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Abstract

Since the early 70s, simulation infrastructures have been a keystone in com-

puter architecture research, providing a fast and reliable way to prototype and

evaluate ideas for future computing systems. There are different types of simu-

lators, from most detailed (cycle-accurate) to time-based/functional and analyt-

ical modeling. Increasing accuracy translates into several orders of magnitude

in terms of simulation speed. Yet, a question remains open: are the results

derived from the simulation infrastructure representative of a real machine?

Validation of these infrastructures is complex and costly, usually performed

upon release. However, most simulators do not provide the appropriate means to

verify or validate new architectural models. In this paper, we introduce a semi-

automatic validation framework based on real-hardware performance counter

information. The framework provides two levels of abstraction: a) a high level

definition of the processor behavior (Top-Down model) and b) detailed per-

structure and per-pipeline-stage usage breakdown to pinpoint simulator issues.

We used this framework to validate the latest available gem5-x86 simulation

environment, and found several sources of error that alter the expected behavior

of the simulated processor, which we were later to document and correct.
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1. Introduction

In the last decade, the complexity of modern computer systems has reached

unprecedented levels. Prototyping any system component is exceedingly expen-

sive, forcing architects to rely on simulation to model and evaluate new ideas.5

Simulators produce quantitative estimates in a safe, timely and cost-effective

manner. As a matter of fact, architecture researchers have increasingly re-

lied on simulators over the years. Yi et al. [1] have classified the performance

evaluation methods for papers appearing in the International Symposium on

Computer Architecture (ISCA) in six selected years. In the conference’s inau-10

gural year (1973), only two papers out of 28 (7.1%) were simulation-based, but

that number steadily increased to 27.9% in 1985, 71.9% in 1993, 80% in 1997,

and finally to 88% and 87% in 2001 and 2004, respectively. Modern simulators

model multiple ISAs (instruction set architecture), CPU (central processing

unit) types, interconnect topologies, and other devices with different levels of15

detail. Complete infrastructures are able to boot unmodified operating systems

(OS), and even run interactive graphical workloads. To add further complexity

to these systems, architects use a wide variety of methodologies, benchmarks

and datasets on top of the simulated infrastructure.

Current simulation speeds often limit the scope and depth of the work that20

can be performed. Simulation infrastructures can be classified based on the level

of detail of the simulation as follows: cycle-level, time-based/functional and an-

alytical modeling, from more to less accurate. Cycle-level accuracy is necessary

when working with very specific hardware features that require a high level of

detail. Timing simulation and analytical modeling are key enabling techniques25

to explore the design space and to enable software development on unavailable

hardware. Fast simulations of many-core processors at system level are critical,

due to the need to emulate the behavior and communication of tens to hundreds
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of cores. Hybrid methodologies, like interval simulation, provide some balance

between detailed cycle-accurate and time-based/functional simulation. This al-30

lows applications with long execution times to be modeled much faster, while

still providing the necessary level of detail to observe core, memory, interconnect

and system interactions.

In this paper we focus on cycle-level simulators, complex pieces of software

that typically take hundreds of thousands of lines of code. Cycle-accurate simu-35

lators need to model each of the processor components as accurately as possible,

updating state elements at every clock cycle. As a result, insightful informa-

tion can be retrieved when running realistic applications and datasets. This is

key to quantitatively estimate the usage and behavior of specific structures for

given sizes, and to design features or configurations in the micro-architecture.40

Cycle-accurate simulators also enable the evaluation of new hardware features

and instructions, providing binary compatibility and enabling performance and

energy studies, especially in hardware/software co-design. Unfortunately, this

level of accuracy comes at a price: long simulation times and high development/-

validation costs. Single-core cycle-accurate simulators can execute around 0.0145

to 0.3 million instructions per second (MIPS), leading to simulation times of

several days for a couple of minutes of application time.

In essence, while simulation is indubitably one of the most important tools

available to computer architecture researchers, designers have to face trade-offs

between performance, accuracy and flexibility that inherently lead to a certain50

degree of experimental error. As a result, several important challenges arise

regarding the simulation process that need to be addressed:

Verification, validation and calibration. Implementation and testing of a sim-

ulation infrastructure so that it accurately models a state-of-the-art proces-

sor is a tedious and laborious process. Formal verification (using specifica-55

tion languages) is usually reserved to simple embedded models, leaving ad-hoc

techniques for complex processor models. Simulators are usually verified and

validated before release by the developers and, upon release, by other institu-
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tions. Black and Shen [2] classified the different sources of simulation error into:

a) Modeling errors: erroneous description of the desired functionality. b) Spec-60

ification errors: the developer is unaware of the internal functionality being

modeled. c) Abstraction errors: the developer fails to implement certain details

of the system being modeled. Modeling errors can be corrected, but, as years

go by, the slow and infrequent updates often result in simulators that model un-

realistic, buggy, or even obsolete computer architectures. Many researchers just65

take simulators “as provided”, and do not spend time checking the correctness

of the infrastructure built with new tool-chains, running new benchmarks, or

validating a modified simulator to represent a system which was not originally

intended to model. They do not consider either if abstraction or specification

errors, which may not affect overall application performance, produce unaccept-70

able errors in their specific area of research. There is a real necessity to have a

simple infrastructure to ensure that the cumulative errors do not lead to unre-

liable results over the years. There are also another two additional “sources of

error” that are worth mentioning.

Input datasets. Long simulation times may be an issue when using cycle-accurate75

infrastructures. One common “solution” is to use small input datasets to reduce

simulation time. However, doing so may lead to different conclusions than stud-

ies performed using more realistic input sets, above all if simulated resources

are not scaled accordingly. This is certainly true when simulating multi/many

core architectures in which synchronization heavily depends on workload dis-80

tribution. Basically, not only do we need a simulator that models the target

architecture in detail, it also must be driven by a realistic workload.

Lack of features. Computer architecture advances quickly and simulation in-

frastructures have difficulties to match all the architectural features introduced

by different companies. This is usually due to their complexity and the lack of85

permanent developers/resources. While users may expect missing some modern

processor features on the simulation infrastructure, they usually underestimate

the impact it could have on their proposals (e.g., SIMD, prefetching, write
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buffers, etc.). Certain features can be critical for the performance of specific

applications or per-structure behavior, and the lack of them can be a real issue.90

Researchers may propose some architectural changes to solve an issue that is no

longer existent, or that can affect applications designed with modern features in

mind. It is important to revisit simulator implementation/validation for state-

of-the-art processors that are representative of modern systems and ensure they

are able to capture the behavior of emerging workloads.95

In this paper we address some of the above-mentioned issues, providing

researchers with a semi-automatic infrastructure to analyze the resource re-

quirements of different input workloads and to ease the validation process of

cycle-accurate simulation infrastructures against real hardware. Our method-

ology is based on performance counter information and the Top-Down Model100

approach [3]. Performance counter information is used, in essence, to define

the processor behavior for a given workload and to detect hardware bottle-

necks. Per-structure and pipeline performance counters are used to pinpoint

the sources of error in the simulation infrastructure. We also provide a case

study for gem5-x86, describing the bugs found and possible fixes, showing the105

final behavior. The “fixed” simulator improves both the accuracy of the results

and the simulation speed for a relatively up-to-date revision of gem5-x86 (new

µops (Micro-operations) and reduced simulation stalls due to different sources of

error). The framework will be made available upon publication for the research

community [4].110

The paper is organized as follows. Section 2 reviews the related work on sim-

ulation environments and validation alternatives. Section 3 describes the pro-

posed validation framework. Section 4 describes the infrastructure and method-

ology used in the article. Section 5 presents a case study performed on gem5-x86.

Finally, Section 6 summarizes the main conclusions and future work.115
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2. Related Work

Simulation infrastructures have become very popular since the late 90s, in a

great effort from both the industry and the research community to improve the

quality, accuracy and development/evaluation time of novel ideas.

Cycle-level simulators can be seen as high-level abstractions of RTL (register-120

transfer level) designs implemented over several thousands of lines of code.

