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Abstract

Agent-based simulations represent an effective scientific tool, with numerous applications
from social sciences to biology, which aims to emulate or predict complex phenomena
through a set of simple rules performed by multiple agents. To simulate a large number
of agents with complex models, practitioners have developed high-performance paral-
lel implementations, often specialized for particular scenarios and target hardware. It
is, however, difficult to obtain portable simulations, which achieve high performance
and at the same time are easy to write and to reproduce on different hardware. This
article gives a complete presentation of OpenABL, a domain-specific language and a
compiler for agent-based simulations that enable users to achieve high-performance par-
allel and distributed agent simulations with a simple and portable programming envi-
ronment. OpenABL is comprised of (1) an easy-to-program language, which relies on
domain abstractions and explicitly exposes agent parallelism, synchronization and local-
ity, (2) a source-to-source compiler, and (3) a set of pluggable compiler backends, which
generate target code for multi-core CPUs, GPUs, and cloud-based systems. We evalu-
ate OpenABL on simulations from different fields. In particular, our analysis includes
predator-prey and keratinocyte, two complex simulations with multiple step functions,
heterogeneous agent types, and dynamic creation and removal of agents. The results
show that OpenABL-generated codes are portable to different platforms, perform sim-
ilarly to manual target-specific implementations, and require significantly fewer lines of
codes.

Keywords: agent-based simulation, domain specific language, GPU, parallel and
distributed computing, compilers

1. Introduction

The identification and study of common computational patterns is an important way
to produce software that is systematically efficient on a variety of similar applications

1Corresponding Author, bcosenza@unisa.it
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and on different target architectures. By focusing on these patterns, we give names to
solutions to recurring problems that experts in a problem domain gradually learn and5

take for granted.
Agent-based simulations (ABS) [1] represents a way to model, through a population of

agents, the dynamics of complex phenomena. Such agents follow a few simple principles:
they may be of different types (heterogeneous), move in an explicit space such as an multi-
dimensional grid, only interact with close agents (locality), and there is no central control10

over them (autonomous). Emergent behaviors from ABS usually result in computational
patterns.

Historically, ABS computational models have been used to model and understand
the society by translating social dynamics into computation. Examples are voting be-
haviors [2], epidemics [3], stock markets [4] and spatial unemployment patterns [5]. Ap-15

plications go far beyond social sciences, however: the predator-prey equilibrium investi-
gated by ecologists [6]; hazard prevention in evacuation scenarios [7]; keratinocyte colony
formation modeled by cellular biologists [8]; the complex behaviors of cooperation simu-
lated by ecologists [6]; crowd simulation interactions in virtual scenes [9] are all notable
examples of ABS applications.20

All of these ABS applications are characterized by the fact that they require a signif-
icant amount of computational power as both a larger number of agents is required to
accurately model large populations and, at the same time, models are getting more so-
phisticated, with complex interactions and strong behavior differentiation between agents
in the same simulation, i.e., increasing heterogeneity.25

These two aspects have motivated scientists to develop parallel and distributed ABS
implementations targeting very different platforms such as Graphics Processing Units
(GPUs) [10], High Performance Computing (HPC) clusters [11], and cloud computing
systems [12]. Each implementation focuses on a specific agent domain and on platform-
specific parallelization methods. Notwithstanding the fact that the core concepts of30

existing ABS libraries are basically the same, the diversity of both target hardware
platforms and application domains has led to very different software infrastructures.
Unfortunately, this also led to simulation environments whose comparison and replication
is hard to perform.

As a consequence, scientists using ABS face four major challenges:35

• Performance: The increasing model complexity and the growing number of agents
demand for higher computational power, with parallel and distributed implemen-
tations, and for efficient algorithms for local agents query. Both are necessary to
simulate modern large and complex ABS.

• Programmability: Scientists and domain experts often have little expertise on40

HPC programming; thus, they need high-level tools and programming environ-
ments where only domain knowledge is required.

• Portability: Existing approaches for writing ABS simulation spans different tool
and implementations. Agent simulations should be written in a programming en-
vironment that makes it possible to target a variety of parallel and distributed45

systems without any program changes.

• Reproducibility: Simulations must be easy to reproduce, returning similar re-
sults even if obtained by different implementations and platforms.
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In the pursuit of finding a solution to all of these issues, scientists from different
fields have joined their forces into the community-driven project OpenAB [13], which50

provides procedures, data and models for the benchmarking of agent-based simulations
on parallel and distributed computing systems. This article gives a complete introduction
of OpenABL [14], the domain-specific language (DSL) developed by and for the OpenAB
community to tackle the four major challenges raised above, and provides an exhaustive
evaluation of theOpenABL compiler implementation on complex simulations and several55

parallel target platforms.
The rest of this article is organized as follows. Section 2 introduces the OpenABL

language, a domain-specific and high-level language that allows scientists to write com-
plex agent models with few lines of code and no knowledge about the target platform.
The language is designed to easily define space and locality properties of a simulation,60

and supports advanced features such as heterogeneous agent types and the dynamic cre-
ation and removal of agents. Two cornerstones of the language are the step function,
which implicitly enable agent parallelism, and the near query, which is the base for local
agent query. In this article, each language semantic is discussed in detail, with code
excerpt taken from a complex application scenario. predator-prey. Additionally, two new65

language semantics are introduced: sequential step functions and reductions.
A source-to-source compilation infrastructure implements the OpenABL language

and maps language semantics such as agent, step function and near query, into a high-
level intermediate representation. Thus, a code generation infrastructure based on plug-
gable backends is capable to efficiently translate those semantics and generate high-70

performance parallel code targeting a broad range of systems, from multi-core CPUs and
GPUs to cloud systems. Section 3 describes in details the parsing, the intermediate rep-
resentation, the parallel mapping and the limitations of the source-to-source compilation
infrastructure.

An extended experimental evaluation is presented in Section 4. We have evaluated75

the performance of the code generated by the OpenABL compiler on seven applications.
In particular, we used two complex applications with both heterogeneous agent types
and dynamic agent addition/removal as a test benchmark: predator-prey, an animal
ecology simulation where a set of predators hunt for preys; and keratinocyte, a biological
simulation that explores the self-organization of normal human keratinocytes (NHK)80

and how the cell-cell and cell-substrate adhesions are critically important to NHK self-
organization.
Finally, this article presents a discussion of related work (Section 5) and concluding
remarks (Section 6).

