Document downloaded from:

http://hdl.handle.net/10251/168482
This paper must be cited as:

Cebrian, JM.; Imbernon, B.; Soto, J.; Garcia, JM.; Cecilia-Canales, JM. (2020). High-
throughput fuzzy clustering on heterogeneous architectures. Future Generation Computer
Systems. 106:401-411. https://doi.org/10.1016/j.future.2020.01.022

The final publication is available at

https://doi.org/10.1016/j.future.2020.01.022

Copyright E|sevier

Additional Information

High-throughput fuzzy clustering on heterogeneous
architectures

Juan M. Cebrian®, Baldomero Imbernén?, Jests Soto?®, José M. GarciaP®,

José M. Cecilia®*

@ Department of Computer science, Universidad Cadlica San Antonio de Murcia
(UCAM), 30107, Murcia, Spain
b Department of Computing and Systems, University of Murcia, 30071, Murcia, Spain
¢Department of Computer Engineering (DISCA), Universitat Politécnica de Valéncia
(UPV), 46022, Valencia, Spain

Abstract

The Internet of Things (IoT) is pushing the next economic revolution in
which the main players are data and immediacy. IoT is increasingly pro-
ducing large amounts of data that are now classified as “dark data” because
most are created but never analyzed. The efficient analysis of this data del-
uge is becoming mandatory in order to transform it into meaningful informa-
tion. Among the techniques available for this purpose, clustering techniques,
which classify different patterns into groups, have proven to be very useful for
obtaining knowledge from the data. However, clustering algorithms are com-
putationally hard, especially when it comes to large data sets and, therefore,
they require the most powerful computing platforms on the market. In this
paper, we investigate coarse and fine grain parallelization strategies in Intel
and Nvidia architectures of fuzzy minimals (FM) algorithm; a fuzzy cluster-
ing technique that has shown very good results in the literature. We provide
an in-depth performance analysis of the FM’s main bottlenecks, reporting a
speed-up factor of up to 40x compared to the sequential counterpart version.

Keywords: Parallel fuzzy clustering, fuzzy clustering, fuzzy minimals

Email addresses: jcebrian@ditec.um.es (Juan M. Cebrian), bimbernon@ucam. edu
(Baldomero Imbernén), jsoto@ucam.edu (Jesis Soto), jmgarcia@um.es (José M.
Garcia), jmcecilia@ucam.edu (José M. Cecilia)

Preprint submitted to Future Generation Computer Systems April 19, 2021

1. Introduction

We are witnessing the steady transition from small to big data era. Data
sets generated in different sectors such as industry 4.0, social media or pre-
cision agriculture are continuously increasing (just to mention a few). The
overwhelming amount of data generated and the desire to process this in-
formation to generate valuable knowledge, pose compelling computational
challenges to data-intensive kernels such as clustering. Despite the end of
the Moore’s law is looming in the horizon [1], computing systems are still
increasing performance with each generation. The advent of heterogeneous
systems, where multi-and-many core processors are plugged into the same
motherboard (or even the same chip), also benefits from this continued
growth in performance. Hardware platforms such as Graphics Processing
Units (GPUs), Intel Xeon Phi or, to a lesser extent, the field-programmable
gate arrays (FPGAs) are nowadays being extensively used by the scientific
community as the only solution to overcome the challenges of processing such
data deluge [2, 3].

However, heterogeneous architectures introduce serious difficulties in terms
of programmability, being these even more accentuated when performance is
mandatory (e.g., real-time), as they introduce several levels of parallelism,
such as instruction-level parallelism (ILP), thread-level parallelism (TLP)
and data-level parallelism (DLP), altogether. The first two parallelism levels
have been traditionally exposed in latency-oriented and multicore architec-
tures, but the best way to expose the latter is through vector computations,
where a single instruction deals with several input elements (e.g., SIMD ex-
tensions [4, 5, 6, 7, 8], dedicated vector computing [9] or GPUs [10, 11]).
Therefore, the effective and efficient use of heterogeneous hardware to serve
an application remains a challenge.

Of particular interest to the scientific community are clustering algo-
rithms, which aim to group a collection of individuals (measures, points,
patterns, etc.) into clusters, mainly based on a given similarity or distance
metric, such as Euclidean or Mahalanobis distance [12|. The individuals
within the same cluster are closer than those that belong to a different clus-
ter [13]. Clustering algorithms have been successfully applied to the analysis
of data sets in various fields, such as image processing [14], smart cities [2, 15]
or bioinformatics [16], to provide valuable knowledge in these fields.

Most of today’s clustering algorithms rely on iterative procedures to find
optimal solutions in high-dimensional datasets. The ability to find these

solutions often requires many experiments with different algorithms and
the study of the influence of different parameters and characteristics of the
datasets. Therefore, clustering algorithms are computationally hard, for in-
stance, the classical method k-means is hard as NP-complete even when the
number of clusters to find is k = 2 [17]. Therefore, parallelization of clus-
tering algorithms becomes mandatory in the big data era. Actually, some
parallelization approaches have been published in the bibliography. The
first clustering algorithm that was proposed for parallelization was the k-
means [18, 19]. However, the k-means algorithms provides a hard cluster-
ing; i.e. each data point belongs exactly to a single cluster. Fuzzy cluster-
ing algorithms provide multiple and non-dichotomous cluster memberships.
Among fuzzy clustering algorithms, it is noteworthy to highlight the fuzzy
c-means (FCM) algorithm [20], which has been parallelized in the literature
in datasets [21, 22, 23, 24, 25]. The FCM requires prior knowledge of the
number of clusters to be generated (such as k-means), and then several runs
must be made to calculate the optimal number of clusters, which increases
computational time requirements. The FM clustering algorithm [26, 27]
does not need prior knowledge about the number of clusters and presents the
advantage that the clusters do not need to be compact well-separated, being
this feature a requirement for parallelization [28].

In this paper, we present the first fully developed FM algorithm for the
fuzzy classification of large datasets on Intel and Nvidia-based heterogeneous
architectures. A data parallelism approach, which is better suited to the
parallelism model of these architectures, is used to enhance performance.
Our major contributions include the following:

1. To the best of our knowledge, this is the first data-parallelism scheme
on GPUs and Intel CPUs/Xeon Phi for the FM clustering algorithm
that exploits both coarse-grain (TLP) and fine-grain (DLP) parallelism.

2. Scalability analysis with vector register size on latency-oriented (Skylake-
X) and throughput-oriented (Knights Landing) platforms.

3. Detailed evaluation via performance counters of the main performance
bottlenecks of the FM clustering algorithm on Intel CPUs.

4. In-depth analysis of several GPU parameters are tuned to reach a
speed-up factor of up to 12x, compared to Intel multithreaded and
vectorized CPU counterpart version.

5. Propose an heterogeneous FM clustering implementation (GPU + CPU)
approach that outperforms all individual platforms by up to 40x.

3

The rest of the paper is organized as follows. We briefly introduce FM
clustering algorithm and programming heterogeneous Nvidia and Intel archi-
tectures in Section 2. In Section 3 we present vector and GPU designs for the
main stages of the FM algorithm. Our experimental methodology is outlined
in Section 4 before we describe the performance evaluation of our algorithm.
Finally, Section 6 summarizes our findings and conclude with suggestions for
future work.

