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Abstract

Botnets are causing severe damages to users, companies, and governments
through information theft, abuse of online services, DDoS attacks, etc. Al-
though significant research is being made to detect them and mitigate their
effect, they are exponentially increasing due to new zero-day attacks, a vari-
ation of their behavior, and obfuscation techniques. High Interaction Hon-
eypots (HIH) are the only honeypots able to capture attacks and log all
the information generated by attackers when setting up a botnet. The data
generated is being processed using Machine Learning (ML) techniques for
detection since they can detect hidden patterns. However, so far, research
has been focused on intermediate phases of the botnet’s life cycle during
operation, underestimating the initial phase of infection. To the best of
our knowledge, this is the first solution in the infection phase of SSH-based
botnets. Therefore, we have designed an approach based on an SSH-based
HIH to generate a dataset consisting of executed commands and network
information. Herein, we have applied ML techniques for the development
of a real-time detection model. This approach reached a very high level of
prediction and zero false negatives. Indeed, our system detected all known
and unknown SSH sessions intended to infect our honeypots. Thus, our re-
search has demonstrated that new SSH infections can be detected through
ML techniques.
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1. Introduction

Botnets continue to pose a high risk to governments, industries, compa-
nies, and individual users. Indeed, its number has been increasing annually:
Spamhaus Malware Labs identified 17,602 botnet Command and Control
(C&C) servers in 2019, which means an increment of 71.5% in the botnet
C&Cs number compared to the previous year [1]. Among recent botnet at-
tacks, it is estimated that the 3ve botnet has been the cause of $19 billion
in advertising theft, involving the orchestration of about 1.7 million PCs
through this malware [2]. Additionally, botnets have taken advantage of the
significant increase of Internet of Things (IoT) popularity, together with its
weak security level, to turn IoT devices into a great and powerful platform for
cyberattacks, especially for Distributed Denial-of-Service (DDoS) attacks [3].
Hence, in 2016, the French web host and cloud service provider OVH under-
went a 1.1 Thps DDoS attack by a botnet created by the malware Mirai [4],
composed mainly of surveillance cameras and video recorders [5]. Later,
in 2018, cybersecurity researchers discovered Chabulo (ChaCha-Lua-bot),
which is a new botnet that launches DDoS attacks through compromised
SSH servers and IoT devices [6]. Recently, in 2019, Trend Micro’s honeypot
security systems detected a URL spreading a botnet with a Monero miner
bundled with a Perl-based backdoor component to perform DDoS attacks [7].
All these examples of botnets have in common that they have used as attack
vector the Secure Shell (SSH) remote access service, which is a common at-
tack vector for IoT devices [8]. Therefore, we decided to focus our research
on botnets that use SSH as an attack vector.

Each botnet is composed of many malware-infected computers (bots),
which are under human control (botmaster) through C&C servers [9, 10, 11].
The variety of malware used is increasing and with different behavior. In-
deed, as reported by the AV-TEST Institute!, 350,000 new malware sam-
ples are registered every day. The exponential increase in zero-day malware
or malware variants, which modify their behavior as they act, and use of
advanced obfuscation techniques help the malware to evade the traditional
signature-based and heuristics-based detection techniques [12].

Thttps:/ /www.av-test.org/



A practical method for detecting new malware is to use honeypots and
analyze the log events they generate to reveal intelligence information and
malware behavior on current threats. Honeypot systems are designed to
capture attacks by simulating real services and applications, which have been
configured dynamically according to the environment expected by malware.
However, only High Interaction Honeypots (HIH) can capture all phases of
a botnet, which are infection, communication, and attack [13]. Low and
medium interaction honeypots offer a vast limitation for running executable
files, so it would be challenging to capture logs from files for bots infection.

Nowadays, as aforementioned above, the number of attacks is dramat-
ically growing, and analyzing the massive amount of log events generated
by honeypots is a challenge for security analysts. Therefore, new analysis
techniques are being developed, where Machine Learning (ML) is playing a
crucial role.

Additionally, it is believed that bots, in any of their phases, have hidden
behavior patterns in the activities they perform [14]. This hypothesis, to-
gether with the appearance and constant need to detect known or unknown
malware and to analyze a large amount of data, leads to the current trend
of developing bot detection methods based on ML techniques. These tech-
niques detect unknown malware by getting knowledge from ones previously
detected, being able to generate fewer false positives and false negatives com-
pared to other malware detection methods [15]. Solutions to learn how to
tackle zero-day attacks, as the one proposed in [16], are encouraging the ap-
plication of transfer learning techniques to train the model in a dataset and
test it later by using another unrelated dataset. These techniques can also be
applied to adapt honeypot behaviors according to the actions of the attacker
and, therefore, the honeypot is more difficult to detect [17].