These complex systems model each of the processor components as accurately

as needed, updating state elements at every clock cycle, so that insightful in-

formation can be retrieved when running realistic applications and datasets.

M5 [5], gemsOpal [6], PTLsim [7] or MARSS [8] are examples of simulation125

infrastructures that can achieve cycle-accuracy.

Time-based simulation provides a good trade-off between accuracy and sim-

ulation speed, processing most of the instructions from the application in a

simplified way. MASE is an example of time-based simulation, which combines

timing and functional modeling [9]. MASE was built on top of SimpleScalar,130

one of the first trace-driven simulators available for the research community [10].

Asim or RSIM are other examples of the initial efforts to provide time-based and

functional simulation infrastructures [11, 12]. More recently, Kang et al. [13]

conducted an interesting survey on time-based and functional simulation infras-

tructures, extending the work done by Yi et al. [1], and classifying time-based135

methods into different categories:

• CPI-Based simulation (k-CPI). This methodology assumes that each in-

struction takes k cycles to execute them. A simplified model can assume

that each instruction requires one cycle to execute (1-CPI model). A

more complex model can provide a different CPI value for each instruc-140

tion or instruction group based on the processor’s specification datasheet

(datasheet model). k-CPI models can be easily built on top of functional

simulators without sacrificing the simulation speed. Commercial processor

simulators such as Imperas OVP [14] or Arm FastModels [15] use a k-CPI-

based simulation approach. While k-CPI models are easy to understand145
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and fast to simulate, the accuracy of the results is far from real hardware

measurements, especially for corner cases, since this model neglects the

complex behavior of modern microprocessor architectures.

• Sampled simulation. Cycle-accurate simulation is performed over a subset

of the instruction stream divided into “sampling units”. The selection of150

the sampling units can be done randomly [16], periodically [17], or based

on phase analysis [18, 19, 20]. The main issue of this approach is to guaran-

tee that the sampling units properly represent computational and memory

patterns of the whole application. Statistical methods can be applied to

ensure this. Phase-sampling can be also handled at an application level,155

providing pre-processed sampling units for complete applications (e.g.,

SimPoint [21] and SMARTS [17]).

• Statistical simulation. This strategy speeds up architectural simulation by

building synthetic traces or benchmarks that are representative for long-

running benchmarks [22, 23]. The synthetic trace is built based on the160

results obtained in two collection phases. The first one collects informa-

tion about instruction count, types and dependencies. The second phase

collects micro-architectural dependent statistics (e.g., cache, branch).

• FPGA-accelerated simulation. As the name suggests, it builds timing

models onto field-programmable gate-arrays (FPGAs) [24, 25, 26]. These165

models demand additional hardware and development time to synthesize

the model into hardware, so it is common to offload only performance-

critical parts of software-based techniques, rather than performing the

whole simulation on the FPGA.

• Hybrid simulation. This methodology tries to obtain the best features170

from cycle-accurate and functional simulation by dynamically switching

between them, while keeping the processor-centric state synchronized.

HySim [27, 28] divides the code into processor-specific functions (executed

in the cycle-accurate simulator) and target-independent functions, exe-
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cuted by the host. MARSS [8] or GEMsOpal [6] support seamless dynamic175

switching between the cycle-accurate simulation mode and the native x86

emulation mode of QEMU/Simics. gem5 supports KVM-mode, where

code execution can be migrated to native hardware for execution and sent

back to the simulator, significantly improving the performance [29].

• Control-sensitive simulation. A specific case of sampled simulation that180

works at a basic block level. A basic block is defined as the code between

two branch instructions. Key statistics per basic block can be obtained

by running multiple times at different contexts using a timing-accurate

simulator (e.g., [30]) or a static worst-case execution time analysis frame-

work [31, 32] such as OTAWA [33] and Absint aiT [34].185

• Trace-driven simulation. Timed/functional simulation that uses traces ob-

tained in a real system as inputs. It provides a fast and reliable model

for design space exploration, but limited support for architectural changes.

Examples of this methodology include CMP$im [35], Graphite [36], Sniper [37],

ZSim [38] or MUSA [39].190

Finally, analytical simulation/modeling uses mathematical formulas to model

the performance of the architecture. Mechanistic models (or white-box mod-

els) [40, 41, 42], construct a model based on the mechanics of the target architec-

ture. On the other hand, empirical models (or black-box models) [43], utilize a

parameterized performance model, trained using machine learning or regression195

analysis, without any specific knowledge about the micro-architecture of the

target processor. TQSIM uses analytical models based on sampled simulation

over disruptive events, such as cache misses and branch misprediction [13].

Regarding validation of simulation infrastructures, each simulation frame-

work has been validated against real architectures of the same period. However,200

regression tests for simulator modifications when modifying the source code

are usually not present. In addition, hardware evolves quickly, and changing

the simulator parameters may lead the model to misbehave when compared
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with newer hardware, so additional validation methods are required. Zhang et

al. [44] propose a new methodology for validating simplified simulation models,205

which focuses on the trends of metric values across benchmarks and architec-

tures, instead of errors of absolute metric values. However, the validation of

a simplified model requires a detailed cycle-accurate one. Nyew et al. [45] use

domain-specific information to effectively capture a potential mismatch between

the assumed architecture model and its simulator. They show how a simulator-210

generated event trace can be fed into an automatically generated verification

program, used to verify that the simulator obeys the invariants. Techniques to

extract simulator behavior from traces and present the results to the user are

also reported.

The works that show similarities to ours were performed by Gutierrez et215

al. [46], Butko et al. [47], Akram et al. [48] and Walker et al. [49]. In the

first work, the authors validated the gem5 simulator against a Versatile Express

TC2 board (Gutierrez) and a Snowball SKYS9500-ULP-C01 board (Butko),

not only in terms of runtime, but also by adding statistics about L2 caches.

In addition, Gutierrez et al. provided L1 data and instruction cache, TLB220

(Translation Lookaside Buffer.) together with branch predictor statistics. Their

evaluation showed 20% accuracy on average for most of them. They link most of

this error to modeling similar but not identical components. Gibson et al. [50]

also showed the importance of simulator validation to improve accuracy and

correctness against real hardware. Akram et al. performed an evaluation of225

different x86 simulation infrastructures, reporting an 80% IPC deviation in gem5

when compared with a modern Haswell-like processor. In contrast to previous

works, which are designed for a specific platform, we provide a semi-automatic

framework to perform a more detailed evaluation of key system components and

pipeline stages (both in terms of instructions and running/stalled cycles).230

To conclude, Walker et al. designed GemStone, a tool which uses hierarchi-

cal clustering, correlation analysis, and regression techniques to identify sources

of error without requiring detailed CPU specifications. This allows existing

models to be improved, new models to be developed, validation of simulator
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changes, and the testing of model suitability for specific use-cases. They also235

automate the process of characterising hardware platforms, identifying sources

of error in gem5 models and quantifying the effect of errors on the performance.

This is the closest related work to our validation framework. Their work is fully

automated, but lacks the level of detail that our framework can achieve. For ex-

ample, it is pointed out that they discovered an issue with the branch predictor.240

This information is also provided by the Top-Down model in our framework.

However, other sources of error, such as the one discovered by our framework

regarding additional cycles when fetching instructions, or the wrong mapping

of instructions to ALUs have not been detected by their tool. We believe this

is due to the fact that they have tried to find an overall model focusing on245

“performance”, while giving less importance to per/structure detailed function-

ality. This may hide specific modeling issues that are hidden by overall model

behavior. We provide a high abstraction layer (based on the Top-Down model)

to summarize processor behavior for a given workload, together with detailed

information as expected from a cycle-level simulation infrastructure. We also250

propose some fixes, workarounds and solutions to improve the quality of the

works based on the gem5-x86 infrastructure.

3. Validation Framework

The validation framework presented in this paper consists of a set of python

and bash scripts to semi-automatize the process of profiling, gathering, process-255

ing and visualizing statistics. This helps to detect errors in cycle-accurate sim-

ulation infrastructures. The same framework can be used to check real-system

behavior with different input sizes and extrapolate the expected behavior in the

simulation infrastructure [4].

