7]. Unfortunately, the size of the
shared memory available to each thread block is very limited — usually only 48kB to 96kB in the last few
generations of Nvidia GPUs [23]. Hence, both the time and space complexity of the tabu are important.

A simple linked list is sufficient to implement all of the tabu operations, however accessing an arbitrary
element in the list has O(n) time complexity, with n being the number of nodes. A more efficient implemen-
tation, known as the tabu with list compression (LC), has been described by Dawson and Stewart [11], who
applied the list compression method first proposed by Uchida et al. [47]. The data structure consists of two
single dimensional arrays of integers of size n, and a variable L. For the sake of simplicity, lets denote them
by unwvisited and indices. The first one, stores the list of L nodes to be visited by an ant, while the second
stores the indices of every node in the first list. For example, if wnvisited[i] = v then indices[v] = i (we
assume that the nodes are denoted by numbers from 0 to n — 1). At the start of the construction process,
both arrays contain a sequence of n consecutive integers from 0 to n — 1, where n is the number of nodes
and L = n. In subsequent steps, if a node, v = unvisited[i], is being visited, then the mark(v) operation
involves the updates: wnvisited[i] <+ unvisited[L — 1], i.e., the visited node is replaced by the last one, and
indices[unvisited[i]] 1, is followed by L <— L — 1. It can be seen that, if indices[u] > L then the node, u,
has already been visited by the ant. Figure 3 shows an example of how the LC works.

The LC allows all the tabu operations to be performed in constant time. The major disadvantage is the
necessity for storing two n-element arrays in the memory. On the other hand, the indices array allows the
order in which the nodes were visited (in reverse order) to be recovered. For example, if we consider the
case shown in Fig 3, nodes 2, 5 and 7 were already visited, and the corresponding values in the indices array
are equal to 7, 6 and 5. By subtracting each value fromn —1we get n—1—-7=0,n—1—-6 =1 and
n — 1 — 5 = 2, respectively, which is exactly the order in which the nodes were visited.

By analyzing the LC tabu, we notice that it is possible to implement the tabu using only one list, entries,
of length n, and a variable, L. The trick is to divide the entries (logically) into two parts. The first (left)
part consists of the first L (L < n) entries and contains the list of L distinct nodes to be visited, i.e.,
entries[i] = u ,i < L if, and only if, node u is as yet unvisited. The second (right) part comprises entries at
positions from L up to n — 1. It is used to store indices for the nodes yet to be visited that were relocated to
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Figure 3: An example showing the subsequent removal of nodes 2, 5, and 7 from the LC tabu, which contains nodes 0 to 7.
The dashed line marks the end of the nodes list.

the left part, or the sentinel value of n for the nodes that have already been wisited, i.e., are not in the left
part.

Initially, the entries array contains consecutive numbers from 0 to n — 1, denoting the unvisited nodes.
In subsequent steps, if a node, u, is visited, one of two cases is possible: either u < L or v > L. In the first
case, the node w is at its initial position, i.e., entries[u] = u. In the second case, the node has been relocated
to the left part, and the value i, = entries[u] denotes the inder at which the node is currently located,
i.e., entries[i,] = w. If i, = L — 1 then u is at the end of the list, and it is enough to set entries[i,] + n
to mark that node u has been visited. Otherwise, i, < L — 1 and the last element, ¢t = entries[L — 1], of
the list replaces it: entries[i,] < t. The new position of ¢ is saved: entries[t] + i,. It is worth noting
that this scheme allows for checking in O(1) time whether node u was visited, simply by checking whether
entries[u] > u. We will refer to this tabu implementation as the compact tabu (CT). An example showing
the removal of three nodes from a CT that contains eight nodes is shown in Fig. 4.

Even more memory efficient implementation can be achieved if a bitmask of length n is used to mark
the visited /unvisited state of each node. In that case, the mark and is_visited tabu operations can be
performed in O(1) time. However, accessing the unvisited nodes (Fig. 2) requires checking the state of n
bits, while the two previous tabu implementations provide direct accesses to the unuvisited nodes. For the
sake of completeness, we will refer to this tabu as the bitmask tabu (BT). A summary of the presented tabu
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Figure 4: An example showing the subsequent removal of nodes 2, 5, and 7 from a CT containing nodes 0 to 7. The dashed line
marks the end of the nodes list. The entries to the right of the dashed line are used to store positions (indices) for the nodes
relocated to the left.