Due to ML can be used to detect hidden patterns, several ML solutions
have been defined for botnet detection. Most of these solutions are focused
on identifying bots in the communication and attack phases [18, 19, 20, 21].
There are very few solutions proposed for the detection of the infection pro-
cess of a botnet, in particular, Telnet-based botnets [22, 23]. Due to security
flaws, the Telnet protocol has been replaced by the SSH one in scenarios
where security was required. However, to the best of our knowledge, there
is no solution focused on the detection of the infection process in SSH-based
botnets. The detection process in the communication and attack phases can
suppose specific problems and risks since the bot could have already produced
some damage. However, a detection during the infection phase would have



the advantage that the bot can be identified and disabled before participating
in any malicious activity.

To address this issue, we decided to focus our research on the development
of a novel approach that used ML to detect the infection phase through the
SSH service performed by a known or unknown botnet. To this end, features
extracted from the behavior captured by the honeypots are used, such as the
executed commands and the network traffic statistics generated in each SSH
session.

For this purpose, our solution is based on ML using Supervised Learn-
ing algorithms to automate the detection and prediction of incoming SSH
security threats aiming to infect new devices. Thus, the approach presented
here requires evaluated and tagged data to build the model and classify the
SSH sessions’ behavior, depending on whether they intend to infect the vic-
tim or not, to speed-up the learning and detection processes. Then, the
ML-based model is trained for the detection of the SSH botnets’ infection
phase. To the best of our knowledge, there are no public datasets formed by
executed commands and network traffic statistics generated during an SSH
session. Therefore, we decided to use a high interaction SSH honeypot (HIH)
to create a dataset for the effective and dynamic training of our ML model.

To design and develop this new novel approach, we established the fol-
lowing goals:

e To design and implement an ML-based approach for the detection of
an SSH botnet infection in real-time, reducing the risk/possibility of a
future attack.

e To create a novel dataset composed of executed commands and network
features generated during an SSH session.

e To evaluate the ML algorithms used for the most known error metrics.

e To develop a model capable of identifying SSH zero-day malware, pre-
tending to infect a new device.

e To assess the importance of the features extracted from the behavior
of bots during the process of infection.

The remainder of the paper is structured as follows. Section 2 describes
background information on botnets, honeypots, and given ML models used in



the paper, while Section 3 discusses some related work on botnets and how
ML has been useful for their detection. Section 4 describes our proposed
approach and how it works to detect incoming SSH security threats. Next,
Section 5 shows the proposed dataset and detection model. Section 6 presents
the results and findings of our research. Finally, conclusions and future work
are drawn in Section 7.

2. Background

Along this section, we introduce what a botnet is, the different phases a
botnet has, and we detail the infection phase of SSH-based botnets. Next,
the importance of honeypots in botnet research is shown. Finally, we briefly
describe what Machine Learning is and related terms discussed in this paper.

2.1. Botnets

As previously introduced, a botnet is a network composed of bots that
have been infected with malware and that are controlled by individual hack-
ers, hackers groups, or Government /Nation-state Actors [24]. Their malicious
intention can be to perform a fraudulent and malicious online activity such
as information theft, abuse of online services, DDoS attacks, dissemination
of spam, crypto, click-fraud, and service disruption [9, 10, 11, 24].

The life cycle of a botnet is composed of the phases of infection, commu-
nication, and attack [13]. Other authors, as in [9], divide the life cycle into
more phases: initial injection, secondary injection, connection or rally, mali-
cious activities, and maintenance and upgrading. As both life cycles can be
mapped, for the sake of simplicity, we have opted for the most general model
defined by [13], where phases are differentiated only by the communication
type and their primary objective. Next, we present a brief and general de-
scription of these phases, considering that these phases could vary depending
on the type of device: desktop computer, laptop, IoT device, etc.

In the infection phase, the computer is infected with malware actively or
passively (e.g., SSH service or email, respectively), through different attack
vectors, which are used for downloading the malware binaries that will turn
the victim into a potential bot. Secondly, in the communication phase, com-
munications take place between the infected computers and the C&C servers.
This communication is performed for two reasons: to become a new member
of the botnet and to update its behavior. Lastly, in the attack phase, the



bots are the ones that carry out the malicious activity through instructions
received from the botmaster.

We have provided a general view of a botnet life cycle. Next, we give
more details on the infection process, considering that the attacked device
has an SSH service since this is where our work is focused. These devices
can only be infected actively.

In the infection process, SSH sessions tend to follow a set of steps that
depends on the botnet family they belong to [4, 25]. An example, Marinho
and Holanda [25] make use of a high interaction SSH honeypot infected by the
Rakos botnet. In their investigation, the Rakos botnet follows different steps:
(1) it performs brute-force attack to the SSH service; (2) it collects device
information; (3) it validates that it has permissions; (4) it loads the malicious
binary; (5) it executes malware; (6) it removes signs of attack; and (7) it
searches for new SSH victims. This pattern is usual in SSH botnets [26], but
because variants and new forms are continually appearing, new techniques
able to recognize zero-day attacks are needed. Furthermore, as pointed out
by Sadasivam et al. [27], the brute-force attack to SSH service is made using
a botnet. In 2019, Outlaw Hacking Group’s Botnet gained access to the SSH
servers through a brute-force attack and downloaded a shell script. The shell
script downloads, extracts, and executes the payload. The extracted TAR
file contained folders with scripts, a miner, and backdoor components [7].

