University
of Glasgow

Alghamdi, I., Anagnostopoulos, C. and Pezaros, D. P. (2021) Data quality-aware task
offloading in mobile edge computing: an optimal stopping theory approach. Future
Generation Computer Systems, 117, pp. 462-479.

(doi: 10.1016/j.future.2020.12.017)

This is the Author Accepted Manuscript.

There may be differences between this version and the published version. You are
advised to consult the publisher’s version if you wish to cite from it.

https://eprints.gla.ac.uk/227273/

Deposited on: 18 December 2020

Enlighten — Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

http://dx.doi.org/10.1016/j.future.2020.12.017
https://eprints.gla.ac.uk/227273/
http://eprints.gla.ac.uk/

Data Quality-Aware Task Offloading in Mobile Edge
Computing: An Optimal Stopping Theory Approach

Ibrahim Alghamdi'*, Christos Anagnostopoulos®, Dimitrios P. Pezaros!

L School of Computing Science, University of Glasgow, Glasgow G12 8RZ, United Kingdom

Abstract

An important use case of the Mobile Edge Computing (MEC) paradigm is task
and data offloading. Computational offloading is beneficial for a wide variety
of mobile applications in different platforms including autonomous vehicles and
smart phones. With the envision deployment of MEC servers along the roads
and while mobile nodes are moving and having certain tasks (or data) to be
offloaded to edge servers, choosing an appropriate time and an ideally suited
MEC server to guarantee the Quality of Service (QoS) is challenging. We tackle
the data quality-aware offloading sequential decision making problem by adopt-
ing the principles of Optimal Stopping Theory (OST) to minimize the expected
processing time. A variety of OST stochastic models and their applications
to the offloading decision making problem are investigated and assessed. A
performance evaluation is provided using simulation approach and real world
data sets together with the assessment of baseline deterministic and stochastic
offloading models. The results show that the proposed OST models can signifi-
cantly minimize the expected processing time for analytics task execution and
can be implemented in the mobile nodes efficiently.

Keywords: Mobile edge computing, tasks offloading, data quality, optimal
stopping theory, sequential decision making.

1. Introduction

Mobile Edge Computing (MEC) refers to a computing paradigm that moves
computing resources closer to the user at the edge of the network. MEC in-
tends to relocate the cloud computing resources to the radio access network to
optimize the delivery of content and applications to end users [I]. It involves
deploying small data centres (servers) at the edge of the network in locations

*Corresponding author
Email addresses: i.alghamdi.l@research.gla.ac.uk (Ibrahim Alghamdi),
christos.anagnostopoulos@glasgow.ac.uk (Christos Anagnostopoulos),
dimitrios.pezaros@glasgow.ac.uk (Dimitrios P. Pezaros)

Preprint submitted to Journal of BTEX Templates October 15, 2020

20

25

30

35

40

45

50

such as base stations or Road Side Units (RSU). MEC servers can be an advan-
tage for various types of mobile nodes and applications including computation
offloading for computation-hungry applications such as in Augmented Reality
(AR) applications [2, B]. Further, MEC servers can be an intermediate data-
processing layer for data offloaded by mobile nodes [4]. MEC servers within
the RSUs can play significant roles in improving the performance of mobile
vehicular terminals, e.g. Autonomous Vehicles (AV) [5]. The AV can run in-
telligent vehicle control, traffic management and interactive applications using
the built-in computation units. AVs are equipped with a massive number of
sensors that collect contextual data for different types of applications such as
transportation systems and navigation applications [6]. The AVs can collect and
sense contextual data and apply different algorithms for data analytics tasks.
An autonomous driving vehicle, for example, produces and consumes approxi-
mately 40 terabytes of data per eight driving hours (e.g., a city’s High Definition
(HD) map is approximately 1.5TB) [7]. However, despite AVs typically include
on-board units, they have small-scale computing and storage resources because
of which they are dependent on other computational resources [§]. Also, such
applications may require significant computation resources and constrained time
delays [6]. The AV then would be required to offload such tasks to one of the
MEC servers to enhance its resources capabilities and to meet the applications’
requirements.

Consider MEC servers deployed within RSUs as proposed in [0, @] with
mobile nodes passing by these servers as shown in Figure These servers
provide computing resources for task offloaded by mobile nodes. The mobile
node can be a smart vehicle or a passenger on board who is running different
types of applications. The key problem is the offloading decision by which the
mobile node selects an edge server to offload the computing task as the MEC
servers’ load have large variation, e.g. sometimes there is a large number of users
concurrently using the same server, whereas some other times only a few users
are connecting [10]. In other words, the workload of such servers may be different
over time [9, [I0]. The selection of where (which MEC server) and when (time)
to offload has a significant impact on satisfying the requirements of the AV
applications [§]. Meanwhile, computing tasks or data gathered by AVs tend to
have strict timeliness requirements which may result in the data becoming out-
of-date [II]. Further, the existing studies in the area of computation offloading
have mainly focus on the decision of whether the computing task should be
offloaded or executed locally and a few studies have considered the selection of
where a task should be offloaded as in [0, [12] . It is, therefore, vital to define
rules by which the mobile node can select a suitable MEC server to be utilized
for task offloading. Once an offloading decision has been made and as the mobile
node moves, should the offloading happen immediately or would rather delay the
offloading for later in order to find a superior MEC server in terms of computing
performance?

For example, a naive centralized offloading method can be considered
in which the vehicle can request, from a centralized server, the information
about the possible MEC servers that can be used for offloading along the road

55

60

65

70

75

80

85

Figure 1: MEC in vehicular network.

[9, 13]. The centralized server can be located in a higher layer and it connects
to all MEC servers with wired network connectivity [9, [13]. However, such
architecture is not visible as this might introduce load on the network as the
number of vehicles in the road increases [9]. Another solution would be using
Vehicle to Vehicle communication (V2V) as discussed in [6], where a vehicle can
send tasks to the MEC server (using V2V technology) that it will pass by at
the time the computational task finishes. Such solution requires the presence of
other vehicles, which is not guaranteed all the time. Thus, the challenge now is
how to optimize the decision of selecting the MEC server if the previous methods
are not available and the mobile node only knows about the MEC server it is
observing. In other words, the mobile node does not have a global information
(or the mobile node has incomplete information) about the candidates MEC
servers to be used for offloading.

In this case, we consider two important factors that can be used in order
to delay the offloading in the light of finding a better MEC server. First, we can
consider the mobility as an advantage to optimize the decision of which MEC
servers to offload. As the speed of the vehicle increases, the probability of having
better MEC server with low workload increases [14]. Second, there is usually a
certain deadline for the computational task which gives an opportunity for the
decision maker to delay and explore more options for offloading [9, [15].

Having such environment, we cast this sort of problem as an Optimal Stop-
ping Theory (OST) problem. An OST problem is about deciding when to
carry out an action on the basis of a random variable observed in sequence
for the purpose of increasing the expected payoff or reducing the expected cost
[16]. Secretary Problem (SP), the House Selling (HS) problem or the Fair Coin
Problem are some of well-known OST problems [16]. We argue that the OST
can play important role to optimize the task offloading decision. We try to pro-
vide light-wight and local algorithms that can be implemented in mobile nodes
(vehicles or smart phones). As a result, the off-loadable computation applica-
tions will operate in an efficient way and optimally select when to offload in an
independent manner.

The remainder of this paper is organized as follows: we provide a sum-
mary of the related work and outline our contributions in Section[2} while details
of the system model and the problem formulation are described in Section [3]
The OST-based decision making models are described in Sections and

90

95

100

105

110

115

Paper outline

(SectionB®l) (SectionBl (Section@ (SectionBl) (_ SectionBl)
Related work System model || General model Simulation L Discussion @]
A1 based 511
Contributions Problem for- Real data set
22 mulation B2 Quality-aware based [5.2]
f- contextual data
ofﬂoading@
A summary
L of the OST-
based offload-
ing models@

Figure 2: Paper organization.

Performance evaluation is provided in Section Finally, a discussion about
the models is provided in Section [6] and Section [7] concludes the paper and out-
lines future research directions. Additionally, the main sections of the paper are
being visualized in Figure

2. Related Work & Contributions

2.1. Related Work

Various pieces of research have been carried out to deal with the issues of of-
floading data and computing tasks to an edge node. The majority of which have
emphasised if there should be a local processing of the data or task, or whether
it should be offloaded externally, for example, to an edge server or to a public
Cloud. There are two main objectives: minimization of (1) the execution delay
and (2) energy consumption. A spatial and temporal computation offloading
decision algorithm, ST-CODA [I7], is related to our work. This work consid-
ers the decision-making of the mobile device in terms of the time and location
for offloading tasks by considering the computation nodes and the transmis-
sion costs in edge cloud-enabled heterogeneous network. Our work’s objective
and policy differ from ST-CODA because the time-optimised sequential decision
only offloads tasks to the edge servers and not further to the Cloud. In [17],
the temporal decision refers to deferring the offloading decision until a low cost
network is found, e.g., WiFi network. In our approach, we defer the offloading
decision until a lightly loaded server is founded.

The work in [I8] puts forward a strategy of computation offloading for a
specific data mining application, namely, activity recognition for mobile devices.
As the user moves, data is obtained from various places and is held in storage
on the mobile device. This data is examined so that a choice can be made as to
whether to offload to an edge server or the Cloud, or to carry out the process on
the device. Should it be decided that offloading to an edge server takes place,
the devices communication interface obtains a list of edge servers and connects
to the best server. However, during the movement of the mobile device, e.g. in

120

125

130

135

140

145

150

155

160

AVs use case, a better server could be present and accessible, which is however
not picked up by the communication interface whilst the devices communication
interface scanning. Therefore, with regards to execution delay, it is possible that
a better MEC server is available as will be discussed later. This opportunity is
taken into consideration in our proposed scheme in this paper.

The work in [19], for the purpose of reducing the latency of task execution
as well as energy consumption, presents the idea of collaborative mobile edge
computing. This work focuses on UAV applications that uses photos and videos
for tasks like object identification or obtaining traffic information. The captured
photos/videos are then offloaded to an edge server. When the task is generated
by the UAV, a system orchestrator should determine which server should be
selected, what data rate ought to be adopted to transmit data to the selected
server and how much workload each server (cooperator) should be allocated.
This work [19] is based on the assumption that the system orchestrator makes
this choice. However, in our work, the decision is autonomously made by the mo-
bile node itself while in some situations there might be heterogeneous/different
operators for the MEC servers.

The authors in [20] proposed a code offloading framework for offloading in
a mobile fog environment. The proposed method determines which part of the
application should be offloaded and takes an offloading decision considering the
current state of the edge node resource by modelling the problem as Markov
Decision Processes (MDP) and training it using the Q-learning approach [21].
Also, their algorithm supports the mobility of the user by migrating the offloaded
part from one node to another. Their main objective was to minimize the
delay of the offloaded applications. In this work, the feasible sites for offloading
are: the mobile fog in close proximity, the adjacent mobile fog, or the remote
public Cloud. In our OST-based approach, we assume that the mobile node can
only offload to an edge server (potentially the most appropriate one with high
probability) and there are a set of feasible MEC servers to offload.

A context-sensitive offloading system using machine-learning classification
algorithms was proposed in [22]. The proposed system integrates middleware,
machine learning classification algorithms, and a robust profiling system. The
authors considered whether a task should be done locally or at the edge node.
Our proposed work can help such a system to decide which server to be used
and what time the offloading should occur once the decision is made by such
algorithms.

The work in [23] proposed an offloading decision algorithm for vehicles. The
proposed algorithm decides which part of the application should be done locally
or in the Cloud based on the task requirements. A heuristic mechanism for
partitioning and scheduling the application between the vehicular and the cloud
is proposed. This work is designed for Cloud-based architecture and focused on
the decision regarding which part of application should be offloaded.