2. Background

2.1. Fuzzy Clustering

Clustering analysis consists of assigning data points to clusters (or groups)
so that point belonging the same cluster are as similar as possible, while
points belonging to another group are as different as possible. This simi-
larity process is based on the evaluation (i.e. minimization) of an objective
function, which includes measures such as distance, connectivity and/or in-
tensity. Different objective function may be chosen, depending on the dataset
features or the application. Fuzzy clustering is a set of classification algo-
rithms in which each data point can belong to more than one cluster. Typ-
ical examples of these algorithms include the FCM and the FM algorithms
[20, 28]. The latter was initially proposed by Flores-Sintas et al. where
authors demonstrate that it meets the expected characteristics of a clas-
sification algorithm; i.e. scalability, adaptability, self-driven, stability and
data-independent. In addition, the FM algorithm does not require any prior
knowledge (via input parameter) of the number of prototypes to be identified
in the data set, as is the case with the FCM algorithm. In the following, we
review the description of FM and refer to the reader to [26, 29, 27, 28] for
insights in the definition and demonstration of FM algorithm.

Let X be a set of n data points, such that

X ={z1,29,...,2,} CRF,

where F' is the dimension of the vector space.

Algorithm 1 shows the sequential baselines of the FM algorithm. This
algorithm has two main procedures (1) the calculation of the r factor (line
4) and (2) the calculation of prototypes or centroids (lines 5 to complete the
set V). The r factor is a parameter that measures the isotropy in the data
set. The use of Euclidean distance implies that the homogeneity and isotropy

Algorithm 1 The FM algorithm, where X is the input dataset to be clas-
sified, V is the algorithm output that contains the prototypes found by the
clustering process. F' is the dimension of the vector space.
1: Choose €; and &5 standard parameters.
Initialize V = { } C R
Load_Dataset(X)
r = Calculate_r_Factor(X)
Calculate_Prototypes(X,r ey, €2, V)

of the features space are assumed. Whenever homogeneity and isotropy are
broken, clusters are created in the features space.

CHID Spe S} 0

1+r2d2,,

The calculation of r factor is shown in Equation 1. It is a non-linear
expression, where |C~!| is the determinant of the inverse of the covariance
matrix, m is the mean of the sample X, d,,, is the Euclidean distance between
x and m, and n is the number of elements of the sample. It is noteworthy to
highlight that the calculation of the r factor is the most time consuming part
of the algorithm for big datasets, as it requires to computer for each point
the convolution and determinant of the input matrix.

Once the r factor is calculated, the calculation of prototypes is executed
to obtain the clustering result in V' (see Algorithm 2). The objective function
used by FM is given by Equation 2

Jw) = Z TR (2)

zeX

where

1
:1—1-7‘2-d27 (3)

Equation 3 measures the degree of membership for a given element x
to the cluster where v is the prototype. The FM algorithm is an iterative
procedure that aims to minimize the objective function through the Equation
4, giving the prototypes represented by each cluster. Finally, e; and e, are

/’Lx’U

Algorithm 2 Calculate_Prototypes() of FM algorithm.
1: fork=1k<n;k=k+1do

2: Vo) = Tk, t=0, E(O) =1

3: while Ey > ¢, do

4: t=t+1

o: Mgy = mv using V(t—1)
)2,

6: U(t) fd —ZIEX (H«zv)

(ugfv))z

T By = ZaF=1 (U&) - U(Oft—l))

8: end while

9: if 3.7 (v* —w®) > g9, Vw € V then
10: V=V+{v}

11: end if

12: end for

input parameters which establish the error degree committed in the minimum
estimation and show the difference between potential minimums respectively.

. ZxEX Iuil) "z (4)
0T > exﬂz

2.2. Programming heterogeneous clusters

High Performance Computing (HPC) programmers have relied on the
scalability of technology to deliver greater performance. The design of het-
erogeneous architectures, combining CPUs and accelerators, such as GPUs
and TPUs [30], is now seen as the only solution to continue scaling Moore’s
law through specialization [31, 32]. Parallel multithreaded implementations
are not always efficient in such heterogeneous systems, as they are designed
for homogeneous systems in which all cores have the same computing ca-
pabilities. In addition, exploiting fine-grained parallelism via vectorization
adds an additional complexity layer to the problem. For example, vector
units inside most modern processors have a fixed size (e.g., SSE/NEON has
128-bits, AVX/AVX2 has 256-bits or AVX512 has 512-bits), although they
are usually backwards compatible. ARM’s SVE tries to solve this issue us-
ing a vector-length agnostic (VLA) programming model (the ISA does not
assume a fixed vector register size) [6]. Moreover, new SIMD extensions

usually add additional functionality via new instructions, further increasing
the complexity when dealing with heterogeneous systems that have different
ALU capabilities.

Vectorization offers a potential speedup that scales linearly with the vec-
tor register size. Vector register size has steadily doubled every 4 years [33]
since the late 90s. Interestingly, doubling the register size can be signifi-
cantly more energy efficient than doubling the number of cores. However,
the generation of efficient vector code with increasing register size has several
obstacles to overcome. Key performance limiting factors include: (a) at a
design level, horizontal operations, data structure conversion and divergence
control, and (b) at a hardware level, register bank size, cache and memory
bandwidth and resource under utilization. Ultimately, the effectiveness the
architecture depends on its ability to vectorize large quantities of code [34].

Automatic vectorization has been widely studied over the years to exploit
vector capabilities. However, compilers show important limitations when
vectorizing code with pointers and function calls. This is usually related
to traditional compiler analysis limitations (e.g., pointer aliasing analysis)
[34]. On the other hand, user-directed vectorization offers a portable solu-
tion to vectorization. The programmer can assist the compiler highlighting
what regions of the code are candidates to be vectorized (in the form of
#pragma directives, similar to OpenMP). While this improves code portabil-
ity, there are certain low level code optimizations that are nearly impossible
to produce by the compiler [35]. More specifically, SIMD codes require both
function call vectorization and superblock optimizations to improve perfor-
mance over scalar implementations, making manual vectorization the most
suitable choice in our evaluation. Manual vectorization usually consists on
the translation of high level source codes (usually the most time-consuming
and inner-most loops) to equivalent low level intrinsic or assembly code.

Therefore, programmers play a fundamental role in this heterogeneous
paradigm since programs have to be developed using different programming
models through APIs such as OpenMP [36], MPI [37], OpenCL [38] or CUDA
[39] to fully leverage heterogeneous systems. Moreover, they must also exploit
resources of different characteristics within the chip, such as vector units.

3. Targeting heterogeneous processors

This section introduces the parallelization strategies applied to the FM
algorithm on heterogeneous architectures. Particularly, our designs target

two different architectures: Intel and Nvidia. FM has a fundamental advan-
tage over other fuzzy clustering techniques, i.e. it does not require comparing
groupings with each other to minimize an objective function. Therefore, our
approach can take advantage of this feature to divide the original data set
into subsets and then perform FM independently. Each independent subset
is classified using an objective function that includes the r factor, previously
calculated on the original dataset. The r factor provides general information
about the dataset, ensuring that subsets do not lose information about global
properties for classification.

