
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) 
 
 
https://creativecommons.org/licenses/by-nc-nd/4.0/  
 
 
 
 https://doi.org/10.1016/j.future.2021.02.015 

 

 

Access to this work was provided by the University of Maryland, Baltimore County (UMBC) 
ScholarWorks@UMBC digital repository on the Maryland Shared Open Access (MD-SOAR) 
platform.  

Please provide feedback 

Please support the ScholarWorks@UMBC repository by emailing scholarworks-
group@umbc.edu and telling us what having access to this work means to you and why it’s 
important to you. Thank you.  

 

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.future.2021.02.015
mailto:scholarworks-group@umbc.edu
mailto:scholarworks-group@umbc.edu


1 

 

Research on Unsupervised Feature Learning for Android 

Malware Detection based on Restricted Boltzmann 

Machines 

Zhen Liuac, Ruoyu Wangb, Nathalie Japkowiczd, Deyu Tangac, Wenbin Zhange, Jie Zhaof  

aSchool of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou, 510006, China 
bInformation and Network Engineering and Research Center, South China University of Technology, Guangzhou 

510041, China 

cGuangdong province precise medicine and big data engineering technology research center for traditional Chinese 

medicine, Guangzhou 510006, China 

dDepartment of Computer Science, American University, Washington, DC, 20016, USA 

eUniversity of Maryland, Baltimore County, MD 21250 USA 
fDepartment of Information Management Engineering, School of Management, Guangdong University of Technology, 

Guangzhou, 510520, China 

Abstract: Android malware detection has attracted much attention in recent years. Existing 

methods mainly research on extracting static or dynamic features from mobile apps and build 

mobile malware detection model by machine learning algorithms. The number of extracted static 

or dynamic features maybe much high, e.g. thousands of Permissions features in OmniDroid 

dataset for containing all possible Permissions. As a result, the data suffers from high 

dimensionality. In addition, to avoid being detected, malware data is varied and hard to obtain in 

the first place. To detect zeroday malware, unsupervised malware detection methods were applied. 

In such case, unsupervised feature reduction method is an available choice to reduce the data 

dimensionality. In this paper, we propose an unsupervised feature learning algorithm called 

Subspace based Restricted Boltzmann Machines (SRBM) for reducing data dimensionality in 

malware detection. Multiple subspaces in the original data are firstly searched. And then, an 

RBM is built on each subspace. All outputs of the hidden layers of the trained RBMs are 

combined to represent the data in lower dimension. The experimental results on OmniDroid, 

CIC2019 and CIC2020 datasets show that the features learned by SRBM perform better than the 

ones learned by other feature reduction methods when the performance is evaluated by clustering 

evaluation metrics, i.e., NMI, ACC and Fscore. 

Keywords: Mobile malware detection, Unsupervised feature learning, Restricted Boltzmann 

Machines, feature subspaces 

1. Introduction 

  Smart phones have been widely used in people’s daily life, such as online banking, automated 

home control, and entertainment [1]. The number of mobile phone users is expected to rise to 3.8 

billion in 2021, marking a 52 percent increase in a relatively short period of five years[2]. Mobile 

malware is malicious software specifically designed to target mobile devices, such as 

smartphones and tablets, with the goal of gaining access to private data[3]. Recent reports from 

AV-Test Institute show that 350,000 new pieces of malware are detected every day[4]. The 

Kaspersky Lab reports that the number of malicious mobile banker packages circulating online 

grew by 58% during the first quarter of 2019[5]. G-Data Security expert counted 4.18 million 

malware applications until the end of the year 2019 and discovered over 7,50,000 new malware 

applications during the first quarter of 2020[6]. Some recent well-known malware examples 
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include ransomware, spyware, malicious apps and financial malware[7]. These malicious 

programs posed serious threats to mobile device users, including stealing user credentials, auto-

dialing premium number, and sending SMS message without the user’s consent[1]. These threats 

have made Cybersecurity become one of the main concerns to be addressed by society[8]. 

  In order to protect mobile users from attacks[9], different kinds of techniques have been 

researched, such as designing privacy aware Apps[10], analyzing the requested Permissions in 

apps[11][12] and researching malware detection method[13][16]. The anti-virus products, such as 

Norton, Lookout and Coodo Mobile security, mainly use signature-based matching methods to 

detect attacks[1]. A malware signature is created by extracting binary patterns, or random 

snippets, from a sample[13]. Anti-virus companies usually use cryptographic hash, e.g., MD5, to 

generate a signature for an application[14]. Then any app encountered in the future with the same 

signature is considered a sample of that malware [13]. However, malware can easily bypass 

signature-based identification by changing small pieces of its software without affecting the 

semantics.  

  A variety of machine learning based techniques have been researched to detect Android 

malware. These methods include static analysis-based methods and dynamic analysis-based 

methods. The static analysis-based methods utilize reverse-engineering techniques to decompile 

the codes of apps from the installing packages. They further extract static features, such as 

request Permission sequences[15], API (Application Program Interfaces) sequences[16][17], 

meta-information[18] from the decompiled codes. The detection model is trained on the data 

characterized by static features. Dynamic analysis-based methods extract reliable information 

from the execution traces of apps in a controlled environment. The execution traces include 

system calls[19], traffic traces etc.[7]. The malware detection model is trained on the data 

characterized by dynamic features extracted from the execution traces. 

  The number of extracted static or dynamic features may be much high, e.g., the thousands of 

features in OmniDroid dataset[37] shown in Table 4. As a result, the data may suffer from the 

high dimensionality problem. That is, the data may include irrelevant and redundant features, and 

increase the time consumption on training malware detection models. Hence, feature reduction is 

required as a preprocessing for machine learning based malware detection. The supervised feature 

reduction methods have been utilized in the field of malware detection. An open problem in this 

field is that it lacks the researches on unsupervised feature reduction. Clustering (unsupervised 

machine learning) methods have also been used for malware detection[20], especially when used 

for detecting zeroday malware[21]. When using clustering for malware detection, unsupervised 

feature reduction method is an available choice to reduce the data dimensionality. This paper 

researches the unsupervised feature learning for mobile malware detection, aiming at learning the 

latent features and reducing the data dimensionality. The contributions of this paper include: 

(1)We propose an unsupervised feature reduction method named SRBM(Subspace based 

Restricted Boltzmann Machines) for mobile malware detection by applying unsupervised feature 

learning and subspace learning to consider the non-linear relationship among features and the 

underlying structure of data.  

(2)We employ RBMs(Restricted Boltzmann Machines) to learn the reduced feature set by 

considering the non-linear relationship among features. 

(3)We introduce subspace learning into RBMs and search the subspaces by clustering the features 

in the full feature set.  



3 

 

(4)We evaluate the performance of SRBM by comparing it with RBM, Stacked Auto Encoder 

(SAE), PCA (Principal Components Analysis) and Agglomeration algorithms in multiple cases. 

The experimental results on the real datasets show that the NMI(normalized mutual information), 

ACC(Accuracy) and Fscore are respectively improved about 6.2%, 6.9% and 15.4% on average 

over all datasets when our method is compared with RBM. And it also outperforms other methods 

on most datasets in terms of the three metrics. 

  The rest of this paper is organized as follows. The related works are introduced in Section 2. The 

RBM and our proposed method are presented in Section 3. The experimental datasets and 

performance evaluation metrics are described in Section 4. The experimental results are reported 

in Section 5. Finally, the conclusion of the paper is provided in Section 6.  

2. Related work 

  In this section, we firstly introduce the static, dynamic and hybrid analysis-based methods in 

mobile malware detection research filed. Then we further overview the related works of feature 

reduction methods in mobile malware detection research field.  