2. Language Design and Semantics85

The aim of the OpenABL language is to provide a simple and easy-to-use program-
ming environment for agent-based modeling. To this purpose, the language design in-
cludes a collections of domain-specific semantics, allowing the users to quickly prototype
different models with different tuning parameters. An important language feature is its
implicit support for agent parallelism and locality; this is fully exploited by the compi-90

lation infrastructure for efficient mapping onto parallel and distributed implementations
(details in Section 3).
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In this section, we will use excerpts from the predator-prey code example2 to illustrate
the general structure of an OpenABL model and its language semantics.

2.1. Agent Declarations, Parameters and Main Function95

An OpenABL program is comprised of five parts: the declaration of agent types, the
simulation and environment parameters, step function definitions, and the main function.
A C-like syntax is used to maintain familiarity with ABS users (mostly adopting C and
Java-based ABS frameworks), and supports standard semantics for operators and control-
flow, as well as vector types.100

// Agent declarations

agent Predator {

position float2 pos;

float2 dir;105

float2 steer;

int life;

}

agent Prey {

position float2 pos;110

float2 dir;

float2 steer;

int life;

}

agent Grass {115

position float2 pos;

int dead_cycles;

bool avail;

}

// Tunable model parameters120

param float REPRODUCE_PREY_PROB = 0.005;

param float REPRODUCE_PRED_PROB = 0.001;

param int GAIN_FROM_FOOD_PRED = 35;

param int GAIN_FROM_FOOD_PREY = 60;

param int GRASS_REGROW_CYCLES = 60;125

// Hard -coded model parameters

float PRED_PREY_INTER_RADIUS = 0.100;

float PREY_GROUP_COH_RADIUS = 0.120;

float SAME_SPECIES_AVOID_RADIUS = 0.035;

// Environment definition130

float env_size = sqrt(num_agents/agent_density);

environment { max: float2(env_size) }

Listing 1: An OpenABL code excerpt from the predator-prey benchmark.

The code declares three agent types. Agent types are declared similarly to structs in
C. Additionally, each agent may have a designated position member of type float2 or135

float3, which provides the position of the agent for spatial queries and may also be used
for visualization; later in Section 2.3 it will be shown how this field is used to provide
locality information to the OpenABL compiler.

The parameters of the simulation are declared as global constants. The param key-
word, used as prefix for constants, indicates a parameter that may also be overridden140

2The full code is available at https://github.com/OpenABL/OpenABL/blob/master/examples/

predator_prey.abl.
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from the command line. Overridden parameters are specified during code generation
rather than at runtime, because they may be used in contexts that some backends can-
not modify at runtime.

Environment properties are specified using an environment declaration, which in-
cludes the environment dimensionality and bounds (min and max). Agent positions must145

stay within these bounds. For performance reasons, this is not automatically enforced by
the language, but functions to perform the necessary clamping or wrap-around are pro-
vided. The radius used for spatial data structures is usually determined automatically,
but may also be explicitly given here. The standard library also provides commonly used
functions for geometric and trigonometric operations.150

An OpenABL simulation starts with the main function, which is the entry point
typically used to set up agents, either from a file or randomly generated, to invoke the
step functions implementing the simulation logic, and to finally save the results of the
simulation. The following code snippet shows the main function of predator-prey.

155

void main() {

int num_pred = int(pred_fraction * num_agents);

int num_prey = int(prey_fraction * num_agents);

int num_grass = num_agents - num_pred - num_prey;

// Agent initialization160

for (int i : 0.. num_grass) {

add(Grass {

pos: random(float2(env_size)),

dead_cycles: 0, avail: true

});165

}

for (int i : 0.. num_prey) {

add(Prey {

pos: random(float2(env_size)),

dir: randomDirection (),170

steer: float2 (0),

life: GAIN_FROM_FOOD_PREY + randomInt (10)

});

}

for (int i : 0.. num_pred) {175

add(Predator {

pos: random(float2(env_size)),

dir: randomDirection (),

steer: float2 (0),

life: GAIN_FROM_FOOD_PRED + randomInt (10)180

});

}

// A simulation loop invoking 13 step functions for a certain number of

time steps

simulate(num_timesteps) {185

pred_follow_prey , prey_avoid_pred ,

prey_flock , pred_avoid ,

prey_move , pred_move ,

prey_eat_or_starve , pred_eat_or_starve ,

grass_eaten , prey_eaten ,190

pred_reproduction , prey_reproduction ,

grass_growth

}

// Final agent properties are written into a file

save("agents.json");195

}
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Listing 2: A main function from the Predator-prey code.

Agents are typically initialized in a for loop, and are added to the simulation using
the add function. While adding an agent to the simulation, the OpenABL framework
internally keeps track of the agent type, so that agents can be easily selected by agent200

type. Once the agents are initialized, the main function typically uses the simulate

statement to invoke a sequence of step functions. In this case, the simulation consist of
13 step functions, repeatedly called for a specified number of time steps.

After simulating all the step functions, a simulation usually ends with a call to the
save function, which stores the final agent properties into a JSON file.205

2.2. Agent Parallelism and Step Functions

Agent parallelism, i.e., the fact that agents’ behaviours can be updated independently
and in parallel, is an important aspect that allows ABS implementation to reach high
performance. Therefore, it is crucial to design a language that implicitly supports agent
parallelism and enables its parallel mapping on different target platforms.210

OpenABL supports agent parallelism with different semantics. The most important
are step functions, which take an input agent of some type and returns a (optionally
modified) output agent. For instance, prey’s movement behaviour is implemented with
the following step function:

215

step prey_move(Prey in -> out) { ... }

where in is an input agent of type Prey whose state is the result of the timestep t-1, and
out will be the output agent i.e. the result of the current timestep t. For synchronization,
the output agents will only become available once the step function has been invoked for220

all agents of that type. This implicitly suggests a double-buffering agent implementation:
a read-only agent buffer for the input; a write-only agent buffer for the output. The strong
separation between in and out produces deterministic, order-independent simulations.
Unfortunately, many existing sequential agent libraries (e.g., Mason) do not implement a
similar double-buffering mechanism; therefore, their results depend on the agent-update225

order and are not deterministic.
To invocate a step function, a simulate statement is required. A simulate statement

should specify a list of step functions will be executed in the given order, and a number
of timesteps. To preserve the step function ordering, a step function is executed for all
agents (of the specified type) before the next step function is executed.230

For instance, in the predator-prey model (for brevity, we do not list it here), 13 step
functions are called: the first, pred follow prey, on all predator agents; the second,
prey avoid pred, on all prey agents; and so forth until the grass growth step, called
on all grass agents.