3.1. Intel-based parallelization

As discussed in Section 2, the FM algorithm can be divided in two clearly
independent steps, a) calculation of the r factor (Algorithm 1, line 4 and
b) calculation of prototypes and add them if a distance condition is met
(Algorithm 2). The parallelization of both stages in Intel-based architectures
is briefly explained below.

Calculate r factor parallelization: A detailed profiling analysis of the
factor r computation reveals that the most time consuming functions
performed a convolution and a determinant for each row of the in-
put matrix. This section can be parallelized at a coarse-grain using
OpenMP. There are no critical sections in this code, except a final re-
duction to combine all partial factor r» computations. The scalability
of this code section is almost linear with thread count. We do not per-
form manual vectorization of this code section since we rely on Eigen
to perform matrix computations (convolution and determinant) [40].

Calculate prototypes parallelization: The factor r is a global parameter
that provides information about the whole data-set. This enables the
CPU implementation to exploit coarse-level parallelism via OpenMP
(Algorithm 2). However, this parallelization requires a critical section
(lines 9 and 10) to add candidate prototypes to the final output. This
critical section has O(N), meaning that the more prototypes in the
output, the longer it will take to insert new ones.

The next step is to perform fine-grain parallelization via vectorization.
A detailed profiling revealed two possible hot-spots where vectorization
could be applied, algorithm 2 lines 6-7 and the euclidean distance re-
quired in line 5, being the later the most time consuming (around 90%

8

Algorithm 3 SIMD version of Algorithm 2 line 5.

: for [= 0;1 < columns; 1+ = SIMD_WIDTH do

aux = simd_load(PROTOTY PE|l]) — simd_load(ROWl])
distance+ = auxr X aux

end for
scalar_distance = reduce_add(distance)
output =

1
1+rFactorSquarex scalar _distance

of total execution time). We performed text-book manual vectoriza-
tion of the euclidean distance function (Algorithm 3). However, there
are several limitations to the potential speedup of the vectorized code:
a) horizontal operations at the end of the computations (reduction) b)
increased L2 cache misses with high number of dimensions (columns)
c) low arithmetic intensity' and d) the division in algorithm 2 line 5.
On the other hand, vectorization of lines 6-7 also has low arithmetic in-
tensity and a division, but still it is better balanced. Intel’s Top-Down
model? information confirmed these hypothesis [41]. More detailed in-
formation will be provided in the evaluation section.

Finally, we decided to test superblocking in order to make use of the
SIMD divisor ports available in the system. In order to do so, we un-
rolled 16 iterations (rows) of the main loop (see Algorithm 2), comput-
ing their distances, and then building two vector registers containing all
distances, that we could then use in the rest of the code (Algorithm 4.
This was implemented only for AVX512, and it was the best performing
version we found. We also tried unrolling 8 iterations, but results were
slightly worse. Superblocking further decreased cache locality, but the
use of the SIMD division ports paid off in performance terms.

3.2. CUDA-based parallelization

This section shows CUDA parallelization strategies applied to FM sys-

tems. Likewise the Intel’s approach, the explanation is given for each of the
main functions in the algorithm.

L A measure of operations performed relative to the amount of memory accesses (Bytes).
2Performance counter information is used to define the processor behaviour for a given

workload, and to detect hardware bottlenecks.

Algorithm 4 Superblocked SIMD version of Algorithm 2 line 5 (16 itera-
tions) for a vector register of 8 doubles (512-bits).
1: for block.ount = 0;block.ount < 16; block.ount + + do
2: aux = 0;distance[block.ount] = 0
3: forl=0;l < columns;l+=SIMD_WIDTH do
4: aur = simdload(PROTOTY PE[l]) — simd_load(ROW|l +
block.ount x columns])
distance[block.ount|+ = aux X aux
end for
7. scalar_distance[block.ount] = reduce_add(distance[block.ount))
8: end for
9: simd_outputl = [

5:
6.

[1.1]

1..1]4+[rFactor Square..r FactorSquare] X scalar _distance[0..7]
[1..1]

1..1]4+[r FactorSquare..r Factor Square] x scalar _distance[8..15]

10: simd_output2 = [

Algorithm 5 R Factor calculation algorithm in GPU
1: for i =1;i <rows;i =1+ 1do
2: covariance <<< bl,th,sh >>> (dataset,determ, row;, rows, cols)
3: detvalue = cusolver_thrust(determ)

) _ 1
4: rfactor+ = NEr
5. end for

Calculate r factor parallelization (see Algorithm 5): As previously ex-
plained, the r factor procedure has two different tasks to be performed
for each row in the dataset. They are the calculation of the fuzzy co-
variance matrix, which is a square matrix (columns x columns) and
the calculation of its determinant. It is noteworthy to highlight that
there as many iterations as rows (points in the datasets) but the per-
formance is also affected by the number of columns (i.e. the dimension
of points F'). Actuality, performance will be drastically affected by this
last parameter, since the execution time of the determinant calculation
will increase exponentially with the size of the matrix.

The determinant calculation can be performed by several methods [42].
One of the best known is to use factorization. With factorization, the
determinant can be broken down into the product of two matrices, one
triangular and one stepwise. The value of the determinant would be the
product of the elements of the diagonal of the stepwise matrix. Partic-

10

Algorithm 6 covariance (dataset, determ,p, rows, cols)
1: fori=1;i < cols;i =1+ 1 do

2. forj=1;7<cols;5=7+1do

3 sum = 0

4 for k =1k <rows;k=k+1do

5: sum~+ = (dataset[k][i] — p[i]) = (dataset[k][j] — plj]);
6: end for

7 determ[j][i] = sum/rows;

8: end for

9: end for

ularly, the determinant is calculated by using the LU factorization as it
is the technique used by the Eigen library. CUDA offers the cuSOLVER
library for 64-bit platforms available from CUDA 7 and beyond. This
library is based on cuBLAS and cuSparse libraries. It is also com-
posed of three libraries that can be used independently cuSolverDN,
cuSolverSP and cuSolverRF. In this work we use cuSolverDN, which
it works with dense matrix factoring, and it incorporates several factor-
ing routines such as LU, QR or Cholesky. Finally, the thurst library
is used to reduce the diagonal in the GPU to obtain the determinant
result.

Next, the fuzzy covariance matrix is calculated to obtain r factor. This
calculation uses the whole dataset to construct the determinant. Al-
gorithm 6 shows the sequential implementation to obtain the fuzzy
covariance matrix, where the dataset is received as an input, rows
and cols are rows and columns of data input, and p is a vector. This
algorithm is memory bounded but there is some data locality in the
most-inner loop. Thus, the GPU shared memory is used to improve
the overall application bandwidth.

Calculate prototypes parallelization: The second step of the FM algo-
rithm is the calculation of prototypes. This task is implemented on
the GPU using each thread to calculate the distance between each row
dataset and the prototype. Next, each thread calculates the equation 3
to obtain the probability of belonging to each prototype. Finally, in the
GPU, a reduction per block must be done to obtain the total amount
of this pertinence for each row dataset.

