
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

https://creativecommons.org/licenses/by-nc-nd/4.0/

 https://doi.org/10.1016/j.future.2021.02.015

Access to this work was provided by the University of Maryland, Baltimore County (UMBC)
ScholarWorks@UMBC digital repository on the Maryland Shared Open Access (MD-SOAR)
platform.

Please provide feedback

Please support the ScholarWorks@UMBC repository by emailing scholarworks-
group@umbc.edu and telling us what having access to this work means to you and why it’s
important to you. Thank you.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.future.2021.02.015
mailto:scholarworks-group@umbc.edu
mailto:scholarworks-group@umbc.edu

1

Research on Unsupervised Feature Learning for Android

Malware Detection based on Restricted Boltzmann

Machines

Zhen Liuac, Ruoyu Wangb, Nathalie Japkowiczd, Deyu Tangac, Wenbin Zhange, Jie Zhaof

aSchool of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou, 510006, China
bInformation and Network Engineering and Research Center, South China University of Technology, Guangzhou

510041, China

cGuangdong province precise medicine and big data engineering technology research center for traditional Chinese

medicine, Guangzhou 510006, China

dDepartment of Computer Science, American University, Washington, DC, 20016, USA

eUniversity of Maryland, Baltimore County, MD 21250 USA
fDepartment of Information Management Engineering, School of Management, Guangdong University of Technology,

Guangzhou, 510520, China

Abstract: Android malware detection has attracted much attention in recent years. Existing

methods mainly research on extracting static or dynamic features from mobile apps and build

mobile malware detection model by machine learning algorithms. The number of extracted static

or dynamic features maybe much high, e.g. thousands of Permissions features in OmniDroid

dataset for containing all possible Permissions. As a result, the data suffers from high

dimensionality. In addition, to avoid being detected, malware data is varied and hard to obtain in

the first place. To detect zeroday malware, unsupervised malware detection methods were applied.

In such case, unsupervised feature reduction method is an available choice to reduce the data

dimensionality. In this paper, we propose an unsupervised feature learning algorithm called

Subspace based Restricted Boltzmann Machines (SRBM) for reducing data dimensionality in

malware detection. Multiple subspaces in the original data are firstly searched. And then, an

RBM is built on each subspace. All outputs of the hidden layers of the trained RBMs are

combined to represent the data in lower dimension. The experimental results on OmniDroid,

CIC2019 and CIC2020 datasets show that the features learned by SRBM perform better than the

ones learned by other feature reduction methods when the performance is evaluated by clustering

evaluation metrics, i.e., NMI, ACC and Fscore.

Keywords: Mobile malware detection, Unsupervised feature learning, Restricted Boltzmann

Machines, feature subspaces

1. Introduction

 Smart phones have been widely used in people’s daily life, such as online banking, automated

home control, and entertainment [1]. The number of mobile phone users is expected to rise to 3.8

billion in 2021, marking a 52 percent increase in a relatively short period of five years[2]. Mobile

malware is malicious software specifically designed to target mobile devices, such as

smartphones and tablets, with the goal of gaining access to private data[3]. Recent reports from

AV-Test Institute show that 350,000 new pieces of malware are detected every day[4]. The

Kaspersky Lab reports that the number of malicious mobile banker packages circulating online

grew by 58% during the first quarter of 2019[5]. G-Data Security expert counted 4.18 million

malware applications until the end of the year 2019 and discovered over 7,50,000 new malware

applications during the first quarter of 2020[6]. Some recent well-known malware examples

 Corresponding Author: rywang@scut.edu.cn(Ruoyu Wang)

2

include ransomware, spyware, malicious apps and financial malware[7]. These malicious

programs posed serious threats to mobile device users, including stealing user credentials, auto-

dialing premium number, and sending SMS message without the user’s consent[1]. These threats

have made Cybersecurity become one of the main concerns to be addressed by society[8].