2.3. Locality and Neighborhood Queries235

A fundamental concept of agent-based modeling is locality, because interactions are
usually limited to agents in a specified neighborhood. Currently, in OpenABL, the
locality is expressed by either a two- or three-dimensional Euclidean topology. Therefore,
an agent declaration must have a field, marked with the position keyword, either of
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type float2 or float3, which indicates the position of the agent for locality queries.240

The language semantic to query the agents within a radius (the neighborhood) is a
combination of for loop and near() query. For instance, a prey accesses all other prey
within a specified radius with the code in Figure 1.

step prey_flock(Prey in ->out) {

// ...

for(Prey py : near(in ,PREY_RADIUS)) {

// ...

cohesion_velocity += ...;

}

// ...

out.steer += cohesion_velocity;

}

Prey py : near(in,PREY_RADIUS)

PREY_RADIUS

in

Figure 1: Example of near() query with homogeneous agent types, from the prey’s flocking behavior.

The agent types used as input and output of the near() query are used to support
both homogeneous and heterogeneous agent simulations. The OpenABL compiler is in245

charge of delivering an efficient implementation of the near() function, typically using
data structures such as a grid [15] or a k-d tree [16].

2.4. Agent Heterogeneity

Heterogeneous simulations are typically implemented with different agent types. Two
language semantics provide a support for such simulations: near() queries can specify250

different input and return type (see Figure 2); simulate invocation can list step functions
operating on different agent types. Language features such as polymorphism and runtime
type checks are not supported, because they cannot be easily supported on some backends
and, generally, introduce significant overhead in a computationally-intensive part of the
code.255

step prey_avoid_pred(Prey in ->out) {

// ...

for(Predator pt : near(in ,PP_RADIUS)) {

// ...

avoid_velocity += ...;

}

// ...

out.steer += avoid_velocity;

}

Predator pt : near(in,PP_RADIUS)

in

PP_RADIUS

Figure 2: Example of near() query with heterogeneous agent types, from the prey’s fleeing behavior: it
iterates all agent of type Predator within the specified radius from the Prey position.
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2.5. Dynamic Agent Creation and Removal

Most simulations create a number of agents before any step function is executed.
A few of more sophisticated simulations, however, require to dynamically create or re-
move agents during the step function execution, thus allowing for a dynamically-sized
population. For instance in Predator-Prey, agents are both created (because of preys260

and predators reproduction) and removed (when a prey is eaten by a predator). Such
simulations require a way to dynamically add and remove agents while the simulation is
in progress.

step prey_reproduction(Prey in -> out) {265

if (random (1.0) < REPRODUCE_PREY_PROB) {

add(Prey {

pos: in.pos , // same position

dir: -in.dir , steer: -in.steer , // oppos. dir.

life: in.life/2 // life split btwn parent -child270

});

out.life = in.life /2;

}

}
275

Listing 3: Example of probabilistic agent creation with add(), from prey’s reproduction behavior. The
newly created prey has the same position of the father but opposite direction; the life is split between
father and child.

To support this feature on as many backends as possible, the language enforces an
additional constraint: during the execution of a step function, at most one new agent
may be added. This limit is particularly useful to decrease the complexity of GPU imple-
mentations (e.g., FlameGPU has a similar limitation). In the first release of OpenABL
[14], an additional constraint was that the position of the new agent must be the same280

as the input position of the current agent (e.g., in.pos). Such constraint was important
for distributed implementations, where creating an agent on a different position may
actually mean to physically allocate that agent on another distributed node, therefore
requiring extra communication. However, in this updated version, we have been working
together with the developer of D-Mason to solve this issue, thus this language constraint285

has been removed.

2.6. Sequential Step Functions and Reduction

Step functions have an inherently parallel semantic: they are executed for each agent
of a specified type. However, there are cases where it is necessary to perform a sequential
task, e.g., to collect statistical information about the whole simulation or aggregate290

statistics about all agents of a given type.
To overcome this problem, we have introduced a new type of step function, called

sequential step function, that is executed only once, contrary to normal step function
that are executed once for each agent of a specified type. Sequential step function can
be used as parameter in a simulate statement, in the same way of other step functions.295

We have also introduced an early support of reduction operation, which currently can
only be used within a sequential step. The following code illustrate an example of both
semantics:

sequential step gather_stats () {300

int num_prey = count(Prey);
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int num_predator = count(Predator);

int num_avail_grass = sum(Grass.avail);

float exec_time = getLastExecTime ();

log_csv(num_prey , num_predator , num_avail_grass , exec_time);305

}

2.7. Language Limitations

Currently, the language only supports Euclidean topologies. While some extensions,
such as a support for toroidal topologies, would be straightforward, more general cases310

like network-based interactions do not fit well into the current language design. In partic-
ular, the support of graph-based topologies (i.e., network of agents) poses great challenges
in terms of parallel and distributed implementations. Network-based simulations are of-
ten based on complex algorithms such as betweenness centrality, which requires complex
techniques to scale [17, 18] and are currently not supported by any of the ABS backends.315

OpenABL does not support event-driven simulations: the language exploits a conser-
vative synchronization approach to ensure a consistent integration of distributed simula-
tions. Unfortunately, conservative synchronization does not map easily onto event-driven
simulations.

3. Compilation Infrastructure320

A compiler implementing the OpenABL language can exploit the high-level infor-
mation provided by language to generate efficient code, to take advantage of the inherent
parallelism, and to applying a sequence of code transformations enabled by the simplified
computational model. This work also provides an OpenABL compiler implementation
that shows how high-level semantic can be easily mapped into parallel and distributed325

architectures, ranging from multi-core CPU and GPUs to cloud-based systems.
This section illustrates the compilation workflow of our implementation, but the lan-

guage design is generic enough to allow other programmers to implement their own com-
piler. Within our compilation framework, it is also possible to implement new backends
supporting a specific target with native and customized high-performance implementa-330

tions.