2.2. Honeypots

A handy tool to obtain intelligence information about a bot infection
behavior is honeypots [26, 27, 28]. Honeypots are network resources used to
attract non-legitimate users who try to compromise a system with vulnerable
machines and services, although they are virtualized assets mounted by the
honeypot to go unnoticed for such users. Any interaction between the attacker
and the honeypot is captured for further analysis. Honeypots are widely used
in research [17, 29|, where a considerable amount of information is retrieved
to design new detection strategies and identify zero-day attacks.

Three types of honeypots can be distinguished according to the level of in-
teraction that the honeypot allows the attacker [28]: low, medium, and high.
Low interaction honeypots offer limited interaction between the system and
the attacker. The purpose is to detect and save unauthorized connections.
These honeypots are easy to maintain, and the added risk to the network is
shallow. But their ability to capture data is limited, and they are easy to



detect by the attacker. Medium interaction honeypots provide more signifi-
cant interaction with the attacker and allow the simulation of a service or an
operating system where everything is monitored. In this type of honeypot,
the attacker could carry out some tasks, such as the execution of specific
commands and download files. Other functions, like binary execution, are
forbidden. Higher information-gathering capabilities are achieved, but this
has a higher risk. Finally, high interaction honeypots are computers with a
real operating system and vulnerable services, whose aim is to attract the
attacker and analyze his/her behavior inside the host. These honeypots in-
volve a high risk because the attacker could take full control of the host.
Furthermore, these honeypots are challenging to maintain and would require
additional security, such as firewall rules that restrict outgoing connections.

Low and medium interaction honeypots offer a significant limitation when
capturing all the interaction produced by botnets since the infection of a
new bot is usually done by executing a binary or script, and both types of
honeypot do not allow it.

2.3. Machine Learning

Nowadays, cybersecurity experts use ML-based tools to support, but not
to replace, existing traditional methods to improve malicious activity de-
tection, human analysis, incident response automation, and identification of
zero-day exploits, among others [30]. Machine Learning [31] is an artificial
intelligence field that aims to build and to study systems with the ability to
learn from data. These systems can recognize complex patterns and make
qualified decisions based on experience. ML algorithms are broadly catego-
rized into two, namely: supervised and unsupervised machine learning algo-
rithms. We provide below a brief overview of them since these algorithms
are used in some solutions that we will present in Section 3 on the related
work.

Supervised Learning (SL) builds models, from tagged data that have been
evaluated previously, that map inputs to desired outputs. The honeypot will
learn from the patterns contained in the labeled data to classify (i.e., predict)
labels for new, unseen data. In the context of botnet detection, SL algorithms
are used in network traffic classification [11] and malware detection [32]. For
example, network classifiers can sort network traffic as malicious or non-
malicious as well as identify traffic belonging to different botnets. Popular SL
algorithms used in botnet detection include Decision Tree, Random Forest,



SVM, and Naive Bayes. We used in this research these algorithms. A brief
description of them is shown below [33]:

e Decision Tree (DT) is a model that makes predictions by posing a series
of simple tests on the given point. This process can be represented as
a tree, where its leaves are the values to be predicted. DT has less
requirement of data cleaning compared to other algorithms. Instead,
DT may have an overfitting issue, which can be resolved using Random
Forest, and the computational complexity may increase for more class
labels.

e Random Forest (RF) is a specific ensemble method where the individ-
ual models are decision trees trained in a randomized way to reduce
correlation among them. RF takes a low training time, predicts out-
put with high accuracy, and provide a reliable feature importance es-
timate. Instead, RF is inherently less playable than an individual DT,
and training a large number of deep trees can have high computational
costs.

e Support Vector Machine (SVM) is a model aiming to find the best deci-
sion boundary, or hyperplane, that separates n-dimensional space into
different classes. Its objective is to find a plane that has the maximum
margin, which means that future data points can be classified with
more confidence. SVM works fine with a clear margin of separation be-
tween classes and is useful in high dimensional spaces. Instead, SVM
requires high time training when we have a large dataset.

e Naive Bayes (NB) is a probabilistic model based on the Bayes’ theorem.
This model is fast and easy to implement, but its most significant dis-
advantage is the requirement of predictors to be independent. In most
of the real-life cases, the predictors are dependent, and this hinders the
performance of the classifier.

Unsupervised Learning (UL) is modeling the underlying or hidden struc-
ture or distribution in the data to learn more about the data. This method
does not need labeled data and does not need to be trained beforehand.
UL algorithms allow discovering groups of similar examples within the in-
put data, where it is called clustering, to determine the distribution of data
within the input space, known as density estimation. In botnet detection,



UL algorithms are commonly used for the clustering of bot-related behav-
iors. The algorithms most popularly used in botnet detection are K-means,
X-means, and hierarchical clustering.

The most commonly used error metrics are:

e Accuracy, referring to what percent of correct predictions.

TP+TN
TP+ FP+TN+ FN

Accuracy =

e Precision, indicating what percent of positive predictions were correct.

TP

J2 .. _ -
recitsion TP+ FP

e Recall or sensitivity, defining what percent of positive cases did a clas-
sifier catch.