 In order to protect mobile users from attacks[9], different kinds of techniques have been

researched, such as designing privacy aware Apps[10], analyzing the requested Permissions in

apps[11][12] and researching malware detection method[13][16]. The anti-virus products, such as

Norton, Lookout and Coodo Mobile security, mainly use signature-based matching methods to

detect attacks[1]. A malware signature is created by extracting binary patterns, or random

snippets, from a sample[13]. Anti-virus companies usually use cryptographic hash, e.g., MD5, to

generate a signature for an application[14]. Then any app encountered in the future with the same

signature is considered a sample of that malware [13]. However, malware can easily bypass

signature-based identification by changing small pieces of its software without affecting the

semantics.

 A variety of machine learning based techniques have been researched to detect Android

malware. These methods include static analysis-based methods and dynamic analysis-based

methods. The static analysis-based methods utilize reverse-engineering techniques to decompile

the codes of apps from the installing packages. They further extract static features, such as

request Permission sequences[15], API (Application Program Interfaces) sequences[16][17],

meta-information[18] from the decompiled codes. The detection model is trained on the data

characterized by static features. Dynamic analysis-based methods extract reliable information

from the execution traces of apps in a controlled environment. The execution traces include

system calls[19], traffic traces etc.[7]. The malware detection model is trained on the data

characterized by dynamic features extracted from the execution traces.

 The number of extracted static or dynamic features may be much high, e.g., the thousands of

features in OmniDroid dataset[37] shown in Table 4. As a result, the data may suffer from the

high dimensionality problem. That is, the data may include irrelevant and redundant features, and

increase the time consumption on training malware detection models. Hence, feature reduction is

required as a preprocessing for machine learning based malware detection. The supervised feature

reduction methods have been utilized in the field of malware detection. An open problem in this

field is that it lacks the researches on unsupervised feature reduction. Clustering (unsupervised

machine learning) methods have also been used for malware detection[20], especially when used

for detecting zeroday malware[21]. When using clustering for malware detection, unsupervised

feature reduction method is an available choice to reduce the data dimensionality. This paper

researches the unsupervised feature learning for mobile malware detection, aiming at learning the

latent features and reducing the data dimensionality. The contributions of this paper include:

(1)We propose an unsupervised feature reduction method named SRBM(Subspace based

Restricted Boltzmann Machines) for mobile malware detection by applying unsupervised feature

learning and subspace learning to consider the non-linear relationship among features and the

underlying structure of data.

(2)We employ RBMs(Restricted Boltzmann Machines) to learn the reduced feature set by

considering the non-linear relationship among features.

(3)We introduce subspace learning into RBMs and search the subspaces by clustering the features

in the full feature set.

3

(4)We evaluate the performance of SRBM by comparing it with RBM, Stacked Auto Encoder

(SAE), PCA (Principal Components Analysis) and Agglomeration algorithms in multiple cases.

The experimental results on the real datasets show that the NMI(normalized mutual information),

ACC(Accuracy) and Fscore are respectively improved about 6.2%, 6.9% and 15.4% on average

over all datasets when our method is compared with RBM. And it also outperforms other methods

on most datasets in terms of the three metrics.

 The rest of this paper is organized as follows. The related works are introduced in Section 2. The

RBM and our proposed method are presented in Section 3. The experimental datasets and

performance evaluation metrics are described in Section 4. The experimental results are reported

in Section 5. Finally, the conclusion of the paper is provided in Section 6.

2. Related work

 In this section, we firstly introduce the static, dynamic and hybrid analysis-based methods in

mobile malware detection research filed. Then we further overview the related works of feature

reduction methods in mobile malware detection research field.

2.1 Mobile malware detection methods

 The mobile malware detection methods can be categorized into static analysis-based methods

and dynamic analysis-based methods. Both methods have pros and cons. Static analysis is prone

to obfuscation but is generally faster and less resource intensive than dynamic analysis. Dynamic

analysis is resistant to obfuscation but can be hampered by anti-virtualization and code coverage

limitations[22].

