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Abstract

In order to address high latency issues that may arise when executing time-
critical applications at the cloud side, the novel fog computing paradigm has
emerged, thus enabling the execution of such applications within computation
nodes present at the edge of the network. While executing such applications, a
user may be moving in an area where a high number of heterogeneous fog nodes
(FNs) co-exist. This makes the problem of selecting the most appropriate fog
node to execute the user’s tasks challenging, especially since the set of visible
FNs dynamically changes. Therefore, to deal with the uncertain and dynamic
nature of such a fog computing environment, we model the FN selection problem
using multi-armed bandits. However, standard solutions for the bandit problem
are not tailored for scenarios with changing FN availabilities. In addition, since
switching from one FN to the other causes a switching cost, such solutions
lead to accumulating a high switching cost. Therefore, to address these issues,
we first propose a block-based FN selection scheme, where switching among
FNs is not allowed during a block of timeslots. We also propose a greedy
approach, where FNs having a sufficiently good delay performance are selected
in a greedy manner. Simulation results reveal that both approaches significantly
improve the FN selection performance. In particular, we found that the block-
based selection results in the lowest switching costs, whereas the greedy selection

achieves the best overall performance.
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1. Introduction

During the past years, cloud computing has been considered as the standard
for hosting different types of applications due to its flexibility and its pay-per-
use model. However, as the quality of service (QoS) requirements of certain
applications increase, high latencies resulting from remote cloud usage can no
longer be tolerated. This is the case for example for augmented reality, virtual
reality, online mobile games, etc. As a result, this has given rise to new architec-
tural paradigms such as fog [I] or edge [2] computing, which move computation
servers towards the edge of the network, typically one wireless hop away from
end-users [3].

Depending on the considered standardization body, these computation nodes
made available at the close vicinity of users are usually referred to as fog nodes
(FNs) in the reference architecture by the OpenFog Consortium [4}E| or multi-
access edge computing (MEC) servers, as defined by the European Telecommu-
nications Standards Institute (ETSI) [5]. For instance, they may be co-located
with wireless access points, cellular base stations, or have their dedicated hard-
ware deployed by city managers, or even be contributed from idle user devices
with sufficient capacity [6]. Fog nodes could also be seen as a logical entity
created on top of different physical devices, thus allowing a distributed service
execution [7]. We refer the reader to [7] for a more thorough discussion on this
terminology and we will use the term fog node in the remainder of this article,
except while exposing related works, where we will keep the original term used
by the authors.

One of the problems that arise in this context is how to appropriately select

an FN to execute a user’s computation-intensive tasks. This problem is particu-

2The OpenFog Consortium was later merged with the Industrial Internet Consortium.



30

35

40

45

50

55

larly challenging when the considered fog computing environment is dense, with
dynamically-changing FN availabilities due to user mobility. On the one hand,
the mobility of the user in a high-density fog area will lead to accumulating a
high switching cost from one FN to the other, if no suitable policy is imple-
mented to control it. On the other hand, the dynamic availabilities of FNs, in
addition to their fluctuating loads and capacities result in an uncertain envi-
ronment, which brings an additional level of difficulty for finding the optimal
FN.

As aresult, to deal with this uncertainty, recent works have started to formu-
late the FN selection problem as a sequential decision-making problem, based
on multi-armed bandits (MAB)- or Markov Decision Process (MDP)-based rein-
forcement learning (RL) approaches. In such RL approaches, a decision-making
agent - placed either within the user’s device, the fog nodes, or a separate control
entity - interacts with an environment and selects actions (FNs) in a sequential
manner. In the MAB case, the decisions are made based on the rewards returned
by the environment, whereas in the MDP case, the environment’s current state
is also taken into account. The overall goal is to maximize the accumulated
reward.

In this paper, we focus on the case where the decision-making logic is im-
plemented in a software component in the user’s device. Therefore, we focus on
bandit approaches to provide a low complexity solution that can run on users’
devices. In this case, the FNs would represent the actions to be selected by
the agent and the quality of each FN is measured in terms of its task execution
delay, which needs to be minimized (instead of maximizing the reward in the
standard formulation).