2.1 Mobile malware detection methods 

  The mobile malware detection methods can be categorized into static analysis-based methods 

and dynamic analysis-based methods. Both methods have pros and cons. Static analysis is prone 

to obfuscation but is generally faster and less resource intensive than dynamic analysis. Dynamic 

analysis is resistant to obfuscation but can be hampered by anti-virtualization and code coverage 

limitations[22].  

Table 1 Static analysis-based methods 

Ref. Static Features #Features/Feature 

selection method 

Methods 

Yen et al. [30] TF-IDF on code Not given/None CNN(Convolutional Neural 

Network) 

Taheri et 

al.[23] 

API, Intent, 

Permission 

Not given/Random Forest 

Regressor 

FNN(First nearest neighbors), 

ANN(all NN), ANN(weighted 

ANN), KMNN (k- medoid 

based NN) 

Badhani et 

al.[24] 

API tags, 

Permissions 

217/remove the Features 

own a constant value or 

zero variance 

Clustering and ensemble 

methods 

Scalas et al.[38] API packages, 

classes, methods 

41027/information gain Random Forest 

Mercaldo et 

al.[27] 

Images on binary 

codes 

256/None Deep Neural Networks  

Yerima, et 

al.[22] 

Permission, 

Intents 

350/information gain Fusion method on Random 

Tree, REPTree, J48 and 

Voted Perceptron 

Pai et al. [21] Opcode sequences Not given/None K-means, Expectation-

Maximization 

Thiyagarajan et 

al. [20] 

Permissions 130/PCA, Chi, APriori, 

SPR, PRNR 

Decision trees, K-means 

Mariconti et al. 

[29] 

Markov chains on 

API call graph 

Not given / None Random Forest, 1NN,3NN 

and SVM 

  In the field of static analysis-based methods, as shown in Table 1, reverse engineering toolkits 

(such as Apktool) are generally used to decompile codes or to access the different files contained 

in the installing packages (e.g., the Android manifest.xml and classes.dex). After the decompiling, 
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we can obtain readable information such as a list of API calls or required Permissions, Intent 

filters, process names etc. Then, malware app detection rules or detection models based on 

machine learning could be built from these decompiled data characterized by static features. 

Different kinds of feature vectors have been extracted, such as binary values of API calls, Intent, 

Permissions etc. signifies the presence and absence of the feature. [23][24][25]. Some other 

methods further extract word2vec[26], TF-IDF[7], images[27] of bytecodes, API call graph[28], 

HIN[1] and Markov chains[29] on the API calls. A variety of machine learning algorithms have 

been performed on the data with static features, such as CNN[30], FNN[23], Clustering and 

ensemble[24], Random Forest etc[38]. For example, Pai et al. [21] compute clusters using the 

well-known K-means and Expectation Maximization algorithms, with the underlying scores 

based on Hidden Markov Models. Their method obtains 70% to 80% AUC for silhouette 

coefficient scores with different number of clusters for classifying malware families. On the data 

with high dimensionality, feature reduction method is used to reduce features, such as 

information gain[38] [22]. 

  In the field of dynamic analysis-based methods, as shown in Table 2, the methods leverage an 

emulator or even a physical to run the apps while a monitoring agent captures a series of 

indicators, such as hardware components accessed, network traffic, system calls invoked, or API 

calls invoked. Similar to the static analysis methods, different kinds of feature vectors were built 

on these extracted raw data, such as the n-grams of system calls[31], API call sequences[32][33] 

and flow statistic features on network traffic[34]. And machine learning methods are used for 

detecting malwares, such as Autoencoders[35], LSTM[36], K-means and KNN[32].  

Table 2 Dynamic analysis-based methods 

Ref. Dynamic 

Features 

#Features/Feature 

selection methods 

Methods 

Angelo ett al. 

[35] 

Invoked API call 

images 

(450*450)/None Autoencoders, SoftMax neural 

network 

Xiao et al. [36] System call 

sequences,  

Not given/ None LSTM(Long Short Term Mermory 

network) 

Ananya et al. 

[31] 

n-grams of system 

calls, 

 

Not given/SAILS Logistic Regression, CART, Random 

Forest, XGBoost and Deep Neural 

Networks 

Duarte-Garcia  

et al. [32] 

API calls 

sequences 

Not given/None K-means and KNN 

Shamsi et al. 

[33] 

API calls 

sequences 

Not given/None Weighted Pair Group Method with 

Arithmetic Mean 

  In the field of hybrid analysis-based methods, as shown in Table 3, the static features and 

dynamic features are used for the training mobile malware detection model. Martin et al.[37] 

publicly shared OmniDroid dataset. They extracted static features (API, FlowDroid, Permissions, 

Receivers, Services etc.) and dynamic features based on the Markov chins representation (states 

sequences and transactions probabilities) of the executed action when app running. They carried 

out a series of experiments on their datasets. The results show that Random Forest performs the 

best among AdaBoost, Bagging, ExtraTrees, Gradient Boosting, Random Forest and Voting. 

Among the different combinations of static feature sets, the API, API+Permission (union of API 

and Permission) and API+FlowDroid (union of API and Permission) perform much better than 

other static feature sets. Random Forest with API+ FlowDroid feature set obtains 0.892 accuracy 

and 0.892 precision. And the union of transactions and frequencies of the dynamic features 

performs better than one set of them. Random Forest with the combination dynamic features 

obtains 0.785 accuracy and 0.785 precision. Taheri et al.[39] also publicly shared benchmark 
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datasets with malware static and dynamic features. The static features include Permissions and 

Intents. The dynamic features are composed by API calls and network flows. They firstly perform 

Random Forest for classifying malware and benign on the data with static features, and then 

perform Random Forest on classifying malware categories on the data with dynamic features. 

Table 3 Hybrid analysis-based methods 

Ref. Hybrid Features #Features/Feature 

selection methods 

Methods 

Saif et al. 

[41]  

Permissions, Services, 

Receivers, Activities, API 

calls, System calls, etc. 

Not given/Relief Deep belief network 

Alzaylaee 

et al.[40] 

Application, 

Actions/Events,Permission 

420/Information gain Deep Neural Networks 

Martin et 

al. [37]  

API, FlowDroid, 

Permissions, Receivers, 

Services etc., Markov 

chains on system calls 

2128 API, 961 FlowDroid, 

5501 Permissions, 6415 

Receivers, 4365 Services, 

etc., 5932 Markov chains 

on system calls/None 

AdaBoost, Bagging, 

ExtraTrees, Gradient 

Boosting, Random Forest 

Taheri et 

al. [39] 

Permission, Intents, flow 

features, API call features 

8115 Permission and 

Intents, 80 network-flow 

features, 911 API call 

features/None 

Random Forest 

  The feature vectors extracted from different fields are directly concatenated and are used for 

training a malware detection model. In this way, the data suffers from the high dimensionality 

problem. In some papers, supervised feature selection methods, such as information gain and 

Relief, have been used to reduce the data dimensionality as shown in Tables 1 to 3.  

2.2 Feature reduction methods in mobile malware detection 

  This section further introduces the feature reduction methods in mobile malware detection field. 

Feizollah et al. [42] overview feature selection methods in mobile malware detection research 

field, and they claim only 8 out of 100 papers work on feature reduction by feature selection 

algorithms. Most works select features (choosing API, permission as static features or system 

calls as dynamic features) based on rationalizing. Feature selection is performed using supervised 

feature ranking algorithms, such as Information Gain.  

  Alam et al.[28] take out signatures common in malware and benign instances, to reduce the 

number of features. Taheri et al.[23] apply Random Forest Regressor algorithm for feature 

reduction. In addition, they repeat the experiments for {10%, 20%, 30%, 40%, 50%, 60%, 70%, 

80%, 90%, 100%} of the manifest features with higher ranks to determine the optimal features. 