Table 1: A summary of the considered tabu implementations. We assume that the nodes are denoted as numbers 0 to n — 1,
where n < 216, i.e. a node can fit into an unsigned 16-bit variable.

Tabu implementation
TLC cT BT
Testing if node was visited (is_visited) O(1) O(1) o(1)
Marking node as visited (mark) o(1) 0(1) O(1)

Tabu characteristic

Number of calls to get_candidate

to get all k (k < n) unvisited nodes k k "

Required memory in bytes 4an 2n [n/8]

implementations is shown in Tab. 1.

4.2. Next node selection

The procedure for the selection of the next node by an ant during the solution construction phase has the
biggest impact on the performance of the MMAS and other ACO algorithms [7, 47]. Equation (1) defines
the probabilities for selecting each of the unvisited nodes. The sequential version of the procedure has a
simple and efficient implementation, often referred to as the roulette wheel method (RWM). The RWM takes
O(n) time, where n is the number of nodes to choose from.

4.2.1. Parallel RWM

The RWM is a typical example of an algorithm that has a simple and efficient sequential implementation
but is difficult to parallelize effectively [7]. The difficulties reside in the dependencies between the subsequent
computations of the RWM (e.g., the summation of the pheromone and heuristic information products [weights
in short]), searching for a "winning" node based on a randomly drawn value. It is not surprising that multiple
alternative RWM implementations have been proposed in the literature, including the I-Roulette method
by Cecilia et. al [7], the DS-Roulette by Dawson and Stewart [12], and the stochastic trial by Uchida et.
al [47]. Although these methods allow for an efficient parallel execution, they are gqualitatively different
from the sequential version [27]. Ouly recently has Cecilia et. al [8] proposed the parallel SS-Roulette
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method, which is essentially a parallel version of the RWM, i.e., it offers the same quality of results as the
sequential implementation. This was possible mainly due to the increasing computational capacity of GPU
architectures, and also improvements on the software side, e.g., the CUDA toolkit.

Nodes
‘Weights of the nodes

Sums of chunks of the nodes

Parallel prefix sum

Pick a random number

Broadcast p

Select winner in parallel

Broadcast p’

Idle Idle Load the winning chunk’s weights
Idle Idle Parallel prefix sum
Idle Idle Node 4 is selected

Figure 5: An example showing the execution of the parallel RWM.

Following the description of the SS-Roulette method (as the source code is not available), we have
implemented a parallel version of the RWM. Figure 5 shows how our implementation of the parallel RWM
(PRWM) works. First, each thread that is executing the PRWM is assigned a chunk of the unvisited nodes,
for which it computes a sum of the corresponding weights. Next, a prefix sum of the chunks’ sums is
computed in parallel. Following this, the last thread draws a uniform random number and multiplies it by
the total. The resulting value is broadcast to all threads so that the winning chunk of nodes can be selected.
If the chunk contains more than one node, then it is necessary to locate the selected node within the chunk.
This process again involves the calculation of the prefix sums of the nodes’ weights but this time only for the
nodes within the chunk. This can also be done in parallel by splitting the chunk’s nodes across all threads.
In general, this process may require up to ﬂogp nw stages, where n is the number of nodes and p is the
number of processors. For example, if n = 1024 and p = 32, then in the first stage each of the 32 threads
processes 32-node chunks, and in the second (final) stage each thread is assigned one out of the 32 nodes
from the chunk selected during the first stage. It is worth noting that the weights belonging to the chunks
selected in a single stage are read from the memory again in the subsequent stage, and so on. Fortunately,
the total number of times the weights are read from the memory equals ,Elzogpnw oF < o ﬁ =nzty,
which is O(n) because the number of threads, p, is constant.