Similar works that use bandits for FN selection can be found in the literature
[8, 9, 10} [IT], 12 13, [14]. However, they either consider a stationary user or an
indoor user mobility, where the set of FNs is fixed. In addition, they do not
appropriately control the switching costs, which would lead to a negative impact
on the overall task execution performance.

Therefore, to deal with the aforementioned issues, our aim in this paper is
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to propose user-centric FIN selection strategies, with a specific focus on user
mobility, high FN density and the switching costs that may be incurred in such
a context.

We initially propose a Block-based FN Selection (BFS) approach, which
is a variant of the standard Upper Confidence Bound (UCB) algorithm [I5].
However, unlike a UCB-based approach where the selection of a different FN is
allowed in consecutive timeslots, our proposed BFS approach forces the selected
FN to remain the same during a number of consecutive timeslots (i.e. a block
of timeslots), thus reducing the number of switches from one FN to another.

Although this approach provides an improvement in the performance as
will be shown in Section [5] the exploration inherently performed in the UCB
algorithm could lead to selecting a sub-optimal FN for a whole block of timeslots,
which may lead to increased task delays. Then, to deal with this issue, we
present a greedy alternative, termed Adaptive Greedy FN Selection (AGFS)
approach. In this approach, if the agent has found an FN with a good enough
delay estimate, it will select it in a greedy manner. Otherwise, it searches for
FNs with a better quality (i.e. lower delays).

To evaluate the proposed approaches, extensive simulations have been con-
ducted using a realistic mobility trace. The obtained results show that BFS
and AGFS result in significant improvements in the average task execution de-
lay and substantially reduce the accumulated switching costs. More specifically,
BFS outperforms AGFS in terms of accumulated switching costs, due to its
block-based nature, whereas AGFS outperforms BFS in the overall average de-
lay.

To summarize, the contributions of our paper are as follows:

e Given the dynamic and uncertain nature of the considered fog comput-
ing environment, we model the FN selection problem as a multi-armed
bandit problem with a delay minimization objective. Different delay com-
ponents are considered, including a stochastic waiting delay that further

contributes to the system’s uncertainty.
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e In order to reduce the costs associated with switching from one FN to
another, we propose a block-based FN selection scheme that reduces the
occurrence of switching by keeping the same FN selected during a block
of timeslots. This FN will be selected by minimizing the upper confidence

bound over the set of visible FNs.

e We also propose an adaptive greedy approach, where the FN having the
minimum average delay estimate is selected, if such an estimate is good
enough. Otherwise, the user is allowed to perform an exploration step to

find FNs offering lower delays.

e Both approaches are evaluated based on a real access point availability

dataset, in order to model different levels of FN deployment densities.

The remainder of this paper is organized as follows: In Section [2] we provide
an overview of the related works. Section [3] defines the system model and
describes the problem to be addressed. Section [4] presents a review of the MAB
theory and then describes BFS and AGFS, our two proposed solutions for FIN
selection. The simulation setup and the obtained results are analyzed in Section

Finally, we conclude the paper in Section [6]

2. Related works

As stated in Section[I} as more and more emphasis is being placed on moving
intelligence to end user devices [16], we focus on the case where the FN selection
strategy is implemented within a software component at the user side. Related
works in this category include [8] where the authors propose a MAB-based
strategy to select the best base station (BS) to execute a user’s task in a dense
edge computing environment. The authors consider a variable number of BSs
in addition to considering a switching cost when different BSs are selected in
consecutive timeslots. However, they do not provide a mechanism to control
this cost effectively. In [9], a similar approach is considered for FN selection,