3.1. Compilation Workflow

Figure 3 shows the compilation infrastructure of the OpenABL compiler, which fol-
lows a classical source-to-source compilation approach. Starting from an abl input script,
the lexical analysis (based on Flex) and the syntax analysis (based on Bison) translate335

the source code into an abstract syntax tree (AST), which is the main intermediate rep-
resentation. The AST encapsulates language semantic such as simulate invocation and
step function with a specific node type. The analyses are performed to validate and
enforce the language semantics, and to annotate the syntax tree with type information
and dependency.340

After this step, the backend infrastructure is responsible of translating the IR through
code generation. This comprises a set of (pluggable) backends generate the output source
code (and other required files) for the target platform. Depending on the target platform,
a backend may decide specific way to implement agent parallelism and new query.

Thee next sections provide details of the single step involved in the process.345
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add(Point{pos:random(float2(W))});

}

simulate(timesteps){move_point}

save("points.json");

}
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Figure 3: The OpenABL compilation workflow. Top-to-bottom, the .abl input code is translated into
an AST-based intermediate representation, from which different backends generate code for specific
platforms. Both code and IR show an excerpt of the circle test benchmark, with highlighted domain-
specific semantics. Bold lines are backend-target combinations evaluated in this article.

3.2. Parsing and Checking

The frontend is responsible of parsing and checking the validity of the input .abl

script. At first, it perform lexical and syntax analysis; this part is implement with Flex
and Bison, and returns an intermediate representation of the code. Once the AST is
built, an analysis pass visits the AST, performs type checking and generic checks such350

as array initialization and initialization of global constant with constant expression.
In addition, the analysis pass also verifies the validity of the domain-specific seman-

tics. This includes a large list of checks that applies at different levels, e.g.: step functions
(the proper use of in and out values, sequential step function semantic, cannot directly
call step function without a simulate keyword), for-near loops (the specified type should355

be an agent, multiple loops in a single step function cannot use them, loop on agent with-
out position member), agent (redefinition of agent, unknown agent type, agent without
members), parameter declaration (must be assigned to constants), environment declara-
tion (there can be only one single specification, environment member must be a constant
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expression, min and max bound must be float2 or float3, granularity must be a num-360

ber, cannot access environment prior to its declaration, unknown environment member),
simulate (a script can only contain a single simulate statement), timestep (number of
timesteps must be an integer) add/remove (removeCurrent() can only be used inside a
step function, argument of add() must be an agent-creation expression).

3.3. Intermediate Representation365

After semantical check, the resulting AST is used as intermediate representation (IR)
for the compiler. The IR is similar to an AST generated for the C99 language. However,
it adds special domain-specific nodes for domain specific semantics. Example of those
nodes are AgentDeclaration and Param. SimulateStatement and step functions are
particularly important fir efficient code generation, as they represent the key semantics370

to express agent parallelism in the IR.
OpenABL also provides a small transformation framework that is capable to perform

high-level code transformations on the AST. Similarly to other source-to-source compiler
such (e.g., Rose [19]) AST transformations are designed to enable optimizations at IR
level; however, unlike Rose, it does not need preprocessor directive or other code an-375

notations, as important language features such as agent parallelism and near query are
already specified in the domain-specific input code, and kept as specific node in the AST.
An example of transformation is step fusion: two steps operating on the same agents
type, after a dependency check, can be potentially fused in a single one. However, this
part is still experimental and is not discussed in this article.380

The IR is later processed by one of the available backends, which performs a traversal
of the tree and prints the appropriate target code.

3.4. Parallel Backends

OpenABL currently supports five backend implementations targeting different plat-
forms, i.e., ABS libraries and their supported spatial data structures. The backend385

implementation is in charge of translating the IR semantics into efficient target code,
including mapping and scheduling for those backends that support parallelism.

3.4.1. Simple reference backend

A first, simpler backend implemented in basic C provides a reference implementation
for other backends. This backend is trivially parallelized with OpenMP using #pragma390

omp parallel for.
It does not use any spatial data structures, thus any near query has quadratic com-

plexity with the the number of agents. This backend implements a trivial double-buffering
mechanism with two agent arrays swapped after each timestep.

3.4.2. Flame395

The Flame [10] backend is based on state machines supporting sending messages be-
tween agents. Therefore, a step function is implemented to modify the current agent
memory, send messages to other agents, and iterate over messages received in the previ-
ous step. OpenABL neighborhood lookups are supported as follows: first, inside each
for-near loop, we calculate which members of neighboring agents are used; thus, we gen-400

erate one function that sends a message containing all of those members. A second step
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function loops over the messages sent and identifies the ones falling into the specified
neighborhood. As a side-effect, no explicit double buffering is necessary: because mes-
sages are sent in a previous timestep, and changes to agents are performed in the current
step. Flame models consist of three parts: (1) an XML model specification, which deter-405

mines the agent types, their members and states, as well as step functions and messages
sent or received by them; (2) a function file containing the C code of the step functions;
(3) an XML file containing the initial state of the agents. Flame does not provide any
means to execute our main agent initialization code; for this reason, OpenABL generates
additional code based on the custom C backend, which executes the initialization code,410

exports the agent state into Flame’s XML format and then invokes Flame to perform the
actual simulation. Unfortunately, adding or removing agents at runtime is not supported
in Flame.

FLAME supports an MPI-based parallelization method that can theoretically support
multi-node parallelization, as well as multi-core parallelization by mapping each MPI415

process to a core.
However, FLAME does not have the concept of spatial messaging, i.e. does not

have a spatial data structure that efficiently implement near agents query such as kd-
tree or grid. Instead, it uses the message board library (libmboard) to filter messages
between nodes on an MPI cluster. This is good for large models with communication420

between different agent types but no so good for large homogeneous populations which
only require communication over short spatial distances (i.e., the number of messages is
quadratic with the number of agents). For these scalability issues, FLAME cannot be
realistically used on the complex and large simulations evaluated in this article, therefore
we only tested FLAME for the single node scenarios.425

3.4.3. FlameGPU for NVIDIA GPU

FlameGPU [15] is an extension of the Flame, which targets GPU through an imple-
mentation based on CUDA (i.e., each agent is mapped on a CUDA thread). As such, the
FlameGPU backend is similar to the one targeting Flame. As a spatial data structure
supporting near queries, FlameGPU provides a grid, which additionally requires an XML430

model with partitioning radius and the environment bounds specification (those must be
adjusted upwards so that they are multiples of the radius). Agents removal and addition
at runtime is supported by Flame GPU; however, it comes with one limitation: only the
current agent can be removed and only one agent can be added per step function. The
OpenABL language design enforces both restrictions. It should be noted that, even if435

the collaborative use of CPU and GPU can be supported by the OpenABL language and
IR, this backend completely offload agents’ computation to the GPU and therefore does
not support CPU-GPU collaborative computation. Additionally, this would also require
the allocation and mapping of tasks based on the computing characteristics of hetero-
geneous processors and careful load balancing, as suggested by recent research results440

[20, 21, 22, 23].