TP

Recall = m——m

e ['1 score, showing the trade-off between the precision and recall as fas
the positive class is concerned.

2 - precision - recall
Flscore = P

precision + recall
And error graphics are:

e ROC Curve, summarizing the trade-off between the true positive rate
and the false positive one for our predictive model using different prob-
ability thresholds.

e Precision-Recall Curve, summarizing the trade-off between the true
positive rate and the positive predictive value for our predictive model
using different probability thresholds.

Before training the ML model, it is necessary to select features from a
dataset that better describe the attacker’s behavior such as API calls, net-
work traffic, executed commands, system changes, etc. A selection of features
is required to extract an optimal subset of features that best represent the
data. Datasets with many irrelevant features can lead the model into an
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underfitting state, where the model does not fit the training data and there-
fore misses the underlying trend of the data. Some of the most frequently
features used in botnet detection are [34]: connection time, length of the
first transmitted packet, the total number of sent and received bytes, and
the ratio between the number of incoming and outgoing packets.

3. Related Work

Currently, a large number of studies focus on the detection of botnets
using ML techniques. These techniques have been mainly used for the iden-
tification of malicious traffic flows, or from preventing the misidentification
of non-malicious traffic flows [11]. Herein, a summary of the most significant
works to date is shown.

In 2006, Livadas et al. [35] introduced one of the first research demon-
strating the possibility of using ML for botnet detection. This study focused
on detecting the communication phase of IRC botnets using supervised learn-
ing to classify IRC bot with statistical features from the TCP traffic flow.
Their assessment showed the importance of the features’ selection in botnet
detection.

In 2012, Shin et al. [36] developed an SVM-based botnet detection method
for host and network-based analysis. In this research, the system was able
to detect all the existing bots in the tests, which were in communication and
attack phases.

In 2014, Stevanovic et al. [37] presented a flow-based botnet detection in
the communication phase using RF classifier. This approach used a set of
statistical flow features to train its detection model. This detection model
reached a sound assessment for a limited number of packets and a limited
duration of time of monitoring per flow.

In 2016, Kirubavathi et al. [38] performed a study on ML-based botnets
detection via mining of network traffic flow behavior, classifying the traffic
into bot and normal traffic. This approach focused on identifying botnets,
regardless of their structures during the communication phase.

In 2018, Wu et al. [39] presented a bot detection approach using clustering
techniques during communication and attack phases.

In 2019, Khan et al. [40] developed a Supervised Learning-based technique
to detect P2P botnets in communication and attack phases. Also, in 2019,
Pektag et al. [19] presented a deep neural network-based approach to detect
botnet by modeling network traffic traces between communication endpoints

10



by using TCP, UDP, and ICMP flow features. This approach focused on
identifying botnets’ communication and attack phases.

Finally, in 2020, Wang et al. [20] showed a hybrid botnet detection ap-
proach based on the analysis of flow-based and graph-based traffic behaviors
during communication and attack phases. Lastly, Biradar et al. [21] pre-
sented a Supervised Machine Learning approach for botnets detection using
DNS query data. The authors claimed that they could identify the presence
of bots, in the communication and attack phases, by checking DNS requests.

The studies discussed above focus on the communication and attack
phases. We have found very few studies about the infection phase. In 2018,
Bajtos et al. [22] made a study about bots’ behavior during the infection
phase via Telnet. Note that no ML techniques were used in this approach.
By using a set of Telnet-based honeypots, they distinguished 9 botnet families
according to observed properties during the infection of the honeypot. The
authors examined the IP address in which the compromised host connects
to download the malicious binary, what way the attacker uses to download
the malicious binary and where it is downloaded. The results showed that
each botnet family uses a particular range of IP addresses to compromise the
honeypot and another specific range of IP addresses to download the mali-
cious binaries. The most used download methods are wget, tftp, curl, and
ftpget commands. As an alternative to downloading, the attacker uses echo
command to write shellcode to a file for later run. Also, the results show a
high correlation between commands used to download a binary, change its
permissions, run it, and delete it.

This last research work was continued in [23], where the authors designed
a model to profile threat agents in Telnet-based botnet groups. By using
clustering through PAM and K-modes algorithms, they were able to identify
different specific features in several types of botnets. These features were
the number of sessions and the number of credential guesses. Depending
on them, the authors claimed that they could predict the next behavior of
attackers, determined by the cluster to which the botnet belongs.

Table 1 presents a summary of the discussed works. As shown, the detec-
tion of botnets has been performed with supervised learning, unsupervised
learning, and deep learning algorithms, where all approaches present good
results. The features used for these algorithms were mainly extracted from
the network traffic generated by the bots and the behavior observed at the
endpoint. One aspect to highlight is regarding the botnet’s detection phase.
These studies are mostly focused on detecting bots within phases 2 and 3,
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i.e., the communication and attack phases, respectively. Very few approaches
have been made with ML techniques that work on the infection phase of a
bot’s life cycle and, on the other hand, no approach focused on that first
phase makes its proposals through exploited vulnerabilities to the SSH ser-
vice. The main advantage of being able to detect a bot in its first phase is
that it can be disabled before it participates in any possible future attack.