both when the delay distributions of each FN are stationary and non-stationary.
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Similar to our work, the authors consider that FNs’ arrivals and departures are
unpredictable, however they do not consider switching costs. In [I0], the authors
consider the problem of how a task node selects a helper node in a fog computing
context. Given that helper nodes have unknown delay distributions, the MAB
approach is adopted, with a specific focus on the non-stationarity of the delay
distributions. In [II], the authors present a MAB-based strategy allowing a
user to select the best neighboring fog node to transmit its tasks to. This work
focuses on the case where FNs have heterogeneous preferences towards task
types and where the user receives a binary feedback indicating whether the FIN
is satisfied with the type of the task assigned to it or not. The authors in [12]
consider the scenario where a user has to select an edge computing server with
the highest probability of meeting the task deadline. More specifically, the user
has to deal with the constraints placed on the energy budget in addition to
the non-stationarity of the deadline violation probabilities. In a previous work
[13], we considered the FN selection problem in a high density fog computing
environment. Since the user’s mobility along with the high FN density does not
leave the user enough time to learn the delay performances of all nearby FNs,
only a limited subset of FNs was considered in our proposed MAB strategy in
order to improve the learning performance. Authors in [I4] use a contextual
MAB approach to determine the best service placement among a set of edge
servers, the user’s device and cloud servers. The aim is to minimize the weighted
sum of the computation delay, the communication delay and the switching cost.
However, their context representation is tailored for the case of a fixed set of
edge servers and as a result would not be well-suited for the case where the set
of servers dynamically changes.

Other than MAB-based approaches, other reinforcement learning techniques
have been used in the literature for the problem of FN/MEC server selection.
In [17], the authors present a Q-learning approach that takes into account the
current serving BS and the channel state in order to select the target BS with the
objective of minimizing the task execution speed. In [I§], the authors propose

the use of a double deep Q-network to allow a device to intelligently decide



among local task execution or selecting a BS through which the task will be

offloaded.

Table 1: Comparison of related works

Reference | Approach Variable number of FNs /MEC servers | Switching cost considered
3] MAB v v (but not controlled)

9] MAB v X

[10) MAB X v

[12] MAB X X

o MAB X X

13 MAB v v (but not controlled)
14 Contextual MAB X v

] MDP + Q-learning X 4

18] MDP + Double deep Q-network | X v

Table[llsummarizes the differences between the aforementioned related works.
As it can be seen, there is a lack of works that efficiently handle the dynamically-
150 changing FN availabilities and the presence of switching costs, which is why we

aim to jointly address these issues in this paper.

3. System model

<L
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o
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9 FN deployment location f Mobile user User mobility path

Figure 1: FN deployment scenario

In this work, we consider a fog computing scenario where fog nodes are
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densely deployed in an urban environment, as shown in Fig. We focus
on the case of a representative user moving in this environment and running
an application that generates a sequence of independent computation-intensive
tasks {Tk}szl that need to be executed by one of the fog nodes available in the
user’s vicinity. We denote by Ay, = {a;,7 € [1,|Ax|]} the set of FNs available at
the time in which task T}, was generated. This set periodically changes every A
seconds due to user mobility.

Each task T} is characterized with its input data size oy, its computation
intensity wy, (in terms of number of required CPU cycles per input bit) and its
output data size 8. When an FN is selected for processing a task, a delay will

be incurred. It is comprised of the following components:

e Transmission delay d¥,: It is the time needed to transmit the task input

data on the wireless channel. It can be determined as follows:

(697
dr == 1

where R; is the uplink transmission rate between the user and the selected

FN a;. It is derived as follows:

(2)

o2+1
where W is the wireless channel bandwidth, P;, is the transmit power of
the user’s device, o2 is the noise power, I is the interference power caused
by other users connected to the same FN, and H is the path loss. To
model the path loss, we adopt the IEEE TGn task group channel model
[19]:

Hps(d;) ,d; <d
Hyp(d;) = sldh) i < do (3)

Hps(do) + 35 IOglo(%) s di > do
where d; is the user-FN distance, Hpg is the free space path loss and dy
is the reference distance. As we are considering pedestrian mobility in an

urban environment, we specifically adopt model F in [19] where dy = 30m.



e Waiting delay d*: It models the delay experienced by the task T}, in the
FN'’s task queue. We model it as a random variable whose distribution is
not known at the user side a—prioriﬂ In fact, several factors could cause

a variation in d*

w

such as the task arrival rate at that specific FN, the
intensity of those tasks as well as the rate at which it is processing those

tasks.

e Processing delay d’;: It is the time needed by the FN to process the task.

dk _ QWi

P
where f; is the CPU clock speed of the FN.