Figure 1 shows an overview of the validation framework. The base of the260

framework is a python dictionary (base dictionary), composed by a set of unique

keys that map to database entries or simple formulas (multi-level addition, sub-

traction, multiplication or division) with elements of the database. The current
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Figure 1: Overview of the Validation Framework.

base dictionary defines keys for all the required information to build the Top-

Down model, as well as pipeline cycle/stall activity and per-stage instruction265

count; reasons for dispatch/execute stalls; usage statistics for L1, L2, L3 caches,

TLB and branch predictor (left column in Tables 1 and 2).

Users need to create a dictionary for each pair architecture/simulator they

want to validate (e.g., Haswell Dictionary and gem5 Dictionary in Figure 1).

The selected keys will be mapped to specific performance counters or simulator270

statistics using those dictionaries. Input values will be obtained in the profil-

ing/simulation steps and parsed into a SQLite database. Table 1 shows a com-

plete example for an Intel i7-4600U Haswell processor. For example, the TOTAL

CYCLES key will search for the database entry perf::CYCLES. In addition, the

key L2 READ ACCESSES maps to a formula that adds the L1D and L1I read275

misses @(+,perf::PERF COUNT HW CACHE L1D:READ:MISS,perf::PERF

COUNT HW CACHE L1I:READ:MISS). Formulas can be specified as @(OP-

ERATOR, key1, key2 ... keyN). Each key can be, at the same time, a formula

with the same format or an entry from the database. On the other hand, if there

is no performance counter or stat available in either platform, the value “none”280

should be specified. This abstraction layer, built on top of both the simula-

tor statistics and the real hardware performance counter interfaces (e.g., PAPI,
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Table 1: Haswell Dictionary. Core Performance Counters.

Dictionary Keys Associated Database Entry or Formula (Performance Counter or Combination of Counters)

#Top-Down Model

CLOCKS CPU CLK UNHALTED

SLOTS 4

DECODED NONE IDQ UOPS NOT DELIVERED:CORE

ISSUED ANY UOPS ISSUED:ANY

RETIRE SLOTS UOPS RETIRED:RETIRE SLOTS

RECOVERY CYCLES INT MISC:RECOVERY CYCLES

#Pipeline-Stalls-Per-Stage

TOTAL CYCLES perf::CYCLES

STALL CYCLES IFETCH ICACHE:IFETCH STALL

STALL CYCLES DECODE IDQ:EMPTY

STALL CYCLES DISPATH RESOURCE STALLS:ANY

STALL CYCLES ISSUE UOPS ISSUED:STALL CYCLES

STALL CYCLES EXECUTE UOPS EXECUTED:STALL CYCLES

STALL CYCLES RETIRE UOPS RETIRED:STALL CYCLES

#Instructions-Per-Stage

MACRO INST TOTAL perf::INSTRUCTIONS

MICRO INST ISSUED UOPS ISSUED:ALL

MICRO INST EXECUTED UOPS EXECUTED:CORE

MICRO INST RETIRED UOPS RETIRED:ALL

MACRO INST RETIRED INSTRUCTIONS RETIRED

#Cycle Activity

CYCLE ACTIVITY:CYCLES NO EXECUTE CYCLE ACTIVITY:CYCLES NO EXECUTE

CYCLE ACTIVITY:STALLS L1D PENDING CYCLE ACTIVITY:STALLS L1D PENDING

CYCLE ACTIVITY:STALLS L2 PENDING CYCLE ACTIVITY:STALLS L2 PENDING

CYCLE ACTIVITY:STALLS LDM PENDING CYCLE ACTIVITY:STALLS LDM PENDING

CYCLE ACTIVITY:CYCLES L1D PENDING CYCLE ACTIVITY:CYCLES L1D PENDING

CYCLE ACTIVITY:CYCLES L2 PENDING CYCLE ACTIVITY:CYCLES L2 PENDING

#Dispatch Resource Stalls

RESOURCE STALLS:ANY RESOURCE STALLS:ANY

RESOURCE STALLS:RS RESOURCE STALLS:RS

RESOURCE STALLS:SB RESOURCE STALLS:SB

RESOURCE STALLS:ROB RESOURCE STALLS:ROB

#TLB

DTLB READ HITS perf::PERF COUNT HW CACHE DTLB:READ:ACCESS

DTLB READ MISSES perf::PERF COUNT HW CACHE DTLB:READ:MISS

DTLB WRITE HITS perf::PERF COUNT HW CACHE DTLB:WRITE:ACCESS

DTLB WRITE MISSES perf::PERF COUNT HW CACHE DTLB:WRITE:MISS

DTLB TOTAL HITS @(+,perf::PERF COUNT HW CACHE DTLB:READ:ACCESS,perf::PERF COUNT HW CACHE DTLB:WRITE:ACCESS)

DTLB TOTAL MISSES @(+,perf::PERF COUNT HW CACHE DTLB:READ:MISS,perf::PERF COUNT HW CACHE DTLB:WRITE:MISS)

ITLB READ HITS perf::PERF COUNT HW CACHE ITLB:READ:ACCESS

ITLB READ MISSES perf::PERF COUNT HW CACHE ITLB:READ:MISS

#Branch Predictor

BR INST TOTAL PAPI BR INS

BR INST UNCOND PAPI BR UCN

BR INST COND PAPI BR CN

BR INST COND TAKEN PAPI BR TKN

BR INST COND NOT TAKEN PAPI BR NTK

BR INST COND MISSPREDICT PAPI BR MSP

BR INST COND CORRECT PAPI BR PRC

#Other

CONTEXT-SWITCHES perf::CONTEXT-SWITCHES
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Table 2: Haswell Dictionary. Cache Performance Counters.

Dictionary Keys Associated Database Entry or Formula (Performance Counter or Combination of Counters)

#L1 cache

L1D READ HITS perf::PERF COUNT HW CACHE L1D:READ:ACCESS

L1D READ MISSES perf::PERF COUNT HW CACHE L1D:READ:MISS

L1D WRITE HITS perf::PERF COUNT HW CACHE L1D:WRITE:ACCESS

L1D WRITE MISSES PAPI L1 STM

L1I READ HITS perf::PERF COUNT HW CACHE L1I:READ:ACCESS

L1I READ HITS none

L1I READ MISSES perf::PERF COUNT HW CACHE L1I:READ:MISS

#L2 cache

L2D READ ACCESSES perf::PERF COUNT HW CACHE L1D:READ:MISS

L2D READ MISSES none

L2D WRITE ACCESSES PAPI L1 STM

L2D ACCESSES TOTAL PAPI L2 DCA

L2 READ TOTAL PAPI L2 TCR

L2 WRITE TOTAL PAPI L2 TCW

L2 READ ACCESSES @(+,perf::PERF COUNT HW CACHE L1D:READ:MISS,perf::PERF COUNT HW CACHE L1I:READ:MISS)

L2 READ MISSES PAPI L2 LDM

L2 WRITE ACCESSES PAPI L1 STM

L2 WRITE MISSES PAPI L2 STM

#L3 cache

L3 ACCESSES TOTAL PAPI L3 TCA

L3 MISSES TOTAL PAPI L3 TCM

perfmon2, etc.), provides the SQLite parsing scripts and the drawing scripts

with a list of unique keys that are be translated to the specific architectural or

simulator values we want to compare.285

The next step is to run the benchmarks/applications in the simulated/real

infrastructures and produce the inputs for the parsing scripts to build the SQLite

databases. This is trivial for gem5, since all the necessary statistics can be pro-

duced simultaneously once the simulator is modified to count them. However,

the maximum number of performance counters we can simultaneously work290

with in real hardware is usually very limited (around four/five for the evaluated

Haswell processor). In addition, there are performance counters that cannot

be measured at the same time, since they share the same physical register.

There are two options to solve this issue: a) multiplexing or b) running several

times with different groups of events that can be counted simultaneously. The295

proposed infrastructure explores the second option.