11

3.3. Performance Guidelines

This section provides a summary of our experiences during the optimiza-
tion process of the FM algorithm on heterogeneous architectures. In this
paper we have evaluated three different platforms: GPUs, server CPUs and
the KNL architecture. GPUs are massively parallel architectures, where max-
imizing performance requires a huge amount of TLP. In many cases, thread
count must be several orders of magnitude higher than the actual number of
cores of the GPU. Thread independence, minimum synchronization, maxi-
mizing local memory usage and overlapping computation and data transfers
to GPU memory are also required to extract performance of such architec-
tures. As a drawback, GPU cores are simple. Therefore, complex operations
such as divisions or square roots have a long latency.

On the other hand, we have CPUs (and KNL). In these architectures
the user does not need to transfer data manually, and everything is handled
transparently by the memory hierarchy. The amount of TLP available is
smaller (i.e. one to four threads per core). Synchronization among threads is
“easier” thanks to coherence protocols, which ensure the memory consistency
model. In addition, vector ALUs are far more complex than the GPU’s ALUs.
These ALUs are usually pipelined (not in KNL), and can handle complex
operations much faster. Clock frequencies are also 3 to 4 times faster in
CPUs than in GPUs/KNL. This benefits serial code sections and functions
with low levels of TLP.

The first step in any optimization process is to profile the application
looking for performance bottlenecks. Tools such as Intel’s Vtune, AMD’s
CodeXL/uProf or Nvidia’s Nsight are openly available to developers. Once
the developers have an insight of the code and its bottlenecks, they need to
break down the code in functions that can be handled by standard or math
libraries. The use of libraries is always recommended for several reasons.

e Correctness and development times.

e Code portability. Every time a new hardware is released, developers of
these libraries update their codes to support this new hardware.

e Performance portability. Libraries are usually optimized for each ar-
chitecture that is supported.

For the particular case of the FM algorithm, we realized that most of the
total execution time of the algorithm referred to the r factor and the calcu-
lation of the prototypes. The r-factor calculation involves convolutions and

12

determinant computations, which can be carried out by using mathematical
libraries (e.g., Eigen or cuSOLVER). However, the prototype computation
could not be easily adapted to any known standard or mathematical library.

The next step is to perform coarse-grain parallelization on the different
code sections. We recommend the use of standard programming interfaces
(API), such as OpenMP or OpenACC, to benefit code portability. Never-
theless, please note that these APIs do not ensure performance portability.
Efforts should focus on outer loops that require minimum synchronization
among threads. The r factor computation can be parallelized at a row level
requiring minimum synchronization. On the other hand, the calculate pro-
totype function requires a critical section to protect the insertion of new
prototypes in the final output. This limits the scalability as the number of
prototypes increases.

At this point developers should realize which code sections are more
suitable to run on a GPU (if any). As discussed before, we need massive
parallelism with minimal synchronization. We will benefit from not having
complex instructions in the code (e.g., division). In addition, computations
should take longer than the time it takes to transfer the data in and out
of the GPU memory. The r factor computation matches all these require-
ments. It is massively parallel, with no complex operations. Moreover, the
output of this function only produces a single double precision element, not
requiring large data transfers out of the GPU memory. This means that
GPU computations can be overlapped with data transfers, since bandwidth
requirements for moving data out are minimal. On the other hand, proto-
type computation seems more suitable for CPU computations, since it uses
complex operations (divisions). This code also has a critical section that will
benefit from the faster core frequencies when dealing with big datasets that
produce many candidate prototypes. Developers should handle computation
and communications phases between these heterogeneous architectures in a
pipelined fashion, overlapping GPU data transfers, GPU computation and
CPU computations.

Finally, we should try to extract fine-grained parallelization (vectoriza-
tion) on CPUs (KNL). First, developers should try compiler auto-vectorization
(e.g., Intel ICC -O2 or GCC -03 perform auto-vectorization). If there is no
effect on performance, try to get info from the compiler. For example, GCCs
-fopt-info-vec-missed provides information about missed optimization oppor-
tunities from vectorization passes. Developers can then try to modify or add
"pragmas” to the code to resolve compiler issues with auto-vectorization.

13

Nevertheless, in most cases, developers will have to rely on manual vector-
ization.

Vectorization efforts should focus at the inner-most loop level. If perfor-
mance remains unaffected, profile the application again, looking for reasons
that limit vector scalability. If profiling reveals that the code section is heav-
ily memory bound, there is nothing else the developer can do but to try
compression techniques (e.g., [43]). On the other hand, if profiling reveals
other bottlenecks, as it happened in our FM code with high divisor ALU
contention, developers should try outer-loop vectorization or macro-blocks
to make better use of the hardware resources.

4. Evaluation

This section shows an experimental evaluation of the FM parallelization
strategies running on a heterogeneous systems based on Intel CPUs and
Nvidia GPUs. First of all, we briefly introduce the hardware and software
environment where the experiments are carried out.

4.1. Hardware environment and Benchmarking

Intel-based platform The Skylake-X i7-7820X CPU processor used in our
evaluation has eight physical cores with sixteen threads running at
3.60GHz. It has 32+32KB of L1 and 1MB of L2 cache per core plus
11MB of shared L3 cache. It offers support for SSE4.2 (128-bit reg-
isters), AVX2 (256-bit registers) and AVX-512 (512-bit registers) in-
structions. On the other hand, the Xeon Phi 7250 processor has 68
cores with 272 threads running at 1.40GHz (but we only use 64 cores /
256 threads for computation as recommended by Intel). The L1 cache
is identical to the i7-7820X but the L2 shares its 1MB between 2 cores.
Our setup uses the 16GB HBM-MCDRAM as L3 shared cache.

Nvidia-based platform Platform with 2 hexa-core Intel Xeon E5-2650 at
2.20 GHz, 128 GB of RAM, private L1 and L2 caches of 32 KB and
256 KB per node, and a L3 cache of 32 MB shared by all the cores of
a socket. It includes a GPU Nvidia GTX 1080 Ti(Pascal), with 3584
cores (28 SM and 128 SP per SM), 12 Global Memory DDR5 and 48
KB of shared memory per block.

The dataset to test our implementation is an input database with 100K
points, belonging to five hyper-ellipsoids Sy, with S, C R* Vk € {1,2,3,4,5},

14

and S; NS; = oVi # j. The cardinal of each subset is: |S;| = 20868,
|S,| = 20104, |S5| = 19874, |Sy| = 22380, | S5| = 16774, respectively.

4.2. Runtime Evaluation

This section shows the evaluation results for different input sizes (varying
both the number of rows and columns). Columns represent the number of
variables for each element that should be clustered (e.g., if elements are cars,
each column represents a characteristic of the car, like brand, color, emissions,
etc). On the other hand, rows represent different instances of the elements
to classify (e.g., different cars). Our goal is to show the scalability on each
dimension, since each field of application has different requirements. First
we perform a detailed evaluation of different SIMD optimization strategies.
Second, we compare all architectures: the GTX 1080 Ti (GPU), the Xeon Phi
7250 (KNL) and the Skylake 7820X (SKL-X). We have also tested different
thread counts, but for the sake of clarity we focus on the best configuration
for each architecture (maximum thread count).