(4)

e Result transmission delay d*: It is the time needed to return the compu-
tation results to the user. As is common in related literature [8, [I7], this
delay is often negligible, since the size of the result is small compared to

the input size.

e Switching delay d¥,: A switching delay will be incurred whenever the FN
selected to execute task T}, is different from the one selected to execute
the previous task T _1. This could correspond to the delay needed to re-
associate with the new FN, and the time needed by the latter to instantiate
a new container to run the user’s tasks.

C ap # ap—
dt, = P (5)

0 ap=ag

Taking into account the aforementioned delay components, the total delay ex-

perienced by task Tj can be then expressed as:

d¥ = dj, +df +db + df, (6)

x

3In the simulations in Section we model it using a normal distribution.



180

185

190

195

200

Our goal is then to derive an FN selection strategy that minimizes the ac-
cumulated delay for the sequence of tasks {T} }5_;:

K

min d" (7)
a; €EAL

k=1

Since multiple components of the delay are stochastic and are not available

at the user side a-priori, the FN selection problem falls within the framework

of sequential decision-making under uncertainty. More specifically, we will use

multi-armed bandits to achieve the objective in , as we describe in the fol-

lowing section.

4. Proposed FN selection strategies

In this section, we first provide an overview of the multi-armed bandit frame-
work and how it can be mapped to our context. We then present our algorithms

for FN selection based on this framework.

4.1. Introduction to multi-armed bandits

In multi-armed bandits, a decision-making agent has to select an action
among a set of actions A. Each action a is characterized with a different reward
distribution with mean p,, which is unknown to the decision maker a-priori.
The goal of the decision maker is to maximize its accumulated reward over a
given decision-making horizon 7.

However, since the reward of each action is not known and is only revealed
after the action is selected, the agent faces an exploration-exploitation dilemma.
On the one hand, it has to explore different actions in order to create an accurate
estimate of their rewards, thus potentially incurring short term reward losses if
the explored actions are suboptimal. On the other hand, it has to exploit the
action currently having the maximum reward estimate in order to increase the

accumulated reward.

10
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In order to measure the performance of a MAB agent, it is common to con-
sider the expected regretﬂ which measures the difference between the rewards
achieved by an oracle having exact prior knowledge about the rewards of each

action and rewards obtained by the considered action selection strategy:

n

E[R,) =E[) (1" — mi)] (8)

i=1

where R,, is the regret at timeslot n, u* is the mean reward of the best action
selected by the oracle and p; is the mean reward of the action selected at timeslot
i.

In order to appropriately select actions in a bandit problem while addressing
the exploration-exploitation tradeoff, the Upper Confidence Bound (UCB) [15]
algorithm is commonly used since it is guaranteed to converge to the optimal
action. In a nutshell, UCB creates a confidence bound with respect to the

current estimate of the reward of each action as follows:

log(2t)
Ni(a)

(9)

lg = [L((l) +

where [i(a) is the estimate of the mean reward of action a, and the term on
the right hand side is the confidence bound (also called the exploration bonus),
t is the current timeslot and Ny(a) is the number of times in which action a was
selected up to time ¢.

It then selects the action with the maximum value of i,. As it can be seen,
the presence of N¢(a) in the denominator implies that selecting an action more
often will increase the certainty about its reward (which was initially unknown)
and therefore result in refining its bound.