4.2.2. Weighted Reservoir Sampling

The problem of the selection of the next node in the MMAS can also be seen as an instance of random
weighted sampling without replacement, or, more briefly, weighted reservoir sampling (WRS). In WRS, one
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has to select m distinct items randomly out of a population of size n, while the probability of choosing an
item is proportional to its weight [17]. In the case of the MMAS, only one item (node) needs to be selected,
and the weights are products of the heuristic information values and the pheromone trails values (see Eq. (1))
that are stored in the choice info matrix.

Input : A population V of n weighted items

Output: A reservoir (sample) R with the WRS of size m
1 Insert first m items of V into R ;
2 for i+ 1tomdo
3 t ki + uz(-l/w"') where u; = random(0, 1);

for i < m+1 to n do

'

5 T < the smallest key in R ;

6 ki uz(-l/w"') where u; = random(0, 1);

7 if k; > T then

8 L The item with the minimum key in R is replaced by item wv; ;

Figure 6: Algorithm A-Res for computing WRS [17].

Efraimidis and Spirakis proposed an efficient algorithm, named A-Res (Fig. 6), for computing WRS [17].

The A-Res algorithm assigns each item a key, ugl/ wi), where u; is a uniformly chosen number from the range
(0,1), and then selects m items with the largest keys. The most important property of the algorithm is that
it selects the sample in one pass, i.e., it considers each item and its weight once and, in contrast to the RWM,
does not require the summation of all the weights. It also worth noting that the relative order in which the
items are processed can be arbitrary, what makes the algorithm easier to parallelize. Therefore, we propose

to adapt this algorithm to implement a parallel equivalent of the RWM for application in the MMAS.

1 t « threadldx.x // CUDA-based thread id
2 p < blockDim.x // Number of threads in a block
3 Ry 0 // No element was selected
4T, <0 // Initial key for the thread ¢
5 | < tabu.length()
6 for i+t tol—1 Dby p do in parallel // Thread ¢ processes indices: ¢, t+p,..., L"T_tjp—l—t
7 v < tabu.get candidate(i)
8 if v # sentinel then // v is an unvisited node
9 r < random(0, 1)
10 w <— [Tuv]a [nth;]ﬁ
11 k « r(1/w)
12 if k> T; then
13 T, + k
14 L R; +—w
15 k < argmaxX;cqo1, ,-1}1i // Parallel reduction of (To,T1,...,7Tp-1)

16 return Ry

Figure 7: The WRS-based parallel pseudo-random proportional selection of the next node in the MMAS.

Figure 7 presents a pseudocode of the parallel version of the WRS (a single thread-block is assumed)
adapted to perform the pseudo-random proportional selection of the next node in the MMAS. Each thread
starts with its own reservoir that has a size of one (as only one node has to be selected) and the corresponding
key (lines 3 and 4). Next, the elements of the tabu are processed by p threads in parallel (loop in lines 6-14). A
thread, ¢, processes every p-th element and selects its own (locally) maximum key, T}, and the corresponding
element (node) R;. After this, a parallel reduction of the keys selected by the threads, (Ty,T1,...,Tp), is
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performed and the (final) maximum key is elected (line 15). The corresponding element becomes the result
of the WRS. The algorithm selects a node in O(% +log p) time. Figure 8 shows an example of the WRS-based
node selection.

to t1 ta t3

Each thread processes
a chunk of nodes

0 1 ! 2 3 ! 4 5 ! 6 7 Nodes
I I I R B
6] | (03] [038]: [02] [008]} 0] [d] weshoss v

[0.35] [0.36] 3[0.68] [0.72] 3 [0.54] [0.01] 3[0.23] [0.71] Po“’wmﬁdom numbers:

[-15.15][-29.48]![-1.85] [-3.16] ! [-3.56] [-132.88]-21.20][-1.24] Calculate keys: ki = - log, 7
| | |

max

|
: max

Select the maximum

|
I
I
I
1 key within each chunk

L | L
[ko = —15.15] 1 [ka = —1.85| 1 [ka = —3.56]

Parallel reduction over
warps’ choices

kr = —1.24 Node 7 is selected

Figure 8: An example showing the execution of the parallel, WRS-based pseudo-random proportional selection of the next node
in the MMAS.