The authors in [24] proposed a framework for joint network and virtual
machine selection in cloudlet environment. The authors of this work considered
the cloudlet architecture and the QoS of a face recognition application as an
input for the proposed system. While the user is trying to offload in a corporate

165

170

175

180

185

190

195

200

205

and campus networks, many WiFi access points might be available during the
offloading sessions. Thus, the objective is to select the appropriate network
along with VM resources that guarantee the quality of access to the cloudlet
resources. This work assumes that all APs with their information are available
to the mobile node, which is a different setting from ours.

The work in [25] and [26] investigated a multi sites offloading decision based
on Analytical Hierarchy Process (AHP) multi-criteria method. The multi sites
include the mobile device, near by mobile devices, cloudlet (edge server) and too
far Cloud server. This study also contributed with the design and development
of an Android offloading enabled framework that can be adopted by developers
to build MEC applications. The assumption in this work is that the mobile
devices will have to collect the offloading devices’ information and based on
such information the decision is made. Different from this work, in our work,
the mobile node is not required to collect all the edge devices’ information.
In other words, in our setting, the mobile node is observing the edge nodes
(sequentially) and does not need all the edge servers’ information in advance for
decision making.

The work in [I4] considered the computation offloading in Vehicular Fog
Network (VeFN). The authors provide a review of the offloading decisions work
in VeFN. According to the authors, the offloading decision in the VeFN can
be classified into three major modes: vehicle to vehicle, vehicle to RSU and
pedestrian to vehicle offloading. This work provided two use cases: the first one
is learning-based task offloading applying Multi-armed bandit (MAB) focusing
on vehicle to vehicle offloading. The other use case is a delay-constrained task
replication exploiting vehicle mobility where RSU collects task by vehicle and
pedestrian and offload it to near by fog vehicle. An interesting point considered
by the authors in this work is that mobility is not always an obstacle and can
be supportive factor to help in finding a better resources for offloading. This is
an important aspect we build our model on where we allow the mobile node to
explore the MEC servers with the objective of finding a better resource.

The authors in [27] consider offloading decision and resource allocation in

MEC environment by applying a reinforcement-learning-based state-action-reward-

state-action (RL-SARSA) algorithm. The main goals are to balance the pro-
cessing delay and the energy consumption when offloading, to define where to
offload the task and to provide efficient resource allocation in the MEC servers.
This study takes the advantage of adjacent edge servers as well as the remote
execution to improve the decision of where to offload the task. In particular,
four sites are considered for offloading the task: local execution, nearest edge
server, adjacent edge server, and remote execution in the Cloud. The proposed
RL-SARSA was compared with the reinforcement learning based Q learning
(RL-QL) and the results show the superiority of the RL-SARSA over RL-QL.
The limitation of this work is that the proposed model is more centralized and it
is executed through edge computing controller in each region as indicated by the
system model within the paper. This is different from our proposed approach
where we try to make the mobile nodes more dependent and run the decision
making algorithm locally at the mobile nodes.

210

215

220

225

230

235

240

245

250

The work in [28] proposed a distributed and context-aware task assignment
algorithm in MEC environment. The task assignment in this work is refereed
to the decision of where a task should be offloaded. The problem is formulated
as an one-to-many matching problem by taking into account the devices and
MEC servers computation capabilities, wireless channel conditions, and delay
constraints. The main objective of this work is to reduce the overall energy
consumption while satisfying task owners heterogeneous delay requirements.
The proposed work is compared with Random matching scheme where tasks and
edge nodes are randomly paired together, the scheme where the edge nodes with
higher computational capability has a higher priority to accept tasks and the
the centralized method, i.e., a centralized authority with complete information
searches through all possible combinations to find the optimum solution. The
proposed solution was the closest one to the centralized method in terms of
energy consumption and the average utility. Even though the authors’ main idea
in this work is to make a distributed tasks assignments, still, the nodes including
the edge nodes and the mobile nodes are required to collect information from all
the neighbors devices before making the decision of offloading which is different
from our work, where the mobile node proceeds sequentially for decision making
without having to know about the edge nodes in advance.

The authors in [9] proposed a decentralized management scheme for mobile
edge servers and an offloading approach in the edge computing environment.
The proposed idea is based on the Peer to Peer (P2P) networking architecture
where peers (MEC servers and moving vehicles) have equal privileges. The
idea is based on Edgecoin virtual currency where MEC servers and vehicles
can store the entire history of the Edgecoin transactions (every transaction by
every vehicle), and every workload update transaction by every online mobile
edge server. Based on the previous architecture, two algorithms were proposed.
The first one is for the generation of all candidate mobile edge server(s) in the
vehicle moving direction. The output of the first algorithm is the set of MEC
servers to be utilized based on their service ranges. An R-tree was constructed to
generate the set of MEC servers that are good enough to be used by the moving
vehicle. The second algorithm is for determining the optimal MEC server from
the generated list to be used by the moving vehicle. Different from this study,
in our work, we are trying to make the mobile node more independent with
respect to the offloading decision making. The work requires the mobile node
(vehicle) to be involved in P2P network which might not be available for the
mobile node all the time.

The OST was adopted in [12] for the objective of deriving a good balance
between the gain of choosing the best edge device and the accumulated cost
of deep resource probing. The authors in [I2] try to enhance the ability of an
OST-based model by utilizing layered learning mechanism to define the OST
thresholds and the sequence of the edge nodes used for offloading. However,
such enhancement results in significant computational overhead and battery
consumption for the mobile nodes as it implements deep neural network and
Deep Q-Networks. Also, in their applications, the assumption is that the mobile
node will have a list of edge devices once a task is generated and then the mobile

255

260

265

270

275

280

285

290

295

node will define which edge node makes a good balance between the cost of
probing and the execution delay of the task in advance.

In our previous work [29] 30, 3], we proposed a set of lightweight sequen-
tial decision making models adopting the principle of OST. In particular, in
our work in [29] [30], we proposed a Delay Tolerant Offloading (DTO) decision
making in mobile edge computing environment. In this work, the problem of
task offloading decision was cast as an finite horizon OST (decision should be
taken within a predefined time horizon). Our main goal was to have a mini-
mized total delay when offloading a task. Different real world data sets were
utilized for evaluation. This work was enhanced in [31] by introducing two types
of OST based models. The first one, which we call the Best Choice Problem
based optimal task offloading policy (BCP), is to maximize the probability of
offloading to the best edge server. The advantage of such model is that the task
offloading decision can be made by the mobile node independently and it only
requires the number of observations (number of edge nodes) to be provided. The
other model we introduced in [31] is the Cost-based Optimal Task Offloading
Policy (COT) model where we tried to enhance the performance of the BCP
when more information about the performance metrics is available taking into
account a cost per observation. The processing time and the delay of MEC
servers in this work were simulated following specific probability distributions
utilizing real mobility trace. In general, the results show that the OST based
models were the closest ones to the Optimal, in which we select the edge server
with the minimum total expected delay.

In this work, we first revisit the BCP model proposed in [31I] and provide
more insight about its optimality. Second, assuming we can incrementally learn
the probability distribution of specific variables used for decision making we are
observing within data timeliness constraints, we adopt the Odds [32] stochastic
scheme within the context of the OST to maximize the probability of offloading
to the best server based on a threshold provided by the mobile node. Addition-
ally, we provide comparative evaluation of all the OST-based models found in
the literature with others offloading methods using simulation-based evaluation
and real data set evaluation.

2.2. Contributions

In summary, our contributions are:

e Departing from our previous work in [31], we propose a new quality-aware
OST-based model to tackle the objective of maximizing the probability of
offloading to the best server (i.e., the server with the minimum processing
time) considering the timeliness of the collected data for data-oriented
(analytics) tasks.

e We introduce the concept of quality-aware contextual data task offloading
represented as a (linear) function over the timeliness of data, which is
injected in the dynamic decision making.

300

305

310

315

e We enhance the Odd OST algorithm with the timeliness function; the
optimal decision probabilities (Odds) depend on the freshness of data col-
lected and the current load of the edge serves.

e We provide comparative assessment and extensive sensitivity analysis of
our models with other offloading methods found in the literature using
real data sets.

MEC ®) ®) ®)

Server Deployment <EBQ> (EBQ) ;a (gg?)
e —

Mobile (R

Nodes D = I I

Figure 3: MEC servers and mobile node settings.

3. System Model & Problem Formulation

3.1. System Model

We consider a setting where there exists a finite set of MEC servers deployed
along mobile nodes’ paths on they move as shown in Fig.[3] These servers are
deployed within RSUs or within base stations and are equipped with storage
units and computing units [33]. Such setting can be seen in vehicular network
applications as studied in [6] and [9] where smart vehicles perform different types
of tasks. For instance, a mobile nodeEl can offload contextually collected data
to perform data analytics task on one of MEC servers. The mobile node can
access the RSUs using Vehicle-to-Infrastructure (V2I) communication mode us-
ing dedicated short-range communication (DSRC). As the MEC servers operate
at the network edge of radio access networks with the help of the RSUs, their
coverage areas may be limited by the radio coverage of the RSUs [6]. Thus,
the mobile node only knows about the current MEC server, i.e., the server in
the range of that node. Unlike the centralized architecture, we consider the
case where there is no centralized controller or server to assist the mobile node
to make the decision. Instead, the mobile node is responsible for making the

LA mobile node refers to a smart vehicle or smart phone in vehicle used by passenger.

320

325

330

335

340

345

350

355

offloading decision autonomously and locally. We elaborate on the existence of
an offloading decision framework implemented in the mobile node from previous
work, which provides the entity of network and edge servers profilers as studied
in [24]. Such profilers are adopted to provide information about the current
load and (or) experienced delay of MEC servers.

Let X be the random variable indicating the processing time of k-th ob-
served MEC serverﬂ Once a task is locally generated and needs to be offloaded,
then, at each time, within the number of observed MEC servers n, the mobile
node checks the value of X} for each MEC server k it passes by using network
and server profilers. The mobile node needs to decide whether to offload to the
current k-th server or continue observing another server in order to minimize
the expected processing time E[X}]. To keep the continuity of task processing,
we assume that there is a mobility management entity in the server [34] which
implements a mobility management algorithm, such as path selection, power
control algorithms [34] [35] or predictive model as in [6]. For example, if the
task involves getting some results from the MEC servers and the mobile node
is out of the range of that MEC server, then the selected MEC server should
be transmitting the results through the next MEC server using high bandwidth
wired connection [9].

3.2. Problem Formulation

Now, our goal is to optimize the decision on when to offload the tasks to
an available server. Formally, our objectives are: (i) to maximize the probabil-
ity of offloading to the optimal server and (ii) to minimize the expected value
of random variables Xy, i.e., E[X}]. These two optimization objectives have
been considered in our previous work in [29, B0, BI]. In this work, however,
we elaborate on the first objective, i.e., maximizing the probability of offload-
ing to the optimal server. In the following sections, we first revisit the BCP
model proposed previously in [31] with more details. After that, we introduce
a Quality-aware Contextual Data Offloading based on the Odds algorithm that
takes into consideration the timeliness of the data to be processed in analytics
tasks. Later, we provide a comprehensive assessment for the OST based models
along with other offloading methods. In Table [T} we provide the key notations
used in this paper.

4. Maximizing the Probability of Offloading to the Best Server

4.1. General Model

We first provide a review of the BCP model [31] that deals with the objective
of maximizing the chance of offloading to the best server where the number n > 0

2X}, can indicate different random variables, e.g., the transmission time coupled with the
computational workload of a server or the time it takes the MEC server to broadcast the
results to other system, e.g., real time information for transportation system. For simplicity,
we call it processing time throughout the paper unless otherwise specified.