Badhani et al. [24] remove the irrelevant features from the full feature set. These irrelevant 

features are identified as such if they have a constant value or zero variance. Mariconti et al. [29] 

perform PCA (Principal Components Analysis) on Markov chains-based features. Anaya et al.[31] 

propose a new feature selection mechanism known as selection of relevant attributes for 

improving locally extracted features using classical feature selectors (SAILS). SAILS is built on 

top of conventional feature selection methods, such as mutual information, distinguishing feature 

selector and Galavotti-Sebastiani-Simi. Suresh et al. [43] employ recursive feature elimination 

(RFE) to explicitly determine the tradeoff between the features used and the accuracy. Lashkari et 

al. [44] conduct two feature selection algorithms, namely CfsSubsetEval with Best First search 

method and Information gain with the Ranker search over the training dataset. Sheen et al.[45] 

compare three feature selection methods (i.e., Chi-Square, Relief and Information Gain) on the 

dataset characterized by API and Permissions. The experimental results show that the Relief 
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method performs the best. Thiyagarajan et al. [20] handle the feature reduction on the 

Permissions features by PCA, Chi-square, APriori, SPR(support-based pruning) and 

PRNR(permission ranking with negative rate), and then train decision tree model on the data with 

reduced features; and they further category the malware samples into 45 families using K-means.  

  Tables 1 to 3 show that most works utilize supervised feature reduction algorithms to reduce the 

data dimensionality in mobile malware detection. A few papers utilize unsupervised feature 

extraction method PCA in this field. To the best of our knowledge, this paper is the first work that 

researches the performance of unsupervised feature learning for mobile malware detection. The 

unsupervised feature learning method could be used in the case of clustering-based malware 

detection cases such as detecting zeroday malware. 

3. Unsupervised feature learning method 

  This section firstly introduces existing RBM method and then presents our SRBM method. 

3.1 RBM 

  RBMs have been used effectively in modeling distributions [46]. An RBM[47] is an undirected 

graphical model. It is shown in Fig.1. It consists of visible variables {0,1} vn
v to represent 

observable data and stochastic hidden variables {0,1} hn
h to capture dependencies between 

observed variables[48]. Each visible variable is connected to each hidden variable. And there is 

no connection in the same visible or hidden layer. After the learning process, the output of the 

hidden layer is the learned latent feature vector and could be used as the input to the machine 

learning algorithms for training the malware detection model. The goal of RBM is to find Pdata(v) 

the unknown true high dimensional distribution of the visual layer variables. It means that the 

features could be learned without labels. It is an unsupervised feature learning method. 

Input data

...

...

h

w

Output data(learned features)

 
Fig.1 RBM 

  The energy function of RBM is defined as 

1 1 1 1
( , )

v h v hn n n n

i ij j i i j ji j i j
E vW h a v b h

= = = =
= − − −   v h                       (1) 

  Where Wij denotes a real valued weight between visible unit vi and hidden unit hj; ai and bj are 

real valued bias terms associated with the ith visible unit and the jth hidden unit respectively; nv 

and nh are the number of visual units and the number of hidden units respectively. The joint 

distribution of v and h is defined as 

1
( , ) exp( ( , ))P E

Z
= −v h v h                                                      (2) 

  Where Z is the normalizing constant. It is defined as 
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= exp( ( , ))Z E− v h
v h                                                 (3) 

  The activation state of each hidden layer unit is conditionally independent for a given state of 

the visible layer unit. The conditional distributions over hidden h and visible v vectors are derived 

from Eqs.(1) and (2) as  

11
( | ) ( | ), with ( 1| ) ( )

h vn n

j j ij i jij
P P h P h g W v b

==
= = = +h v v v                 (4) 

11
( | ) ( | ), with ( 1| ) ( )

v hn n

i i ij j iji
P P v P v g W h a

==
= = = +v h h h                 (5) 

  Where g denotes the sigmoid activation function g(x)=1/(1+e-x). We assume that a training set is 

denoted by 
1 2{ , ,..., }sn

S = v v v , 1 2( , ,..., )
v

i i i i T

nv v v=v , i=1,2,..,ns and these samples are 

independent and identically distributed. The vi denotes the ith sample in S, and there are nv 

features to represent a sample vi, and the samples size of S is ns. The object of RBM is to 

maximize the log-likelihood of P(v) that is defined as  

11
= ln ( ) ln ( )

s sn nm m

mm
L P P

==
=  v v                                          (6) 

1
( ) exp( ( , ))m mP E

Z
= −h

v v h                                               (7) 

1 ,

1 ,

= (ln exp( ( , )) ln( exp( ( , ))))

(ln exp( ( , ))) ln( exp( ( , )))

s

s

n m

m

n m

sm

L E E

E n E

=

=

− − −

= − − −

  

  

h v h

h v h

v h v h

v h v h
                        (8) 

  These parameters are updated using the gradient ascent method. The partial deviation (i.e., the 

gradient) of L with respect to the parameters {W,a,b} can be obtained as below. 

1
[ ( 1| ) ( ) ( 1| ) ]

sn m m

j i j im
ij

L
P h v P P h v

W =


= = − =


  v

v v v                           (9) 

1
[ ( ) ]

sn m

i im
i

L
v P v

a =


= −


  v

v                                        (10) 

1
[ ( 1| ) ( ) ( 1| )]

sn m

j jm
j

L
P h P P h

b =


= = − =


  v

v v v                              (11)    

  To avoid the exponential complexity of summing over all values of the visible variables when 

calculating the second terms of (9), (10), and (11), one can approximate this expectation by the 

samples from the model distribution. These samples can be obtained by Gibbs sampling(CD-k 

algorithm[49]). The Gibbs chain is initialized with a training example v(0) of the training set and 

yields the sample v(k) after k steps of Gibbs sampling. Then the Eqs.(9),(10),(11) are estimated as 

(12),(13) and (14) respectively. The vm(0) denotes the vm in the 0th step of Gibbs sampling (i.e., 

vm), and vm(k) denotes the sampled v after kth step of Gibbs sampling. 
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(0) (0) ( ) ( )

1
[ ( 1| ) ( 1| ) ]

sn m m m k m k

j i j im
ij

L
P h v P h v

W =


= = − =


 v v                            (12) 

(0) ( )

1
[ ]

sn m m k

i im
i

L
v v

a =


= −


                                             (13) 

(0) ( )

1
[ ( 1| ) ( 1| )]

sn m m k

j jm
j

L
P h P h

b =


= = − =


 v v                               (14) 

  The CD-k algorithm for updating the gradient approximation of the parameters is shown as 

Algorithm 1[48]. The RBM(W, a, b) denotes the RBM network with the parameters of W, a and 

b. k is the number of steps of CD-k algorithm and Sb is the training batch. In lines 1 to 7, it firstly 

calculates the activation probability of all hidden layer units according to Eq.(4) and then samples 

hidden units h(t) from P(h|v(t)) by Gibbs sampling. Similarly, it calculates the activation 

probability of all visual layer units according to Eq.(5) and then samples visual units v(t+1) from 

P(v|h(t)) by Gibbs sampling. In lines 8 to 13, the gradient approximation of each parameter is 

updated according to Eqs. (12) to (14) respectively. The output of Algorithm 1 is the updated 

gradient approximation of each parameter. 