max

The algorithm has a few potential drawbacks that can negatively affect its runtime. Firstly, a single
random number is required per element of the tabu, hence a separate pseudo-random number generator’s
state needs to be stored for each thread. Secondly, the calculation of the keys (line 11 in Fig. 7) involves costly
operations on float numbers: division and exponentiation. The former can be alleviated if the reciprocal of
each weight (line 10) is calculated in advance. This is possible because the weights depend on the heuristic
information values that are constant, while the values of the pheromone trails in the MMAS are updated only
once per iteration — after each ant has completed construction of its solution. The latter can be computed
using the powf () CUDA function but another important problem arises — as the weights are often very
small, their reciprocals become large, and therefore so do their exponents. This in turn causes problems,
as the 32-bit floating point type does not provide enough precision for the calculations. Fortunately, it is
possible to replace the exponentiation with a logarithm, i.e., the calculation in line 11 can be replaced by
k < Llog,r, where r is a uniform random number in the range (0,1) (Also, the initial 7} value needs to
be set carefully as lim,_,q+ log, © = —00). In fact, it is now possible to use the fast approximate logarithm
calculation provided by the CUDA __log2f () (intrinsic) function.

4.8. Candidate lists

During the solution construction process an ant located at a given node selects the next node from the
set of (yet) unvisited neighboring nodes. If the set of nodes the ant can choose from is limited to the so
called candidate list, the computation time of the MMAS can be greatly reduced, often without sacrificing
quality [43]. The candidate list for each node consists of a number, cl, of the closest neighboring nodes.
Assuming that ¢l is constant, the time complexity of the solution construction process for a single ant is
reduced from O(n?) to O(n).

In the original (CPU-based) MMAS implementation for solving the TSP, ¢/ = 20 [43]. Even smaller
numbers are possible, however it requires a more complex definition of the closeness between nodes, e.g., the
a-measure [19]. In the case of the GPU-based computations, setting cl to a multiple of the warp size (32 in
case of the modern Nvidia GPUs) seems an obvious choice [11].

4.4. Final details

The final structure of the proposed MMAS implementation is shown in Fig. 9. The main component of
the parallel MMAS is the ants’ solution construction process computed using a single CUDA kernel. We
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apply the proven data-parallel approach [7, 11, 47] in which a single thread-block computes the ant’s solution,
and the size of each block is a multiple of the warp size, which is 32 in the Nvidia GPUs, so that all the
processing elements (CUDA cores) within a warp are used efficiently.
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Figure 9: Flowchart of the GPU-based MMAS (n is the size of the problem, p is the number of threads per ant). The pairs of
numbers in the angle brackets denote the number of thread blocks and the number of threads per block that are executing a
kernel, respectively.

After the solutions construction kernel is executed, the iteration best solution is selected. If its cost
is lower than the cost of the current global best solution, it becomes the new global best solution and
the pheromone trail limits, Ty, and Tax, are updated. The new limits are then used by the pheromone
evaporation kernel. This kernel is executed with one thread-block per row of the pheromone memory matrix,
and with 256 threads in every block. Finally, a pheromone deposition kernel is called. It is responsible for
increasing the values of the pheromone trails that correspond to the edges of the iteration best solution.
This kernel is executed by a single block of 256 threads.

The presented pheromone evaporation-deposition scheme is simpler than in the AS, in which the
pheromone is updated for every ant and where the changes are often conflicting, i.e., they concern the
same pheromone trails [7]. In the MMAS, both the evaporation and deposition of the pheromone can be
split into independent and non-conflicting parts that do not require atomic operations as are used in the
GPU-based AS implementations |7, 8].
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Table 2: Characteristics of the GPUs used in the computational experiments.

Characteristic Nvidia Tesla P100  Nvidia Tesla V100

Architecture Pascal Volta
Multiprocessors (SM) 56 80
Streaming processors (CUDA cores) 3584 5120
FP32 processing power 9,340 GFLOPS 14,028 GFLOPS
Memory size 16 GB 16 GB
Memory bandwidth 732 GB/s 900 GB/s
L2 cache size (per die) 4,096 KB 6,144 KB
Shared mem. size (per SM) 64 KB Up to 96 KB
Transistors count 15 Billion 21.1 Billion
Maximum TDP 300W 300W

5. Experimental results

In this section we present the results of the computational experiments conducted in order to evaluate the
efficiency of the proposed MMAS implementations. The computations were performed on a set of symmetric
TSP instances from the well-known TSPLIB [35] repository. The instances were selected so that the results
could be compared to the reports available in the literature.