10

360

365

370

375

380

385

Notation Explanation
X the random variable to be optimized
k the index of the observed MEC server
n the number of MEC servers or the number of observations
7, the optimal cutoff within the BPC model is taken by 7, — 1, 7, can also refer to the Odds in the observation n
Pi(rp) the maximum probability of ending up with the best server when applying the BCP policy
rr the Odds for observation k
Py, the probability of having X}, less than or equal to a threshold within the Odds model
f data quality indicators (timeliness)
s the stopping threshold in the Odds model from which we start check a MEC server
P(rs) the maximum probability of ending up with a server meeting the required threshold when applying the Odds policy
Ry the sum of the Odds from n until we reach or exceed the value 1
Qs the product of the complementary probability (1 — Py f) from n until s
0 the threshold required within the Odds model
& the probability of having less than or equal to 6
T the traveling time within the communication range of MEC server or RSU

Table 1: Key notations used in the paper.

of the available servers, which are candidates for task offloading, is known to
the mobile node in advance. This can be defined by the user or estimated by
the application based on the deadline of the task to be offloaded, e.g., offload
task(s) to one of the next n available MEC servers. Also, it does not have to be
the number of servers; it could be the number of time intervals the mobile node
is going to observe (probe) the random variables X, k = 1,...,n. For example,
the mobile node might spend more time within the range of a server. In such
case, we care about selecting the best time to offload the task within the time
horizon of n probing time instances. Overall, the objective is to mazimize the
probability of selecting the best server for task offloading. The mobile node is
on-line observing a sequence of candidate servers, which are locally (relatively)
ranked in the node from the best to the worst w.r.t. a performance criterion
function over X. At each observation, the node should decide whether to choose
the current available candidate server (or time) or not. In the latter case, in this
work, the node cannot recall its decision, i.e., if a candidate server is rejected for
selection, it cannot be recalled. This is due to the fact that, in our setting, the
mobile node (AV for example) is moving in 1D mobility model. The challenge
is that the node desires to define an offloading policy (rule) which mazimizes
the chance of choosing the best server w.r.t. the ranking seen so far. Every
server is relatively ranked based on the previous observed servers and can only
be checked sequentially and in a random order. The node should maximize the
probability to select the candidate among the n candidates, which is globally
ranked best. This is cast as a Best-Choice Problem [16]. In our BCP, we seek
the offloading rule that maximizes the probability P of selecting the best of all
n servers and the corresponding probability of that success. Let us call the k-th

server candidate, if it is relatively best in terms of Xj, K = 1,...,n. We then
define a positive integer r, € {1,...,n}, defined as:
in{r >1 1 + ! +o 4 ! <1} (1)
r, = min{r>1:- < 1y,
r r+1 n—1

for n > 2. Based on the BCP, the optimal policy is to reject the first r, — 1
servers and then select the first candidate, if any, to offload the tasks. For

11

390

395

400

405

410

reasons of completeness, we provide Theorem IEL where the optimality of the
BCP model is based on.

Theorem 1. The mazimum probability of selecting the best candidate in the
BCP in 18 given by:

n

Pir) = Ty 2)

k=ry,

Proof : See [16].

For a small value of n, the optimal r,, can be computed using . When n —
00, we obtain the well-known Secretary Problem where the optimal probability
tend to be 1 [30].

Let us consider an example with a finite small n, e.g., n = 3. That is, there
are 3 MEC servers in the AV’s path. These servers have different processing
times. We refer to the MEC server with the minimum processing time ranked
with the number 1, and the server with the highest processing time ranked with
the number 3. The MEC servers might come in different order. Thus, we have 6
permutations (3!). One policy is to reject the first server and take it as baseline
and then accept the first relatively best server after that. If we follow such
policy, 50% of time, we select the best one. In other words, there is 50% chance
of offloading to best. If we increase the number of MEC servers by only 1 and
follow the same policy, the chance of offloading to the best becomes close to 45%.
As the number of MEC servers gets larger, the chance of offloading to the best
gets smaller. Therefore, such policy does not work well with larger number of
MEC servers and does not give the maximum probability which decreases with
the number of MEC servers involved. Moreover, if the mobile node is offloading
randomly to one of the encountered servers for e.g., n = 10 MEC servers, we
have only 10% chance of offloading to the best server.

50 10
48 9
46 8
Raa 7
5
o 42 6
40 5
4
38 Number of servers n
36 3 - r-l
[200 400 600 800 1000 0 1 2 3 4 5 6 7 8 9 10

Number of servers

Figure 4: The probability of offloading to the best (left) and the value of » — 1 (right) for
different numbers of MEC servers n [37].

In Figure 4] we show the (desired maximum) probability of offloading to the
best (left) and the value of r — 1 (right) for different numbers of MEC servers

3For more information about Theorem 1 see [16] and [36].

12

415

420

425

430

435

440

445

450

n. We observe that as the number of MEC servers grows, we end up with the
36% chance of offloading to the best [37]. In reality, we expect the mobile node
to have a number of MEC servers less than 10, thus, following the BCP’s rule,
we have a probability of offloading to the best > 39%. Moreover, the BCP
model only requires the number of observations n the mobile node is willing to
observes. The number of observations can be defined and fed to the BCP model
by the mobile node itself. Therefore, the decision making algorithm in this
model is very independent and does not require relatively a lot of information.

Nevertheless, in the MEC environment, we expect that there will be other
information in addition to the number of MEC severs n. Such information can
be utilized to adopt and apply an advanced model within the context of OST.
Moreover, it is possible to considers other requirements with a better perfor-
mance in the decision of task offloading. Therefore, in the following subsection,
motivated by the BCP model and aiming to achieve and optimize the same ob-
jective, i.e. maximizing the probability of offloading to the MEC server with the
minimum processing time, we provide an advanced decision making algorithm
with less dependency where the mobile node can provide more information in
order to have better results. Focusing on offloading contextual data, the mobile
node needs to know (or learn) the probability distribution function of the ran-
dom variable it is trying to optimize along with the time constrains of collected
data in an incremental manner, as will be discussed later. Our assumption is
that we could improve the performance of the BCP model adopted previously
in [3I] and expanded above.

4.2. Quality-aware Contextual Data Offloading

In this section, we study the case that arises when a mobile node desires to
offload contextual data to a MEC server and performs data analytics task while
on the move. The data analytics task can be data correlation analysis, infer-
ential and predictive analytic [38], statistical learning models building, model
selection [39, [40] or data for HD maps as in [33]. The data can be gathered
via different applications such as a mobile crowd-sensing (MCS) or vehicular
crowd-sensing [41l [42]. For example, in vehicular crowd-sensing applications,
vehicles sense data from surrounding environment, process them and send the
processed results within a specific deadline to a centralized application manager
for further processing [42]. In this use case, beside the main objective (maxi-
mizing the probability of offloading to the best server), the mobile node wants
to offload contextual data to perform an analytic task before the data turns
obsolete (stale). To deal with this quality of analytics problem, we elaborate
on the the Odds algorithm within the context of the OST enhanced with data
quality indicators in the offloading decision task.

Let f: T ={1,2,...} — [0,1] represent how stale the data is, which is a
non-increasing function adapted from [43]:

e f is non-increasing in T,

e fo =1, where k = 0 is the start time before collecting the first data,

13

460

465

470

o f, =0, for k >n.

A linear timeliness function f is as follows:

1—+k 1<k<n.
— n+1’ — 3
T {0, k> n. 3)

The Odds algorithm is an OST algorithm for computing optimal stopping rules
in order to maximize the probability of stopping at the last observation which
satisfies a specific criterion [32]. We call an observation that satisfies the defined
criterion a success. To get more insight on the Odds algorithm, let us consider a
mobile node that is sensing data while on the move. The mobile node is trying
to offload the data to a MEC server that has a processing time less than or equal
to a desired threshold 6 defined by the application launched on the mobile node.
The Odds of the observed server k denoted by ry is defined as the ratio of the
probability Py of having the MEC server with a processing time X less than or
equal to 6 divided by its complementary probability 1 — Py [44]. Specifically,
the Odds at time k is defined as follows:

Py
=—— P, <1 4
IRt)
In each observation k, we take into account the Odds rq,...,r; as well as

the timeliness fi, ..., fx of the collected data by evaluating the function in .
Hence, we obtain that:

Py fr

T B (5)

Tk

where the Odds 7, depends now on how stale the data are at time instance k.
Let P, = P(X) < 6) denoted by 4, then we have:

Ok
1—0fk

(6)

Tk

can be reformed as:

k n+1-k
:]_— =
T n+1 n+1 @

Then, we can substitute for fi in @:

5n+1—k
n+1
Tk = 7 —k (8)
1—gnghk
can be simplified as:
6(n+1)— 0k
no o= 2ot)

(1—0)(n+1)+ 0k

14

475

480

485

490

495

500

Note that the Odds 7 changing with the time (k) as a non-linear function of the
observation k reflecting the constraints of the data timeliness while engaging the
application specific threshold § = P(X} < 0) for assessing the appropriateness
of the k-th MEC server. Figure [f] shows the evolution of the Odds rj against
observation k for different ¢ values in {0.3,0.5,0.8} with n = 10. The Odds
values decrease as we approach the end of (candidate) MEC observations, while
a high application threshold § = P(X}, < 6) increases the Odds at the beginning
of the selection process (being optimistic due to a relatively high §). However, as
k — n, the Odds shrink to a very low value to enforce the decision of offloading
to be taken, thus, avoiding offloading stale data (at k = n with f,, = 0).

+7'L»(6 =03
+7‘L»(6 =0.5
4677&((5 = 0.8)

= =
L

251

o
T

Odds ry,

051

0 I I I I I I |
1 2 3 4 5 6 7 8 9 10

Observation k (MEC Server

Figure 5: The odds rj against observation k for different § values; n = 10.

Let us now elaborate on the modified Odds algorithm that takes into consid-
eration the data timeliness indicator fj in the optimal task offloading decision.
Specifically, the traditional Odds-algorithm applies to a class of problems called
last-success-problems. The objective is to maximize the probability of identi-
fying in a sequence of sequentially observed independent events the last event
satisfying a specific criterion.

In our context, we aim at maximizing the probability of offloading to the
last MEC server with P, = P(X} < 0) for a given 6 threshold such that Py is
higher than all preceding probabilities P;,I = 1,...,k — 1 seen so far. And, this
decision must be taken at the time of observation. Hence, the very last MEC
server with the above-mentioned criterion is the highest bid. Maximizing the
probability of offloading on the last k-th MEC server with P(X}, <) therefore
means maximizing the probability of offloading to the best MEC server w.r.t. 6.
In the proposed quality-aware data offloading, we principally add the timeliness
indicator fj to the P, thus, now 7, represents the Odds of the k-th event
turning out to be candidate for data offloading.

The Odds-algorithm sums up the Odds in reverse order:

15

505

510

515

520

525

530

Tn+7an71+rnf2+"'7

until this sum reaches or exceeds the value 1 for the first time. Let us denote
that this happens at observation s, i.e., the corresponding sum R exceeds 1
with

R, = rp+rp_1+rp_o+-+rs. (10)

If R, does not reach 1, then we set s = 1. Also, at the same time we compute
the product:

Q. = [=Pt (11)
k=s

Based on the Rs and @4, we then apply the Odds algorithm to determine the
optimal strategy for offloading to the best MEC server. The optimal strategy
is as follows:

Quality-aware Odds Strategy: The mobile node observes the
MEC servers one after the other and decides to stop on the
first MEC server from time s onwards (if any), where s is the
stopping threshold such that R, > 1.