Algorithm 1 k-step contrastive divergence 

Input: k=1, training batch Sb, RBM(W, a, b) 

Output: ΔW, Δa, Δb  

1 ΔW=0, Δa=0, Δb=0 

2 for all the v in Sb do 

3   v(0)←v 

4   for t=0,…,k-1 do 

5     for j=1,…,nh do sample hj
(t) ~ P(hj|v

(t)) 

6     for i=1,…,nv do sample vi
(t+1) ~ P(vi|h

(t)) 

7   end for 

8  for j=1,…, nh, i=1,…, nv do    

9    ΔWij=ΔWij+ (P(hj=1|v(0))vi
(0)- P(hj=1|v(k))vi

(k) ) 

10  Δai=Δai+ (vi
(0) –vi

(k)) 

11  Δbj=Δbj+(P(hj=1|v(0))- P(hj=1|v(k))) 

12  end for 

13 end for 

  The training process of RBM is shown in Algorithm 2[48]. The CDK(k,S,RBM(W,a,b)) is 

obtained by Algorithm 1. J epochs are executed. In line 2, it obtains the gradient approximation 

of each parameter in each epoch through Algorithm 1. In lines 3 to 6, it updates the parameters by 

gradient ascent method for maximizing the log-likelihood of P(v). The output of Algorithm 2 (i.e., 
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the solved W, a and b) includes the parameters of the trained RBM model that can be used to 

obtain the new data with learned features, i.e. X'=WX+b. 

Algorithm 2 training algorithm of RBM 

Input: Training set S, minibatch size nblock, epoch: J, learning rate η and k in CD-k, initialize 

parameters a, b and W. 

Output: Trained RBM model 

1 for iter=1,2,…,J do 

2   {ΔW, Δa, Δb}=CDK(k,S,RBM(W,a,b)) 

3   W=W+ η (ΔW/nblock) 

4   a=a+ η (Δa/nblock) 

5   b=b+ η (Δb/nblock) 

6 end for 

3.2 Subspace based RBMs 

  In RBMs, the time complexity is related with the number of parameters required to be solved. In 

addition, these parameters are correlated with the number of input features (i.e., the number of 

visual units). For the data with thousands of features, there would be tens of thousands of 

parameters with the object of reducing the data dimensionality into 10 to 100. In addition, to 

improve the performance, existing unsupervised feature selection methods tend to estimate the 

underlying structure of the data in the original feature space. Once the structured is found , the 

subspaces are first searched, and then the feature reduction method is performed on each 

subspace [50][51]. In this way, the underlying structure of the data could be learned and the 

number of features in a subspace is smaller than that in the full feature set. So that, the number of 

parameters of a feature learning model trained on a subspace is much less than the one trained on 

the data represented by the full feature space. Therefore, we introduce subspaces into RBMs, and 

propose Subspace based RBMs(SRBM) method. We expect SRBM could improve the 

performance and decrease the resource consumption of RBMs.  

  Existing work [52] argued that the use of a large number of random subspaces can significantly 

benefit the unsupervised feature selection accuracy. However, the large number of random 

subspaces may increase the time consumption. To decrease the time consumption, this paper 

applies the clustering algorithm on the full feature set for finding the subspaces. The flowchart of 

SRBM is shown in Fig.2. On the training data in size of [ns, nv], the subspaces are found by 

dividing full feature set into feature clusters.  The T_SubFi denotes the ith dataset represented by 

the ith subspace, where i=1,2,...,K. The size of T_SubFi matrix is [ns,nv
[i]], and nv= nv

[1] +…+ nv
[K]. 

Then, an RBM is individually trained on each dataset. The RBM1 to RBMK are the RBM models 

trained on T_ SubF1 to T_SubFK respectively. The outputs of RBMs on these K datasets are 

denoted by T_dSubF1, T_dSubF2,…,T_dSubFK. These are the datasets with reduced feature set 

obtained by RBMs. The size of T_dSubFi is [ns,nh
[i]]. All learned features are combined for 

characterizing the dataset. T_FinalFeatureSet denotes the output of our method, and the size of 

T_FinalFeatureSet is [nv, nh], where nh= nh
[1] +…+ nh

[K]. 
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Feature space clustring

T_SubF1

[ns, nv
[1]]

T_SubF2

[ns, nv
[2]]

T_SubFK

[ns, nv
[K]]

RBM1 RBM2 RBMK

T_dSubF1

[ns, nh
[1]]

T_dSubF2

[ns, nh
[2]]

T_dSubFK

[ns, nh
[K]]

T_FinalFeatureSet

[ns, nh]

...

...

...

Training Data

[ns,nv]

 
Fig.2 Flow Chart of SRBM 

  The algorithm of SRBM for unsupervised feature learning is shown in Algorithm 3. It includes 

model training and data transforming.  

  In the lines 1 and 2 of model training part, the K subspaces are obtained using K-means on the 

full feature set. The S.T (in the size of [nv, ns]) is the transposition of S. So that Similar features 

are clustered into a subspace by performing K-means. The km is the K-means model for finding 

feature subspaces. The SubSet is a dataset array and each dataset in it denotes the dataset 

represented by a subspace. In lines 3 to 6, an RBM model is individually trained on the dataset 

represented by each subspace through Algorithm 2. The SubSet[i].T (in the size of [ns, n[i]
v]) is the 

transposition of SubSet[i]. So that RBM learns features on the dataset represented by ith subspace. 

The rbmArray contains all trained RMB models on all feature subspaces. The output of Model 

Training part includes rbmArray and km.  

  In the line 1 of data transforming part, the feature subspaces of the test dataset are firstly 

acquired by the trained km. In lines 2 to 6, the RBM model in rbmArray is performed on 

corresponding feature subspace so as to reduce the dimensionality of the dataset represented by 

each subspace. After all iterations, all learned features by the RBM models are combined to 

represent the origin dataset in lower dimension. The Rdata denotes the dataset with reduced 

feature set. 

Algorithm 3 SRBM algorithm 

Model Training  

Input: Training set S, the number of subspaces K 

Output: Learned RBM set and trained K-means model 

1 km=Kmeans(S.T, K)     #performing clustering algorithm on the full feature set 

2 SubSet=km(S.T)       

3 for i=0 to K-1 do 

4      model = rbm.train(SubSet[i].T)    

5     rbmArray.append(model) 

6 end for 

7 return rbmArray, km 

 

Feature reducing 

Input: data set DS, learned RBM model set rbmArray, learned K-means model km 

Output: data with reduced feature 
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1 SubSet = km(DS.T) 

2 Rdata=[] 

3 for i=0 to len(SubSet)-1 do 

4   RSet= rbmArray[i].Transform(SubSet[i].T) 

5   Rdata =Combine(Rdata, RSet)               #combine the features in Rdata and RSet  

6 end for 

7 return Rdata 

3.3 Analysis on the number of learned parameters  

  This section analyzes the number of learned parameters by RBM and SRBM. Using SRBM, the 

number of parameters in RBM could be decreased, so as to decrease the time consumption when 

training the RBM models. In RBM, the number of parameters is Np = nv + nv*nh+nh. The nv is the 

number of input features, i.e., the number of visual units. The nh is the number of hidden units, 

i.e., the number of features that will be leaned. In SRBM, the origin feature space is clustered into 

multiple subspaces. The number of parameters in SRBM is calculated as Eq. (15), where K is the 

number of subspaces. The number of hidden units in the 1st to the (K-1)th subspace is all set as 

⌊nh/K⌋, and that in the Kth Subspace is set as nh-(K-1)* ⌊nh/K⌋. The Np
(s) is smaller than the Np. 

The time consumption of SRBM and RBM on the real dataset will be further discussed in Section 

5.4.3. 
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4.Datasets and performance evaluation metrics 

  This section mainly introduces the datasets and performance evaluation metrics used in the 

following experiments.  

4.1 Datasets 

  The OmniDroid, CIC2019 and CIC2020 datasets are used in the following experiments and they 

are introduced as below. The number of features and samples in each dataset could be found in 

Table 4.  