Detection

Ref. Learning Features Assessment
Phase
35 DT, NB, and BN 2 TCP flow FDPR: 10-20%, FNR: 30-40%
36 SVM 2 Host and Network-based TPR: 100%, FPR: < 1%
37 RF 2 Flow statistics F1 score: 94.83%
38 DT, NB, and SVM 2,3 Flow statistics Accuracy: 99.14%, F1 score: 96.9%
39] K-Means, X-Means, and EM 2,3 Network-based Accuracy: 95.15%
40 NB, DT, and ANN 2,3 Network-based Accuracy: 94.4%
19 Deep Neural Network 2,3 TCP, UDP, and ICMP flow  Accuracy: 99.3%, F1 score: 99.1%
20 K-means, LSM, and LOF 2,3 Flow and graph-based Accuracy: 99.94%, FPR: 0.06%
21 SVM 2,3 DNS query data Accuracy: 91.80%, F1 score: 91.8%
23 PAM and K-modes 1 Host-based Unknown

Table 1: State of the art in detecting bots using Machine Learning techniques.

4. Our approach

In our proposed solution, we focus on detecting the infection process of an
SSH botnet and, particularly, the variants and new methods yet unknown,
not identified by signature-based detection systems. As presented in Sec-
tion 3, ML techniques seem to be ideal for our detection system due to: the
large size of data that it can analyze in real-time; the ability to learn from
experience; the existence of hidden patterns in the activities performed by
bots; and the need to deal with unknown malware. Thus, to do this, we have
used a honeypot architecture with an ML-based detection system.

As shown in Figure 1, the different entities that participate in this sce-
nario are the attacker, the honeypots with the SSH sensors, and the ML-based
detection system. The flow of the process for the proposed solution starts
when an attacker attempts to inject the malware through port 22, default
SSH port, by logging into a device through a brute-force or dictionary at-
tack. In this context, malicious SSH behavior performed by the attackers is
captured by our SSH sensors. After the attack, the SSH sensor sends the
captured intelligence information and its self-internal state to the ML-based
detection system, where the records received by all SSH sensors are stored
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in a database. Next, our system generates a new ML-based infection detec-
tion model according to the records stored in our database. Finally, the new
model is sent to the SSH sensors so that they can update and improve their
previous detection model. This process is repeated every day automatically.

Attacker

* Logging commands executed and network features for each attack
* Behaviour monitoring and evaluation after attacks

* Information centralisation from all sensors for better model training

Captured Model
data updates

( 2 VirusTotal \

Database cﬁ

( Machine Learning-based Detection System )

(((

Figure 1: The ML-based detection framework proposed for the botnet’s infection phase.

Next, we present how we have developed the elements of our architecture,
that is, the honeypots and the ML detection system as well as its design de-
tails. Specifically, our sensors are based on HonSSH [41], which is a high
interaction SSH honeypot that logs all SSH sessions with the attacker. The
honeypots act as a proxy between the attacker and an SSH server, creating
two separate SSH connections between them. Each sensor can keep several
SSH sessions open, with independent systems through Docker containers.
The sensor gathers information regarding the commands executed and net-
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work traffic. Besides, the associated container must be kept active for some
time after the SSH session is closed, aiming at identifying if the host (hon-
eypot) has been infected during the session execution. It will facilitate the
labeling of the SSH sessions in the dataset. Once the attacker logs out of the
server, our honeypot automatically installs a dynamic rule in the firewall to
block all outgoing traffic from the container associated with this session. This
fact will prevent our infected computers from being part of an attack. These
sensors will send all the information gathered to a centralized database.

Our honeypots are configured to allow unlimited access. Our goal is to
capture all commands executed by the attacker and network traffic statistics
during an SSH session. Executed commands by the attacker can provide
us a lot of information about the purpose of that SSH session. However,
training our system only with the executed commands could give unreliable
results, since several commands are performing the same operation, e.g., wget
and curl to download an executable file. Network statistics have also been
used to solve this limitation. This way, commands with different syntax
executed in SSH sessions, but with the same goal, will be able to reveal
similar SSH session exposing hidden patterns during the infection phase.
Table 2 describes the network features, based on previous ML-based botnet
detection researches, used in our system.

Feature Description

sesston_duration SSH session duration in seconds.

ips_src_count Different source IPs for incoming connections.
ips_dst_count Different destination IPs for outgoing connections.
urls URLs in use.

sent_bytes Bytes sent by the attacker.

received_bytes Bytes received by the Honeypot.

tep_bytes TCP bytes transmitted in the SSH session.
udp_bytes UDP bytes transmitted in the SSH session.
size_payloads Payload bytes transmitted in the SSH session.
size_first_packet First packet’s length transmitted in the SSH session.
max_size_sent_packet Sent packet’s maximum size.

min_size_sent_packet Sent packet’s minimum size.

maz_size_received_packet  Received packet’s maximum size.
min_size_received_packet  Received packet’s minimum size.