4.2.1. SIMD FEvaluation

Figure 1 shows the per-thread performance improvement (speedup) of
the SIMD implementations over the scalar code for different input sizes. We
show results for 1 and 16 threads to analyze the effects of sharing the 11MB
of L3 cache. Note that the AVX512 results shown in the figures correspond
to the superblocked version. The straightforward AVX512 version behaved
similarly to SSE and AVX and is omitted for the sake of clarity.

The first thing to notice is that SSE shows the expected speedup of 2x
when the number of columns is greater than 8. Note that our implementa-
tions use double precision floating point, so only two doubles can be fitted
into the 128-bit SSE register. However, for 8 columns, the speedup is slightly
lower (around 1.5x). This can be explained by checking the instruction count
for SSE (Figure 2-top). It can be seen that it is close to 1.73x lower than the
scalar code for 8 columns, while for 16 columns is 1.86x. In addition, when
running over 16 columns or more, the backend is blocked slightly less time
(Figure 2-bottom), and the application is less memory bound (Figure 3-top).
This can be explained by the additional horizontal operations in the code (to
perform the reduction in the Euclidean distance). For 8 columns, we per-
form a reduction every 4 loop iterations, while for 16 columns, we perform a
reduction every 8 loop iterations. The increase in core-boundness also comes

15

2,500

E1Th @16Th
F)
%]
8
[%]
Q
£
£
o
p=3
e
(7]
2
%)
SSE | AVX AVX512 SSE ' AVX AVX512 SSE | AVX AVX512 SSE | AVX AVX512
16K Rows / 8 Cols 32K Rows / 8 Cols 64K Rows / 8 Cols 98K Rows / 8 Cols
4,500
W 1Th @16Th
’:u:‘, ,,,,,,
n
8
~ 2800 0 = - mm
Q
O B B | T
S 200 g B WS - - WS
Q
=3
e
(7]
2
%)
SSE | AVX AVX512 SSE | AVX AVX512 SSE | AVX AVX512 SSE | AVX AVX512
16K Rows / 32 Cols 32K Rows / 32 Cols 64K Rows / 32 Cols 98K Rows / 32 Cols

Figure 1: Per-thread speedup (over scalar runtime) for 1 and 16 threads and different
SIMD implementations (SSE, AVX and AVX512). Input has 8 (top) and 32 (bottom)
columns and different number of rows (X Axis).

16

from the cycle penalty of the non-vectorized divisions (that cost 14 cycles in
Skylake-X and 32 for KNL [44]). Scalar divisions become a bottleneck when
the rest of the code is computed faster via SIMD.

On the other hand, AVX performance is very similar to SSE. Figure 2-
top shows that the instruction reduction factor of AVX is only slightly higher
than SSE (not 4x as expected). This is mainly because AVX requires of four
instructions to perform the horizontal reduction in the Euclidean distance,
whereas SSE requires only one. As column count increases, the ratio of hor-
izontal instructions decreases, and the instruction reduction factor goes up,
and so does the speedup of AVX over SSE. Moreover, AVX is slightly slower
than SSE for 8 columns, mainly due to additional backend stalls according
to Figure 2-bottom. As it happened with SSE, the additional backend stalls
come from horizontal operations and non-vectorized divisions.

Finally, the superblocked AVX512 outperforms both SSE and AVX in
all cases, reaching 2x for some input sizes. Figure 2-top shows that the
instruction reduction factor of the superblocked AVX512 scales much bet-
ter than SSE and AVX. As it happened with AVX, the horizontal reduction
in AVX512 is broken down into a set of micro-ops (around 15). The more
columns in the input, the less ratio of horizontal operations over regular in-
structions we encounter, and thus the higher instruction reduction factor.
However, the increase in the instruction reduction ratio is not always trans-
lated into a performance improvement. The answer to this behavior can be
found in Figure 3. The top chart shows how the application becomes in-
creasingly memory bound as the number of columns goes up. This is related
to the arithmetic intensity going down as we reduce the instruction count
via SIMD. In addition, the bottom chart shows what levels of the memory
hierarchy are stalling the processor. As we can see, L2 is a critical factor for
8, 16 and 32 columns, while L3 and main memory are the main bottleneck
for 64 columns. As the number of rows in the input increases, we reduce the
cache locality in L3, and that has a significant performance impact on the
superblocked AVX512 implementation.

Finally, it is worth mentioning that the performance difference of having
exclusive access to the 11MB L3 (1th vs 16th in Figure 1) is minimal, and
usually benefits the single core scenario.

17

=
o

9
2 s
£
z 7
g 6
&
= 5
K=}
B 4
=3
B
& 3
c
S 2
E
° |
SSE AVX A512 SSE AVX A512 SSE AVX A512 SSE AVX A512
8 Cols 16 Cols 32 Cols 64 Cols
O Retiring O BadSpec @ Backend B Frontend
100 %
0% | || | | EE A e S B B N
80% | || || R R L
g 70%
g 60 %
é 50%
5 40 %
g 30%
o
hs 20%
0%
0%
SCL SSE AVX A512 SCL SSE AVX A512 SCL SSE AVX 'A512 SCL SSE AVX A512
8 Cols 16 Cols 32 Cols 64 Cols

Figure 2: Instruction reduction factor (top) and level 0 of Top-Down model (bottom).
Input has 16K rows and varying column count (X Axis).

18

@ Core.Bound B Mem.Bound

100 %

90 %

80 %
S 70 %
E 60 %
T 50%
4
s 40%
& 30%
o
E 20 %

10 %

o | | | |

SCL SSE AVX A512 SCL SSE AVX A512 SCL SSE AVX A512 SCL SSE AVX | A512
8 Cols 16 Cols 32 Cols 64 Cols
O Other.Bound @ L2.Bound B L1.Bound
g
()
£
E=4
c
3
24
G
c
S
°
[
w
SCL SSE AVX A512 SCL SSE AVX A512 SCL SSE AVX 'A512 SCL SSE AVX A512
8 Cols 16 Cols 32 Cols 64 Cols

Figure 3: Level 1 (top) and Level 2 of Top-Down model (bottom). Input has 16K rows
and varying column count (X Axis).

19

80 100 160 1000
E CAL. PROT.

70 90 140 900
B FACTORR
80 800
60 120
70 700
50 60 100 600
)
S 40 50 80 500
i)
2 30 40 0 400
- 30 300
20 40
20 200 r
0 — == 0 0 0
GPU KNL SKL-X GPU KNL SKL-X GPU KNL SKL-X GPU KNL SKL-X
16K Rows / 8 Cols 16K Rows / 16 Cols 16K Rows / 32 Cols 16K Rows / 64 Cols

Figure 4: Runtime (Seconds) breakdown (Factor R + Prototypes) for the three evaluated
platforms. Input has 16K rows and different number of columns (X Axis).

4.2.2. Platform Evaluation

The next step is to compare the different heterogeneous platforms to de-
cide which one is the best candidate to perform the FM clustering technique.
Figures 4 and 5 show the execution time breakdown of the FM kernel in
two parts, factor r computation and prototype calculation for different input
sizes. Each figure contains a plot for different number of columns (8, 16,
32 and 64), while the figures themselves vary the number of rows (16K and
98K). Intermediate row sizes can be extrapolated from these values.