(1) OmniDroid dataset 

  The OmniDroid dataset was publicly shared recently[37]. It includes 11,000 malware and 

11,000 benignware samples. The samples are from two different sources, Koodous and AndroZoo 

respectively. There are 18785 malware samples from Androzoo, 4386 malware samples from 

Koodous, and 13619 benignware from Koodous. The preprocessing of this dataset done in [37] is 

as following. Three filtering processes were firstly applied on these samples: removing apks with 

same package name, removing invalid apks at the aid of AndroGuard tool and removing apks 

without DroidBox analysis (discarding samples that could not be actually executed in the Android 

emulator used by DroidBox). The detail of data collection and preprocessing could be further 

found in [37]. The static features and dynamic features were extracted from this dataset.  

  The static features include API calls, Opcodes, Package, Permissions, Intent receivers, Intent 

services, Intent activities, System commands and FlowDroid. FlowDroid features[37] denote the 

paths to the results obtained by FlowDroid that is defined as the first fully context, field, object 

and flow sensitive taint analysis which considers the Android application lifecycle and UI 

widgets, and which features a novel, particularly precise variant of an on-demand alias 

analysis[53]. The main goal of this set of static features is to provide an insight of the 
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application’s expected behavior and the range of actions that it could take based on a static 

analysis of the code which does not imply code execution[37]. These features could be obtained 

before app running.  

  Different classification algorithms (AdaBoost, Bagging, ExtraTrees, Gradient Boosting, 

Random Forest and Voting) have been performed on OmniDroid datasets represented by different 

unions of static feature sets in [37]. The accuracy and precision of detecting malware show that 

the API, API+Permission (union of API and Permission) and API+FlowDroid (union of API and 

FlowDroid) perform better than other static feature sets. Therefore, the API, API+Permission and 

API+FlowDroid feature sets will be used in our following experiments. And the datasets with the 

three feature sets are respectively named as API, APIPermission and APIFlowDroid. The #feature 

column in Table 4 shows that the features in API, APIPermision, APIFlowDroid are more than 

one thousand. Feature reduction is required to decrease the time consumption on training malware 

detection models.  

  In contrast to static analysis, the use of a dynamic analysis tool allows to model the real behavior 

exhibited in a simulated environment where the application is executed[37]. The sequence of 

actions performed throughout the execution is extracted. Each action is linked to a category (i.e. 

file access), a timestamp and a series of parameters (i.e. the path of the file accessed). In order to 

build a feature vector, a Markov chains-based representation was employed. Each state is 

represented by the category of the action and a series of arguments. The transitions probabilities 

and frequency of each state were extracted as features. The dataset with these dynamic features is 

named Dynamic in the following experiments. It owns 5932 features.  

  Table 4 The number of features and samples in each dataset 

Datasets #Features #Samples 

 

OmniDroid  
 

 

API 2128 11000Benign/11000Malware 

APIPermission 7629 11000Benign/11000Malware 

APIFlowDroid 3089 11000Benign/11000Malware 

Dynamic 5932 11000Benign/11000Malware 

CIC2019 8115 1187Benign /407Malware 

CIC2020 9503 39931Benign/40923Malware 

4.1.2 CIC2019 and CIC2020 datasets 

  The publicly shared datasets named CICInvesAndMal2019 (CIC2019 in short) [39]  and CCCS-

CIC-AndMal-2020(CIC2020 in short) [54][55] are also used as our experimental datasets. The 

CIC2019 dataset [39] includes the requested Permissions and Intent actions as static features 

which are extracted from ManifestFile.xml of app’s Apk files. The 8115 Permission and Intent 

features were extracted. For each Apk, the appearance number of each extracted Permission or 

Intent feature is counted as the feature value. There are 407 malware samples and 1187 benign 

samples. The collected dataset includes 42 malware families, which belong to the following four 

categories: adware, ransomware, scareware and SMS malware.  

  To evaluate the performance of unsupervised feature learning methods in the case of zeroday 

malware detection, CIC2020 dataset[54][55] is also used because this dataset includes zeroday 

malware. It includes 14 malware categories including adware, backdoor, file infector, no category, 

Potentially Unwanted Apps (PUA), ransomware, riskware, scareware, trojan, trojan-banker, 

trojan-dropper, trojan-sms, trojan-spy and zero-day. The main extracted features include activities, 

Metadata, the Permissions requested by application, system features (such as camera and internet). 

In total, there are 9503 features in this dataset. The training data includes 32084 benign samples 
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and 27596 malware samples; the testing data includes 7847 benign samples and 13327 zeroday 

malware samples in this dataset.  

4.2 Performance evaluation metrics 

  This section introduces the performance evaluation metrics used in the following experiments. 

To evaluate the performance of the unsupervised feature learning algorithms, the clustering 

accuracy (ACC) and normalized mutual information (NMI) are generally used as clustering 

evaluation metrics[56]. The ACC is defined as  

=1
( , ( ))

=

n

i ii
p map q

ACC
n

                                                      (16) 

  Where pi denotes the true labels of the dataset, qi the clustering labels obtained by the K-means 

clustering algorithm, and map(qi) the mapping function that matches the obtained clustering label 

qi to the equivalent label of the dataset. The delta function δ(a,b)=1 if a=b, otherwise, δ(a,b)=0.  

  The NMI is the normalized mutual information between the true and predicted labels. It is 

defined as 
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  Where P denotes the true labels, Q the clustering results, I(P;Q) the mutual information between 

P and  Q, and H(P) and H(Q) the entropies of P and Q respectively.  

  However, in the field of anomaly detection, the abnormal data are always much less well 

represented than the normal data, the ACC metric may, therefore, be biased towards the normal 

data. If there are 99 normal samples and 1 abnormal sample in the testing data, the ACC could be 

close to 100%, even when the accuracy of abnormal data is 0%. Based on the pi and map(qi), we 

can also obtain other evaluation metrics such as the Fscore of anomaly data calculated on the 

clustering results. It is defined as 
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  Where the Ca denotes the normal class, na denotes the number of samples in Ca, and ma denotes 

the number of samples predicted as Ca by clustering algorithm. pi ∈Ca represents the samples 

whose true label is Ca, and qi ∈ Ca represents the samples whose prediction label is Ca.  

  The higher the ACC, Fscore and NMI are, the better the performance of the unsupervised feature 

learning algorithm is.   

  In some related papers, the classification evaluation metrics are also calculated to evaluate the 

performance of unsupervised feature reduction algorithm[57]. The OA and F-measure of anomaly 

data are used as evaluation metrics used for classification case. The OA is defined as  

 
TP TN

OA
n

+
=                                                                 (19) 
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  The F-measure is the composite evaluation of recall (R) and precision (P). If recall is improved 

but precision drops significantly, and the F-measure could not be improved. 

PR

RP
measureF

+
=−

2
                                                                  (20) 

where 
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In the above equations, TP denotes the True Positives, that is the number of correctly identified 

abnormal samples; TN denotes the True Negatives, that is the number of correctly identified 

normal samples, FP denotes the False Positives, that is the wrongly identified normal samples; 

and FN denotes the False Negatives, that is the number of wrongly identified abnormal samples. 

5. Experiments 

  This section firstly introduces the experiments design and then analyze our experimental results 

from different aspects. 

5.1 Experiments design 

 In this paper, we mainly carry out experiments from the following five aspects: (1) analysis on 

the performance in the case of zeroday malware detection, (2) analysis on the performance 

evaluated by clustering evaluation metrics, (3) analysis on the performance evaluated by 

classification evaluation metrics, (4) discussion on the parameters of SRBM and (5) discussion on 

the time consumption of feature reduction methods. In the first three aspects of experiments, we 

firstly analyze the performance of feature learning algorithms with different number of learned 

features, and then compare the performance of different feature reduction methods with the 

optimal number of reduced features. 

  To evaluate the performance of SRBM, it is compared with RBM, SAE, PCA and 

Agglomeration. SAE and RBM are the unsupervised feature learning algorithms. PCA and 

Agglomeration are unsupervised feature extracting methods. PCA has been used in the field of 

malware detection[20]. Agglomeration also utilizes feature clusters to find the underlying 

structure of data. RBM is introduced in Section 3.1. The SAE, PCA and Agglomeration are 

briefly described as below. 