Table 2: Network features to model attacker behavior.
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The ML-based detection (MLD) system is responsible for obtaining all
the SSH session information from the database to classify it and generates a
model that represents it.

All the captured information was used to build the dataset that trained
our system. MLD system selects the most optimal features; therefore, those
that best model the behavior of the attackers. Also, our detection model
continues to train continually as the dataset increases, thus achieving more
accurate results. The entire model training process requires high computa-
tional capabilities.

Due to the low processing capacity and memory of the sensors, MLD
system is in charge of performing the training of the model in a centralized
way, and the sensors only worry about reporting the SSH session information
and dynamically updating their detection model.

Our system works with supervised learning algorithms and, as such, needs
to tag data. Supervised learning has been selected because our system must
initially learn from the attacks received previously, achieving a better detec-
tion model. This trained model will be able to detect known and unknown
incoming SSH security threats. Session tagging is performed automatically,
with two possible options: SSH sessions that do not infect the machine (value
0 or negative class) or SSH sessions that have the purpose of recruiting a new
bot (value 1 or positive class).

Correct labeling of the dataset is essential for an accurate evaluation of
results, which is achieved thanks to our honeypots. They are capable of
detecting if there is a non-legitimate activity within the honeypot once the
SSH session has been closed. Any action after closing the session is considered
non-legitimate activity. This situation would indicate that our honeypot has
been infected. Therefore, our system labels the sessions as positive in case it
detects any activity in the container after the session is closed. This utility
is only useful to add new SSH sessions to our dataset and thus improve our
detection model. It could never be achieved with real equipment, as it will
have legitimate activity.

Besides, the labeling mechanism is supported by VirusTotal?>. This sys-
tem relies on the VirusTotal platform to upload and scan files or URLs to
determine if it is malware or not. In case any file was downloaded during
that session, VirusTotal will allow us to know relevant details about the

Zhttps://www.virustotal.com
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downloaded binaries. Thus, an SSH session will be tagged as positive when:

e A change in honeypot status or an outgoing network connection occurs
when the attacker logs out.

e The VirusTotal scanning indicates that the downloaded executable dur-
ing that session corresponds to a malware.

Once the data was tagged, we trained and evaluated the data to produce
three different models and assess if they can be used to classify new SSH ses-
sions. We defined the models for executed commands, for network features,
and a hybrid model using both executed commands and network features.

In the next sections, we explain into detail how the data was gathered,
the metrics used, the model, as well as the technical features of the developed
system.

5. Dataset, Metrics, and Model

A dataset is a table where each column represents a feature, and each
row is a real, complete, and well-labeled sample of the dataset [42]. Rapid7
Heisenberg Cloud Honeypot?® and CIC Honeynet* SSH datasets are the most
commonly used datasets in SSH attack research. However, none of these
datasets have SSH sessions’ network traffic information to train our system
model. Both datasets are based on Cowrie [43], which is a medium interaction
SSH and Telnet honeypot designed to log brute force attacks and the shell
interaction performed by the attacker.

Our dataset consists of executed commands and network traffic statistics
generated during the SSH sessions. It represents what attackers perform
during SSH sessions and whether SSH sessions have infected the honeypot
or not. Session tagging has been done with the labeling strategy described
in Section 4. Table 3 shows a sample record of a Dota attack [44] that our
honeypots received.

All sessions used in our dataset were captured from different HIH deployed
in Europe, Asia, the US, North America, and South America. Azure® virtual

3https://opendata.rapid7.com/heisenberg.cowrie/
4https://www.honeynetproject.com/dataset.html
Shttps://azure.microsoft.com/
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Feature Value
Session ID 0521d...36be7
Attacker’s IP 87.64.253.40
Session duration 141 s

Executed commands

cat /proc/cpuinfo | grep name | we -1
echo “root:ECO3kGZ0lsql” |chpasswd|bash

rm -rf /var/tmp/dota™
put /var/tmp/dota.tar.gz

sleep 15s

echo “IyE3L...0IDA=" | base64 —decode | bash

ips_src_count 1
ips_dst_count 1
urls I
sent_bytes 375802
received_bytes 6091334
tep_bytes 6467136
udp_bytes 0
size_payloads 6072192
size_first_packet 146
size_last_packet 146
max_size_sent_packet 354
min_size_sent_packet 66
max_size_received _packet 4274
min_size_received_packet 66

Table 3: Record of the Dota attack.

hosts have been used, with Ubuntu Server 18.04 LTS, 2 virtual CPUs, and
4 GB of RAM. The HonSSH honeypots were configured to allow unlimited
access via SSH service. Therefore, any credential used by the attackers was
accepted. Also, we installed exploitable services in the honeypots, and we
increased the physical characteristics of our honeypots to make them more
attractive to attackers as well.

After five months, our dataset was made up of 20,759 SSH sessions, but

17



18,826 were sessions with no executed commands by the attacker, it seems
that the attacker just wanted to check the access into the machine looking
forward to a possible future attack. Thus, these sessions were removed from
our dataset; otherwise, our model would have obtained results with very
high success rates even though our system does not detect positive sessions
correctly. As a result of the application of the sanitizing process, we obtained
a dataset with 2139 records: 337 positive SSH sessions (infected host) and
1802 negative SSH sessions (uninfected host).