Following this framework, our FN selection problem can be formulated as a
MAB problem, where the decision-making entity in the user’s device corresponds

to the agent, the actions to be selected are the fog nodes, and the delay taken

4Usually referred to as sampling regret.

11



230

235

240

245

by an FN to execute a user’s task determines its quality compared to other FNs,
and its sum has to be minimized.
However, the application of standard MAB and in particular the UCB algo-

rithm, would be challenging in our scenario given the following considerations:

1. While in the standard MAB setting the set of actions A is fixed during

the whole decision-making time horizon, in our context, the set of actions
(i.e. FNs) dynamically changes as a result of the user’s mobility. So, we
only have a limited amount of time to learn the delay estimates of a high

number of FNs, since we are considering a high-density scenario.

. In our scenario, a switching cost is incurred whenever an action is changed

compared to the previous one, as opposed to the standard MAB where
such a cost does not exist. In this case, if we apply an approach such
as UCB as it is, a high switching cost would be incurred, since it will
keep switching among actions in order to explore them and refine their
confidence bounds. The incurred loss is measured in terms of a switching
regret [20], defined as:

n

Row(n) = CY_ a; # a;1} (10)

=2
where C is a given switching cost.
Given the aforementioned considerations, standard MAB algorithms should
be carefully adapted to our setting and the algorithms presented in the

next section will attempt to achieve this goal.

4.2. Block-based FN selection scheme (BFS)

An intuitive approach to avoid accumulating switching costs is to explicitly
prevent switching during a given amount of time. One way to achieve that is
the Block Allocation Scheme (BAS) presented in [20], which was among the first
works to address a bandit problem with switching costs. The key idea in BAS
was to select the same action during a given “block” of timeslots.

Therefore, our Block-based FN Selection (BFS), shown in Alg. [1] uses the
block-based structure of BAS in conjunction with UCB. At the beginning, we

12



Algorithm 1: BFS

1b+1

2 remaining slots to use the current block size r < 0

3 for k< 1 to K do

4 if k is a timeslot in which the FN set changes then

5 retrieve set of visible FNs A,
6 calculate L according to Eq.
7 if » =0 then
8 Amin < aTgmMing 4, (Z((Z’l% — %)
9 Nbysed < Nbysed + 1
10 if nbyseq > L then
11 b+—b+1
12 Nbyseq < 0
13 r<>b
14 Gk  Qmin

15 Observe delay d(ay)
16 z(ag) < z(ar) + normalize(d(ay) — dsw)

17 n(ag) < n(ag) +1

18 re—r—1

19 end

start with a block size b = 1, which is equivalent to standard UCB. Later on, the
block size is increased gradually depending on L, which represents the number
of times in which the current block size should be kept the same. As suggested
in [20], it is determined as follows:

2b2 _ 2(bfl)2
= | =]l (11)

where |Ag| is the current number of FNs.

After calculating L in Line 6, we check if an entire block has elapsed, in

13
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which case we proceed to selecting the FN according to UCB (Line 8). We
increment the number of times in which the block size b has been used (Line
9). If this number exceeds L, then the block size should be increased by 1 (Line
11). We then reset the number of times where this new block size has been used
and set the remaining timeslots to use this block size to the new b.

If the current block b has not entirely elapsed, we do not change the FN
and select the one that has been determined previously. Next, the delay taken
by the FN to execute the task is observed. Since the switching cost does not
indicate the quality level of a given FN, it is subtracted in Line 1@ In Line
16, we also note that the resulting delay is normalized to the range [0,1] as it
is necessary for UCB to operate in such a range. Finally, the number of times
action ay is selected is incremented while the number of remaining timeslots to

use the current block size is decremented.

4.8. Adaptive greedy FN selection (AGFS)

As explained in the previous section, the block-based structure of BFS re-
duces the exploration frequency of UCB as well as the resulting accumulated
switching cost. However, following this approach, when an FN is selected be-
cause its exploration bonus is high, it is possible that it is a suboptimal FN. As
a result, the user remains connected to it for the whole block duration, which
will severely affect the performance.