This strategy is optimal, that is, it maximizes the probability of stopping on
the last best MEC server. And, this is happening with the maximum probability
which equals to:

Pi(r) = QuRy:R,>1. (12)

Note that P} (rs) is always at least 0.368 and this lower bound is best possible,
which is achieved by the BCP policy with a very large number of MEC servers
n. It is also worth mentioning that the Odds-algorithm computes the optimal
strategy and the optimal probability P’ (r,) at the same time. Also, the number
of operations of the Odds-algorithm is sublinear in n.

Let us apply this optimal methodology in practice. The mobile node should
reject the observations (MEC servers) from & = 1 until s and from the ob-
servation s, the mobile node starts checking each observation (candidate MEC
server). If it is a success, i.e., X < 0 for k > s, then, the mobile node should
offload the data to the k-th MEC server, otherwise it continues observing until
fn, i.e., where the data must be offloaded since f, = 0. As an example, assume
that MEC processing time X A(50, 10) follows normal distribution with mean
50 ms, a standard deviation of 10 ms for a specific data size and analytics tasks
and the data on the mobile node must be offloaded within the next n = 10 ob-
servations. The timeliness of the data can be specified by the task application
(it can be the number of time intervals or it can be the number of MEC servers

16

535

540

545

550

555

560

565

570

575

the mobile node should observe before f,, = 0). If we assume that the mobile
node will have n = 10 observations and the mobile node is looking for a MEC
server with processing time less than § = 50, then, based on the Odds algorithm
enhanced with f; timeliness indicators, the strategy suggests to start looking
for a MEC server to offload from & = 5 and onward. By doing this, there is =
42% chance of offloading to the (last) best MEC server , which is the maximum
that can be achieved. The probability here refers to the situation where we end
up with a MEC server with processing time less than 50, thus, satisfying our
criteria.

In real world scenarios and in the long run of a mobile node application,
the MEC servers’ provider can provide the probability distributions of the ran-
dom variable X}, of the MEC servers based on the locations of the mobile node.
Alternatively, the mobile node itself can use the historical data of the task
offloading to learn the probability distribution. Once we can estimate the prob-
ability distribution of the processing time, the mobile node can estimate, based
on the model above, where it should start checking the performance criterion
in order to maximize the probability of offloading to a MEC server that meets
the defined condition.

4.8. A Summary of the OST-Based Offioading Models

To review the proposed models, including our previous work in [29] 30, [31]
and the model presented in subsection they are visually described in Figure
[l As shown in Figure the BCP model takes the number of observations n
as an input and outputs the numbers of servers that should be rejected before
considering a MEC server for offloading. The mobile node should offload if the
processing time/load X} is the best seen so far, otherwise, the mobile node
should continue observing until the server n. By that time, the mobile node
must offload to server n.

The DTO model [29] B0], shown in Figure takes the number of observa-
tions n and the probability distribution function p(Xy) as inputs and outputs
a scalar decision threshold a for each server £k = 1,...,k. The mobile node
should offload if the observed processing time/load X < ai, otherwise, the
mobile node should continue observing until server n. By that time, the mobile
node must offload to server n.

The COT model [31], shown in Figure takes the probability distribution
function p(X}) and a cost per observation (probing cost) ¢ as inputs and outputs
a threshold V* for each cost ¢. The mobile node should offload if the observed
processing time X < V*, otherwise, the mobile node should continue observing
until a defined deadline. By that time, the mobile node must offload to the first
observed server.

The proposed data quality-aware Odds model (subsection, shown in Fig-
ure takes the probability distribution function, a timeliness function/indicator
fr and a defined threshold as inputs and outputs the numbers of servers s < n
that should be rejected before considering a MEC server for offloading. The mo-
bile node then starts evaluating the condition based on the required threshold
0. If the condition is true, then, the mobile node should offload, otherwise, the

17

580

585

590

Decision maker
Output

The value of ' where we
start checking the MEC servers.

Input

Number of observations n.

e

«u»;s‘;'

Decision maker
Output

Threshold &

Input
Number of observations n.
Probability Distribution.

A
[Actions)

Offload Continue Offload Continue
if x is the best seen so far if x is not the best if x <a if x> a
seen so far
(a) BCP [31]. (b) DTO [29] 30].
(e (e
cAZD [
Decision maker Decision maker
Input Output Input Output

the index s where we start
checking the MEC servers.

Timelines Function f (n).
Probability Distribution.
Required Threshold.

\A@

Offload

if x <, Threshold

Cost per observation c. Threshold V*.

Probability Distribution.

JAN

e

Continue
if X, > Threshold

Continue
if x, >V

Offload
it x, <V

(c) COT [31]. (d) Quality-aware Odds Model.

Figure 6: A summary of the OST based offloading models.

mobile node should continue observing until f,, = 0. By that time, the mobile
node must offload before the data turns obsolete.

It should be noted that the previous models can be also applied to a situation
situation where the mobile node is moving within the range of one MEC server
and tries to choose a time instance (within a specified time horizon n) with
minimized processing time. In such case, the horizon n can be divided into
time slices and then we obtain the offloading rules based on the procedure of
each model. The decision (which server or which time instance) is based on
the mobility of the mobile node as well as on the density of the MEC servers
deployment. For example, in AV scenario as considered in [6] and [9], we could
go for MEC server selection especially if there is high mobility and high density
deployment of the MEC servers.

5. Performance Evaluation

We use two settings to evaluate the proposed OST based models: simulation
based evaluation and real world data sets based evaluation. In both settings,

18

595

600

605

610

615

620

Parameter Value / Range
X N(50,10) & U(0,1)
Number of mobile nodes 1000
n {3,5,10}
6 {30,40,50,60} & {0.3,0.4,0.5,0.6}
¢ {1,2,3,4,5,20,30} & {0.1,0.3,0.4}
p for the p-model 0.8

Table 2: Simulation experiment parameters’ values.

we compare our OST-based offloading models namely BCP (subsection, the
proposed quality-aware Odds model (subsection , DTO [29, B0] and COT
[31] with the Random selection model (Random), and the p-stochastic model
(p-model; which will be discussed later). We compare the results from all models
with the ground truth, i.e., the Optimal model, in which we select the server
with the minimum processing time for each offloading session. The closer a
model is to the Optimal, the better the model performs in terms of the task
offloading decision. In the following subsections, we provide the details and
the results of each setting. Table [2| shows the values of the parameters of the
simulation experiment.

5.1. Simulation Based Evaluation

In the simulation evaluation, the probability distribution of the random vari-
able X, e.g., the processing time, will be known in advance. To simulate the
environment of MEC, we used Simpy in Python [45]. Simpy is a process-based
discrete-event simulation framework. Each MEC server k is modelled as a re-
source that advertises its processing time Xj each time during the simulation.
The mobile node is modelled as a process that passes by the MEC servers in
1D mobility model and checks the processing delay advertised by each MEC
server. We first consider five MEC servers, i.e. n = 5. The processing time
X is drawn from normal distribution with g = 50 ms and ¢ = 10 ms and it
was generated using Python function that generates random numbers following
a specified distribution, i.e. normal or uniform distribution. It should be noted
that the processing time has been named in the literature with different terms
including total delay [34], latency [2] or waiting time [9]. Also, the range of the
processing time varies according to the application types. As an example, it is
being ranged from 0.1 seconds to &~ 800 seconds in [46] and in the range of 10
ms to &~ 30 ms as in [9]. Therefore, different values or scales of X can be used
with the proposed models generating similar results as we will see in the real
data set experiment. Each minute, a mobile node (in e.g., a vehicle/car) starts
checking the MEC servers. It starts with server number 1 and applies the pro-
posed models above to select a MEC server for offloading. In the BCP, the rule,
based on Figure {4| (right), is to reject the first two servers, take the best among
them as a baseline and start looking for a server that is better than the baseline.
If we reach server 5 without offloading, we then must offload to server 5. In the

19

625

630

635

640

645

650

DTO, each server k is compared with the decision threshold aj as proposed in
[29, B0]. If the processing time X} is less than the threshold ay, the mobile
node should offload, otherwise, it continues till it reaches the last server, and
then it must offload to the last server. In the COT model [31], there is a unique
solution for V* for each value ¢ > 0. We obtain the the threshold values V* for
each cost value ¢ € [1,50]. As plotted in Figure[7] we can see that the generated
threshold V* values are around the mean when ¢ < 10. In our modelling, the
value of the cost c is interpreted as the need for a lower processing time, but
different interpretations can be obtained based on the application requirements.
As a result, we can see from Figure [7] that low costs have higher thresholds and
thus it will accept higher processing time. In contrast, higher costs have less
thresholds and thus it will look for less processing time. Once the value of ¢ is
defined, the value of V* can be obtained as shown in our previous work [31].
We start by defining the cost to be ¢ = 4, and later, we show the performance
for different values c. Starting from server 1, if the processing time Xy, is less
than that threshold V*, we offload to that server. If we reach server 5 without
offloading, we then must offload to server 5 El In the quality-aware Odds model,
we first define 8 = 50 as a threshold. Thus, based on the proposed model, the
model suggests to start from server 2 (s = 2) and pick the server that has a
processing time less than or equal to 8 = 50. Note that as n is set to 5, we
calculate the indicators fq,..., f5.

50

40

w
=

Cost ¢
[]
[—]

0 10 20 30 40 50 60
V* value

Figure 7: The V* value for the processing time used in the experiment vs. cost c.

In the Random selection model, for each user, we uniformly at random se-
lect a server to offload the task. In the p-model, for each server, we assign a
probability of offloading; in this setting we experimented with p = 0.8. In each
user’s movement, each server has probability p = 0.8 of being selected for task
offloading. If a server is selected, we stop the process and consider that server
for offloading. If there was no server selected, we select the last server. The
p-model, here, is a simulation for scenario where the mobile node offloads at the
first server as we have higher probability, i.e. p = 0.8, as we will see later in the

4For more details about the thresholds for the DTO and the COT models, see [29} 30} [31].

20

655

660

665

670

675

680

real data set evaluation. The Optimal model was captured at each offloading
session by selecting the server with the minimum processing time.

The results of the experiment are shown in Figure [§] We can observe that
there is a noticeable overlapping between the Optimal and the OST based mod-
els (the DTO, the COT and the quality-aware Odds) as shown in Figures
and respectively. This overlapping decreases in the BCP, the Random and
the p-model as it can be seen from the Figures[8a] [8¢|and [R] However, the BCP
model is achieving lower expected processing time (u = 46) than the Random
(1 = 49) and the p-model (1 = 50). This is clear in Figure [J] as the difference
between the Optimal and the OST based models including (BCP, DTO, COT,
Odds) is significantly less than the Random and the p-model models.

It should be noted that, in general for the DTO and the COT models, the
Optimal thresholds generated by each model for each observation k is close
to the mean of the processing time, i.e. 50. For example, in the DTO, the
generated threshold values {a;}}_, for n =5 are {46,47,48,49,50}. As we can
see, the values are close to the mean of the processing time. This also applies to
the COT model. Based on these Optimal thresholds, we first set the threshold
value # = 50 for the Odds, and later we show the performance for different
0 values. As it can be seen from the Figures, we had a good performance in
the Odds. This good performance is due to the fact that we have around 42%
probability of picking a server with processing time less than 50 [’} Therefore,
a lesson learnt here is that setting a threshold value close to the mean value
achieves less processing time. We had better performance in the BCP model
than the Random and the p-model as the BCP offloading policy has higher
probability of offloading to the minimum processing time than the Random and
the p-model as we observer earlier in subsection This higher probability is
translated into less expected processing time than the Random and the p-model.
We should note that, we have similar probability of offloading the best in the
BCP and the Odds, but having a defined threshold # when checking the MEC
server has increased the performance in the quality-aware Odds model.