3.4.4. Mason

Mason [24] is a Java library implementing the simulation and visualization of agent
models. A Mason simulation is composed by an environment, which supports neigh-
borhood queries based on a grid data structure, and a schedule, which executes step445

functions at given times. There are two issues on supporting our language semantics on
12



Mason: Firstly, Mason Mason simulations are fundamentally order-dependent, i.e., no
double-buffering. To enforce our deterministic, order-independent semantic, each agents
stores two states (i.e., old and new), which are swapped at the end of each step function.
Secondly, in idiomatic Mason code, only a single step function is provided for each agent,450

while our execution model support a list of step functions3. This issue is solved with a
cyclic counter for each agent, which selects the step function to execute. As such, the
number of timesteps for a Mason simulation has to be multiplied by the number of step
functions. Dynamic agents addition and removal is already supported in Mason: if an
agent is removed, all agents are rescheduled. In addition, the backend for Mason gen-455

erates extra code for the visualization of the simulation. Regarding parallelism, Mason
is limited to a single thread; however, the D-Mason backend provides a parallel (and
distributed) implementation.

3.4.5. D-Mason for multi-core and cluster

D-Mason [25, 26] is a Mason extension allowing the distribution of the simulation460

across distributed nodes. The master-workers paradigm is used for space partitioning:
a master node partitions the simulation environment into regions, each region contains
a set of agents, and is assigned to a node, with each node being in charge of simulating
the agents that belong to the assigned region. Extra work is required by the node to
handle agents migration and managing the synchronization between neighboring regions.465

D-Mason supports different communication layers [27]: (1) pureActiveMQ, which uses
Apache ActiveMQ as message broker for both the management and the synchronization
messages; (2) pureMPI, which is based on an MPI-based decentralized communication
strategy; (3) hybrid, which uses a combination of the two modes depending on the
communication type used. While OpenABL support all three modes, in this article the470

nodes communicate using the first approach, e.g., with a publish-subscribe pattern: a
multicast channel is assigned to each region; the nodes subscribe to the topics associated
with neighboring regions to receive message updates. D-Mason implements a static
partitioning policy. In OpenABL the agent initialization occurs sequentially (in the
main function), while in D-Mason the initialization is distributed. This is supported by475

running the same initialization code on all worker nodes, but discarding all the agents
whose position does not fall into the assigned region. D-Mason imposes a few additional
restrictions over Mason: the environment definition only support positive coordinates;
the handling of environment bounds is more restricted than in other backends (e.g.,
agents may not be placed exactly on the environment boundary). Finally, dynamic480

agents removal and addition is supported; however, added agents must be positioned in
the current space partition. This is the reason why OpenABL requires the position of
the added agent to be the same as that of the creating agent.

3.4.6. Differing Backend Capabilities

We already mentioned that certain parts of theOpenABL language are not supported485

by all backends. For example, Flame does not support dynamic additional/removal of
agents. While this makes the language not fully portable, we want to avoid making the

3While Mason itself supports multiple step functions in the form of anonymous Steppables, this is
not supported by D-Mason, so a different solution is required.
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language overly restrictive for the sake of a single backend. A set of compilation flags are
provided to support backend-specific configurations. E.g., by default, the float data-
type is mapped onto double-precision floating point (since is the only fp type supported490

by all backends). However, a specific compiler flag allows Flame and FlameGPU to adopt
single-precision for floats.

4. Experimental Evaluation

In order to evaluate OpenABL a collections of seven applications, coming from dif-
ferent fields and described in the next section (4.1) has been deployed. We have evaluated495

both the programmability of the language (4.2) and the performance of the code gen-
erated for all the considered backends, including single-node performance on CPUs and
GPUs (4.3). In Section 4.4 we provide the analysis of OpenABL scalability on a cluster
while in Section 4.5 we present a comparison against manually tuned target-specific code.

4.1. Reference Simulation Models500

The evaluation is based on seven agent-based models from different domains. The
choice of the models was due to the fact that, for each of them, at list a reference
implementations was available for at least one of our targets. Table 1 depicts some
properties of these models, such us the number of different agent types, the number of
step functions required to implement the simulations and whether addition/removal of505

agent is required for the considered model.
Circle is a baseline benchmark behavior for assessing the performance of fixed-radius

near neighbor look-ups. Circle is part of the OpenAB [13] initiative. A formal definition
is given by Chisholm et al. [28] and a reference implementation is available in FlameGPU.
This benchmark only has a single agent type (Point) and a step function, which combines510

a short-range repulsion force with an attractive force operating at a larger radius (see
reference implementation [29]).

Boids [30] is a steering behavior, originally developed to replicate the flocking of birds,
which enable the simulation of an entire group of autonomous characters in animation
and games, by exploiting only few simple rules. The agent behaviour is obtained by the515

combination of three components: separation, to avoid near flockmates; alignment, to
match the average direction of local flockmates; cohesion, to move toward the average
position (center of mass) of local flockmates. The behaviour is implemented by one
agent type and one step function, which performs a near query for the interaction and
apply the three rules based on agents’ distance (see reference implementation [31]).520

Conway’s game-of-life [32] is a well-known cellular automaton model, developed on
top of a grid of boolean square cells. Each cell represents an agent, which at each
simulation step, can be dead or alive, according to the status of neighbors cells at the
preceding simulation step (see reference implementation [33]).