This leads us to propose a non UCB-based strategy. More specifically, we
adopt an adaptive greedy approach that has been proposed in the context of
mortal multi-armed bandits [21], which is a bandit variant where actions have
a stochastic lifetime after which they become unavailable. This is similar to
FNs in our case, which become unavailable as soon as the user leaves their
coverage area. In this case, as stated in [21], finding a reasonably good action

(FN) suffices and it is not necessary to select all actions indefinitely. This has a

5We assume the agent can estimate the switching cost by assessing the delay difference for

the same FN in the case where a switch occurred and the case where a switch did not occur.

14
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Algorithm 2: AGFS

1 for k< 1 to K do
2 if k is a timeslot in which the FN set changes then

3 retrieve set of visible FNs A,
; z(ai)
4 Gmin <= argming, c 4, n(a:)
) 2(@min)
5 Pmin < n(@min)
6 draw a random number n,.

7 if n, <min(1,c.(1 — pmin)) then

8 ‘ ar < Amin

9 else
10 ‘ ay + uniform(Ag)
11 end

12 Observe delay d(ag)

13 z(ay) < z(ag) + normalize(d(ag) — dsw)

14 n(ag) < n(ag) + 1

15 end

clear advantage when switching costs are present, since the same action will be
selected in consecutive timeslots, which will naturally decrease the accumulated
switching costs.

The pseudo-code for AGFS is depicted in Alg. 2| In each timeslot k, AGFS
checks whether k is a timeslot in which new FNs become available. In this case,
it gets the new list of FNs. Otherwise, it makes subsequent decisions based on
the previous set of FNs.

Then, it determines the FN a,,;, with the lowest average delay estimate
pmirﬂ Based on this, with probability min(1,c.(1 — pmin)), it selects apmin

in a greedy manner. More in detail, when 1 < ¢.(1 — pyin), it considers the

6Similar to BFS, AGFS also uses delays normalized in [0, 1] in order to be able to transform

them into probabilities.

15
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performance of a,,;, sufficient and selects it with probability 1. Otherwise, it
selects it with a lower probability c¢.(1 — ppin)-

For example when ¢ = 1 and the current best delay estimate is py,;, = 0.05,
the algorithm will select a,,;, with probability 0.95. More generally, ¢ is a
control parameter that determines the threshold for considering whether an FN
is sufficiently good or not. A larger c results in an algorithm that considers
FNs with a high delay estimate as “good enough” and exploits them greedily
with probability 1. This should be avoided in situations where there exists an
optimal FN with a delay ~ 0. This is not the case in our scenario. That is why,
in our simulations, a value of ¢ = 2 has been considered and found to yield the
best results.

If no FN has a satisfying average delay estimate, an exploration step will be
performed by randomly selecting an FN among the visible ones, with the aim
to find a better FN (Line 10).

After the FN is selected, its total delay is observed. Similar to BF'S, the sum
of delays of the selected FN is updated, along with the number of times it has

been selected.

4.4. Complezity analysis

The computation complexity characterizing both BFS and AGF'S originates
from the calculation of a minimum value over the set Ay of visible fog nodes
at timeslot k. This corresponds to Line 8 in Alg. [I] and Line 4 in Alg.
respectively. Since finding the minimum in a set of items of size A has a linear
time complexity O(A), and since this step is repeated for K timeslots in both
algorithms, the overall complexity is O(AK).

This result is similar to the other bandit algorithms that we use as bench-
marks in the simulations in Section [5] since they also include this minimization
step in each timeslot. As a result, the advantages of our proposed schemes
are instead shown in terms of reductions in cumulative delays, which can be
achieved thanks to the efficient handling of the dynamic availability of FNs,

especially in presence of switching costs.

16
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5. Simulation results

In this section, we outline the setup as well as the different parameters

considered in our simulations.

results.