5This probability is calculated using equation 1'

21

mmm BCP p=46.86,0=10.05
150 = Optimal p = 38.25, 0 = 6.96

2
£100
2 L
S H
a
) “““wl Il
0 II| IIIII II .
20 40 60 80

Processing time

(a) BCP and the Optimal selections.

mmm COT C=4 p=4210,0=6.63
150 W Optimal p = 38.35, 0 = 6.76

10 20 30 40 50 60
Processing time

(¢) COT and the Optimal selections.

W Random p =49.60, 0 = 10.22
150 s Optimal p = 38.01, 0 = 6.58

2
@ 100
8 |
) ‘ ‘ |I
. I||| ||I|. i
20 40 60 80

Processing time

(e) Random and Optimal selections.

= DTOp=41.02,0=7.75
150 mmm Optimal p = 38.31, 0 = 6.65

'
| e

20 30 40 50 60 70
Processing time

o
S)

Density

o
=}

(b) DTO and the Optimal selections.

mmm Odd 6 =50, p =42.30, 0 = 6.51
150 s Optimal u = 38.16, 0 = 6.60

Processing time

(d) Odds and the Optimal selections.

mmm P-model P =0.8, p = 50.27, 0 = 10.34
150 mmm Optimal p = 38.30, 0 = 6.84

3
£100
C
o) ul
a
. |||| ||I | III -
20 30 40 50 60 70 80

Processing time

(f) P-model and Optimal selections.

Figure 8: Simulation results for all the models when X normally distributed.

685

690

695

700

705

710

w
o

Processing time
N w £
o o o

=
o

o4

Figure 9: Confidence interval in the simulation experiment when X is normally distributed.

In the previous experiment, the random variable X we are trying to observe
and optimize is following normal distribution. We now let X be uniformly
distributed scaled in [0, 1]. This can refer to the server utilization, i.e., the CPU
utilization. For example, 0.5 indicates that 50% of servers’ CPU is utilized. We
follow the same steps as we did in the previous experiment for all the models.
In the COT model, we obtain the Optimal threshold V* values for each cost
value ¢ € {0.1,0.2,0.3,0.4}. We first show the results when ¢ = 0.2, where the
Optimal threshold V* = 0.36. Later, we show the performance for the rest of
the values c. The interpretation for the cost is similar to the situation when we
have X normally distributed, i.e. higher cost (small threshold V*) means high
demand for less processing time. In the quality-aware Odds model, we set the
threshold 6 = 0.5, thus, there is around 42% chance of offloading to a server
with X < 60 = 0.5. Although we have the same probability in the BCP model,
but again, it turns out that setting a threshold can improve the performance
of the Odds model. In general, we can see from the results shown in Figure
and Figure [11]| that the models performance is similar to the results we obtain
when X following normal distribution. We still have the DTO model perform
the best, and in general, the OST based models are closer to the Optimal than
the Random and p—model.

5.1.1. Sensitivity Analysis (Simulated Environment)

In this sections, we provide the models’ results for different parameters val-
ues. We start by showing the results of the BCP model for different values of n.
We observe that when n is small, the difference between the BCP and the Op-
timal decreases. For normally distributed X, the difference was 5.24, and 9.07
for n = 3 and n = 10 respectively as shown in the Figures and This
is also true when X uniformly distributed: the difference was 0.16, and 0.22 for
n = 3, n = 10 respectively as shown in the Figures and These results
support Figure @ (left), i.e. the probability of offloading to the best decreases
and approaches 36% as n increases.

23

200
mmm BCPu=041,0=029

mmm Optimal p=0.16, 0 =0.14

) ‘llHllllll I
00 02 04 06 08 10

Processing time

(a) BCP and the Optimal selections.

150 B COTC=0.2u=0.22,0=0.21
s Optimal p = 0.16, 0 = 0.14
125
2100 =
[
5
8 75 I
m
50
= [k
o || [T I
0.0 0.2 0.4 0.6 0.8 1.0

Processing time

(c) CBT and the Optimal selections.

mmm Random p = 0.50, 0 = 0.28
150 W Optimal p =0.16, 0 = 0.14
=
@ 100
c m
3
8 1
) |‘|
0

04
Processing time

0.6

(e) Random and Optimal selections.

Figure 10: Simulation results for all the

mmm DTOp=0.22,0=0.20
. Optimal p=0.17,0=0.14

Density
=]
o

33
=}

alll
0 “I SE=—Hlee_a=
0.0 0.2

Illll.
0.4 0.6 0.8 1.0

Processing time

(b) DTO and the Optimal selections.

B 0dd 6 =05, y=027,0=0.17
== Optimal p = 0.16, 0 = 0.14

0 S
0.4 0.6 0.8 1.0
Processing time

(d) Odds and the Optimal selections.

150 B P-model P =0.8, p =0.52, 0 = 0.29
B Optimal p=0.17,0=0.14
125
100
0
0.0

0.4 0.6
Processing time

Density
~
(&}

o
1=}

N}
o

0.2

(f) P-model and Optimal selections.

models when X uniformly distributed.

24

715

Processing Time
© © © o o
N w = w

iy

008
‘((\'6
o

Q \
0«0 c¢°} 40‘6 *C 060:\, o0

@ o

SAPNESS

Figure 11: Confidence interval in the simulation experiment when X uniformly distributed.

mmm BCPu=041,0=0.27

Emm BCP u=46.81,0=9.60
s Optimal p =0.25,0=0.19

150 s Optimal y =41.57,0=7.43

>
'l =100 =
P c
8 Iﬂl
50 '
nlHIRIE s
-illn I 0 E==N
20 30 40 50 60 70 80 0.0 0.2 0.4 0.6 0.8 1.0

Processing time

Density

100
50

0

Processing time

(a) BCP when n = 3 and X normally dis- (b) BCP when n = 3 and X uniformly

tributed. distributed.

0.0 0.

(c) BCP when n = 10 and X normally (d) BCP when n = 10 and X uniformly
distributed. distributed.

mmm BCPp=0.31,0=024
. Optimal p = 0.09, 0 = 0.09

|I|I!IIII ll--
2 0.4 0.6 0.8 1.0

Processing time

s BCPp=4357,0=858
150 W= Optimal p = 34.50, 0 = 5.91

- -l.llII||‘|||“‘II--|IIII.--_ _ o
10 20 30 40 0o 70

150

Density
Density

5

o

o
S

100
50

0
50 6

Processing time

Figure 12: BCP models for different values n.

We also study the COT model [31] for different values c¢. In our modelling,
high value ¢ will generate small threshold V*. This can be interpreted as the
high demand for small value of X. On the other hand, small value of ¢ will
generate large threshold V*. Therefore, when we set the cost to a small value,
then, it implies we are tolerant to expect higher value X. Figure shows

25

720

725

730

735

740

745

the confidence interval and the average processing time achieved by the COT
model for different ¢ values when X is normally distributed (Figure and
when X uniformly distributed (Figure [L3b)). We can see from the results that
the processing time achieved by the COT is higher when ¢ = 1, ¢ = 20, ¢ = 30.
When ¢ = 1, V* is high, thus, the mobile node offloads at the firs server. When
¢ = 20,c = 30, V* is very small, thus, it delays the offloading and in fact the
mobile node did not find a server with processing time less than V*. Therefore,
the mobile node has to offload to the last server. The value of V* was around the
mean when ¢ = 3,4,5. Thus, we had a closer processing time to the Optimal.
This is also true for the uniform distribution, when ¢ = 0.1, the value of the
V* was 0.5. Therefore, when the threshold V* is close to the expected value
(mean), the COT performs better.

N w B]
o o o o

Processing time

=
o

o

N ’ > ~) ™
2 & Q- P P

ASIASEPC I P
A ARV AN oQ‘o A ¢

(a) Confidence interval when X normally (b) Confidence interval when X uniformly
distributed. distributed.

Figure 13: Confidence interval in the COT for different cost ¢ values.

We also consider the quality-aware Odds model with different 6 values. Fig-
ure [L4] shows the confidence interval and the average processing time achieved
by the quality-aware Odds model for different # values when X is normally
distributed (Figure and when X is uniformly distributed (Figure .
Similar to the COT model, we observe that when 6 is close to the mean, the
model performs better. As mentioned earlier, when # = 50, we have around
42% chance of offloading to a server with processing time less than or equal to
50. This is also true when 6 = 60, i.e. we have around 42% chance of offloading
to a server with processing time less than or equal to 60. However, due to the
higher value of the threshold, i.e. 60, we had higher processing time than the
processing time when we set 6 to 50. Setting the value of 6 to 40 had an ac-
ceptable performance. We had higher processing time when 6§ = 30 as we have
small chance of offloading to a server with the specified thresholds. When X is
uniformly distributed and when 6 = 0.4,0.5 and 0.6, we have higher chance of
offloading to a server meeting the specified thresholds, i.e. > 40%. However, the
performance was not good when # = 0.6. This reason for having high processing
time is because the higher value of threshold (0.6), and thus, the mobile node
will accept a server with higher processing time. Therefore, for the Odds model,
in both setting, i.e. when X is AM(50,10) or U(0, 1), setting the threshold 6 to

26

750

755

760

value of the expected value or less by ~ 10 achieves less processing time. We
should note that each 6 value has different stopping index s based on model
presented in subsection [£.2] As an example, when § = 30, s = 1, and when
0 = 60, s = 3. This is also true when X is uniformly distributed, e.g. when
0 =0.3,s=1, and when § = 0.6, s = 2.

50 0.30
0.25
o 40 g
£
= 0.20
930 2
é 2015
9 20 S
<] & 0.10
“10
0.05

0 :
Optimal® = 20 6 = 30 6 = 40 6 = 50 Optimal © =0.3 6 =0.4 6 =0.5 6 =0.6

(a) Confidence interval when X normally (b) Confidence interval when X uniformly
distributed. distributed.

Figure 14: Confidence interval in the quality-aware Odds for different 6 values.

5.1.2. Mobility Scenarios

As the mobility of the mobile node plays a key role in task offloading within
the MEC environment, it is important to consider its effects when applying the
OST based decision making. Therefore, we simulate a mobile node (i.e. smart
vehicle) that moves in one direction with different velocity values uniformly
distributed in [1,5] meters per second and it passes by a set of MEC servers.
The communication range of the MEC servers is 100 meters. Five MEC servers
over a distance of 1000 meters were deployed, i.e. one server each 200 meters.
Figure [T shows such a setting.

1000

—— Road
m Car

Server Server Server Server Server
° ° e ° o

800 -

600 =

400 1

Meters

200

T T T T
0 200 400 600 800 1000

Meters

Figure 15: Mobility simulation.

27

765

770

775

780

785

790

As it can be seen from Figure the car selects server 3 for offloading. The
green line shows that the car was within the communication range of server
number 3. Now we define the traveling time T to be the time it takes the car
from the first point of the green line till the last point of the green line. The
car offloads data to be processed before going out of the range. Having such
settings, the mobile node will face one situation from two. First, when we have
a processing time less than the traveling time. This case can arise when the
load of the MEC server is light, e.g. due to the density of the vehicles being low
[6] or the velocity of the mobile node is not high. In this case, the OST models
have higher probability to select a MEC server that finishes the task before the
mobile node gets out of the range of that MEC server with minimized processing
time. To check this, a velocity [1,5] that generates traveling time higher than
the processing time has been used. The processing time are assumed to follow
normal distribution, i.e. X A(50s,10s). The results show that the difference
between the processing time and the traveling time when applying the OST
models is higher than the other models: the Random, first selection as shown
in Figure The higher the difference the more reliability the model has. This
indicates that the OST based offloading is more reliable offloading than the
other offloading methods as the proposed models ensure the task finishes before
going out of the range of the communication.