Table 1 Static analysis-based methods

Ref. Static Features #Features/Feature

selection method

Methods

Yen et al. [30] TF-IDF on code Not given/None CNN(Convolutional Neural

Network)

Taheri et

al.[23]

API, Intent,

Permission

Not given/Random Forest

Regressor

FNN(First nearest neighbors),

ANN(all NN), ANN(weighted

ANN), KMNN (k- medoid

based NN)

Badhani et

al.[24]

API tags,

Permissions

217/remove the Features

own a constant value or

zero variance

Clustering and ensemble

methods

Scalas et al.[38] API packages,

classes, methods

41027/information gain Random Forest

Mercaldo et

al.[27]

Images on binary

codes

256/None Deep Neural Networks

Yerima, et

al.[22]

Permission,

Intents

350/information gain Fusion method on Random

Tree, REPTree, J48 and

Voted Perceptron

Pai et al. [21] Opcode sequences Not given/None K-means, Expectation-

Maximization

Thiyagarajan et

al. [20]

Permissions 130/PCA, Chi, APriori,

SPR, PRNR

Decision trees, K-means

Mariconti et al.

[29]

Markov chains on

API call graph

Not given / None Random Forest, 1NN,3NN

and SVM

 In the field of static analysis-based methods, as shown in Table 1, reverse engineering toolkits

(such as Apktool) are generally used to decompile codes or to access the different files contained

in the installing packages (e.g., the Android manifest.xml and classes.dex). After the decompiling,

4

we can obtain readable information such as a list of API calls or required Permissions, Intent

filters, process names etc. Then, malware app detection rules or detection models based on

machine learning could be built from these decompiled data characterized by static features.

Different kinds of feature vectors have been extracted, such as binary values of API calls, Intent,

Permissions etc. signifies the presence and absence of the feature. [23][24][25]. Some other

methods further extract word2vec[26], TF-IDF[7], images[27] of bytecodes, API call graph[28],

HIN[1] and Markov chains[29] on the API calls. A variety of machine learning algorithms have

been performed on the data with static features, such as CNN[30], FNN[23], Clustering and

ensemble[24], Random Forest etc[38]. For example, Pai et al. [21] compute clusters using the

well-known K-means and Expectation Maximization algorithms, with the underlying scores

based on Hidden Markov Models. Their method obtains 70% to 80% AUC for silhouette

coefficient scores with different number of clusters for classifying malware families. On the data

with high dimensionality, feature reduction method is used to reduce features, such as

information gain[38] [22].

 In the field of dynamic analysis-based methods, as shown in Table 2, the methods leverage an

emulator or even a physical to run the apps while a monitoring agent captures a series of

indicators, such as hardware components accessed, network traffic, system calls invoked, or API

calls invoked. Similar to the static analysis methods, different kinds of feature vectors were built

on these extracted raw data, such as the n-grams of system calls[31], API call sequences[32][33]

and flow statistic features on network traffic[34]. And machine learning methods are used for

detecting malwares, such as Autoencoders[35], LSTM[36], K-means and KNN[32].

Table 2 Dynamic analysis-based methods

Ref. Dynamic

Features

#Features/Feature

selection methods

Methods

Angelo ett al.

[35]

Invoked API call

images

(450*450)/None Autoencoders, SoftMax neural

network

Xiao et al. [36] System call

sequences,

Not given/ None LSTM(Long Short Term Mermory

network)

Ananya et al.

[31]

n-grams of system

calls,

Not given/SAILS Logistic Regression, CART, Random

Forest, XGBoost and Deep Neural

Networks

Duarte-Garcia

et al. [32]

API calls

sequences

Not given/None K-means and KNN

Shamsi et al.