5.1. Simulation setup

We then provide an analysis of the obtained

In order to evaluate BFS and AGFS, we conducted a set of simulations in

Python, using the models defined in Section [3| and the parameters in Table

Table 2: Simulation parameters

Parameter

Value

Input data size oy

1 Mbit

Computation intensity wy

2640 cycles per input bit

Channel bandwidth W

20 Mhz

Distance d;

Uniformly at random in {10, 15, 20, 25, 30, 35, 40}m

Transmit power P,

0.5 W

Noise power o2

2,107 B W

CPU clock speed f;

{2,3,4.5} GHz

Waiting delay d,, (in s)

N (p, o), where = U(0,1) and o € {0.1,0.2,0.3,0.4}

Switching cost C'

{50, 100, 200} ms

¢ (in AlgH) 2

Number of periods A where 64

the set of FNs changes

Number of timeslots in each period | 60

Total number of timeslots K 64 x 60 = 3840

To model the dynamically-changing FN availabilities as the user moves, we

used the mobility trace in [I3]. In fact, the trace contains logs of the Wi-Fi

access points (APs) detected by a mobile user’s smartphone, as it moves at

walking speed in the city.

A subset of the detected access points is then used to represent FNs in our

fog computing scenario. This subset is formed as follows: we take all the APs

having an SSID indicating a public Wi-Fi network, in addition to half of the

17
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APs having an SSID indicating a private Wi-Fi network. This could correspond
to a scenario where all public network owners have upgraded their APs as FNs,
whereas only 50% of the private network owners have upgraded their APs into

FNs. The resulting FN distribution is shown in
We compare BFS and AGFS to the following approaches:

e Auer [22): It is a variant of UCB where the set of actions (FNs in our
case) is time-varying. More specifically, it explores every new FN as soon

as it appears and then selects FNs based on their confidence bounds.

e VUCB [23]: Similar to Auer, the set of actions in VUCB is time-varying.
However, the difference is that the confidence bound of each action is
adjusted based on its appearance time. This has been used for example

in [g].

e Limexp: This approach has been proposed in our previous work [13]. Tt
consists in running the UCB algorithm on a randomly-selected subset from
the available FNs in each round. We run it with subset size N = 4, which

was our best result in [13].

e Oracle: This approach represents the ideal, but hypothetical, scenario
where the decision maker has access to the full system information before
making its decisions. As a result, it will always choose the FN that will
yield the lowest delay, and only switches to a different FN if a better FN

appears during user mobility.

The following results were averaged over 50 runs.

5.2. Obtained results

5.2.1. Owverall evaluation

Fig. [2| depicts the average cumulative delay (including the switching de-
lay) of the different considered approaches. We first note that both proposed
approaches significantly reduce this average delay compared to baseline ap-

proaches, including our previous work Limexp [I3]. This is due to the fact
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Figure 2: Average cumulative delay

that other approaches make use of UCB, which spends the limited FN avail-
ability time exploring the different FNs. Thus, it does not have enough time to
settle on the optimal one. Even though the FN appearance time is taken into
account in VUCB and a slight improvement is observed compared to Auer, it
still results in a high delay. To avoid the afore-mentioned issue, BFS adopts the
block-based selection, which prevents switching from one FN to another during
the block duration. However, it is outperformed by the non UCB-based greedy
AGFS approach.

In Fig. 3] we provide a closer look at the switching costs that have been
accumulated by each approach. This corresponds to the switching regret defined
in Eq. As it can be seen, the accumulated switching costs of Auer, VUCB
and Limexp rapidly grow as the number of timeslots increases. In contrast, both
BFS and AGF'S substantially reduce the switching costs . More specifically, since
the frequency of switching is reduced by the block-based scheme in BFS, this

results in an accumulated switching delay that is lower than that achieved by
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Figure 3: Cumulative switching cost

AGFS. We also note that the Oracle approach achieves a non-zero switching cost
since it occasionally switches to a better FN, as soon as such an FN becomes
available during the user mobility.