2(
20 - kel

15

15 -

Difference
S
T
<o

Figure 16: Absolute difference between the processing time and the traveling time 7T'.

Second, when the processing time is higher than the time the mobile node
spends within the communication range, i.e. X > T. In this case, we need
a mobility management algorithm that handles such a mobility. Examples of
such algorithms are power control for low mobility, and path selection or task
migration for high mobility as stated in [34]. The adoption of the OST based
selection in such scenario can be benefit. For example, in each method of the
mobility algorithms, the first step is to make a selection for an edge node to
offload to. Therefore, it is not difficult to consider the proposed models for this
kind of scenario, but this is left for future work and out of the scope of the

paper.

28

795

800

805

810

815

820

5.2. Real Data Sets Based Evaluation

We also consider real data sets to evaluate our models. The purpose of this
evaluation is to see how our models perform when dealing with real data sets.
To simulate the movements of the mobile nodes, we first used the real data set
of taxi cabs’ movements in Rome [47]. The data set contains GPS coordinates
of 320 taxis collected over 30 days. For each row in this data set, we have the
cab-id, date/time and GPS coordinates of the current location. It is worthwhile
to mention that the use of mobility trace here is not for studying the mobility
of users. It is used in our experiment to use each time movement as location
or time to check for a server/time to offload. In other words, each movement
is modelled as an observation or connection to a MEC server. Figure [17] shows
the movements of the cars in Rome map.

Figure 17: Taxis trajectories in Rome.

The processing time is represented in this experiment by real servers’ utiliza-
tion (the CPU utilization) obtained from [48]. In the servers’ data set, we have
around 150 servers’ data (more than 1 billion rows). Thus, for each movement,
the car picks a server from the servers’ data set, checks that server utilization
and takes a decision of whether the car should offload at that time or continue
observing based on the decision suggested by the model as explained earlier in
the simulation evaluation section. We focus on the movements of over 5 days
(5000 rows of movements). An offloading decision was taken for each minute.
Thus, we have more than 1000 offloading decisions. This will ensure to see the
behavior of the proposed models for a long time. Figure [18|shows the probabil-
ity distribution of the servers’ utilization for the all servers in the data set. We
can see that the servers’ utilization in general follows normal distribution with
1 =36 and 0 = 16. Also, for illustrative purposes, an example of one offloading
decision session is shown in Table [3] In Table [we show the key parameters’
values in this experiment.

Note that, as the server utilization is approximately following normal dis-
tribution, when we apply the OST models, we have to feed the models (Odds,
DTO and COT) with the mean and the standard deviation. In this experiment,
the mean and the standard deviation were taken once at the beginning of the
experiment for the whole servers’ utilization data set. In other words, we did

29

Cap id Movement time Location Machine name CPU utilization

156 2014-02-05 00:11:01 (41.8911, 12.49073) m_1939 (51)
156 2014-02-05 00:11:11 (41.89905,12.4899) m_1936 (47)
156 2014-02-05 00:11:22 (41.8994,12.48940) m_1941 (20)
156 2014-02-05 00:11:31 (41.8994,12.489401) m_1941 (37)

Table 3: A sample of the data set used in the experiment.

Parameter Value / Range

X real servers CPU utilization in N (36, 16)

Number of movements 5000 movements

Number of offloading decision > 1000
n 5
6 {20,30,40,50,60}
¢ {1,2,3,4,5,20,30}
p for the p-model 0.8

Table 4: Real data set experiment parameters’ values.

g5 not apply the models with the mean and the standard deviation of the observed
utilization during the experiment. Instead, we only take this information once
when we start the experiment. This is an important aspect of conducting this
experiment as in real world scenario, the mobile node does not know the mean
and the standard deviation of a specific MEC server, but can obtain this in-

g0 formation from historical data for the MEC servers in one area in specific time
with the help of MEC servers operators.

20 40 60

CPU utilization

0.030

0.025

0.020

ity

0.015

Densi

0.010
0.005

0.000
80 100

Figure 18: The distribution of the servers’ CPU utilization.

Similar to the simulation setting, we compared the results from all models
with the ground truth, i.e., the Optimal model, in which we select the server
with the minimum CPU utilization for each offloading decision session. For

30

835

840

845

850

855

860

example, the Optimal in Table [3]is to offload at 00:11:22 with CPU utilization
of 20%. The closer a model is to the Optimal, the better the model performs
in terms of the task offloading decision. We run all models on each minute
(offloading decision session) for evaluation. In short, each minute consists of
around 5 movements. Each model selects a server for offloading as suggested by
that model. We then take the average server utilization achieved by each model
in all offloading decision session.

Figure [19|shows the average server utilization suggested by each model. We
can see that the OST models are the closest models to the optimal. The DTO
performs better than the rest of the models with absolute difference, compared
to the optimal of 5 and it is higher than the Optimal by 23% as shown in Figures
[20al and 200

In reality, the mobile node would normally offload to the first server or in
the first time. A simulation for such case is the p-model with p = 0.8. This
is clear in Figure [19| where the p-model has the lowest offloading times (offload
earlier than other models). We can see from the results that the p-model is
too far from the optimal. In other words, our results show that going with the
first server (time) or (immediate server) is not a good idea. Moreover, which
server/time is the Optimal is not known and not provided to the mobile node.
In other words, in the considered environment, the Optimal is not available to
the mobile node so having the OST-based model implemented in the mobile
node can achieve near-optimal server utilization.

70 - B

60 b

50 b

a0l g

30 — b

20 g

o (_;Q& N ¥

[Average processing time [Javerage offloading times (s)

Figure 19: Average processing time and average offloading times suggested by each model.

5.2.1. Sensitivity Analysis (Real Data Sets)

To further investigate how significant the difference between the proposed
models and the Optimal is, in Figure we plot the confidence interval (95%
confidence limits) for the results obtained by each models. We can see that
the difference is more significant with the Random and p-model. Also, the
significance in the difference increases in the BCP, and it decreases with the
rest of the models.

31

865

870

875

60 -

6.66 31

Y Y RSSO S
O.‘? & \;f‘ Q & *\4% q,“& Qé < & Q& < %4%
L & F & E S L & F &N
< < Qo R Qf 7 Q S A2 Q&&]7
(a) Absolute difference. (b) Percentage difference.

Figure 20: Difference between the Optimal and all models.

w
v o u

Server Utilization
o= N N W
[V)

o

o w

Figure 21: Confidence interval for the the real data sets experiment.

Figure 22] shows the V* optimal threshold for the COT model vs the associ-
ated cost for the server utilization used in the experiment. Similar to simulation
experiment, a lower cost ¢ indicates accepting higher server utilization, whereas
higher cost means a high demand for small server utilization.

Figure 23] shows the confident interval and the average utilization server
achieved by the COT model for different cost ¢ values. We observe that the
server utilization is closer to the optimal when ¢ = 4, ¢ = 5 and ¢ = 6. The
V* optimal threshold values when ¢ = 4, ¢ = 5 and ¢ = 6 are 39, 37 and
34 respectively which are around the mean of the server utilization. Similarly,
Figure24]shows the confident interval and the average utilization server achieved
by the Odds model for different € values. It is also clear that when the threshold
is close to the mean, the server utilization gets closer to the Optimal. This
supports our findings in the simulation experiment.

32

=]

10 20 30 40 50
V* value

Figure 22: The V* value for the server utilization used in the experiment vs. cost c.

35
< 30
R
© 25
N
520
=)
o 15
>

glO

YA > O Q Q
Q
4 4 7 7 Y4 //"lz//"‘)

Figure 23: Confidence interval in the COT for different cost ¢ values.

35
c 30
2
© 25
N

515
>

3 10
[%2]

Figure 24: Confidence interval in the Odds model for different 6 values.

In addition to the average server utilization as an performance metric, we use
the number of successful offloading for each model. The number of successful

33

880

885

890

895

900

905

offloading refers to number of offloading decisions, suggested by each model, that
meets specific requirements. To have an idea about the number of successful
offloading metric for each model, let’s first assume that we have 3 different MEC
applications x, y and z. Each of which has a specific requirement. For example,
application x requires a CPU utilization less than 10, application y requires a
CPU utilization less than 20 and application y is tolerant to offload to a server
with CPU utilization less than 30. Now, if an offloading happens to server
with utilization less than 10, we then consider that a successful offloading for
application x.

Figure shows the number of successful offloading for different resource
requirements for all the models. For an application that requires, < 10% CPU
utilization, the Optimal achieves 102 successful offloadings, i.e. 102 times the
Optimal selects a server with a utilization less than 10%. In the second require-
ments, < 20%, the Optimal had 463 successful offloadings. For the first and the
second requirements, the Odds model was the best among the other models. In
the third requirement, < 30%, the Optimal had 887 successes. The Odds model
was the closest one to the Optimal in the number of successful offloading with
797 success.

T
1500|1452 i

1,000 |-

500 -

Number of Success

Il Il Il
o Q&O (/u N
&

¢
O Threshold < 100 Threshold < 200 Threshold <30 ‘

Figure 25: The number of successful offloadings for each model based on different threshold
values.

6. Discussion

6.1. Deployment Environment

The proposed models can be integrated with the current offloading architec-
tures and frameworks. For example, considering the existing work in offloading
decision framework in the smart phones devices, in general, the main compo-
nents for the offloading framework are decision engine or code offloader, net-
work, edge servers and application profilers e.g. [20] [22] [26]. The previous
components are envisaged to be implemented on a middle-ware on top of the
smart-devices operating system to perform code offloading framework [20]. The
offloading engine, in general, is fed with the information collected from profil-
ers. Based on the collected information, the decision engine is expected to give

34

910

915

920

925

930

935

940

945

a decision of whether the task should be offloaded or run locally on the mobile
device. Our models can be implemented within the decision engine component,
and it can be triggered whenever the output of the decision is to offload to an
edge server. Most of the existing work in task offloading do not explicitly define
the components of on-board computing unit in the smart vehicles but it is not
difficult to have the same components mentioned above, including the profilers
for network and the edge servers in the smart vehicles.

6.2. Computational Complezity

Regarding the time and space complexity of our models, in general, time
complexity in the worst case is O(n). The mobile node is going to observe n
servers if the condition for each model is met at the server number n. For the
models DTO, COT and the Odds, there is one step before the observation which
is the generation of the thresholds, i.e. ar, V* and s. We assume that this step
is to be done once by the services provider outside the mobile node, but it is
also not difficult to implement such step in the mobile node. For example, in
the DTO model, we need O(n) if we calculate the threshold in the mobile node.
This is also true for the Odds model. We require more time for calculating the
threshold for the COT model, but this depends in the probability distribution.
For example, in the uniform distribution, we only perform one operation as
shown in [31]. In the normal probability distribution, we calculate and estimate
the integration as shown in [31] with time complexity no more than O(n?). For
the space complexity, in the BCP model, we do not need extra space to store
any data, thus, the space complexity is O(1). This is also true for the rest of
the models if we assume that the training phase is done outside of the mobile
node. In the case where we do the training phase locally in the mobile node, we
only need to store the parameters of the probability distribution. When X is
uniformly distributed, we need to store the maximum and the minimum values.
When X is normally distributed, we need the mean and the standard deviation.