[33]

API calls

sequences

Not given/None Weighted Pair Group Method with

Arithmetic Mean

 In the field of hybrid analysis-based methods, as shown in Table 3, the static features and

dynamic features are used for the training mobile malware detection model. Martin et al.[37]

publicly shared OmniDroid dataset. They extracted static features (API, FlowDroid, Permissions,

Receivers, Services etc.) and dynamic features based on the Markov chins representation (states

sequences and transactions probabilities) of the executed action when app running. They carried

out a series of experiments on their datasets. The results show that Random Forest performs the

best among AdaBoost, Bagging, ExtraTrees, Gradient Boosting, Random Forest and Voting.

Among the different combinations of static feature sets, the API, API+Permission (union of API

and Permission) and API+FlowDroid (union of API and Permission) perform much better than

other static feature sets. Random Forest with API+ FlowDroid feature set obtains 0.892 accuracy

and 0.892 precision. And the union of transactions and frequencies of the dynamic features

performs better than one set of them. Random Forest with the combination dynamic features

obtains 0.785 accuracy and 0.785 precision. Taheri et al.[39] also publicly shared benchmark

5

datasets with malware static and dynamic features. The static features include Permissions and

Intents. The dynamic features are composed by API calls and network flows. They firstly perform

Random Forest for classifying malware and benign on the data with static features, and then

perform Random Forest on classifying malware categories on the data with dynamic features.

Table 3 Hybrid analysis-based methods

Ref. Hybrid Features #Features/Feature

selection methods

Methods

Saif et al.

[41]

Permissions, Services,

Receivers, Activities, API

calls, System calls, etc.

Not given/Relief Deep belief network

Alzaylaee

et al.[40]

Application,

Actions/Events,Permission

420/Information gain Deep Neural Networks

Martin et

al. [37]

API, FlowDroid,

Permissions, Receivers,

Services etc., Markov

chains on system calls

2128 API, 961 FlowDroid,

5501 Permissions, 6415

Receivers, 4365 Services,

etc., 5932 Markov chains

on system calls/None

AdaBoost, Bagging,

ExtraTrees, Gradient

Boosting, Random Forest

Taheri et

al. [39]

Permission, Intents, flow

features, API call features

8115 Permission and

Intents, 80 network-flow

features, 911 API call

features/None

Random Forest

 The feature vectors extracted from different fields are directly concatenated and are used for

training a malware detection model. In this way, the data suffers from the high dimensionality

problem. In some papers, supervised feature selection methods, such as information gain and

Relief, have been used to reduce the data dimensionality as shown in Tables 1 to 3.

2.2 Feature reduction methods in mobile malware detection

 This section further introduces the feature reduction methods in mobile malware detection field.

Feizollah et al. [42] overview feature selection methods in mobile malware detection research

field, and they claim only 8 out of 100 papers work on feature reduction by feature selection

algorithms. Most works select features (choosing API, permission as static features or system

calls as dynamic features) based on rationalizing. Feature selection is performed using supervised

feature ranking algorithms, such as Information Gain.

 Alam et al.[28] take out signatures common in malware and benign instances, to reduce the

number of features. Taheri et al.[23] apply Random Forest Regressor algorithm for feature

reduction. In addition, they repeat the experiments for {10%, 20%, 30%, 40%, 50%, 60%, 70%,

80%, 90%, 100%} of the manifest features with higher ranks to determine the optimal features.

Badhani et al. [24] remove the irrelevant features from the full feature set. These irrelevant

features are identified as such if they have a constant value or zero variance. Mariconti et al. [29]

perform PCA (Principal Components Analysis) on Markov chains-based features. Anaya et al.[31]

propose a new feature selection mechanism known as selection of relevant attributes for

improving locally extracted features using classical feature selectors (SAILS). SAILS is built on

top of conventional feature selection methods, such as mutual information, distinguishing feature

selector and Galavotti-Sebastiani-Simi. Suresh et al. [43] employ recursive feature elimination

(RFE) to explicitly determine the tradeoff between the features used and the accuracy. Lashkari et

al. [44] conduct two feature selection algorithms, namely CfsSubsetEval with Best First search

method and Information gain with the Ranker search over the training dataset. Sheen et al.[45]

compare three feature selection methods (i.e., Chi-Square, Relief and Information Gain) on the

dataset characterized by API and Permissions. The experimental results show that the Relief

6

method performs the best. Thiyagarajan et al. [20] handle the feature reduction on the

Permissions features by PCA, Chi-square, APriori, SPR(support-based pruning) and

PRNR(permission ranking with negative rate), and then train decision tree model on the data with

reduced features; and they further category the malware samples into 45 families using K-means.