Currently, performance counter groups are created manually, using the tool
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“papi event chooser” provided by the PAPI library [51]. This tool checks whether

a set of performance counters can be measured simultaneously. Once we have

the ones we are interested in divided into groups, we have several ways to mea-300

sure them, either from within the application or from the command shell (e.g.,

perf, likwid, etc.). We decided to measure only the “region of interest” (ROI)

of the selected benchmarks, that is, after initialization and before writing the

outputs to disk/screen.

The ParVec benchmark suite inherited the “hooks” library from PARSEC,305

a dummy library which is called by the benchmarks when they start, before en-

tering the ROI, after the ROI and before finishing. We modified these dummy

functions to measure performance counter information within the ROI using

PAPI. Since we do not wish to parametrize the function calls to the library,

we have scripts that build one library for each group of events (16 in our case310

study). We then use LD PRELOAD before running the benchmark to link to

the different libraries and measure the counters in each group. The framework

provides an example script to perform the profiling process, using CPUSET

(cset) to shield the cores that will run the application from other system pro-

cesses, minimizing interference in the measurements.315

After the profiling phase, the framework uses a set of python scripts (one for

the CPU and another one for gem5), to build a SQLite database with all the per-

formance counter and statistics information retrieved. These scripts also com-

pute derivative statistics from the raw data, like the Top-Down model, runtime

information, trimmed mean, mean, standard deviation, minimum, maximum,320

etc. This information is stored into different tables of the database.

Finally, the framework contains a python drawing script that builds figures

using the Pychart framework, and places them in a (basic) HTML web interface

(to be improved in the future). This script takes keywords from the architecture

dictionary to retrieve information from the database, and automatically adjusts325

margins and label information to produce some basic SVG and PDF output

images. All the figures shown in this paper are produced automatically with

these scripts. Examples will be provided upon release to show how to use this
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drawing infrastructure, since we believe it is not the point of this paper to be a

user manual.330

4. Experimental Methodology

This section describes the Top-Down model, presented by Yasim et al. in

2014 [3], along with information about the evaluation environment: applications,

hardware platform and simulation infrastructure.

Top-Down Model. This methodology is described by the authors as “a practical335

method to quickly identify true bottlenecks in out-of-order processors”. It can

be seen as a multi-level summary of the hundreds of performance events available

in modern processors, to quickly and accurately identify dominant performance

bottlenecks. Among the many levels of detail available in this methodology, we

will focus on the first level, namely Top-Level breakdown. This level divides the340

status of the issued µops into four categories: frontend-bound, backend-bound,

retiring or bad-speculation. Retiring accounts for µops finishing normally and

leaving the pipeline, while bad-speculation represents those µops squashed due

to a mispredicted branch. If µops are neither allocated resources nor squashed,

then it means they are stalled. Frontend-bound represents the ratio of µops345

stalled in fetch/decode, while backend-bound covers ready-to-issue µops that

cannot continue along the pipeline due to resource unavailability. Backend-

bound µops can be categorized into CPU or memory bound, depending on the

resources causing these stalls. This model has been adopted by Intel’s profiling

production tool “VTune”. The required performance counters are already fea-350

tured in in-production systems (just eight new events in the PMU on Intel’s Ivy

Bridge and later models).

Real Hardware. The evaluated platform is an Intel Core i7-4600U CPU, a

Haswell system with two physical cores and four logical threads. This platform

is labeled “Haswell” in our evaluation section. The CPU runs at 2.1GHz and355

has a pipeline depth of 14 to 19 stages. Caches are organized as: 32KB+32KB
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of 8-way associative L1D/I, 256KB of unified 8-way associative L2 and 4MB of

16-way associative L3. In order to ensure that the simulated system and the

real hardware are running the same code, we use the “chroot” command to run

a virtualized copy of the software system. This virtual system is Ubuntu 16.04.1360

and is stored into an image file that will be later used by gem5. Application

binaries are built inside this disk image on the real system and used later by

gem5 without re-compiling. In essence, both systems run on the same system

image, binaries and libraries with Linux kernel version 4.9.4. In order to iso-

late our measurements from other system processes, benchmarks are executed365

using CPUSET. This tool shields certain cores and binds the program to those

cores preventing other processes from running on them. PAPI version 5.5.0 is

used to retrieve performance counter information from the region of interest

of the applications. We evaluate the simsmall, simlarge and native input sets.

Applications are run 100 times (10 times for native) for each of the 16 event370

groups containing the selected performance counters, and a 0.3 trimmed mean

is computed to remove outliers.

gem5. Results in this paper are based on the gem5 development branch dated

Nov 2018 with minor modifications. The simulator was extended to account for

TLB statistics, issue breakdown cycle stalls and additional statistics required for375

the Top-Down model, including cycles running with L1 misses, stalled with L1

cache miss, etc. The Haswell i7-4600U has been modeled as closely as possible.

Structure sizes (branch predictor, L1 caches, BTB), pipeline widths and ALU

latencies are based on several sources, including Intel documentation [52], and

Agner Fog’s work [53]. A summary of the configuration is shown in Table 3.380

Applications. Benchmarking is the standard method to conduct scientific ex-

periments in computer science research. Benchmark suites gather together a

set of benchmarks or kernels which are a representation of applications of inter-

est. There are well-known benchmarks suites (i.e., Rodinia, PARSEC, Parboil,

SHOC, Antutu, Linpack, EEMBC, ParMiBench, etc.), that try to be as ”com-385

plete” as possible. However, as technology moves forward, benchmarks should
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Table 3: gem5 configuration based on i7-4600U specs.

Parameter Value

Timebuffer latencies (e.g, fetchtodecode) 1

Branch Target Buffer 1-Way, 2048-Entry

Branch Predictor Bimode. Global:8K-Entry Choice:8K-Entry

FU Pools (x2) 1x Int.Alu only — 3x Int. FP and SIMD ALU

FetchQueueSize 32-Entry

FetchBufferSize 16B

DecodeBuffer (new structure) 56-µops

LQEntries 72

SQEntries 42

LFS/SSITSize 1024

numPhysInt/Float Regs 168

numIQEntries 60

numROBEntries 192

Fetch / Decode / Rename Width 4

Dispatch / Issue / Commit Width 8

Squash Width 8 (changed to 192 in evaluation)

L1-I cache — Latency (cycles) 32KB, 8-Way — 1 (to emulate µops cache)

L1-D cache — Latency (cycles) 32KB, 8-Way — 4 (access)

L2 cache — Latency (cycles) 256KB, 8-Way — 12 cycles

L3 cache — Latency (cycles) 4MB, 16-Way — 36 cycles

be extended to cover new hardware features, or else researchers may end up

over or underestimating the impact of their contributions.

In addition, none of the previously mentioned suites offers support for a crit-

ical feature that is of rising importance in modern HPC (high performance com-390

puting) systems, SIMD/Vector features. Cebrian et al. [54] discuss the effects

of SIMD implementations on microprocessor resource utilization and energy ef-

ficiency when compared with regular scalar implementations. In their work the

authors show the benefits of including SIMD-enabled benchmarks when evalu-

ating new architectural features. Intel already supports 512-bit vector registers,395

and Arm released SVE (Scalable Vector Extension) [55], that is able to scale up

to 2048-bit vector registers. We believe that SIMD features cannot be ignored,

and thus this paper uses the benchmarks in ParVec [56].

The i7-4600U CPU offers support for SSE and AVX2 instructions, but gem5

only supports SSE instructions, so the evaluation will only cover scalar and SSE400
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codes. All the applications and libraries are built using GCC version 6.2, with

the -O2 flag to prevent automatic vectorization, focusing on manually vectorized

code sections. In addition, at the end of the results section we provide a Top-

Level breakdown overview of 12 of the Splash 3.0 [57] benchmarks for the fixed

simulator and the Haswell system. We consider the ParVec benchmarks as a405

“training” set for the simulator to find sources of error. The Splash 3.0 is later

employed as a “test” or “validation” set to validate our discoveries and fixes.