Next, we performed the processing of capture data for each SSH session
to get our features. As shown in Table 3, an SSH session contains a list of
strings (executed commands), which must be split into individual commands.
We developed a parser to retrieve only the command itself, without param-
eters. Thus, we can trace executed commands during an SSH session, and
where each command will represent an individual feature. Highlight that we
selected only a pool of 72 commands from a list of the 100 most interest-
ing Unix commands. Other 28 commands were deemed uninteresting to be
added to our dataset because they were only used to improve the legitimate
user experience.

So, this dataset has a total of 93 features: 72 commands, 7 session states,
and 14 network statistics. Commands represent a list of the different com-
mands executed in all attacks received. Session states refer to the number of
executed commands in the ones defined by [26]: Check software configura-
tion, Install a program, Download a file, Run a rogue program, Change the
account, password, Check the hardware configuration, and Change the system
configuration. Network statistics are features such as session duration, bytes
sent, bytes received, etc. Table 2 shows all the network features.

Three different models were defined according to the features used to train
it: (1) model trained with the SSH commands executed by attackers, (2)
model trained with the network statistics features, and (3) a hybrid model
trained with executed commands and network features. The most widely
used Supervised Learning algorithms in previous ML-based botnet detection
research have been used to assess these models: Decision Tree, Random
Forest, Support Vector Machine, and Naive Bayes. The ML algorithms used
in this research are implemented by scikit-learn. The most relevant attack
detection evaluation metrics were chosen for comparison between different
models and algorithms [45], which are described in Section 2.3.

In our study, to split the dataset into training and testing, we met the
following constraints:
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1. The training and cross-validation dataset was approximately 80% of
the dataset.

2. The testing dataset was 20% of the dataset.

3. None of the records used in the training and cross-validation [46] dataset
was used in the testing dataset.

The dataset division was random and repeated a finite number of times
to avoid different results depending on how the data were distributed in the
subsets, always respecting the previous constraints. Herein, we wanted to find
a simple machine learning model with enough classification performance.

Table 4 showcases the results obtained by the different classification algo-
rithms proposed, where the considered metrics are evaluated by taking the
sessions that are labeled “infected” as the target class. To reduce standard
error, these results are the median of all tests conducted by each algorithm.

Model Accuracy (%) Precision (%) Recall (%) F1 score (%)
Decision Tree 89.4 100 43.1 60.3
Random Forest 98.1 95.7 93.9 94.8
SVM 97.7 96.7 90.8 93.7
Naive Bayes 69.9 38.2 98.5 55.0

Table 4: Performance of the classification algorithms proposed.

The ML algorithms achieving the best results were SVM and RF. SVM
obtained 96.7% of precision, indicating that between all cases classified as
positive the 96.7% were positive, and 90.8% of recall, denoting that it was
able to sort the 90.8% of all positive cases in the dataset correctly. On the
other hand, RF obtained 95.7% of precision, having a higher number of false
positives than SVM. Instead, RF obtained 93.9% of recall indicating that it
got a lower number of false negatives. Both classification errors are not a valid
approach as a result, but a smaller number of false negatives is preferable
in security problems, intending to avoid the potential risks in case threats
are not well detected. Although both models achieve similar results, we have
chosen the best classification model generated by the RF classifier due to a
lower number of false negatives and, mainly, because RF is computationally
less expensive than SVM.

Finally, an exhaustive search of the parameters for the RF classifier [47]
was performed. We aimed to find the most optimal parameters that obtain
the best classification performance, without model overfitting. To do this,
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we used K-fold Cross-Validation [48], which guarantees that results are in-
dependent of the split of the dataset. The set of hyperparameters and their
respective ranges are listed in Table 5. The best results reached in our study,
without model overfitting, were obtained by the configuration 1600-90-5-1-
auto-True.

Hyper-parameter Values tested

n_estimators 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2000
max_depth 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, None
min_samples_split 2,5, 10

min_samples_leaf 1,2, 4

max_features auto, sqrt

bootstrap True, False

Table 5: Configurations and hyper-parameters for our test.

To summarize, our model was based on the Random Forest classifier.
In addition to the high level of prediction achieved, this algorithm offers
suitable characteristics for threat detection environments. Researchers are
increasingly using Random Forest for predictive data modeling due to its high
accuracy, time efficiency, and low computational cost [49], which makes this
algorithm the best choice for hosts without vast capabilities that especially
need a real-time response.

6. Experimental Results and Discussions

In the evaluation process, classification accuracy and other error met-
rics were used to show the effectiveness of our model, tested with a training
dataset consisting of 427 examples (20% of the dataset): 54 positive SSH
sessions (infected host) and 373 negative SSH sessions (uninfected host). In
classification problems, classification errors (false positives and false nega-
tives) are more critical than classification hits. It means that a model that
detects all events as positive can have a high percentage of accuracy, but it
is not a good model. The results of our model are shown in Table 6.