 Tables 1 to 3 show that most works utilize supervised feature reduction algorithms to reduce the

data dimensionality in mobile malware detection. A few papers utilize unsupervised feature

extraction method PCA in this field. To the best of our knowledge, this paper is the first work that

researches the performance of unsupervised feature learning for mobile malware detection. The

unsupervised feature learning method could be used in the case of clustering-based malware

detection cases such as detecting zeroday malware.

3. Unsupervised feature learning method

 This section firstly introduces existing RBM method and then presents our SRBM method.

3.1 RBM

 RBMs have been used effectively in modeling distributions [46]. An RBM[47] is an undirected

graphical model. It is shown in Fig.1. It consists of visible variables {0,1} vn
v to represent

observable data and stochastic hidden variables {0,1} hn
h to capture dependencies between

observed variables[48]. Each visible variable is connected to each hidden variable. And there is

no connection in the same visible or hidden layer. After the learning process, the output of the

hidden layer is the learned latent feature vector and could be used as the input to the machine

learning algorithms for training the malware detection model. The goal of RBM is to find Pdata(v)

the unknown true high dimensional distribution of the visual layer variables. It means that the

features could be learned without labels. It is an unsupervised feature learning method.

Input data

...

...

h

w

Output data(learned features)

Fig.1 RBM

 The energy function of RBM is defined as

1 1 1 1
(,)

v h v hn n n n

i ij j i i j ji j i j
E vW h a v b h

= = = =
= − − − v h (1)

 Where Wij denotes a real valued weight between visible unit vi and hidden unit hj; ai and bj are

real valued bias terms associated with the ith visible unit and the jth hidden unit respectively; nv

and nh are the number of visual units and the number of hidden units respectively. The joint

distribution of v and h is defined as

1
(,) exp((,))P E

Z
= −v h v h (2)

 Where Z is the normalizing constant. It is defined as

7

= exp((,))Z E− v h
v h (3)

 The activation state of each hidden layer unit is conditionally independent for a given state of

the visible layer unit. The conditional distributions over hidden h and visible v vectors are derived

from Eqs.(1) and (2) as

11
(|) (|), with (1|) ()

h vn n

j j ij i jij
P P h P h g W v b

==
= = = +h v v v (4)

11
(|) (|), with (1|) ()

v hn n

i i ij j iji
P P v P v g W h a

==
= = = +v h h h (5)

 Where g denotes the sigmoid activation function g(x)=1/(1+e-x). We assume that a training set is

denoted by
1 2{ , ,..., }sn

S = v v v , 1 2(, ,...,)
v

i i i i T

nv v v=v , i=1,2,..,ns and these samples are

independent and identically distributed. The vi denotes the ith sample in S, and there are nv

features to represent a sample vi, and the samples size of S is ns. The object of RBM is to

maximize the log-likelihood of P(v) that is defined as

11
= ln () ln ()

s sn nm m

mm
L P P

==
= v v (6)

1
() exp((,))m mP E

Z
= −h

v v h (7)

1 ,

1 ,

= (ln exp((,)) ln(exp((,))))

(ln exp((,))) ln(exp((,)))

s

s

n m

m

n m

sm

L E E

E n E

=

=

− − −

= − − −

h v h

h v h

v h v h

v h v h
 (8)

 These parameters are updated using the gradient ascent method. The partial deviation (i.e., the

gradient) of L with respect to the parameters {W,a,b} can be obtained as below.