However, to perform an in-depth validation study of any simulation framework,

microbenchmark-based validation could be a better alternative (e.g., [58]). We

leave this alternative for future work.410

5. Case Study: gem5-x86

This section shows a case study on how to detect sources of error in simula-

tion infrastructures using outputs provided by the validation framework. Addi-

tional information provided by the framework, such as TLB statistics, caches,

execution stall breakdown, etc., is not shown due to space limitations. Figures415

show results for five of the ParVec benchmarks: blackscholes (BS), swaptions

(SW), fluidanimate (FL), streamcluster (ST) and canneal (CN). Stacked bars

represent the three infrastructures being compared: gem5-official (GO), Haswell

(HW) and gem5-fixes (GF).

5.1. Top-Down Overview420

As discussed in previous sections, the Top-Level breakdown (Figure 2) is

generated by the framework, providing developers with a summary of the dom-

inant system performance bottlenecks. Users must then analyze the evaluated

benchmarks on the different platforms, looking for sources of error in the fron-

tend, backend or mis-speculation. It can be depicted that blackscholes-scalar,425

streamcluster-scalar, swaptions-SSE and canneal-SSE have similar bottlenecks

in the official gem5 as they do in the real hardware. However, there are ma-

jor discrepancies in the rest of the benchmarks. Mis-speculated paths on flu-

idanimate show clear differences. Backend/retiring stages on the rest of the
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Figure 2: Top-Down model. Top-Level overview for simsmall for five benchmarks and gem5-

official (GO), Haswell (HW) and gem5-fixes (GF). Left scalar, right SSE.

benchmarks also show significant variability between the simulated and real430

hardware. In addition, frontend bottlenecks seemed lower in the simulator than

in real hardware for most cases. This translates into different hardware resource

requirements that may affect conclusions obtained in research proposals.

5.2. Pipeline Overview

The Top-Level breakdown shows discrepancies in both frontend, backend and435

mis-speculated paths. Lower level information is required to find out the sources

of error and determine if these errors can be corrected. However, before looking

for errors we need to make sure that both the real hardware and the simulation

infrastructure are running the exact same code. As discussed in the methodology

section (Section 4), both systems run on the exact same system image, sharing440

binaries and libraries. However, the OS may be scheduling some background

process in the simulator that may alter the output statistics. OS interference can

be an issue when running gem5 in full system simulation. System checkpoints

are taken during the boot process, so that the system can interact with the

simulator using a scripting infrastructure. In a modern OS, the boot process445

is performed in parallel (“systemd” handles the boot in parallel in our case).

We took precautions when integrating the system services that handle gem5

scripts in “systemd”, so that they run in “oneshot” mode. In that mode, the

service blocks on a start operation until the first process exits (i.e., the gem5
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Figure 3: Normalized decoded/retired instructions for simsmall with five benchmarks using

gem5-official (GO), gem5-fixes (GF) normalized to Haswell (HW). Left scalar, right SSE.

script that runs the desired application). However, the simulation could be450

corrupted due to a bug and actually run more/less instructions producing a

different output. The proposed validation framework can help us determine if

there is a significant OS interference or data corruption. In other words, we

can compare the total number of decoded/retired instructions on both systems,

and see if there is an OS overhead/corruption on any of them. Indeed, by455

asking the framework about the “MACRO INST RETIRED” dictionary key

to both Haswell and gem5 databases, it generates Figure 3. This figure shows

the normalized decoded/retired macro instructions on both Haswell and gem5

for the simsmall input. The amount of instructions is virtually the same in all

cases, so OS interference is minimal in the tests performed. Similar results were460

obtained for the simlarge input set.

Mis-speculated paths. gem5 implements several branch predictor models, includ-

ing g-share, bimode, tournament, etc. However, specific details of the branch

predictor on Haswell are unknown. The evaluation performed in this paper uses

a bimodal branch predictor with similar sizes to those of the Haswell system.465

Bimode has a slightly higher hit ratio than tournament in the evaluated bench-

marks, but the difference is minimal. Different hit ratios of the branch predictor

would lead to differences in the total number of instructions executed from wrong

execution paths. The proposed validation framework can provide useful infor-
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Figure 4: Normalized branch type breakdown for simsmall with five benchmarks using gem5-

official (GO), gem5-fixes (GF) normalized to Haswell (HW). Left scalar, right SSE.
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Figure 5: Normalized branch decision breakdown for simsmall with five benchmarks using

gem5-official (GO), gem5-fixes (GF) normalized to Haswell (HW). Left scalar, right SSE.

mation about the branch predictor behavior, including the total conditional and470

unconditional branch instructions (Figure 4), taken/not-taken branches (Figure

5) and hit/miss ratios (Figure 6).

The information provided by these figures allow us to detect a bug in the

gem5 infrastructure. More specifically, branch instructions are not labeled as

conditional-unconditional in the x86 decoder, while they are properly labeled475

for other decoders (e.g., the Arm decoder). This causes unconditional branches

to wait until commit to provide the correct address information, and update

the BTB/branch prediction accordingly. However, for unconditional branches,

the correct address information is available at decode stage. When branches

are properly flagged, the BTB is updated at decode stage, and instructions480
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Figure 6: Normalized branch decision breakdown for simsmall with five benchmarks using

gem5-official (GO), gem5-fixes (GF) normalized to Haswell (HW). Left scalar, right SSE.

from a potential “mis-predicted” branch can be detected much earlier. This

issue was especially problematic in applications with many system calls. In this

case, the BTB will point to the last system call and the last return address,

and will wait until committing to correct the prediction, modeling an incorrect

behavior. This will not alter the output of the application, since instructions485

will not commit, but may trigger internal simulator asserts on different pipeline

stages that should otherwise never happen. However, while this fix helps to

better model the correct branch behavior of the architecture, it does not fix

the issue with mis-speculated paths on the Top-Level breakdown. A possible

explanation for this second source of error will be discussed in the next section.490

Another interesting result is the behavior of the streamcluster kernel. While

both Haswell and gem5-fixes claim to have almost perfect accurate predictions,

Haswell decides to take conditional branches around 35% of the time, and gem5-

fixes around 67%. This information seems contradictory, since both predictors

cannot have the same accuracy making different predictions. Our best guess is495

that taken/not-taken information in gem5 refers to the BTB, rather than the

branch predictor. The BTB has much lower accuracy when using the simsmall

input, since it does not have time to warm up.

Frontend. The next step is to determine why the frontend fraction in the Top-

Down for real hardware and gem5 do not match. This can be achieved by500
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Figure 7: Normalized fetch stalls for simsmall with five benchmarks using gem5-official (GO),

gem5-fixes (GF) normalized to Haswell (HW). Left scalar, right SSE.

comparing the behaviour of the fetch and decode stages between gem5 and

Haswell in our framework. Figure 7 shows both normalized running cycles and

cycles stalled at fetch stage, as provided by our framework, for the different

benchmarks to the Haswell platform. The official gem5 has significantly higher

(several orders of magnitude) fetch stalls than the Haswell platform. This not505

only translates into slower simulation times and unrealistic application perfor-

mance, but also into misleading resource requirements at later pipeline stages.