The first thing to notice is that the GPU has a huge performance penalty
for small number of columns when compared to other platforms, but it scales
better along with the number of rows. This slow performance comes from two
sources, first there is initialization time, and second it is the low floating point
operations per core of the GPU when running double precision floating point.
Secondly, it is clear that the GPU spends considerably more time calculating
the prototypes than KNL and SKL-X. This is probably due to the divisions
and the low arithmetic intensity in the prototype computation (Algorithm
1). This behavior is consistent across the different number of rows. The
GPU clearly outperforms other platforms for factor r computations, running
around 10 (18) times faster than the KNL (SKL-X).

However, KNL provides the best overall performance for less than 32
columns regardless of the number of rows. SKL-X is only 60 to 75% slower
than KNL for 16K rows (Figure 4). In this scenario, the additional energy

20

required and price cost of KNL does not seem justified, neither is the use of
a GPU. However, as the row count increases (Figure 5), the massive thread
count of KNL (256 compared to 16 on SKL-X) starts to pay off. Remember
that we perform coarse-grained OpenMP parallelization over the rows.
Nevertheless, we must conclude that the best device in terms of money
and energy efficiency to execute FM is neither of those platforms as a stand-
alone. Indeed, the best performance requires going a step further in het-
erogeneous computation, and combining the execution on GPU (for factor
r computation) and CPU (to estimate the prototypes). In addition, when
processing several inputs, GPU and CPU computations can be overlapped,
further reducing the total run-time of the application. Moreover, since the
GPU seems under-utilized for factor r computation, running multiple in-
stances of factor r is also plausible via streaming, virtualization or similar.

3000 3500 12000 90000
HCAL. PROT.
80000
2500 8000 10000 BFACTORR
70000
2500
2000 8000 60000
o) 2000 50000
51500 6000
é 1500 40000
[
E1000 4000 30000
1000
20000
500 2000
A= I -
—
0 == i 0 0 0 -
GPU | KNL | SKL-X GPU | KNL | SKL-X GPU | KNL | SKLX GPU | KNL | SKLX
98K Rows / 8 Cols 98K Rows / 16 Cols 98K Rows / 32 Cols 98K Rows / 64 Cols

Figure 5: Runtime (Seconds) breakdown (Factor R + Prototypes) for the three evaluated
platforms. Input has 98K rows and different number of columns (X Axis).

4.8. Quality Fvaluation

To test the clustering efficiency of the FM algorithm, we use the database
described in Section 4. More specifically, we generate 100K points that be-
long to five hyper-ellipsoids Sg, with S, C R, Vk € {1,2,3,4,5}, and
S;NS; = ¢Vi # j. For cardinals we use: [S;| = 20868, |S2| = 20104,
|S3| = 19874, |S,] = 22380, |S5| = 16774. The FM clustering output is a
set of 37 prototypes, which looks very far from the actual result (i.e., 5 clus-
ters). This variation comes from one of the parameters of the FM algorithm

21

700
|

o
g
[Te]
@
— raleslsn o
z £
=] g °
r a
o
g
Nleecogoeororo0zo o oo I I I f !
- - 0 200 400 600 765
Prototype Height

Figure 6: Dendrogram of the hierarchical agglomerative clustering of the FM prototypes
(left). Bannerplot displays of prototype clusters (right).

that establishes the maximum distance of two prototype candidates. A high
number of input points (100K in our case) will translate into a high number
of prototypes if the maximum distance parameter is too small. However, in
our evaluation we see that most close prototypes are representative of the
same cluster. Thus, we perform hierarchical clustering to the output proto-
types generated by FM to test which ones belong to the same cluster. More
specifically, we use the hierarchical clustering analysis proposed by [45].

This algorithm is considered as one of the best techniques for partitioning
objects into optimally homogeneous groups on the basis of empirical measures
of similarity. The resulting clusters can be visualized as a dendrogram, which
shows the sequence of cluster fusion and the distance at which each fusion
took place. The agglomeration method used in our hierarchical clustering
is the single-linkage clustering. As a measure of dissimilarity between sets
we used the euclidean distance. Figure 6-left shows a dendrogram of our
hierarchical clustering. If we divide the tree into five groups (or sets), as
shown in red in Figure 6-left, these sets correspond unequivocally with the
five hyper-ellipsoids the inputs are based on. This confirms the output quality
of the FM algorithm.

This is the best case scenario, where we know in advance how the output
should look like (around five clusters). However, there are other approaches

22

that can help us to decide how many groups are required as the best solution
given the output prototypes. Figure 6-right shows a “banner”?® visualizing
the (agglomerative or divisive) hierarchical clustering [46, 47]. Figure 6-right
shows a big qualitative leap between the 4th and 2nd prototypes, while the
5th is representative of the rest. Therefore, a five cluster representation is
clearly accurate, endorsing the results shown in Figure 6-left.

5. Related work

There are many methods in the literature for clustering [48], but only a
few efforts have been made to parallelize them on different computing plat-
forms. For instance, Jin et al. proposed a distributed single-linkage hierar-
chical clustering algorithm (DiSC) based on MapReduce [49]. Hou [50], Zhao
et al. [51] and Xiong [52] also developed map reduce solutions using plat-
forms, such as Hadoop, to improve performance of the k-means algorithm as
applied to different context. In [53], authors introduced a hierarchical data
structure and clustering algorithm (called parallel k-tree). This algorithm
was designed to leverage clusters of computers to deal with extremely large
datasets. They applied parallel k-tree to a large (8 terabyte) collection of
Landsat 5 satellite images. In [54], authors optimize a particular implemen-
tation of k-means, triangle inequality, using a hybrid implementation based
on MPI and OpenMP on homogeneous computing clusters.

GPUs have been also applied for the parallelization of clustering algo-
rithms. Li et al. provide a GPU parallelization road-map of k-Means algo-
rithm on a GPU, pointing out data dimensionality as an important factor in
terms of performance on these platforms [55]. Therefore, they design differ-
ent GPU implementations for low-and-high dimensional datasets. Different
variations of k-means have been also ported to GPUs. For instance, the opti-
mal tabu k-means clustering to increase efficacy by combining tabu search for
calculation of centroids with clustering features of k-means [56]. Djenouri et
al. use different HPC platforms for discovering parallel frequent item-sets in
transactional databases and addresses the time complexity problem. Three
different single scan (SS) algorithms are provided using GPUs. They exploit
heterogeneous hardware by scheduling independent jobs to workers in a clus-
ter of nodes equipped with CPUs and GPUs [57]. In [58], authors propose a

3A horizontal barplot.

23

classifier for efficiently mining data streams based on extreme learning ma-
chine, which is improved by an efficient drift detector and method to alleviate
the bias towards the majority class.