Sugarscape is a social science model introduced to Epstein and Axtell [3], where agents525

move on a grid. Some unequally distributed, regrowing resources (sugar), are available
on the field and the goals of agents is to consume in order to survive. Similarly to game-

of-life, Sugarscape is based on a stationary grid of square cells. It is implemented by
an agent type with many fields including sugar level, metabolism and other stat values,
and for step functions implementing the four sugarscape behaviours: (1) metabolise and530
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growback, (2) movement request, (3) movement response and (4) movement transaction.
Our implementation is strictly following the original model, where the each grid position
is only occupied by one agent and necessitates a negotiation process. (see reference
implementation [34]).

The Ants Foraging model simulates the behaviour of ants. Ants are continuously look-535

ing for a food. Once they discover a food source, they establish a trail of pheromones
between the nest and the food source in order to indicate to the other ants the food-
to-nest and nest-to-food paths. The model uses two pheromones, one for each path and
simulates the evaporation of pheromones after some simulation steps. The OpenABL
implementation is based on the existing Mason code implementing Panait and Luke’s540

model [35]. The original (sequential) implementation is based on the access to global
data structures, which clearly is not suitable for scope. We solve this by defining two
agent types: one that emulate the ants, and a grid of pheromone agents that emulate
the deposition and evaporation of pheromones. The two pheromones are actually im-
plemented as a single Pheromone agent with two different values for the home and food545

trails. Overall, it includes three step functions: (1) ant deposit (agent step), where each
ants looks for the nearby home and food pheromone, and pheromones are only read; (2)
pheromone deposit (pheromone step), where it is implemented the actual deposit of
home and food pheromones, and each pheromone is written/updated; (3) ant act (ant
step), which implement ants move according to the nearby pheromones, or alternatively550

does a random move. (see reference implementation [36]).
Predator-Prey [37] is a more complex model, which involves three different agent

types (prey, predator and grass) and 13 step functions. Moreover it requires dynamic
agent creation and removal . In this model agents implements different set behaviours,
e.g., predators and prey implement collision avoidance, flocking, and reproduction. The555

goal of each predator is to reach and eat the closest prey. Preys try to escape from
predators and at the same time eat grass to survive. As can be seen in the reference
implementation [38], the simulate loop calls the step function int he following order:

simulate(num_timesteps) {560

pred_follow_prey , prey_avoid_pred ,

prey_flock , pred_avoid , prey_move , pred_move ,

prey_eat_or_starve , pred_eat_or_starve ,

grass_eaten , prey_eaten ,

pred_reproduction , prey_reproduction , grass_growth ,565

gather_stats

}

As seen in Section 2, this simulation contains many heterogeneous behaviours (follow and
avoid steps), agent creation (pred and prey reproduction), and removal (eat or starve).570

Here, we additionally added one exemplary step function for statistics gathering.
Keratinocyte Cellular biologist use agent model to simulate and understand the rules

of keratinocyte colony formation. This approach has been originally proposed by Sun et
al. [8] and has been first implemented into FlameGPU [15]. Our implementation [39]
follows FlameGPU’s code, and is made of only one agent type with 13 fields modeling575

bonds, motility and movements, and six step functions. The steps implement the bio-
logical functions such as life cycle, cell differentiation, death signal, migration, and force
resolution.

All the considered simulations have been executed on several backends (namely, basic
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C, Mason, D-Mason, Flame and FlameGPU) varying some simulation parameters, such580

as for instance the number of agents. The environment size is scaled so that the agent
density remains constant (e.g., the number of agents is the square root of the environment
for two-dimensional simulations).

Application Types/Steps/AR OpenABL/FlameGPU/D-Mason

circle 1 / 1 / - 36 / 184 (×5.1) / 537 (×14.9)
boids 1 / 1 / - 82 / 240 (×2.9) / 767 (×9.4)
game of life 1 / 1 / - 48 / 133 (×2.8) / 477 (×9.9)
sugarscape 1 / 4 / - 154 / 345 (×2.2) / n.a.
ants foraging 2 / 3 / - 191 / n.a. / 967 (×5.1)
predator-prey 3 / 13 / AR 248 / 858 (×3.5) / n.a.
keratinocyte 1 / 6 / AR 306 / 1172 (×3.8) / n.a.

Table 1: Simulation benchmarks with the number of agent types, step functions, whether dynamic agent
addition/removal is used (AR), and effective lines of code (eLOC) of the implementations in OpenABL
and two backends.

4.2. Programmability Evaluation

To evaluate the programmability and ease of use of OpenABL, we compare the585

eLOC (effective lines of code, ignoring comments and blank lines) of OpenABL models
with available reference models from FlameGPU and D-Mason.4 As depicted in the right
side of Table 1, the FlameGPU implementations are 2-5 times larger, while the D-Mason
models are 5-15 times larger. We acknowledge that eLOC is not a very reliable measure
of programmability, but on the other hand the data clearly shows that OpenABL models590

are significantly more compact than manual implementations.

4.3. Single-node Performance Comparison

We deployed and analyzed the effectiveness of the code generated by the OpenABL
compiler for the basic C, Mason, Flame and FlameGPU backends. The seven models
were simulated for 100 timesteps varying the number of agents from 250 to 106. We notice595

that the Predator-prey and keratinocyte models have been evaluated only on backends
which supports the the addition and removal of agents at execution time. Single-node
Performance benchmarks have been performed on a machine equipped with an Intel
Core i5-4690K CPU (4 cores at 3.50GHz), 16GB of memory, running Ubuntu 16.04. The
basic C backend has been configured to exploit multiple threads using OpenMP. The600

FlameGPU backend has been evaluated on an NVIDIA Titan Xp (Pascal architecture)
having 12GB of memory.

Figure 4 shows the performance comparison. Both Flame and basic C scale quadrat-
ically with respect to the number of agents. This was expected, since they do not use
data structure, which optimizes neighbourhood queries. Mason provides better perfor-605

mances compared to Flame, and seems to be the best implementation to simulate a small

4The used reference models are available at https://github.com/FLAMEGPU/FLAMEGPU, https://

github.com/FLAMEGPU/Tutorial and https://github.com/isislab-unisa/dmason.
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Figure 4: Performance (y-axis, in sec) of OpenABL-generated codes for Mason, FlameGPU, Flame and
basic C, with a growing number of agents (x-axis, in log scale). More details are shown for the most
complex predator-prey and keratinocyte, which have dynamic agents creation and removal.

number of agents. Indeed, FlameGPU leads to a high overhead for small-sized simula-
tions, due to the data transfer to the GPU. On the other hand FlameGPU provides the
best-performing solution for simulations having a larger number of agents(> 104 agents).
For the models that have a balanced distribution of agent on the space, both Mason610

and FlameGPU scale roughly linearly varying the size of the population. One notable
exception is ants, where the performance of Mason degenerates to a quadratic behavior,
because the ants simulation starts with all the agent is a specific position (the nest) and
this unbalanced distribution harms the performance of Mason.