Following the works by Cecilia et. al [7, 8], we set the MMAS parameters as follows:

e the number of ants was equal to the problem size, i.e., m = n, where n denotes the size of the TSP
instance;

e p = 0.5 — the parameter controlling the pheromone evaporation rate;

e o = 1 and f = 2 — the parameters controlling the influence of the pheromone and the heuristic
information on the next node selection probability (Eq. 1);

e the number of iterations equaled 100.

The pheromone trail limits, Ty, and Tmax, were calculated following the work of Stiitzle and Hoos [43] with
Pbest = 0.01. The initial values of the limits were set based on the value of a solution constructed using the
nearest neighbor heuristic. If not stated otherwise, the presented numbers were averaged over 30 repeated
executions of a given algorithm. The presented time measurements were obtained using CUDA provided
timers and refer to the kernels executing respective parts of the MMAS.

Almost all of the computation time in the AS and other ACO algorithms is spent in the solutions
construction phase and relatively little on the pheromone updates [7]. This proportion is even higher in the
MMAS in which only a single ant deposits pheromone, i.e., the current global or iteration best, depending
on the chosen strategy [11]. For this reason, in the computational experiments, we mainly focused on the
impact of the tabu and the implementations of the node selection procedure.

Combining the three tabu implementations presented in Section 4.1 and the two node selection procedures
in Section 4.2 results in a total of six MMAS variants under consideration. For convenience, they are denoted
as MMAS-—node selection procedure—tabu implementation, where the node selection procedure is either denoted
by RWM or WRS; and tabu implementation is denoted by one of the following three: LC, BT and CT tabu
implementations.

5.1. Computing environment

The implementation of the proposed algorithms was done in C++ using Nvidia CUDA version 10.
Sources ! were compiled using GCC v6.3 with a -O8 switch for the CPU-side code, while the GPU-side
code was compiled with a -gencode arch=compute 60,code=sm_ 60 switch for the Nvidia Tesla P100 GPU,
and -gencode arch=compute 70,code=sm_ 70 switch for the Nvidia Tesla V100 GPU. Table 2 presents the
characteristics of the two GPU architectures used. The computations were conducted on servers running
under the Debian 9 Linux OS and equipped with a 20-core Intel Xeon 6138 (Skylake) CPU clocked at 2 GHz
(a single core was used in the computations).

ISources are available at https://github.com/RSkinderowicz/GPU-based-MMAS
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5.2. Solution construction phase

The efficient use of the computing power offered by GPUs equipped with thousands of processing elements
(CUDA cores), requires the proper organization of the computations, i.e., the computations should also be
split into multiple, mostly independent portions [26]. In the proposed MMAS implementations we adopted
the data-parallel approach in which each ant is assigned a thread-block, and the threads within the thread-
blocks are responsible for computing the solution. This leaves one crucial decision: the number of threads
within a thread-block. To best adapt to the Nvidia GPUs used in the computations, the size of each thread
block was a multiple of the warp size, that is, 32. Although the Volta architecture allows the threads within
a warp to follow divergent paths simultaneously [23], setting the number of threads to a multiple of the warp
size simplifies the implementation and allows for efficient execution on the pre-Volta generations of GPUs,
i.e., Pascal.
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Figure 10: The mean time required by the ants to construct solutions in the MMAS vs. the number of thread-warps per ant
for the pcb1178 instance (n is the size of the problem). The lowest value for each MMAS variant is shown above the respective
bar. The results are for the Nvidia Pascal P100 GPU.
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Figure 11: The mean time required by the ants to construct solutions in the MMAS vs. the number of thread-warps per ant
for the pr2392 instance (n is the size of the problem). The lowest value for each MMAS variant is shown above the respective
bar. The results are for the Nvidia P100 GPU.

Figures 10 and 11 show the mean solution construction time for the proposed MMAS variants that
executed on the Nvidia P100 GPU vs the number of threads 