Fig.[4 shows the performance of each approach in terms of total regret, which
is the sum of the sampling regret and the switching regret. AGFS achieves the
lowest regret, which is followed by BFS, while Auer, VUCB and Limexp achieve
a high total regret.

To further explain why such improvements have been obtained by BFS and
AGFS, in Fig. |5l we plot the ratio of the simulation time that the user spent
connected to the optimal FN. As it can be seen, among all algorithms, AGFS
achieves the highest ratio due to its greedy nature. BFS, on the other hand,
achieves a lower ratio, which is attributed to the fact that the block-based
selection may cause the user to remain connected to a suboptimal FN for the
whole block duration (i.e. for b timeslots). When this happens multiple times,

this leads to a reduced ratio.
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Figure 6: Accumulated switching cost

In Fig. [6] we analyze the impact of the switching cost on the different ap-
proaches. First, we note that the same pattern as Fig.|3|is observed, with AGFS
obtaining a slightly higher switching cost than BFS. In addition, as the switch-
ing cost C increases, both BFS and AGFS accumulate substantially lower costs
compared to Auer, VUCB and Limexp, which will positively impact the user

experience.

5.2.3. Impact of the FN density

In this section, we study the impact of the FN density on the performance
of the different algorithms. To this end, we use a different subset of the AP
trace to represent FNs. Similar to the previous case, we consider all APs with
an SSID indicating a public Wi-Fi network. Then, in contrast to the previous
case, we consider a higher percentage, equal to 75%, of APs indicating private

networks. The reader may refer to[Appendix B|for more details on the resulting
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FN distribution.

We first plot the switching ratio in Fig.[7] It corresponds to the ratio of the
number of timeslots in which a switching from one FN to another has occurred,
out of the total number of timeslots. We note that in Auer, VUCB and Limexp,
the increased FN density does not impact the switching ratio as it is already
high. However, in BFS and AGFS, the increased FN density leads to an in-
creased switching ratio, which is explained by the higher number of considered
FNs.

In Fig. [8] we show the total cumulative regret obtained at the last timeslot
of the simulation. As it can be seen, all approaches exhibit a similar behaviour,
i.e. a higher FN density leads to a higher regret, which is mostly due to the

increased contribution of the switching regret.

6. Conclusion

In this paper, we addressed the problem of user-centric fog node selection,
with a specific focus on scenarios characterized with user mobility and a high
density of FNs. The objective was to select the FN with the lowest, yet initially
unknown delay while ensuring minimal accumulated switching costs from one
FN to another. As this task involves sequential decision making in a dynamic fog
environment characterized with uncertainty, we used the multi-armed bandits
framework to address the problem. In fact, we first proposed BFS, a block-
based FN selection scheme that keeps selecting the same FN during an entire
block of timeslots. The second, AGFS, is an adaptive greedy approach, where,
if a FN with a good enough delay estimate is found, it will be selected in
a greedy manner. Simulation results show that both approaches significantly
reduce the average task delay compared to baseline approaches that do not
efficiently control the switching costs. In addition, while BFS can lead to a
lower accumulated switching cost, AGFS can achieve a lower average delay. So,
overall, we can note that it pays off to act greedily in scenarios with dynamic FN

availabilities and when switching from one FN to the other causes a switching
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a5 delay.
As a future work, we will investigate the possibility of incorporating context
information in our bandit formulation and how this might affect the complexity
of our solution. In addition, a multi-user scenario may be considered to examine

the performance of the collective user behaviour in terms of FN selections.

w Appendix A. Distribution of FNs in the high density scenario

Fig. [A.9] shows the distributions of the FNs considered in the simulations,
including the ones which are new compared to the ones that appeared during

the previous period A.
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Figure A.9: Distribution of the FNs in the high density case

Appendix B. Distribution of FNs in the ultra-high density scenario

425 Fig. [B:10] shows the distributions of the FNs considered in the ultra high

density case in Section [5.2.3
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