4.4. Cluster Scaling615

To evaluate the scalability of the OpenABL D-Mason backend, several simulations
have been executed on a cluster of 12 nodes equipped with two Intel Xeon E5-2430 (six
cores) with hyper-threading disabled and connected by a Gigabit network. D-Mason
exploits a master-workers paradigm and therefore a specific node has been used to co-
ordinate the simulation, while the others provides the computation power. Each worker620

allocates one D-Mason logical processor, for each available core, running on Oracle JVM
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Figure 5: OpenABL D-Mason strong scaling with different number of cores (x-axis) on seven test bench-
marks. More details are shown for the more complex simulations with agents removal and creation.

1.8. D-Mason exploits Apache ActiveMQ as message broker for the communication
among logical processors. The broker is allocated on the master node. Figure 5 de-
picts the strong scalability of the seven models. Each model simulates 106 agents for
1000 timesteps. The plots show the runtime in seconds varying the number of logical625

processors (cores) involved.
The results show that the boids, game-of-life and sugarscape models exhibits good

scalability. Despite having similar behavior, Circle’s scaling is slightly worse due to dif-
ferent parametrization. In fact, the larger interaction radius largely extends the amount
of agents falling in the halo zone, which implies that a large amount of agents need to630

be transferred between nearby nodes after each step function.
On the other hand, ants and predator-prey do not scale very well. In both simulations,

we have a load balancing problem arising from the highly dynamic behaviour of the
agents, which unfortunately impacts the D-Mason static partitioning strategy.

In the ants model, in terms of agents distribution, the simulation starts with a dense635

concentration of the ant agents near the home; then, ants randomly and evenly spread
on random walks; finally, after a pheromone trail is established, all ants follow the same
path between home and food. These three distribution patterns result in an uneven and
dynamic distribution of the workload, which cannot be handled efficiently by a static
partitioning policy.640
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In Predator-prey, the dynamic behaviour is mostly due to the addition and removal
of agents. When a predator agent enters an area with many prey agents, a large number
of prey agents are removed (predator eats prey). In addition, prey agents also move in
different areas and flee from predators. This results on sudden and dynamic decrease of
the agents. Clearly, more advanced load balancing strategies may substantially improve645

this aspect [40].
Despite being multi-step, keratinocyte shows a very good scaling; this because cell

agents are distributed evenly, are not too dynamic, and the agent population grows
slowly.

4.5. Comparison Against Manually-tuned Code650

To evaluate any potential overhead, we compared the OpenABL-generated codes
against manual implementations of the same test benchmark. Unfortunately, most codes
are not available on all ABS libraries. We selected the boids model for this comparison,
because it is well-known (most libraries provide an implementation), is simple to validate,
and scales easily with the number of agents.655

We omitted Flame from the comparison because of its very poor scalability, as shown
in Section 4.3, which makes it impractical for simulations with more than 5000 agents.

The code generated for Mason is 9% slower than the manual implementation written
directly in Mason. The reason for this overhead is the double buffering mechanism intro-
duced by OpenABL to ensure order-independent correctness, not support in standard660

Mason.
For FlameGPU, the performance of the code generated by OpenABL has similar

performance than the manual implementation directly using FlameGPU: the semantics
of the language map very well in the GPU model, without any noticeable overhead.

The overhead analysis of D-Mason shows some knowns challenges of ABS on dis-665

tributed systems: the overhead over a the native implementation is 30%. We found that
the major reason is the synchronization mechanism for each step function. An improve-
ment of the synchronization mechanism of the step function may potentially reduce such
overhead. In complex multi-step applications, in particular, a read-write buffer analysis
that avoids unnecessary synchronizations may be helpful to reduce the communication670

of the synchronization of each timestep.

4.6. Analysis of Complex Simulations

Complex simulations are particularly challenging for parallel ABS implementations.
In this context, we assume that the complexity is related to multiple factors. First, the
number of step functions: we have seen how circle (1 step) scales better than predator-675

prey (13 steps), in Figure 5. A second aspect is heterogeneity: simulations with multiple
agent types may expose a different granularity of parallelism, depending of the agent
type. For instance, a predator-prey simulation may have thousands of preys but only a
few dozens of predators. Finally, an important aspect is the possibility to dynamically
create or remove agents in the simulation. E.g., the number of preys and predators grows680

and shrinks over the time, exhibiting a cyclic behavior.
The evaluate how complex simulations behave on different OpenABL backends, we

took as reference predator-prey and keratinocyte. In particular, we analyzed how the
simulations evolve over the time (among step and timestep), how the number of agents
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Table 2: Analysis of two complex simulations on two backends. For all simulations, time series with the
performance/step and the number of agents are presented. In predator-prey, the number of preys and
predators are shown (grass cell are omitted because constant over the time). In keratinocyte, we show
the three used types of keratinocyte cell agent, i.e., ta, comm and stem.

varies, and how this affects the performance/step. In Table 2 we show a selection of four685

simulations on two backends: the simplest Mason, and the most complex D-Mason.
In (A), we run the predator-prey simulation starts with about 3200 agents on Mason:
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1000 predators, 80 preys, and 2120 grass (the number of grass agents is fixed, but they
may be marked as eaten; for this reason we do not show them in the figure). After
predators eating many preys, their number drastically drops down. After some steps,690

the scarcity of preys also reduces the number of predators. This cyclic behavior may end
up in a situation where all preys dye, reducing the total number of agents to zero. This
dynamic behavior does not significantly affect the performance of the Mason sequential
backend, as the runtime/step is linear with the number of agents.

However, in distributed backends such as D-Mason (B), this dynamic behavior incurs695

in extra communication overhead. The performance/step analysis shows several peaks,
which corresponds to communication overhead associated to the highly-dynamic nature
of the simulation.