After a detailed analysis of the simulator, we discovered a bug in the packet

buffer that receives packets from the memory module. There are several mem-

ory modules available in gem5, including a simple memory module and a detailed510

memory one (Ruby). Ruby deals with cache coherence and cache/bus latencies,

and specifies the exact cycle when data will be available to the processor in each

data packet. However, the packet buffer adds an additional processing cycle,

assuming packets come from the simple memory module (probably to account

for the data transfer latency). This causes additional blocking cycles at fetch515

stage when using Ruby to model the memory subsystem, since it already con-

siders network latencies and does not need extra cycles. In fact, authors make

a comment in the code saying “@todo Revisit the +1”, which is actually wrong

when using Ruby. To solve this issue, packets that go through the Ruby mod-

ule are marked, and those packets skip the +1. After fixing this error, fetch520
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Figure 8: Normalized decode stalls for simsmall with five benchmarks using gem5-official

(GO), gem5-fixes (GF) normalized to Haswell (HW). Left scalar, right SSE.

stalls are considerably reduced for all benchmarks. In addition, the simulator

shows around 10x more L1I cache misses than the Haswell system, most likely

responsible from the remaining fetch stalls in gem5 after the fix. Cache miss

information is provided by the infrastructure but not shown here due to space

limitations.525

Fixing this issue moved the problem to decode stage (Figure 8, as pro-

vided by our framework). gem5 has been designed to simulate different pipeline

depths by adding latency between the different pipeline stages. That is, if the

fetch stage is divided into three segments in the real hardware, gem5 can be

configured to add a 3-cycle latency between fetch and decode. Our configu-530

ration file tried to emulate a Silvermont 6-stage frontend, since we could not

find detailed information about the Haswell frontend ([59]). We added a 3-cycle

latency between fetch-decode and decode-dispatch. However, increasing these

latencies can lead to a significant increment in decode stalls. Indeed, while the

simulator will block decode stage completely if it cannot perform the decod-535

ing, a segmented architecture may be able to handle early stages of decoding,

but never increasing this specific performance counter. In addition, while this

way of modeling pipeline depth is supposed to let more instructions from a

mis-speculated branch into the pipeline, it seems to actually have the opposite

effect. Since early stages of the pipeline are blocked, the amount of instructions540
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from mis-predicted paths that reach the retire stage is lower than in the real

hardware. This fact, combined with the shorter pipeline length, can explain

the lower number of “bad speculation” cycles from fluidanimate, shown in the

Top-Level breakdown overview (Section 5.1). This happens despite the similar

branch hit ratios shown in Figure 6. To check this hypothesis we computed the545

ratio of µops from different stages that reach retire. For Haswell, 27% of fluidan-

imate µops that issue never make it to retire, while this number is much lower

in gem5, both with 3+3 cycle (11.4%) and 1+1 cycle (11.5%). This behavior

has also been reported in the “gem5-users” mail list, where developers usually

recommend to set fetch-to-decode and decode-to-rename latencies to one cycle550

to prevent unexpected side-effects.

After applying this change to the configuration files, some benchmarks still

showed a significant number of decode stalls (e.g., blackscholes more than 60%).

However, these stalls are not reflected in the Top-Down model. Indeed, the

Top-Down model only accounts as frontend stalls those fetch/decode stalls that555

happen when the backend is ready. This leads us to conclude that decode stalls

are caused by later pipeline stages.

Backend. This section analyzes different pipeline stages from the processor’s

backend, namely: dispatch (rename in gem5), issue, execution and retire (write-

back in gem5) as provided by our validation framework. Issue, execution and560

writeback are handled simultaneously by gem5 in a single unit, while Haswell

provides separate counters for each stage.

After applying the fixes discussed in the frontend section, dispatch (Figure

9) showed around half stall cycles as decode in gem5. A breakdown of sources

of stall cycles at dispatch and execute stages is provided by our framework, but565

not shown here for the sake of clarity. This breakdown shows that most stalls

are caused by a lack of reservation stations (instruction queue in gem5). Our

next improvement to the simulator was to add a decode buffer between decode

and rename, to prevent back and forth blocking between rename and decode.

This structure is available in Haswell as well. The decode buffer however had570
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Figure 9: Normalized dispatch stalls for simsmall with five benchmarks using gem5-official

(GO), gem5-fixes (GF) normalized to Haswell (HW). Left scalar, right SSE.

little to none effect on overall decode stalls, but it halved in some cases the

frontend stalls in the Top-Down model.

Finally, after carefully checking several simulator traces, we found the main

bottleneck between gem5’s frontend and backend. Whenever the execution stage

detects a branch misprediction, it sends a signal to the commit stage to squash575

the contents of the pipeline, ROB and other structures. One cycle after, commit

sends a signal to all stages to perform the squash. At this point, commit begins

to squash the ROB, in groups of “squash width” instructions per cycle (set by

default to the same width as commit, i.e., 8). If commit squash takes more

than one cycle, all other pipeline stages (except fetch) will be blocked for as580

long as commit is squashing. This can take up to 192/8 cycles in our case (N

cycles). The issue-execution-writeback (IEW) stage is notified to unblock one

cycle after commit finishes squashing. Similarly, rename is notified to unblock

one cycle after IEW finishes unblocking (X cycles). Finally, decode is notified to

unblock when rename is finished unblocking (Y cycles), and the processes will585

take another Z cycles.

This process creates a backwards-bubble in the pipeline of 1+N+X+Y+Z

cycles, that adds to the forward bubble of filling the pipeline. The most common

case is that X, Y and Z equal to one, since widths of all backend stages are

usually the same. The backward bubble will be thus of 4 cycles + N (for590
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N>1). This design decision is especially harmful for benchmarks with high

IPC, since they make more use of the available ROB entries, which need to be

slowly squashed on a miss prediction. We are uncertain about the equivalent

architectural parameter in Haswell to “squash width”, but we do not believe that

this process will be blocking the pipeline. Since the pipeline depth of Haswell595

is 14 to 19 stages, this width can be adjusted to ensure that the ROB will be

ready by the time new instructions reach the backend. This will prevent the

real system from creating this backwards bubble, since the frontend will start

producing instructions right away. We believe that this “blocking” design and

the associated backwards bubbles are a key limiting factor in the simulation600

of certain benchmarks, like blackscholes. To minimize what we believe to be a

source of error, we set our “squash width” to the number of ROB entries, so

that N equals one cycle and the cascade block never happens.

Another interesting finding derived from the validation framework has to

do with the translation of macro to micro instructions. Figure 10 shows the605

amount of µops generated in the decode stage. There is an increment that

ranges between 20 and 80% in the amount of µops issued by gem5 when running

scalar codes. Moreover, this increment reaches 240% when running SSE codes.

This µop increment is slightly lower for gem5-fixes in scalar codes. As it will be

discussed in Section 5.4, scalar code produced by x86 64 compilers is in reality610

SSE code limited to the lowest lane. This code is handled slightly better by our

SSE decoder than it is in the official gem5. All those extra µops need to traverse

the pipeline and use resources. This means that, even if we model the resources

to match a specific architecture (reservation stations, ROB entries, stage widths,

etc.), the resources consumed by the simulator can vary considerably depending615

on the application.

For SSE codes there is another great concern. While Intel specifies that

SSE and AVX instructions are translated into a single µops in most cases, gem5

translates SSE instructions into as many µops as an equivalent 64-bit scalar

implementation. The reason to do this is the lack of vector registers in the sim-620

ulator (128-bit registers in SSE). For example, for an SSE load of single-precision
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Figure 10: Normalized µops issued for simsmall with five benchmarks using gem5-official

(GO), gem5-fixes (GF) normalized to Haswell (HW). Left scalar, right SSE.

floating point values, gem5 performs two 64-bit load operations. This explains

the huge increment on µops count. We fixed this issue by introducing proper

vector registers and vector instructions that translate into a single µinstruction

to simulate SSE. Still, gem5-fixes maintains the overhead from µops derived625

from some scalar and SSE macro instructions. More specifically, arithmetic or

logical operations that use the “memory addressing mode”, for example “add

r1,r2,[rsp + 10]”, will translate into two gem5 µops, “load r3, [rsp + 10]; add

r1,r2,r3” (rsp: register stack pointer). We still need to design a synthetic test

that uses both memory and register address modes. This will allow us to study630

the differences in real hardware and how they can translate into the simulator.

Performing an “up-to-date” translation of all x86 instructions for the Haswell

case seems out of the scope of this paper. Furthermore, increasing the amount of

resources to cope with this increment of instructions does not seem reasonable,

since it will affect applications that do not have a huge µop deviation from the635

real hardware (e.g., canneal).

For issue, execute and retire stages, the general shape of gem5-fixes is similar

for most benchmarks and stages. Although gem5 models all three stages as one,

variability between stages exists since Haswell has different instruction count per

stage. This behavior has been discussed in the Intel forums by John McCalpin,640

and initially reported by Agner Fog when discussing “micro-op fusion” in [53].