Many works have also proposed the parallelization of k-means or, varia-
tions of it, as applied to particular problems, such as image segmentation [59],
Circuit Transient Analysis [60], monitoring fault tolerance in Wireless Sensor
Networks (WSN) [61], air pollution detection [2], health care data classifica-
tion [62]. Finally, there are only few a articles that parallelize non-supervised
clustering algorithms. Scully-Alison et al. propose a sparse fuzzy k-means
algorithm that operates on multiple GPUs [63] and perform clustering for
real environmental sensor data.

6. Conclusions and Future work

The analysis of large datasets has the potential to transform development
and accelerate social progress worldwide. However, an optimal use of the
available resources is required to process the information generated in near
real time to ensure the success of this new paradigm. Current processors are
heterogeneous and massively parallel. This makes it mandatory to redefine
our algorithms to take full advantage of these architectures. This article
shows the parallelization roadmap on Intel and Nvidia-based architectures
for the FM algorithm to improve runtime classification of large data sets.
Our results reveal that the Intel’s KNL architecture is the best platform for
small/medium datasets. Nvidia GPUs are very good to calculate the Factor r
and for larger datasets. Moreover, KNL and SKL only show a 50% difference
for prototypes (256th vs 16th), which means that KNL doesn’t pay off in cost
or energy, thus we may establish as the best solution the couple GPU+SKL
by overlapping the Factor r calculation with the prototype calculation to
completely hide the later.

Future work should include the redefinition of all data science algorithms
that are applied for real-time decision making in the context of Internet of
Things. Indeed, this redefinition must be carried out in the context of the
specialization in which computational architectures are immersed.

Acknowledgments

This work was partially supported by the Fundacion Séneca del Centro
de Coordinacién de la Investigacion de la Regién de Murcia under Project

24

20813/P1/18, and by Spanish Ministry of Science, Innovation and Universi-
ties under grants TIN2016-78799-P (AEI/FEDER, UE), RT12018-096384-B-
100, RT12018-098156-B-C53 and RTC-2017-6389-5.

References

[1] M. M. Waldrop, The chips are down for moores law, Nature News 530
(2016) 144.

[2] J. M. Cecilia, I. Timén, J. Soto, J. Santa, F. Pereniguez, A. Munoz,
High-throughput infrastructure for advanced its services: A case study
on air pollution monitoring, IEEE Transactions on Intelligent Trans-
portation Systems 19 (2018) 2246-2257.

[3] D. Singh, C. K. Reddy, A survey on platforms for big data analytics,
Journal of big data 2 (2015) 8.

[4] Intel Corporation, Intel 64 and TA-32 Architectures Software Developer’s
Manual Volume 2A: Instruction Set Reference., 2015.

[5] ARMLimited, ARM NEON Technology, 2012.

[6] N. Stephens, S. Biles, M. Boettcher, J. Eapen, M. Eyole, G. Gabrielli,
M. Horsnell, G. Magklis, A. Martinez, N. Premillieu, A. Reid, A. Rico,
P. Walker, The ARM Scalable Vector Extension, IEEE Micro 37 (2017)
26-39.

[7] A. Sodani, Knights landing (KNL): 2nd Generation Intel Xeon Phi
processor, in: Hot Chips.

[8] T. Yoshida, Introduction of Fujitsu’s HPC processor for the Post-K
computer, in: Hot Chips.

[9] NEC, Vector Supercomputer SX Series: SX-Aurora TSUBASA, 2017.

[10] S. A. Wright, Performance modeling, benchmarking and simulation
of high performance computing systems, Future Generation Computer
Systems 92 (2019) 900 — 902.

[11] 1. Gelado, M. Garland, Throughput-oriented gpu memory allocation,

in: Proceedings of the 24th Symposium on Principles and Practice of
Parallel Programming, ACM, pp. 27-37.

25

[12]

[13]

[14]

[15]

[16]

Tan, P.,Steinbach, M., Kumar, V., Introduction to Data Mining, Addi-
son Wesley, 2006.

Jain, A., Murty, M. y Flynn, P., Data clustering: a review, ACM
computing surveys (CSUR) 31 (1999) 264-323.

J. Lee, B. Hong, S. Jung, V. Chang, Clustering learning model of cctv
image pattern for producing road hazard meteorological information,
Future Generation Computer Systems 86 (2018) 1338-1350.

A. Bueno-Crespo, J. Soto, A. Munoz, J. M. Cecilia, Air-pollution predic-
tion in smart cities through machine learning methods: A case of study
in murcia, spain., Journal of Universal Computer Science 24 (2018)
261-276.

A. Pérez-Garrido, F. Girén-Rodriguez, A. Bueno-Crespo, J. Soto,
H. Pérez-Sanchez, A. M. Helguera, Fuzzy clustering as rational partition
method for gsar, Chemometrics and Intelligent Laboratory Systems 166
(2017) 1-6.

C. K. R. E. Charu C. Aggarwal, Data Clustering: Algorithms and Ap-
plications, Chapman and Hall/CRC Data Mining and Knowledge Dis-
covery Series, CRC, 2013.

I. S. Dhillon, D. S. Modha, A data-clustering algorithm on distributed
memory multiprocessors, in: M. J. Zaki, C.-T. Ho (Eds.), Large-Scale
Parallel Data Mining, Springer Berlin Heidelberg, Berlin, Heidelberg,
2000, pp. 245-260.

H. S. Nagesh, S. Goil, A. Choudhary, A scalable parallel subspace clus-
tering algorithm for massive data sets, in: Proceedings 2000 Interna-
tional Conference on Parallel Processing, pp. 477-484.

Bezdek, J., Ehrlich, R. y Full, W., FCM: The Fuzzy C-Means clustering
algorithm, Computers & Geosciences 10 (1984) 191-203.

T. Kwok, K. Smith, S. Lozano, D. Taniar, Parallel fuzzy c¢- means clus-
tering for large data sets, in: B. Monien, R. Feldmann (Eds.), Euro-Par
2002 Parallel Processing, Springer Berlin Heidelberg, Berlin, Heidelberg,
2002, pp. 365-374.

26

22]

[24]

[25]

[20]

[27]

28]

[29]

[30]

A. Ravi, A. Suvarna, A. D’Souza, G. Ram Mohana Reddy, Megha, A
parallel fuzzy ¢ means algorithm for brain tumor segmentation on mul-
tiple mri images, in: A. Kumar M., S. R., T. V. S. Kumar (Eds.),
Proceedings of International Conference on Advances in Computing,
Springer India, New Delhi, 2012, pp. 787-794.

S. Rahimi, M. Zargham, A. Thakre, D. Chhillar, A parallel fuzzy c-
mean algorithm for image segmentation, in: IEEE Annual Meeting of
the Fuzzy Information, 2004. Processing NAFIPS ’04., volume 1, pp.
234-237 Vol.1.

M. V. Modenesi, M. C. A. Costa, A. G. Evsukoff, N. F. F. Ebecken,
Parallel fuzzy c-means cluster analysis, in: M. Daydé, J. M. L. M. Palma,
A. L. G. A. Coutinho, E. Pacitti, J. C. Lopes (Eds.), High Performance
Computing for Computational Science - VECPAR 2006, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2007, pp. 52-65.