The keratinocyte simulation, instead, has a different behavior. Instead of a cyclic
increase/decrease of agents, the total number of agents tends to gradually increase; also,700

cells are rather stationary and their motility is low. This more predictable behavior also
affects the performance of the parallel backends. In (C) and (D) we show the number
of agents and runtime per step for two simulations running on D-Mason/OpenABL
and FlameGPU/OpenABL. In this case, both backends have a similar behavior the few
observed peaks are related to the cost of creating new cell agents, rather than communi-705

cation cost due to excessive agent movement.

5. Related Work

Many researchers have investigated the different aspects of agent-based modeling,
from the development of more sophisticated models to the engineering of trustworthy
simulations [41]. This section focuses on the research investigating specifically parallel710

ABSs and DSLs.

5.1. Parallel Agent-Based Simulations

Many frameworks and libraries for implementing parallel ABS have been proposed;
however, each addresses quite different target architectures, with distinct solutions for
locality and synchronization. REPAST [42] is an agent-based simulation toolkit written715

in C++, later extended and parallelized into the REPAST-HPC framework [43], and
tested on a Blue Gene/P HPC cluster. Cosenza et al. [11] introduced a distributed
load balancing schema for parallel ABS that scales a simulation with one million agents
on a cluster with 64 processors. Mason [24] is a popular multi-agent simulation library
written in Java. D-Mason [25, 26] provides an effective and efficient way of parallelizing720

Mason programs for distributed systems, handling communication strategies and load
balancing [44]. D-Mason has been tested also on Amazon Web Services [44], and used
on several social science scenarios [45]. Flame [10] is an agent-based environment based
on an underlying formal model, called the X-Machine, and used in various scenarios
such as cell simulations [46] and immune system modeling [47]. FlameGPU [15] extends725

Flame enabling the execution of agent-based models on GPU architectures. Other GPU
implementations have focused on bio-inspired visual clustering [48] and on efficient com-
pression of agent direction [49]. Piccione et al. [50] presented an API for Parallel Discrete
Event Simulations.

The variety of implementations has led researchers to investigate and compare their730

functionalities and performance. Macal and North [51] identify methods and toolkits for
21



ABS. Berryman [52] conducted a broad review of sequential ABS toolkits: BactoWars,
EINSTein, MANA, Mason, NetLogo, Repast, Swarm andWISDOM-II. Rousset et al. [53]
provided a comparison among parallel and distributed ABS toolkits. This comparison has
been performed at two levels: a qualitative analysis of the provided functionality, showing735

a deep heterogeneity among the considered platforms; and a quantitative performance
evaluation based on a reference model implementation. We notice that this quantitative
evaluation is strongly influenced by the approach used to implement the model. Our
methodology here is different, we provide here a unique ABM programming environment,
while the choice for the best approach to implement the model on each specific backend740

is deferred to the compiler.

5.2. Domain-Specific Languages and Parallelism

The idea of assuring portability across parallel implementations through DSLs has
been exploited in many application scenarios, in particular to target large-scale comput-
ing systems [54].745

In the following, we report the description of some interesting DSLs that exploit par-
allelism at different levels: PATUS [55] is a code generation and auto-tuning framework
for stencil computations targeting modern multi- and many-core processors; PATUS’s
stencil specification language is independent of hardware-specific details and has been
extended with machine learning-based autotuning methods [56]. Green-Marl [57] is a DSL750

whose high-level language constructs allow developers to describe their graph analysis
algorithms intuitively, but expose the data-level parallelism inherent in the algorithms.
Halide [58] is a language and optimizing compiler for image processing pipelines. Re-
cently, Halide has been extended to support distributed memory systems [59]. PIPES [60]
is a macro-dataflow programming environment for distributed-memory clusters, based755

on the Intel Concurrent Collections (CnC) runtime. The Refactoring Pattern Language
(RPL) [61] is a high-level domain-specific language that represents the parallel struc-
ture of an application and generates semantically equivalent, parallelizations targeting
OpenMP, Intel TBB and FastFlow. Rajbhandari et al. [62] present a layered domain-
specific compiler to support MADNESS (Multiresolution ADaptive Numerical Environ-760

ment for Scientific Simulation), a high-level software environment for the solution of
integral and differential equations in many dimensions, using adaptive and fast harmonic
analysis methods with guaranteed precision. Vasista et al. [63] introduces a DSL based
on the PolyMage framework for geometric multigrid methods. Similarly, Karol et al. [64]
shows a DSL for parallel particle methods.765

The most similar to our work is Liszt [65], which provide a DSL for constructing
mesh-based PDE solvers able of targeting clusters, SMPs and GPUs. Liszt applications
perform within 12% of hand-written C++ code and scale to large clusters. To the best of
our knowledge, no similar DSL has been defined for devising ABSs exploiting parallelism
provided by different backends.770

6. Conclusion and Future Works

We presentOpenABL, a framework consisting of a domain-specific language designed
for agent modeling, and a compiler implementation that maps input codes into high-
performance parallel and distributed architectures.
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The OpenABL language is a DSL that relies on high-level abstractions for pro-775

grammability exploiting explicitly agent parallelism to deliver high-performance. Open-
ABL supports a wide range of context-specific features such as order-independent step
functions, neighborhood queries, heterogeneous agents, and dynamic agent addition and
removal. OpenABL language has been implemented as a source-to-source compiler,
which translates the input OpenABL code into an AST-based intermediate representa-780

tion exposing parallelism, locality and synchronization at the agent level. This interme-
diate representation is then used by a collection of pluggable backends, which generate
target codes for different target platforms such as multi-core CPUs, massively parallel
GPUs, large clusters and cloud systems. The proposed framework has been evaluated
on a collection of seven applications from various fields: micro-benchmarks (circle), an-785

imation (boids), animal ecology (ants foraging and predator-prey), cellular automata
(game of life), social science (sugarscape) and biology (keratinocyte). Results shows that
a program written in OpenABL is much compact than one written for non-portable
platform-specific libraries while its performance is very close to manual implementations.

OpenABL is an open source project available at https://github.com/OpenABL/790

OpenABL, with the goal of becoming an open research platform.
OpenABL opens to new interesting research directions. On the language side, new

language features may help scientists on easily designing their simulations. The com-
piler can support optimizing code transformation that improve the performance of the
generated code. In addition, code generation can be extended to support alternative795

architectures, or more efficient native implementation that bypass current agent-based
modeling libraries.
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