28



BS SW FL ST CN

00
20
40
60
80

100
120
140
160
180
200
220
240
260

N
or

m
. E

xe
cu

tio
n 

C
yc

le
s 

(%
)

Stalled_at_Issue Running

G
O

H
W

G
F

G
O

H
W

G
F

G
O

H
W

G
F

G
O

H
W

G
F

G
O

H
W

G
F

BS SW FL ST CN

00
20
40
60
80

100
120
140
160
180
200
220
240
260

N
or

m
. E

xe
cu

tio
n 

C
yc

le
s 

(%
)

G
O

H
W

G
F

G
O

H
W

G
F

G
O

H
W

G
F

G
O

H
W

G
F

G
O

H
W

G
F

Figure 11: Normalized issue stalls for simsmall with five benchmarks using gem5-official (GO),

gem5-fixes (GF) normalized to Haswell (HW). Left scalar, right SSE.
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Figure 12: Normalized execute stalls for simsmall with five benchmarks using gem5-official

(GO), gem5-fixes (GF) normalized to Haswell (HW). Left scalar, right SSE.
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Figure 13: Normalized retire stalls for simsmall with five benchmarks using gem5 official (GO)

gem5 fixes (GF) normalized to Haswell (HW). Left scalar, right SSE.
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Figure 14: Top-Down model. Top-Level overview for the Splash 3 benchmark suite using the

default input. Left Haswell. Right gem5-fixes

In addition, they also mention that counters like “µops dispatched” (to the

execution ports), can be much larger than either µops issued or µops retired due

to instruction retries. This supports our initial guess that the Haswell pipeline

implementation is not blocking previous stages, but discarding/retrying when a645

specific stage is not ready.

5.3. Validating with Additional Applications

The evaluation and improvements on gem5 were performed using five bench-

marks from the ParVec suite. We have considered these ten benchmarks (scalar

and SSE) as a “training set” for the simulator, but it does not guarantee that650

the discovered sources of error translate to other benchmarks. The “fixed” sim-

ulator improves both the accuracy of the results and the simulation speed. For

scalar codes on ParVec, simulation speed is improved by around 35% on aver-

age, since we are significantly reducing the amount of pipeline stalls. Therefore,

running the application faster reduces simulation time. However, there may be655

cases where fixing the simulator actually slows down simulation speed. Improve-

ments for SSE codes are even better (43%), especially since we implement proper

vector registers, reducing the amount of instructions that the simulator has to

execute. This section shows Top-Level of the Top-Down model with Splash 3

applications, that can be considered our “test or validation set” (Figure 14).660

As it happened with the ParVec benchmarks, the main differences in the
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Figure 15: µops per cycle for the Splash 3 benchmark suite for gem5-original (GO), Haswell

and gem5-fixes (GF).

Top-Level breakdown between the real hardware and gem5 come from applica-

tions with many mis-speculation and those with high IPC (Figure 15). Further

improvements to the simulator are needed in order to capture the behavior of

modern processors.665

Finally, Figures 15 and 16 show the µops per cycle for all the evaluated

benchmarks and ISAs (scalar and SSE) on both Haswell and gem5. Most com-

puter architecture papers rely on the IPC metric to “validate” their simulation

infrastructure. Overall, our fixed gem5 achieves higher IPC than the original

gem5. However, there are cases where the IPC (e.g., blackscholes from ParVec)670

is reduced when fixes are applied. This can be counter-intuitive, since the error

detected by the framework makes gem5 slower, not faster. This is actually due

to the wrong allocation of ALU resources that will be discussed in the next

section. However, as we have seen, IPC, or even the Top-Level overview alone

are not good enough to detect sources of error. Positive and negative sources of675

error can neglect each other, and it may seem like the simulator is close to the

real hardware, while in fact is behaving erratically.

5.4. Instruction Type Breakdown

Another issue we found with the simulator has to do with the instruction

classification. gem5 ALUs are implemented as pools (namely FU pools) that680

can handle specific instruction types. The instruction types handled by different
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Figure 16: µops per cycle for five benchmarks of the ParVec benchmark suite using the

simsmall input for gem5-original (GO), Haswell and gem5-fixes (GF).

pools are not exclusive. Developers can have, for example, two pools, one for

integer additions only, and another one for any type of floating point and integer

operations. This is an excellent way to emulate the behavior of Intel’s ALU

ports. In this way, users can set the latency for each instruction type in each685

FU pool.

Besides, and in order to build x86 scalar code, both GCC and ICC compilers

use SSE instructions that operate on the lower register lane (e.g., MOVSS,

ADDSS, etc.). We believe this is part of the x86 64 standard, and the only way

we could find to avoid this is to set the compiler flag “-m32”. However, using690

this flag produced an extremely low-quality 386 code.

SSE codes are passed through the SSE decoder in gem5, but none of the SSE

instructions has the instruction type set in the official gem5. This makes all the

generated SSE µops to fall back to default types (IntAlu, FloatAdd, MemRead

and MemWrite). These default instruction types may have a different latency695

than the one intended to simulate (e.g., a division, or a square root). This issue

is not present on the Arm decoder, where instruction types are properly set.

We have fixed this issue in our SSE decoder, and now instruction types are set

properly, using their specific FU pool.

Evidently, properly setting multiplication, division and square root instruc-700

tion types made gem5-fixes slower than the official gem5. The overall slowdown

will depend on high-latency instructions present in the critical path of exe-

cution. We have also included specific types for double precision division and
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square root operations, since latencies are different from those of single-precision

floating point. This kind of information is not available through performance705

counters, but can be retrieved using a binary emulation software such as Intel

SDE (Software Development Emulator). We believe it would be interesting to

include this information in future revisions of the validation framework.

5.5. Extensibility of the Framework

Extending the framework can be a necessary step to support new archi-710

tectures or to include additional performance counter information required to

validate our simulation environment.

In order to include a new architecture, users must create a dictionary file

tailored for that specific architecture. This requires a certain level of exper-

tise. The user must locate the appropriate performance counter (if available)715

for the target architecture. A detailed definition of what is expected from each

performance counter that is being mapped can be found in the base dictionary

file. The user must find the corresponding performance counter in the architec-

ture documentation. Alternatively, a list of native performance counters can be

obtained from PAPI running the “papi native avail” command.720

PAPI eases this work by hiding some performance counter names. Indeed,

some performance counters are mapped by PAPI developers to specific names for

each architecture, so one can just point at the PAPI name (e.g., PAPI BR INS

for total branches) and that would map to the specific performance counter in

each architecture.725

On the other hand, if a user wants to include additional performance coun-

ters to the framework, this can be easily done by defining new wrappers in

the dictionary files for the architectures to compare. However, in order to

add more complicated features (e.g., complex formulas or new tables in the

results database) the user is required to modify the python scripts that build730

the database and create the figures, using the ones provided as an example.

There may be cases where the architecture does not have a specific performance

counter required by the framework. A simple “none” in the dictionary file will
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suffice to skip it.

Moreover, our validation framework can be extended to work with any sim-735

ulation environment. We use gem5 as a case-study, but the use of this simulator

is not mandatory. The only requirement is an output database from the sim-

ulation environment with pairs of values, event-mnemonic and event-value, so

that they can be accessed by the framework based on the dictionary definition.

5.6. A Different use for the Framework: Input Dataset Analysis740

Long simulation times are usually a limiting factor in cycle-accurate infras-

tructures. It is common that researchers use small input datasets to reduce

simulation time. However, reducing the input sizes may have undesired side ef-

fects, especially if simulated resources are not scaled accordingly. For example,

a small input set may fit in the L2 or L3 cache, and have better performance745

than a realistic input set that does not fit in any level of the cache hierarchy.

Ideally, researchers should be aware of the impact of using small input sets on

system resources. This knowledge is crucial to achieve conclusions that can be

extrapolated to realistic input sets.

The proposed validation framework can be used to check the effects of dif-750

ferent input sizes on processor resource utilization. We have tested three input

sets from ParVec (simsmall, simlarge and native) on both scalar and SSE codes

running with a single thread. Figure 17 shows that blackscholes and swaptions

behave similarly for all three input sets. However, fluidanimate, streamclus-

ter and canneal show different performance bottlenecks depending on the input755

size. Simlarge is a good compromise between runtime and resource utilization,

except for fluidanimate, where simsmall actually behaves closer to the native

input than simlarge.