(1) SAE 

  An auto-encoder is an unsupervised back-propagation neural networks algorithm for feature 

extraction[58]. It aims at minimizing the reconstruction error between input and output. It is a 

symmetrical structure of artificial neural networks. A single auto-encoder consists of two stages: 

encoder and decoder. An encoder aims to map an input vector x into a hidden representation h 

through an encoding function: 

1 1 1( ) ( )h f x W x b= = +                                                    (21) 

  where γ1 is a non-linear activation function. The hidden representation h is then reconstructed 

using decoding function in order to generate the output vector y. The decoding function γ2 is also 

a non-linear mapping function shown as: 

2 2 2( ) ( )y g h W h b= = +                                                       (22) 
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  W1 and W2 represent the weight matrices of the hidden layer and output layer, respectively. The 

b1 and b2 are the bias vectors of the hidden layer and output layer, respectively. 

  The object of AEs is to minimize the reconstruction error(L(x,y)), which measures the 

differences between origin input and the consequent reconstruction. The mean square error (MSE) 

is used as the objective function. The AdaGrad is used to optimize the weights and biases in this 

paper. The stacked auto-encoder (SAE) [59] is shown as shown in Fig.3. The first layer takes the 

original data vector x as input to train the parameters of the first hidden layer. The output of the 

first hidden layer is fed into the second hidden layer to train the parameters. These steps are 

repeated until the parameters of all hidden layers are trained. 
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Fig.3 Stacked auto-encoder diagram 

(2)PCA 

  PCA is an unsupervised technique for extracting variance structure from high dimensional 

datasets[60]. It calculates the eigenvectors from the covariance matrix of the training set, keeping 

only the first k eigenvectors that correspond to the highest eigenvalues. These k eigenvectors 

define the feature space, i.e., the reduce feature set. It is an orthogonal projection or 

transformation of the data into a subspace so that the variance of the projected data is 

maximized[60]. 

(3) Agglomeration 

  Similar to agglomerative clustering, but agglomeration recursively merges features instead of 

samples[61]. It firstly clusters the features by hierarchical clustering algorithm. And then, in each 

feature cluster, feature values are average and transferred into a feature. 

  In the following experiments, the K-means algorithm is used for finding the subspaces in SRBM 

and the number of clusters of K-means (i.e., the number of subspaces) is set as 10. This parameter 

will be further discussed in section 5.4.2. The 10-fold cross validation is executed on OmniDroid 

and CIC2019 datasets. That is, the parameters of the unsupervised learning model are trained on 

90% of the data (used as training set), and the model is used to transfer the 10% data (used as 

testing set) into the reduced dimension data. On the CIC2020 dataset, the training data is used for 

training the feature learning model and malware detection model, and the models are evaluated 

on the testing data. The training and testing data in CIC2020 are illustrated in Section 4.1.2. All 

algorithms are developed using the Python language. Agg and PCA are implemented by invoking 

the packages from scikit-learn[62]. 
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5.2 Performance evaluated by clustering evaluation metrics 

  This section reports the experimental results evaluated by clustering evaluation metrics 

5.2.1 Performance with different number of features 

  In this section, we analyze the experimental results of SRBM method against the other methods 

with different number of learned/extracted features. The number of learned/extracted features is 

set in the range of {100,200,300, 400,500,600,700,800,900,1000}. 

(1) The performance on detecting zeroday malware 

  In the zeroday malware detection case, clustering algorithms are generally used. In such case, 

unsupervised feature learning/extracting methods are used for reducing data dimensionality. This 

is also an application case of our method. This section carries out experiments on the CIC2020 

data to evaluate our method in the case of zeroday malware detection. That is, the malware 

categories in the testing data are not included in the training data. The results are shown in Fig.4.   

It shows that, SRBM significantly improves the NMI, ACC and Fscore of RBM. In detail, NMI, 

ACC and Fscore are respectively improved about 0.12, 0.16 and 0.13. When compared with SAE, 

Agg and PCA, the ACC and Fscore of SRBM are much better than others in all cases of learned 

features. In terms of NMI, SRBM performs the best when the learned features are more than 400. 

 
(a) NMI                                                                              (b)ACC 

 
(d) Fscore 

Fig. 4 NMI, ACC and Fscore results in the case of zeroday malware detection 

 (2) Performance evaluated on the data with static features 

  The NMI, ACC and Fscore of different unsupervised feature learning/extracting methods are 

shown in Figs. 5, 6 and 7 respectively. With different numbers of learned/extracted features, there 

is no trend suggesting that the performance would be better when more features are learned/ 

extracted.  

  In terms of NMI, Fig.5 shows that SRBM perform the best in most cases. The NMIs of Agg and 

PCA are close to each other. On the API and APIFlowDroid datasets, the SRBM and RBM 
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perform better than other methods. In addition, SRBM always outperforms RBM and the 

improvement is significant on APIPermission and CIC2019 datasets. And it also outperforms 

RBM on API and APIFlowDroid datasets. This illustrates that the SRBM is better than the origin 

one. This is because that the SRBM benefits from learning the features in the subspace and knows 

more about the data structure. 

    
                 (a) API                                                         (b) APIFlowDroid 

  
 (c) APIPermission                                                        (d) CIC2019 

Fig. 5 NMI Results of different feature learning/extracting algorithms 

In terms of ACC, the results are similar to those evaluated by NMI. Fig. 6 also shows that 

SRBM is able to improve the performance of RBM in ACC. And it performs better than other 

methods on all datasets except the ACC on APIPermission when learned features are more than 

800. The ACC is evaluated on benign and malware classes. However, this metric may be biases 

towards the majority class (the class represented by a large number of samples, i.e. the benign 

class), and the performance of the minority class (the class represented by a small number of 

samples i.e. the malware class) may be ignored. For example, there are 407 Malware samples and 

1187 benign samples CIC2019 dataset. Therefore, this paper also evaluates the performance in 

terms of Fscore of malware class that is shown in Fig.7. On CIC2019 dataset, the number of 

malware samples is much smaller than that of benign ones, so the domain is said to suffer from 

class imbalance problem. The Fscores on the CIC2019 dataset are much worse than those on 

other datasets, while the ACC on the CIC2019 dataset is close to those obtained on the other 

datasets as shown in Fig.6. This is the class imbalance problem. Nevertheless, the results show 

that SRBM still obtains the best Fscore on all datasets. And it improves the Fscore of RBM 

significantly on APIPermission and CIC2019 datasets. 

The above results demonstrate that SRBM is able to improve the performance of RBM and 

outperforms others when they are evaluated by clustering evaluation metrics. 
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            (a) API                                                       (b) APIFlowdroid 

 
                            (c) APIPermission                                                  (d) CIC2019 

Fig.6 ACC Results of different feature learning/extracting algorithms 

  
        (a) API                                                              (b)APIFlowDroid 

 
                            (c) APIPermission                                                         (d) CIC2019 

Fig.7 Fscore results of different feature learning/extracting algorithms 
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 (3) Performance evaluated on the data with dynamic features 

  Above experiments are only carried on the dataset with static features. This section evaluates the 

performance of unsupervised feature learning/extracting methods on the dataset with dynamic 

features. The NMI, ACC and F-score results of feature learning/extracting methods on the 

Dynamic dataset are shown in Fig.8. SRBM significantly improves the performance of RBM. 

And its performance is close to the best one obtained by Agg method. 

 
(a) NMI                                                       (b)ACC 

 
(c)Fscore 

Fig.8 NMI, ACC and Fscore results on the data with dynamic features 

5.2.2 Performance with optimal numbers of features 

  This section analyzes the performance of unsupervised feature learning/extracting methods with 

the optimal numbers of features. In the previous section, we have evaluated different 

unsupervised feature learning/extracting methods while varying the numbers of learned features. 