T. C. Havens, J. C. Bezdek, C. Leckie, L. O. Hall, M. Palaniswami,
Fuzzy c-means algorithms for very large data, IEEE Transactions on
Fuzzy Systems 20 (2012) 1130-1146.

Flores-Sintas, A., Cadenas, J.M. y Martn, F., A local geometrical prop-
erties application to fuzzy clustering, Fuzzy Sets and Systems 100 (1998)
245-256.

Soto, J., Flores-Sintas, A. y Palarea-Albaladejo, J., Improving probabil-
ities in a fuzzy clustering partition, Fuzzy Sets and Systems 159 (2008)
406-421.

I. Timn, J. Soto, H. Prez-Snchez, J. M. Cecilia, Parallel implementation
of fuzzy minimals clustering algorithm, Expert Systems with Applica-
tions 48 (2016) 35 — 41.

Flores-Sintas, A., Cadenas, J.M. y Martn, F., Detecting homogeneous
groups in clustering using the euclidean distance, Fuzzy Sets and Sys-
tems 120 (2001) 213-225.

N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, et al., In-datacenter perfor-
mance analysis of a tensor processing unit, in: 2017 ACM/IEEE 44th

27

[33]

[34]

[35]

Annual International Symposium on Computer Architecture (ISCA),
IEEE, pp. 1-12.

Top500, Top500 supercomputer site, http://www.top500.0rg/, 2017.
(accessed, April, 3th, 2017).

T. Austin, Bridging the Moore’s Law Performance Gap with Innovation
Scaling, in: Proceedings of the 6th ACM/SPEC International Confer-
ence on Performance Engineering, ACM, 2015, p. 1.

Hennessy, Computer architecture: a quantitative approach, 3rd ed.,
Morgan Kauffman, 2003.

39th International Symposium on Computer Architecture (ISCA 2012),
June 9-13, 2012, Portland, OR, USA, IEEE Computer Society, 2012.

D. L. Caballero de Gea, PhD Thesis: SIMD@QOpenMP : a programming
model approach to leverage SIMD features, 2015.

OpenMP Architecture Review Board, The OpenMP Specification,
http://www.openmp.org, 2017. (accessed, April, 2th, 2017).

H. Wang, S. Potluri, M. Luo, A. K. Singh, S. Sur, D. K. Panda,
MVAPICH2-GPU: optimized GPU to GPU communication for infini-
band clusters, Computer Science-Research and Development 26 (2011)
257.

D. R. Kaeli, P. Mistry, D. Schaa, D. P. Zhang, Heterogeneous Computing
with OpenCL 2.0, Morgan Kaufmann, 2015.

D. B. Kirk, W. H. Wen-mei, Programming massively parallel processors:
a hands-on approach, Elsevier, 2013.

G. Guennebaud, B. Jacob, et al., Eigen v3, http://eigen.tuxfamily.org,
2010.

A. Yasin, A top-down method for performance analysis and counters
architecture, in: 2014 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), pp. 35-44.

E. Kaltofen, G. Villard, On the complexity of computing determinants,
computational complexity 13 (2005) 91-130.

28

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

A. A. Hasib, J. M. Cebrian, L. Natvig, V-pfordelta: Data compres-
sion for energy efficient computation of time series, in: 22nd IEEE
International Conference on High Performance Computing, HiPC 2015,
Bengaluru, India, December 16-19, 2015.

A. Fog, Instruction Tables. Instruction latencies, throughputs and
micro-operation breakdowns., 2018.

S. C. Johnson, Hierarchical clustering schemes, Psychometrika 32 (1967)
241-254.

L. Kaufman, P. Rousseeuw, Finding Groups in Data: An Introduction
to Cluster Analysis, John Wiley & Sons, 1990.

A. Struyf, M. Hubert, P. Rousseeuw, Clustering in an object-oriented
environment, Journal of Statistical Software, Articles 1 (1997) 1-30.

A. Saxena, M. Prasad, A. Gupta, N. Bharill, O. P. Patel, A. Tiwari,
M. J. Er, W. Ding, C.-T. Lin, A review of clustering techniques and
developments, Neurocomputing 267 (2017) 664-681.

C. Jin, M. M. A. Patwary, A. Agrawal, W. Hendrix, W.-k. Liao,
A. Choudhary, Disc: A distributed single-linkage hierarchical clustering
algorithm using mapreduce, work 23 (2013) 27.

X. Hou, An improved k-means clustering algorithm based on hadoop
platform, in: The International Conference on Cyber Security Intelli-
gence and Analytics, Springer, pp. 1101-1109.

Q. Zhao, Y. Shi, Z. Qing, Research on hadoop-based massive short
text clustering algorithm, in: Fourth International Workshop on Pat-
tern Recognition, volume 11198, International Society for Optics and
Photonics, p. 111980A.

H. Xiong, K-means image classification algorithm based on hadoop,
in: Recent Developments in Intelligent Computing, Communication and
Devices, Springer, 2019, pp. 1087-1092.

A. Woodley, L.-X. Tang, S. Geva, R. Nayak, T. Chappell, Parallel k-
tree: A multicore, multinode solution to extreme clustering, Future
Generation Computer Systems 99 (2019) 333-345.

29

[54]

[55]

[56]

[61]

[62]

[63]

W. Kwedlo, P. J. Czochanski, A hybrid mpi/openmp parallelization
of k-means algorithms accelerated using the triangle inequality, ITEEE
Access 7 (2019) 42280-42297.

Y. Li, K. Zhao, X. Chu, J. Liu, Speeding up k-means algorithm by gpus,
Journal of Computer and System Sciences 79 (2013) 216-229.

V. Saveetha, S. Sophia, Optimal tabu k-means clustering using mas-
sively parallel architecture, Journal of Circuits, Systems and Computers
27 (2018) 1850199.

Y. Djenouri, D. Djenouri, A. Belhadi, A. Cano, Exploiting gpu and
cluster parallelism in single scan frequent itemset mining, Information
Sciences 496 (2019) 363-377.

B. Krawczyk, Gpu-accelerated extreme learning machines for imbal-
anced data streams with concept drift, Procedia Computer Science 80
(2016) 1692-1701.

S. Karbhari, S. Alawneh, Gpu-based parallel implementation of k-means
clustering algorithm for image segmentation, in: 2018 IEEE Interna-
tional Conference on Electro/Information Technology (EIT), IEEE, pp.
0052-0057.

S. V. Jagtap, Y. Rao, Clustering and parallel processing on gpu to
accelerate circuit transient analysis, in: International Conference on
Advanced Computing Networking and Informatics, Springer, pp. 339—
347.

Y. Fang, Q. Chen, N. Xiong, A multi-factor monitoring fault toler-
ance model based on a gpu cluster for big data processing, Information
Sciences 496 (2019) 300-316.

S. Tanweer, N. Rao, Novel algorithm of cpu-gpu hybrid system for health
care data classification, Journal of Drug Delivery and Therapeutics 9
(2019) 355-357.

C. Scully-Allison, R. Wu, S. M. Dascalu, L. Barford, F. C. Harris, Data
imputation with an improved robust and sparse fuzzy k-means algo-

rithm, in: 16th International Conference on Information Technology-
New Generations (ITNG 2019), Springer, pp. 299-306.

30