6.3. Local & Autonomous Decision Making

It is important to mention that we can achieve full independence for the
models DTO, COT and the Odds. For example, in most of the existing offload-
ing framework, e.g. [20] [22] [26], the decision engine is supported by a database
where information about the offloading history can be stored. The challenge
now is how to estimate the probability functions based on the stored data so
we can apply the proposed models. Such estimation can be done using Kernel
Density Estimation (KDE) [49]. KDE is a non-parametric method of estimating
the probability density function of a continuous random variable. The term ker-
nel refers to a special type of probability density function with the properties:
nonnegative and integrates to one. One can estimate the density function f x ()
of a random variable X in an incremental manner at observation ¢+ 1 using the
following equation:

t . 1 z—X
K (L), (13)

frri(z) =

950

955

960

965

970

975

980

Model Performance Applications
BCP [31] Better than the p-model and the Random Delay-Tolerant task offloading [13]

DTO [29]130) Near Optimal Delay-Tolerant task offloading [13]
COT [3I] Near Optimal Resource-intensive and delay constrained tasks
Odds Section (4.2) Near Optimal Data analytics task offloading [41][42]

Table 5: Lessons to be drawn from this work.

where K},(-) is a kernel function and h > 0 is a smoothing parameter called
the bandwidth. Gaussian kernel function K (z) = \/%76_0'5362 of width h > 0,
is widely adopted in the KDE. A simple method for choosing the value of h
is the Sliverman’s rule-of-thumb width estimator which is h =~ 1.060t~/5 [50].
Once the probability distribution function is estimated, we then calculate the

thresholds for each model based on the steps and the equations for each models.

6.4. Owerall Performance and Application Domain/Use Cases

Table [5] gives a summary of the models in terms of their performance and
examples for tasks to be offloaded for each model taken from the literature.
From the results, we noticed that the more information we provide to the model
the better results we get. This is clear in the DTO, the COT and the Odds
models. In the BCP, however, the random variable X was higher, but we have
to consider that we only feed the model with the number of observations. In
other words, this model is fully independent, it is very light to be run in the
mobile node and performs better than the Random and the p-mode.

In general, our proposed models can be utilized in applications where there
is a deadline by which the task has to be finished. In the BCP and the DTO,
we generally aim to minimize the random variable without defining further
parameters. In the COT and Odds, on the other hand, there are parameters
within the models that can be exploited to characterize the model based on
the task to be offloaded. In the COT model, the parameter ¢ can be used to
define the demand of the task. As an example, we manage to select a server
with less processing time (Section and less CPU utilization (Section by
adjusting the value of c. Therefore, the COT can be used to manage offloading
resource-intensive or delay constrained tasks. Moreover, the Odds model can
be utilized in the data analytics task offloading where the mobile node collects
and senses data with the aim of offloading them to an edge server for further
analysis.

6.5. Model Limitations

First, the proposed models work in a single setting, i.e. each mobile node will
run the models without taking into consideration other mobile nodes’ context
when offloading. In other words, each mobile device will offload based in the
suggestion from the model implemented in that node. As a result, with large
number of mobile nodes, there will be a high chance of offloading at the same
time for different mobile nodes. Therefore, one might think about the compet-
itive scenario, i.e., what happens if there is a high probability to have the same

36

985

990

995

1000

1005

1010

1015

1020

suggestions for multiple users. Another limitation is the situation where each
server has different probability distribution function. In our experiment, and
specifically in the simulation experiment, we assume that the MEC servers have
the same probability distribution functions. However, it might be an interest-
ing research direction if we could apply the OST based models when we have
different probability distribution functions for the MEC servers.

7. Conclusions

In this paper, we concentrate on the application of OST approaches in the
task offloading decision making in MEC environments. Derived by the liter-
ature and our previous work, we put forward a selection method to be used
by the mobile nodes for the MEC servers when offloading data-oriented task
considering the quality of the offloaded data. We provide a detailed assessment
when applying and adopting the OST in quality-aware task offloading decision
in MEC environments. Our experimental evaluations show that the OST based
models perform better than the other offloading methods, efficient to be used in
the mobile node and do not require a lot of resources. This work suggests that
the mobile nodes should exploit (1) the mobility (2) the potential deployment
of the MEC server at the edge of the network and (3) the deadline of the com-
putational task to delay the offloading in the light of finding better resources.
Additionally, the OST based model is suitable for situation where the mobile
nodes need to make local and an independent decision within the environment of
MEC. We think that it is not difficult to obtain the required information when
making the decision with the aid of the MEC services providers. As future
work, we plan to consider the case where mobile nodes are moving in different
and advanced mobility patterns where recall of the observed MEC servers is al-
lowed. We also plan to implement the OST models in real mobile nodes dealing
with implemented MEC applications. We further aim to study the competitive
scenario where many mobile nodes apply the same models at similar times.

Funding: This research has been supported in part by the UK Engineering and
Physical Sciences Research Council (EPSRC) project EP/N033957/1, and by
the European Cooperation in Science and Technology (COST) Action CA15127:
RECODIS Resilient communication and services. The first author is funded by
Al-Baha University, Saudi Arabia.

Acknowledgment The authors would like to thank Al-Baha University, Saudi
Arabia, and the Saudi Arabian Cultural Bureau in the UK for their support
and encouragement.

References

[1] G. Brown, Mobile edge computing use cases and deployment options, Ju-
niper White Paper (2016) 1-10.

37

1025

1030

1035

1040

1045

1050

1055

1060

2]

[10]

J. Dolezal, Z. Becvar, T. Zeman, Performance evaluation of computation
offloading from mobile device to the edge of mobile network, in: 2016 IEEE
Conference on Standards for Communications and Networking (CSCN),
IEEE, 2016, pp. 1-7. [doi:10.1109/CSCN.2016.7785153.

S. Kekki, W. Featherstone, Y. Fang, P. Kuure, A. Li, A. Ranjan,
D. Purkayastha, F. Jiangping, D. Frydman, G. Verin, et al., Mec in 5g
networks, ETSI white paper 28 (2018) 1-28. |doi:www.etsi.org.

Q.-V. Pham, F. Fang, V. N. Ha, M. Le, Z. Ding, L. B. Le, W.-J.
Hwang, A survey of multi-access edge computing in 5g and beyond: Fun-
damentals, technology integration, and state-of-the-art, arXiv preprint
arXiv:1906.08452.

J. Feng, Z. Liu, C. Wu, Y. Ji, Mobile edge computing for the internet of
vehicles: Offloading framework and job scheduling, IEEE vehicular tech-
nology magazine 14 (1) (2018) 28-36. doi:10.1109/MVT.2018.2879647.

K. Zhang, Y. Mao, S. Leng, Y. He, Y. Zhang, Mobile-edge computing for
vehicular networks: A promising network paradigm with predictive off-
loading, IEEE Vehicular Technology Magazine 12 (2) (2017) 36-44. |doi:
10.1109/MVT.2017.2668838.

D. Sabella, H. Moustafa, P. Kuure, S. Kekki, Z. Zhou, A. Li, C. Thein,
E. Fischer, I. Vukovic, J. Cardillo, et al., Toward fully connected vehicles:
Edge computing for advanced automotive communications, 5GAA Auto-
motive Association White Paper.

R. A. Dziyauddin, D. Niyato, N. C. Luong, M. A. M. Izhar, M. Hadhari,
S. Daud, Computation offloading and content caching delivery in vehicular
edge computing: A survey, arXiv preprint arXiv:1912.07803.

W. Tang, X. Zhao, W. Rafique, L. Qi, W. Dou, Q. Ni, An offloading method
using decentralized p2p-enabled mobile edge servers in edge computing,
Journal of Systems Architecture 94 (2019) 1-13. doi:https://doi.org/
10.1016/j.sysarc.2019.02.001,

C. N. Le Tan, C. Klein, E. Elmroth, Location-aware load prediction in edge
data centers, in: 2017 Second International Conference on Fog and Mobile
Edge Computing (FMEC), IEEE, 2017, pp. 25-31. doi:10.1109/FMEC.
2017.7946403.

Z. Zhou, H. Yu, C. Xu, Z. Chang, S. Mumtaz, J. Rodriguez, Begin: Big data
enabled energy-efficient vehicular edge computing, IEEE. Communications
Magazine 56 (12) (2018) 82-89. [doi:10.1109/MCOM.2018.1700910.

T. Ouyang, X. Chen, L. Zeng, Z. Zhou, Cost-aware edge resource probing
for infrastructure-free edge computing: From optimal stopping to layered
learning, in: 2019 IEEE Real-Time Systems Symposium (RTSS), IEEE,
2019, pp. 380-391. |doi:10.1109/RTSS46320.2019.00041!

38

http://dx.doi.org/10.1109/CSCN.2016.7785153
http://dx.doi.org/www.etsi.org
http://dx.doi.org/10.1109/MVT.2018.2879647
http://dx.doi.org/10.1109/MVT.2017.2668838
http://dx.doi.org/10.1109/MVT.2017.2668838
http://dx.doi.org/10.1109/MVT.2017.2668838
http://dx.doi.org/https://doi.org/10.1016/j.sysarc.2019.02.001
http://dx.doi.org/https://doi.org/10.1016/j.sysarc.2019.02.001
http://dx.doi.org/https://doi.org/10.1016/j.sysarc.2019.02.001
http://dx.doi.org/10.1109/FMEC.2017.7946403
http://dx.doi.org/10.1109/FMEC.2017.7946403
http://dx.doi.org/10.1109/FMEC.2017.7946403
http://dx.doi.org/10.1109/MCOM.2018.1700910
http://dx.doi.org/10.1109/RTSS46320.2019.00041

1065

1070

1075

1080

1085

1090

1095

1100

[13]

[20]

M. Li, P. Si, Y. Zhang, Delay-tolerant data traffic to software-defined ve-
hicular networks with mobile edge computing in smart city, IEEE Trans-
actions on Vehicular Technology 67 (10) (2018) 9073-9086. doi:10.1109/
TVT.2018.2865211.

S. Zhou, Y. Sun, Z. Jiang, Z. Niu, Exploiting moving intelligence: Delay-
optimized computation offloading in vehicular fog networks, IEEE Com-
munications Magazine 57 (5) (2019) 49-55. doi:10.1109/MCOM.2019.
1800230.

D. Huang, P. Wang, D. Niyato, A dynamic offloading algorithm for mobile
computing, IEEE Transactions on Wireless Communications 11 (6) (2012)
1991-1995. doi:10.1109/TWC.2012.041912.110912.

T. Ferguson, Optimal Stopping and Applications (2020).
URL http://www.math.ucla.edu/~tom/Stopping/Contents.html

H. Ko, J. Lee, S. Pack, Spatial and temporal computation offloading deci-
sion algorithm in edge cloud-enabled heterogeneous networks, IEEE Access
6 (2018) 18920-18932. doi:10.1109/ACCESS.2018.2818111.

M. H. ur Rehman, C. Sun, T. Y. Wah, A. Igbal, P. P. Jayaraman, Op-
portunistic computation offloading in mobile edge cloud computing envi-
ronments, in: Mobile Data Management (MDM), 2016 17th IEEE Interna-
tional Conference on, Vol. 1, IEEE, 2016, pp. 208-213. |[doi:10.1109/MDM.
2016.40.

S. Zhu, L. Gui, J. Chen, Q. Zhang, N. Zhang, Cooperative computa-
tion offloading for uavs: A joint radio and computing resource allocation
approach, in: 2018 IEEE International Conference on Edge Computing
(EDGE), 2018, pp. 74-79. |doi:10.1109/EDGE.2018.00017

M. G. R. Alam, M. M. Hassan, M. Z. Uddin, A. Almogren, G. Fortino,
Autonomic computation offloading in mobile edge for iot applications,
Future Generation Computer Systems 90 (2019) 149-157. doi:https:
//doi.org/10.1016/j.future.2018.07.050.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostro-
vski, et al., Human-level control through deep reinforcement learning,
nature 518 (7540) (2015) 529-533. |doi:https://doi.org/10.1038/
naturel4236.

W. Junior, E. Oliveira, A. Santos, K. Dias, A context-sensitive offloading
system using machine-learning classification algorithms for mobile cloud
environment, Future Generation Computer Systems 90 (2019) 503-520.
doi:https://doi.org/10.1016/j.future.2018.08.026.