After the tests were performed, our system was able to predict SSH in-
fection with very high accuracy (99.59%). Moreover, our model reached a
precision of 96.87% and a recall of 100%, thus giving an F1 score of 98.41%.
Not all uninfected SSH sessions were detected. However, all malicious SSH
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Class Accuracy (%) Precision (%) Recall (%) F1 score (%)
Infected 99.59 96.87 100 98.41
Uninfected 99.59 100 99.53 99.76

Table 6: Model performance for the training dataset.

sessions were correctly identified (false negatives = 0). Not having false neg-
atives is very critical in an attack detection system.

Figure 2 shows ROC and Precision-Recall curves for models that have
been trained with different features (all features, single commands, only net-
work statistics, and only session states). We aim to show what information
best represents an attacker’s behavior for an infected SSH session. As we
can see, the best result is reached by the model trained with all features.
We want to highlight that the network statistics profile the attacker’s be-
havior better than commands executed by attackers. Thus, it confirms our
hypothesis that commands executed by the attacker can give us a lot of infor-
mation about the purpose of that SSH session. Still, since several commands
are performing the same operation, additional context information, such as
network statistics, is needed to predict attacks accurately. Unfortunately,
session states do not seem to represent the infection phase correctly via SSH
service.
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Figure 2: ROC curves and Precision-Recall curves for classification.

The importance of each command in the detection process of our tests is
shown in Figure 3a. The most relevant command is chmod, commonly used
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to give execution permission to a file to execute it. Scp and wget allow the
transfer and download a file into the victim. Other significant commands
are echo, rm, and ./ (run an executable file). These commands correspond
to Download, Installation, and FEzecution states, which matches a sequence
widely used in this attack type [26]. These results do not mean that attack-
ers cannot infect a host by executing other commands, but it is the most
frequently seen pattern in the received attacks.

Concerning network statistics (in Figure 3b), the features that provide
the most value to our model are: max_size_received_packet, ips_dst_count,
size_payloads, received_bytes, tep_bytes, and urls. These features can be the
number and destination of connections that the attacker makes from the
vulnerable host to the C&C server. The attacker uses this server to download
malware (with a particular size) to turn his/her victim into a bot. These
connections are prevalent in a typical bot infection phase [13].

max_size_received_packet

scp ips_dst_count
echo size_payloads
received_bytes
uname tcp_bytes
sh urls
history ips_src_count
ftpget sent_bytes
t&g session_time
ifconfig udp_bytes
pk_i(ljl max_size_sent_packet
min_size_sent_packet
size_first_packet

min_size_received_packet

tar
b I T T T T T T T T
0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.00 0.02 0.04 006 008 0.10 012 014 016

(a) Commands (b) Network statistics

Figure 3: Features importance scores.

To finish with, we have obtained results with a very high-performance
level. Our model presents an accuracy of 99.59% and can detect all SSH
sessions intended to infect the honeypot. It should be noted that our work
is focused on identifying a botnet’s infection phase, especially infection via
SSH service. As seen in Section 3, no related work was focused on this initial
phase. Our achieved results match and even improve the previous work of
botnet detection with machine learning.

Nevertheless, no real comparison can be made with previous works, since
existing datasets with network traffic reflect phases other than that of in-
fection and the commands executed by attackers only fit with our scenario.
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Instead, we have evaluated our approach with a dataset created by our hon-
eypots for an SSH attack environment. Thus, we can confirm that Machine
Learning techniques are ideal for our detection system.

7. Conclusion and Future Work

The new malware and infected computers are continuously appearing ev-
ery day. In recent years, a large number of servers and IoT devices have
been infected via SSH service to perform DDoS attacks, among others. Fur-
thermore, zero-day malware and variants succeed in evading the traditional
methods. Thus, new botnet detection techniques are needed.

In this paper, we have presented a Machine Learning-based approach for
the detection of incoming SSH security threats in real-time, aiming to infect
new devices. Our main objective has been to detect the attacker before
the targeted device gets infected, and thus prevent the victim host from
participating in any malicious activity. To achieve this, we have generated a
novel labeled dataset composed of executed commands and network features
generated during an SSH session. For this purpose, high interaction SSH
honeypots have been deployed to capture a botnet’s infection phase using
the SSH service. After the data capture period, we developed an infection
detection model that reached a very high level of prediction and zero false
negatives. Indeed, our system detected all known and unknown SSH sessions
intended to infect our honeypots, and not having false negatives. Thus, our
research has demonstrated that new SSH infections can be detected through
Machine Learning techniques.

Future perspectives are currently being considered. Firstly, to train and
evaluate the performance of the proposed model with a larger dataset. More-
over, the improvement of the feature selection process and adaptation of the
proposed model to new threats through the analysis of new malware that
spreads via the SSH service. Also, it would be interesting to integrate our
system with a Black Hole Route, dropping all packets sent from a source IP
detected by our model as a potentially malicious IP. Finally, we propose to
adapt our approach for its use in a real environment, using a reverse SSH
proxy to control SSH sessions between clients and real devices, and thus
classify SSH sessions as infected or uninfected in near real-time.
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