In this section, we will evaluate these methods with respect to their optimal numbers of features. 

Specifically, the number of features that leads to the best performance (with respect to NMI) will 

be adopted for the test method, as the number of features varies from 100 to 1000 with an interval 

of 100. The NMI, ACC and Fscore results with the optimal number of features are shown in 

Tables 5 to 7. Origin denotes the results obtained with the full feature set. The optimal numbers 

of features for different datasets are shown in Table 8. 

  The results show that the SRBM performs the best on all datasets in terms of NMI, ACC and 

Fscore except the NMI on the Dynamic dataset. In addition, its performance is more stable than 

that of RBM. For example, RBM obtains much worse performance on the APIPermission than on 

the API and APIFlowDroid datasets. However, the values of NMI, ACC and Fscore obtained by 

SRBM on the three OmniDroid datasets with static features are not much different. On CIC2019 

dataset, the Fscore (0.418) obtained by SRBM is much higher than those obtained by other 

methods. In addition, using SRBM, the Fscore of RBM is improved from 0.085 to 0.418 on the 
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CIC2019 dataset, and improved from 0.260 to 0.843 on CIC2020 dataset. This further proves that 

the RBMs trained on the subspaces can benefit by improving its clustering performance. 

Table 5 NMI results of different methods with the optimal number of learned/extracted features 
Datasets Origin SRBM RBM SAE PCA Agg 

API 0.175±0.015 0.193±0.018 0.192±0.019 0.142±0.073 0.175±0.015 0.176 ±0.015 

APIFlowDroid 0.175±0.015 0.193±0.018 0.185±0.019 0.106±0.088 0.175±0.015 0.176±0.015 

APIPermission 0.176±0.015 0.198±0.076 0.083±0.031 0.137±0.070 0.176±0.015 0.177±0.015 

CIC2019 0.021±0.021 0.101±0.069 0.019±0.025 0.012±0.024 0.053±0.037 0.079±0.061 

CIC2020 0.195 0.265 0.227 0.112 0.198 0.207 

Dynamic 0.025±0.005 0.025±0.005 0.027±0.006 0.018±0.013 0.025±0.007 0.025±0.004 

Table 6 ACC results of different methods with the optimal number of learned/extracted features 
Datasets Origin SRBM RBM SAE PCA Agg 

API 0.696±0.012 0.721±0.014 0.717±0.015 0.694±0.015 0.696±0.013 0.697±0.013 

APIFlowDroid 0.696±0.013 0.720±0.014 0.709±0.016 0.695±0.015 0.696±0.013 0.697±0.013 

APIPermission 0.697±0.013 0.735±0.054 0.662±0.039 0.694±0.014 0.697±0.013 0.697±0.014 

CIC2019 0.745±0.033 0.775±0.029 0.735±0.032 0.748±0.035 0.726±0.076 0.675±0.078 

CIC2020 0.623 0.804 0.629 0.516 0.629 0.629 

Dynamic 0.578±0.010 0.580±0.011 0.507±0.025 0.579±0.010 0.579±0.010 0.578±0.008 

Table 7 Fscore results of different methods with the optimal number of learned/extracted features 
Datasets Origin SRBM RBM SAE PCA Agg 

API 0.599±0.014 0.653±0.019 0.643±0.017 0.595±0.021 0.599±0.014 0.600±0.014 

APIFlowDroid 0.599±0.014 0.651±0.016 0.628±0.020 0.596±0.020 0.599±0.014 0.600±0.015 

APIPermission 0.600±0.015 0.685±0.034 0.650±0.038 0.593±0.016 0.600±0.015 0.601±0.016 

CIC2019 0.030±0.042 0.418±0.123 0.085±0.112 0.067±0.069 0.082±0.057 0.279±0.202 

CIC2020 0.579 0.843 0.260 0.680 0.773 0.773 

Dynamic 0.450±0.013 0.464±0.049 0.044±0.131 0.453±0.020 0.452±0.018 0.450±0.010 

  The optimal numbers of learned/extracted features with the best NMI obtained by different 

methods are shown in Table 8. For example, the SRBM with 400, 1000, 100, 400, 1000 and 300 

learned features on API, APIFlowDroid, APIPermission, CIC2019, CIC2020 and Dynamic 

datasets respectively obtain the best NMI when compared with other numbers of learned features. 

And the optimal numbers of features using SRBM are less than those using RBM on most of 

datasets. This suggests that SRBM requires to learn less features than RBM. This is able to 

further decrease the time consumption for training malware detection models. 

Table 8 The optimal numbers of learned/extracted features with the best NMI  

Datasets SRBM RBM SAE PCA Agg 

API 400 1000 800 900 700 

APIFlowDroid 1000 1000 900 400 600 

APIPermission 100 200 500 100 800 

CIC2019 400 700 400 900 500 

CIC2020 1000 500 400 100 100 

Dynamic 300 1000 200 100 300 

5.3 Performance evaluated by classification evaluation metrics 

  This section evaluates the performance of learned/extracted features in terms of classification 

evaluation metrics, i.e., OA and F-measure. In[57], the unsupervised feature learning algorithm is 

also evaluated using classification algorithms. In this paper, Random Forest is applied as the basic 

classification algorithm. The OA and F-measure obtained by these feature learning/extraction 

algorithms are shown in Figs. 9 and 10 respectively.  The results on the CIC2020 datasets are not 

shown, because the experiments on this dataset aims at illustrating the performance of 

unsupervised feature learning method used in the case of unsupervised zeroday malware detection. 

So, it is not evaluated in terms of classification performance. 
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                                    (a) API                               (b) APIFlowdroid 

 
                             (c) APIPermission                                                   (d)CIC2019 

 
(e) Dynamic 

Fig.9 OA results of different feature learning/extracting algorithms 

  In terms of OA and F-measure, the SRBM outperforms RBM on APIPermission and CIC2019 

datasets. Even though RBM performs better than SRBM on API and APIFlowdroid, the OAs and 

F-measures of SRBM are close to those of RBM.  In detail, the best OA of SRBM is 0.877, and 

the one of RBM is 0.873; the best F-measure of SRBM is 0.876 and that of RBM is 0.872 when 

evaluated on APIPermission dataset; the best OA of SRBM is 0.871, and the one of RBM is 0.878; 

the best F-measure of SRBM is 0.877 and that of RBM is 0.871 when evaluated on API dataset.  
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         (a) API                                                       (b) APIFlowdroid 

  
                            (c) APIPermission                                                     (d)CIC2019 

 
(e) Dynamic 

Fig.10 F-measure results of different feature learning/extracting algorithms 

  The OA and F-measure with the optimal numbers of learned/extracted features are shown in 

Tables 9 and 10 respectively. The Origin denotes the results obtained by Random Forest with 

origin full feature set. The results show that the OA and F-measure are decreased by feature 

reduction methods when compared with Origin on API and CIC2019 datasets. This is because 

that the unsupervised feature learning/extracting methods did not use the label information and 

may lose some information that benefit for classification. The OA and F-measure are decreased a 

little bit on API and APIFlowDroid; but these are increased on APIPermission and CIC2019 

datasets when SRBM is compared with RBM. In addition, the results in Section 5.4.2 show that 

the OA and F-measure of SRBM could be further improved when the number of subspaces is 

increased. Results show that the OA and F-measure could be close to that obtained by Agg when 

the number of subspaces is 1000. 
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Table 9 OA results of different methods with the optimal number of learned/extracted features 