39

http://dx.doi.org/10.1109/TVT.2018.2865211
http://dx.doi.org/10.1109/TVT.2018.2865211
http://dx.doi.org/10.1109/TVT.2018.2865211
http://dx.doi.org/10.1109/MCOM.2019.1800230
http://dx.doi.org/10.1109/MCOM.2019.1800230
http://dx.doi.org/10.1109/MCOM.2019.1800230
http://dx.doi.org/10.1109/TWC.2012.041912.110912
http://www.math.ucla.edu/~tom/Stopping/Contents.html
http://www.math.ucla.edu/~tom/Stopping/Contents.html
http://dx.doi.org/10.1109/ACCESS.2018.2818111
http://dx.doi.org/10.1109/MDM.2016.40
http://dx.doi.org/10.1109/MDM.2016.40
http://dx.doi.org/10.1109/MDM.2016.40
http://dx.doi.org/10.1109/EDGE.2018.00017
http://dx.doi.org/https://doi.org/10.1016/j.future.2018.07.050
http://dx.doi.org/https://doi.org/10.1016/j.future.2018.07.050
http://dx.doi.org/https://doi.org/10.1016/j.future.2018.07.050
http://dx.doi.org/https://doi.org/10.1038/nature14236
http://dx.doi.org/https://doi.org/10.1038/nature14236
http://dx.doi.org/https://doi.org/10.1038/nature14236
http://dx.doi.org/https://doi.org/10.1016/j.future.2018.08.026

1105

1110

1115

1120

1125

1130

1135

[23]

[24]

[25]

[27]

A. Ashok, P. Steenkiste, F. Bai, Vehicular cloud computing through dy-
namic computation offloading, Computer Communications 120 (2018) 125-
137. |[doi:https://doi.org/10.1016/j.comcom.2017.12.011,

B. Silva, W. Junior, K. L. Dias, Network and cloudlet selection for compu-
tation offloading on a software-defined edge architecture, in: International
Conference on Green, Pervasive, and Cloud Computing, Springer, 2019,
pp. 147-161. |doi:https://doi.org/10.1007/978-3-030-19223-5_11,

D. Sulaiman, A. Barker, Mamoc: Multisite adaptive offloading framework
for mobile cloud applications, in: 2017 IEEE International Conference on
Cloud Computing Technology and Science (CloudCom), IEEE, 2017, pp.
17-24.|d0i1:10.1109/CloudCom.2017.34.

D. Sulaiman, A. Barker, Mamoc-android: Multisite adaptive computation
offloading for android applications, in: 2019 7th IEEE International Con-
ference on Mobile Cloud Computing, Services, and Engineering (Mobile-
Cloud), IEEE, 2019, pp. 68-75. doi:10.1109/MobileCloud.2019.00017.

T. Alfakih, M. M. Hassan, A. Gumaei, C. Savaglio, G. Fortino, Task of-
floading and resource allocation for mobile edge computing by deep re-
inforcement learning based on sarsa, IEEE Access 8 (2020) 54074-54084.
doi:10.1109/ACCESS.2020.2981434.

B. Gu, Y. Chen, H. Liao, Z. Zhou, D. Zhang, A distributed and context-
aware task assignment mechanism for collaborative mobile edge computing,
Sensors 18 (8) (2018) 2423. doi:https://doi.org/10.3390/s18082423.

I. Alghamdi, C. Anagnostopoulos, D. P. Pezaros, Time-optimized task of-
floading decision making in mobile edge computing, in: 2019 Wireless Days
(WD), IEEE, 2019, pp. 1-8. |doi:10.1109/WD.2019.8734210!

I. A. 1. Alghamdi, C. Anagnostopoulos, D. Pezaros, Delay-tolerant sequen-
tial decision making for task offloading in mobile edge computing environ-
ments, Informationdoi:https://doi.org/10.3390/info10100312.

I. Alghamdi, C. Anagnostopoulos, D. P. Pezaros, On the optimality of
task offloading in mobile edge computing environments, in: 2019 IEEE
Global Communications Conference (GLOBECOM), IEEE, 2019, pp. 1-6.
doi:10.1109/GLOBECOM38437.2019.9014081.

F. T. Bruss, Sum the odds to one and stop, Annals of Probability (2000)
1384-1391.

J. Zhang, K. B. Letaief, Mobile edge intelligence and computing for the
internet of vehicles, Proceedings of the IEEE 108 (2) (2020) 246-261. |doi :
10.1109/JPROC.2019.2947490.

40

http://dx.doi.org/https://doi.org/10.1016/j.comcom.2017.12.011
http://dx.doi.org/https://doi.org/10.1007/978-3-030-19223-5_11
http://dx.doi.org/10.1109/CloudCom.2017.34
http://dx.doi.org/10.1109/MobileCloud.2019.00017
http://dx.doi.org/10.1109/ACCESS.2020.2981434
http://dx.doi.org/https://doi.org/10.3390/s18082423
http://dx.doi.org/10.1109/WD.2019.8734210
http://dx.doi.org/https://doi.org/10.3390/info10100312
http://dx.doi.org/10.1109/GLOBECOM38437.2019.9014081
http://dx.doi.org/10.1109/JPROC.2019.2947490
http://dx.doi.org/10.1109/JPROC.2019.2947490
http://dx.doi.org/10.1109/JPROC.2019.2947490

1140

1145

1150

1155

1160

1165

1170

1175

[34]

[43]

P. Mach, Z. Becvar, Mobile edge computing: A survey on architecture and
computation offloading, IEEE Communications Surveys & Tutorials 19 (3)
(2017) 1628-1656. doi:10.1109/COMST.2017.2682318.

J. Plachy, Z. Becvar, P. Mach, Path selection enabling user mobility and
efficient distribution of data for computation at the edge of mobile network,
Computer Networks 108 (2016) 357-370. doi:https://doi.org/10.1016/
j.comnet.2016.09.005.

T. S. Ferguson, et al., Who solved the secretary problem?, Statistical sci-
ence 4 (3) (1989) 282-289.

J. Nyhoff, Algorithms to live by: The computer science of human decisions,
Perspectives on Science and Christian Faith 69 (2) (2017) 127-129.

N. Harth, C. Anagnostopoulos, D. Pezaros, Predictive intelligence to the
edge: impact on edge analytics, Evolving Systems 9 (2) (2018) 95-118.
doi:https://doi.org/10.1007/s12530-017-9210-z.

N. Harth, C. Anagnostopoulos, Edge-centric efficient regression analytics,
in: 2018 IEEE International Conference on Edge Computing (EDGE),
IEEE, 2018, pp. 93-100. doi:10.1109/EDGE.2018.00020.

C. Anagnostopoulos, K. Kolomvatsos, Predictive intelligence to the
edge through approximate collaborative context reasoning, Applied In-
telligence 48 (4) (2018) 966-991. doi:https://doi.org/10.1007/
s10489-017-1032-y.

M. Marjanovié, A. Antonié, I. P. Zarko, Edge computing architecture for
mobile crowdsensing, IEEE Access 6 (2018) 10662-10674. doi:10.1109/
ACCESS.2018.2799707.

L. Pu, X. Chen, G. Mao, Q. Xie, J. Xu, Chimera: An energy-efficient
and deadline-aware hybrid edge computing framework for vehicular crowd-
sensing applications, IEEE Internet of Things Journal 6 (1) (2018) 84-99.
doi:10.1109/JI0T.2018.2872436.

C. Anagnostopoulos, Time-optimized contextual information forwarding
in mobile sensor networks, Journal of Parallel and Distributed Computing
74 (5) (2014) 2317-2332. doi:https://doi.org/10.1016/j.jpdc.2014.
01.008.

F. T. Bruss, The art of a right decision: why decision makers may want to
know the odds-algorithm, Newsletter-European Mathematical Society 62
(2006) 14-15.

T. SimPy, Simpy: Discrete event simulation for python, Python package
version 3 (9) (2017) 7.|doi:https://simpy.readthedocs.io/en/latest/.

41

http://dx.doi.org/10.1109/COMST.2017.2682318
http://dx.doi.org/https://doi.org/10.1016/j.comnet.2016.09.005
http://dx.doi.org/https://doi.org/10.1016/j.comnet.2016.09.005
http://dx.doi.org/https://doi.org/10.1016/j.comnet.2016.09.005
http://dx.doi.org/https://doi.org/10.1007/s12530-017-9210-z
http://dx.doi.org/10.1109/EDGE.2018.00020
http://dx.doi.org/https://doi.org/10.1007/s10489-017-1032-y
http://dx.doi.org/https://doi.org/10.1007/s10489-017-1032-y
http://dx.doi.org/https://doi.org/10.1007/s10489-017-1032-y
http://dx.doi.org/10.1109/ACCESS.2018.2799707
http://dx.doi.org/10.1109/ACCESS.2018.2799707
http://dx.doi.org/10.1109/ACCESS.2018.2799707
http://dx.doi.org/10.1109/JIOT.2018.2872436
http://dx.doi.org/https://doi.org/10.1016/j.jpdc.2014.01.008
http://dx.doi.org/https://doi.org/10.1016/j.jpdc.2014.01.008
http://dx.doi.org/https://doi.org/10.1016/j.jpdc.2014.01.008
http://dx.doi.org/https://simpy.readthedocs.io/en/latest/

1180

1185

[46]

[47]

[48]

[49]
[50]

J. V. Joseph, J. Kwak, G. Iosifidis, Dynamic computation offloading in
mobile-edge-cloud computing systems, in: 2019 IEEE Wireless Commu-
nications and Networking Conference (WCNC), IEEE, 2019, pp. 1-6.
doi:10.1109/WCNC.2019.8885461.

L. Bracciale, M. Bonola, P. Loreti, G. Bianchi, R. Amici, A. Rabuffi,
CRAWDAD dataset roma/taxi (v. 2014-07-17), Downloaded from https:
//crawdad.org/roma/taxi/20140717 (Jul. 2014). doi:10.15783/C7QCTM.

Alibaba cluster trace program cluster-trace-v2018, Downloaded
from https://github.com/alibaba/clusterdata/blob/master/
cluster-trace-v2018/trace_2018.md| (November 2018).

A. Zhou, Z. Cai, L. Wei, Density estimation over data stream.

B. W. Silverman, Density estimation for statistics and data analysis,
Vol. 26, CRC press, 1986.

42

http://dx.doi.org/10.1109/WCNC.2019.8885461
https://crawdad.org/roma/taxi/20140717
https://crawdad.org/roma/taxi/20140717
https://crawdad.org/roma/taxi/20140717
http://dx.doi.org/10.15783/C7QC7M
https://github.com/alibaba/clusterdata/blob/master/cluster-trace-v2018/trace_2018.md
https://github.com/alibaba/clusterdata/blob/master/cluster-trace-v2018/trace_2018.md
https://github.com/alibaba/clusterdata/blob/master/cluster-trace-v2018/trace_2018.md

	Enlighten Accepted coversheet
	227273
	Introduction
	Related Work "3026 Contributions
	Related Work
	Contributions

	System Model "3026 Problem Formulation
	System Model
	Problem Formulation

	Maximizing the Probability of Offloading to the Best Server
	General Model
	Quality-aware Contextual Data Offloading
	A Summary of the OST-Based Offloading Models

	Performance Evaluation
	Simulation Based Evaluation
	Sensitivity Analysis (Simulated Environment)
	Mobility Scenarios

	Real Data Sets Based Evaluation
	Sensitivity Analysis (Real Data Sets)

	Discussion
	Deployment Environment
	Computational Complexity
	Local & Autonomous Decision Making
	Overall Performance and Application Domain/Use Cases
	Model Limitations

	Conclusions