Another interesting finding is the variation of resource requirements between

the scalar and SSE codes. This fact has already been reported by Cebrian et760

al. [54]. Vectorized applications should be considered (in addition to scalar

codes) in hardware research proposals. Otherwise, researchers may end up un-

der/over estimating the impact their proposal may have in this type of applica-
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Figure 17: Top-Down model. Top-Level overview for five benchmarks and simsmall (SS),

simlarge (SL) and native (NA) running on Haswell. Left scalar, right SSE.

tions.

6. Conclusions and Future Work765

Verification, validation and calibration of simulation infrastructures is key

to ensure the quality of computer architecture proposals. Engineers long for the

simulated hardware to behave like the real architecture, or at least to have the

same bottlenecks. There are many sources of error in simulation infrastructures,

including: a) Modeling errors: erroneous description of the desired functionality.770

b) Specification errors: the developer is unaware of the internal functionality

being modeled. c) Abstraction errors: the developer fails to implement certain

details of the system being modeled. d) Input dataset errors: reducing input

size may alter the resources required by the modeled core e) Lack of features:

important features available in modern systems which are not modeled in the775

simulator. However, finding and solving these sources of error is a complex and

costly process that not all research institutions can afford.

IPC or execution time values are not usually useful units to allow rigorous

independent replication of results in simulation methodologies. In this paper we

introduce a semi-automatic framework to ease the validation process [4]. The780

framework extracts real-hardware performance counter information and com-

pares it against simulator statistics. We provide two levels of abstraction: a) a
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high level definition of the processor behavior (Top-Down model) and b) detailed

per-structure and per-pipeline-stage usage breakdown to pinpoint simulator is-

sues. The same methodology can be used to analyze the effects of reducing785

the input size of a specific application on the processor behavior. To show the

usefulness of the framework, we validate the gem5-x86 simulation environment.

The framework allows us to quickly discover simulator issues for baseline

configurations. More specifically, issues with Ruby cache latencies, latencies

between stages, µop translation, branch labeling and ROB stalls that create790

simulation stalls. To the best of our knowledge, none of the identified issues

using the validation framework has been solved by Jan. 2019. The “fixed”

simulator improves both the accuracy of the results and the simulation speed,

mainly due to the reduction on pipeline stalls on the applications being sim-

ulated. However, there can be cases where fixing the simulator actually slows795

down simulation speed. There are still issues that need to be solved in order to

improve the accuracy of the simulator. As part of our future work we would like

to improve the validation framework providing an instruction type breakdown.

We would also like to add support for Arm platforms, and modify the simulator

to better match the simulated platform.800
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Hoe, D. Chiou, K. Asanović, RAMP: Research accelerator for multiple895

processors, IEEE Micro 27 (2) (2007) 46–57. doi:10.1109/MM.2007.39.

[26] M. Pellauer, M. Adler, M. Kinsy, A. Parashar, J. Emer, HAsim: FPGA-

Based High-Detail Multicore Simulation Using Time-Division Multiplexing,

Hpca’11 (2011) 406–417.

[27] S. Kraemer, L. Gao, J. Weinstock, R. Leupers, G. Ascheid, H. Meyr,900

HySim: a fast simulation framework for embedded software development,

Proceedings of the 5th IEEE/ACM international conference on Hardware/-

software codesign and system synthesis - CODES+ISSS’07 (2007) 75–

80doi:http://doi.acm.org/10.1145/1289816.1289837.

[28] L. G. Murillo, J. Eusse, J. Jovic, S. Yakoushkin, R. Leupers, G. Ascheid,905

Synchronization for hybrid MPSoC full-system simulation, Proceedings of

the 49th Annual Design Automation Conference on - DAC ’12 (2012)

121doi:10.1145/2228360.2228383.

[29] N. Binkert, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D.

M. D. Hill, D. A. D. A. Wood, B. Beckmann, G. Black, S. K. S. K.910

Reinhardt, A. Saidi, A. Basu, J. Hestness, D. R. Hower, T. Krishna,

A. Basil, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen,

K. Sewell, M. Shoaib, N. Vaish, M. D. M. D. Hill, D. A. D. A. Wood,

The gem5 Simulator, Computer Architecture News 39 (2) (2011) 1. doi:

10.1145/2024716.2024718.915

[30] R. Plyaskin, A. Herkersdorf, Context-aware compiled simulation of out-

of-order processor behavior based on atomic traces, 2011 IEEE/IFIP 19th

International Conference on VLSI and System-on-Chip, VLSI-SoC 2011

(2011) 386–391doi:10.1109/VLSISoC.2011.6081615.

40

http://dx.doi.org/10.1109/MICRO.2007.36
http://dx.doi.org/10.1109/MM.2007.39
http://dx.doi.org/http://doi.acm.org/10.1145/1289816.1289837
http://dx.doi.org/10.1145/2228360.2228383
http://dx.doi.org/10.1145/2024716.2024718
http://dx.doi.org/10.1145/2024716.2024718
http://dx.doi.org/10.1145/2024716.2024718
http://dx.doi.org/10.1109/VLSISoC.2011.6081615


[31] S. Stattelmann, S. Ottlik, A. Viehl, O. Bringmann, W. Rosenstiel, Combin-920

ing instruction set simulation and WCET analysis for embedded software

performance estimation, 7th IEEE International Symposium on Indus-

trial Embedded Systems (SIES) (2012) 295–298doi:10.1109/SIES.2012.

6356600.

[32] S. Ottlik, S. Stattelmann, A. Viehl, W. Rosenstiel, O. Bringmann, Context-925

sensitive Timing Simulation of Binary Embedded Software, Proceedings of

the 2014 International Conference on Compilers, Architecture and Syn-

thesis for Embedded Systems (CASES) (2014) 14:1—-14:10doi:10.1145/

2656106.2656117.

[33] C. H, S. P, OTAWA, a framework for experimenting WCET computations,930

3rd European Congress on Embedded Real-Time (January) (2006) 1–8.

[34] C. Ferdinand, R. Heckmann, aiT: Worst case execution time prediction by

static program analysis, Building the Information Society (2004) 377–383.

[35] A. Jaleel, R. S. Cohn, C.-K. Luk, B. Jacob, CMP$im: A Pin-Based On-

The-Fly Multi-Core Cache Simulator, MoBs’08 (2008) 28–36.935

[36] J. E. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann, C. Celio,

J. Eastep, A. Agarwal, Graphite: A distributed parallel simulator for multi-

cores, Hpca’10 (January) (2010) 1–12. doi:10.1109/HPCA.2010.5416635.

[37] T. E. Carlson, W. Heirmant, L. Eeckhout, Sniper: Exploring the level

of abstraction for scalable and accurate parallel multi-core simulation,940

2011 International Conference for High Performance Computing, Network-

ing, Storage and Analysis (SC) (September) (2011) 1–12. doi:10.1145/

2063384.2063454.

[38] D. Sanchez, C. Kozyrakis, ZSim: Fast and accurate microarchitectural sim-

ulation of thousand-core systems, Proceedings of the International Sym-945

posium on Computer Architecture (2013) 475–486doi:10.1145/2485922.

2485963.

41

http://dx.doi.org/10.1109/SIES.2012.6356600
http://dx.doi.org/10.1109/SIES.2012.6356600
http://dx.doi.org/10.1109/SIES.2012.6356600
http://dx.doi.org/10.1145/2656106.2656117
http://dx.doi.org/10.1145/2656106.2656117
http://dx.doi.org/10.1145/2656106.2656117
http://dx.doi.org/10.1109/HPCA.2010.5416635
http://dx.doi.org/10.1145/2063384.2063454
http://dx.doi.org/10.1145/2063384.2063454
http://dx.doi.org/10.1145/2063384.2063454
http://dx.doi.org/10.1145/2485922.2485963
http://dx.doi.org/10.1145/2485922.2485963
http://dx.doi.org/10.1145/2485922.2485963


[39] T. Grass, C. Allande, A. Armejach, A. Rico, E. Ayguadé, J. Labarta,
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