Datasets Origin SRBM RBM SAE PCA Agg 

API 0.893±0.007 0.871±0.007 0.876±0.007 0.858±0.013 0.867±0.007 0.890±0.007 

APIFlowDroid 0.893±0.009 0.870±0.007 0.878±0.007 0.860±0.010 0.865±0.007 0.893±0.006 

APIPermission 0.894±0.007 0.869±0.007 0.849±0.010 0.893±0.007 0.871±0.008 0.895±0.007 

CIC2019 0.960±0.013 0.916±0.015 0.905±0.017 0.954±0.018 0.952±0.017 0.959±0.017 

Dynamic 0.786±0.008 0.744±0.007 0.734±0.009 0.738±0.010 0.752±0.012 0.783±0.008 

Table 10 F-measure results of different methods with the optimal number of learned/extracted 

features 

Datasets Origin SRBM RBM SAE PCA Agg 

API 0.892±0.009 0.870±0.008 0.874±0.009 0.857±0.014 0.861±0.008 0.889±0.008 

APIFlowDroid 0.892±0.010 0.869±0.008 0.877±0.009 0.859±0.009 0.861±0.009 0.893±0.007 

APIPermission 0.893±0.008 0.867±0.009 0.848±0.011 0.892±0.008 0.868±0.009 0.893±0.009 

CIC2019 0.973±0.009 0.945±0.111 0.939±0.111 0.970±0.013 0.968±0.012 0.972±0.012 

Dynamic 0.781±0.006 0.742±0.009 0.731±0.010 0.739±0.010 0.753±0.017 0.778±0.011 

5.4 Discussion 

  This section mainly discusses the number of subspaces and the clustering method used in our 

method. 

5.4.1 Discussion regarding the number of subspaces 

  The number of subspaces in SRBM may influence the performance. This section carries out 

experiments on evaluating the performance of SRBM with the number of subspaces in the range 

[10,20,30,40,50,60,70,80, 90,100]. The results on the API dataset with different numbers of 

subspaces are shown in Fig. 11.  The results on the other datasets have the same trend. The NMI, 

ACC and Fscore are decreased a little bit by increasing the number of subspaces. For example, 

the NMI is decreased from 0.192 to 0.179, the ACC decreased from 0.720 to 0.703, and Fscore 

decreased from 0.652 to 0.616. The OA and F-measure are increased by increasing the number of 

subspaces. The OA is increased from 0.869 to 0.878 and F-measure increased from 0.867 to 

0.876.   

 
(a) NMI, ACC and Fscore metrics                                (b) OA and F-measure metrics 

Fig. 11 Discussion on the number of subspaces used in SRBM with the number of 100 learned 

features 

  When the number of learned features is 1000, the number of subspaces is set in the range 

[100,200, 300,400,500,600,700,800,900,1000]. The results are shown in Fig.12. The trend of 

these performance evaluation metrics with increasing the number of subspaces is the same as 

those shown in Fig.11. In addition, the SRBM can obtain about 0.89 OA and 0.89 F-measure 

when the number of subspaces is 1000 with 1000 learned features. That is close to the Origin 
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(0.893) shown in Table 9. This suggests that the classification performance could be further 

improved by increasing the number of subspaces. 

  
(a) NMI, ACC and Fscore metrics                                (b) OA and F-measure metrics 

Fig. 12 Discussion on the number of subspaces used in SRBM with the number of 1000 learned 

features 

5.4.2 Discussion on the clustering methods 

  To find the subspaces in SRBM, the K-means algorithm, which is popular for clustering, is 

applied in this paper. This section will carry out experiments to evaluate the other clustering 

methods for finding the subspaces. AgglomerativeClustering, SpectralClustering, 

MinibatchKmeans and Birch algorithms in the Sklearn module are evaluated in this section.  The 

results obtained by SRBM with different clustering algorithms on the API dataset are shown in 

Fig.13.  

  
(a) NMI results                                                                     (b)ACC results 

  
(c) Fscore results                                                  (d) OA results 
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(e) F-measure results 

Fig.13 Discussion on the clustering methods used in SRBM 

  The K-means algorithm is that used in the earlier experiments. The results show that the SRBM 

with K-means obtains the best results in most cases where the performance is evaluated by the 

clustering metrics, i.e., NMI, ACC and Fscore. Its performance is more stable than that of other 

methods as the number of learned features changes. For example, the Spectral and 

MiniBatchKmeans obtain about 0.71 Fscore with 100 learned features, but Fscore drops to 0.65 

with 200 learned features. The NMI, ACC, Fscore, OA and F-measure obtained by the SRBM 

with K-means does not fluctuate significantly. 

5.4.3 Discussion on the time consumption 

  This section analyzes the time consumption of feature learning and classification model training. 

In order to evaluate the overhead of different feature learning/extraction methods, taking API data 

as an example, the time consumed for learning or extracting features by different methods is 

shown in Fig.14(a). The experiments are carried out on a server with Intel(R) Xeon(R) Gold 6142 

CPU and 192GB memory. Each experiment is repeated 10 times. The time consumed by RBM 

increases with the increase of learned features. This is because the number of parameters required 

to be solved increases with the increase of learned features. In addition, the results show that 

SRBM consumes much less time than RBM. This demonstrates that SRBM can decrease the 

resource consumption of RBM.  

      
               (a) Time consumption of feature                                    (b) Time consumption  

                     learning/extracting methods                                 of training Random Forest model 

Fig.14 Time consumption results 

  Tables 9 and 10 show that the Random Forest with the full feature set obtains the best OA and 

F-measure on 3 over 5 datasets. This suggests that the feature reduction may degrade 

classification accuracy. Here is a question: if it is worth to perform feature reduction in such case? 

One benefit of feature reduction is that it could reduce the time consumption of training 
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classification models. So, we further looking at the training time consumption of using Random 

Forest to illustrate if it is worth to perform feature reduction. Taking API dataset as an example, 

the time consumption results are shown in Fig.14(b). SRBM+RF denotes the time consumption of 

performing SRBM on the training data and that of training Random Forest model on the training 

data with reduced feature set. We did not add the training time of SRBM model. This because 

that we only need to perform the trained SRBM model and train the classification model on the 

future data to obtain the classification model once the SRBM model is already trained. 

FullFeatuareSet+RF denotes the time consumption of training Random Forest model on the data 

with full feature set. The results show that the time consumption of SRBM+RF is much less than 

that of FullFeatureSet+RF. This further proves that the trained SRBM model is able to reduce the 

time consumption on training Random Forest model.  

6. Conclusions and future work 

  This paper proposes an unsupervised feature learning method for mobile malware detection. It is 

based on RBM and it could be used for reducing the data dimensionality in the case of 

unsupervised mobile malware detection. In order to decrease resource consumption and to 

improve the performance of RBM, it optimizes RBM by introducing the subspaces concept. 

Before feature learning, a search for appropriate subspaces is conducted using a clustering 

method on the full feature set, and an RBM is used for learning the features under each feature 

subspace. Finally, all learned features are combined to represent origin data in lower dimension. 

The SRBM is compared with RBM, SAE, Agg and PCA in our experiments. The results show 

that SRBM performs better than other methods on most of datasets in terms of clustering 

evaluation metrics especially in the case of zeroday malware detection. And, SRBM improves the 

NMI, ACC and Fscore of RBM. On average, the NMI, ACC and Fscore are respectively improved 

about 6.2%, 6.9% and 15.4% over all datasets. In addition, its performance is more stable than 

that of other methods.   

  SRBM is able to improve the performance of RBM, but the performance is still not good on 

some datasets. In the future, we plan to study the method for improving the performance of 

unsupervised feature learning method in the field of mobile malware detection. And we will also 

study the multimodal feature learning algorithms on hybrid features, aiming at decreasing the 

number of hybrid features in an unsupervised way for malware detection. And the subspaces 

division will be further studied in other methods such as the SAE etc. in future.  
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