1
[(1|) () (1|)]

sn m m

j i j im
ij

L
P h v P P h v

W =

= = − =

 v

v v v (9)

1
[()]

sn m

i im
i

L
v P v

a =

= −

 v

v (10)

1
[(1|) () (1|)]

sn m

j jm
j

L
P h P P h

b =

= = − =

 v

v v v (11)

 To avoid the exponential complexity of summing over all values of the visible variables when

calculating the second terms of (9), (10), and (11), one can approximate this expectation by the

samples from the model distribution. These samples can be obtained by Gibbs sampling(CD-k

algorithm[49]). The Gibbs chain is initialized with a training example v(0) of the training set and

yields the sample v(k) after k steps of Gibbs sampling. Then the Eqs.(9),(10),(11) are estimated as

(12),(13) and (14) respectively. The vm(0) denotes the vm in the 0th step of Gibbs sampling (i.e.,

vm), and vm(k) denotes the sampled v after kth step of Gibbs sampling.

8

(0) (0) () ()

1
[(1|) (1|)]

sn m m m k m k

j i j im
ij

L
P h v P h v

W =

= = − =

 v v (12)

(0) ()

1
[]

sn m m k

i im
i

L
v v

a =

= −

 (13)

(0) ()

1
[(1|) (1|)]

sn m m k

j jm
j

L
P h P h

b =

= = − =

 v v (14)

 The CD-k algorithm for updating the gradient approximation of the parameters is shown as

Algorithm 1[48]. The RBM(W, a, b) denotes the RBM network with the parameters of W, a and

b. k is the number of steps of CD-k algorithm and Sb is the training batch. In lines 1 to 7, it firstly

calculates the activation probability of all hidden layer units according to Eq.(4) and then samples

hidden units h(t) from P(h|v(t)) by Gibbs sampling. Similarly, it calculates the activation

probability of all visual layer units according to Eq.(5) and then samples visual units v(t+1) from

P(v|h(t)) by Gibbs sampling. In lines 8 to 13, the gradient approximation of each parameter is

updated according to Eqs. (12) to (14) respectively. The output of Algorithm 1 is the updated

gradient approximation of each parameter.

Algorithm 1 k-step contrastive divergence

Input: k=1, training batch Sb, RBM(W, a, b)

Output: ΔW, Δa, Δb

1 ΔW=0, Δa=0, Δb=0

2 for all the v in Sb do

3 v(0)←v

4 for t=0,…,k-1 do

5 for j=1,…,nh do sample hj
(t) ~ P(hj|v

(t))

6 for i=1,…,nv do sample vi
(t+1) ~ P(vi|h

(t))

7 end for

8 for j=1,…, nh, i=1,…, nv do

9 ΔWij=ΔWij+ (P(hj=1|v(0))vi
(0)- P(hj=1|v(k))vi

(k))

10 Δai=Δai+ (vi
(0) –vi

(k))

11 Δbj=Δbj+(P(hj=1|v(0))- P(hj=1|v(k)))

12 end for

13 end for

 The training process of RBM is shown in Algorithm 2[48]. The CDK(k,S,RBM(W,a,b)) is

obtained by Algorithm 1. J epochs are executed. In line 2, it obtains the gradient approximation

of each parameter in each epoch through Algorithm 1. In lines 3 to 6, it updates the parameters by

gradient ascent method for maximizing the log-likelihood of P(v). The output of Algorithm 2 (i.e.,

9

the solved W, a and b) includes the parameters of the trained RBM model that can be used to

obtain the new data with learned features, i.e. X'=WX+b.

Algorithm 2 training algorithm of RBM

Input: Training set S, minibatch size nblock, epoch: J, learning rate η and k in CD-k, initialize

parameters a, b and W.

Output: Trained RBM model

1 for iter=1,2,…,J do

2 {ΔW, Δa, Δb}=CDK(k,S,RBM(W,a,b))

3 W=W+ η (ΔW/nblock)

4 a=a+ η (Δa/nblock)

5 b=b+ η (Δb/nblock)

6 end for

3.2 Subspace based RBMs

 In RBMs, the time complexity is related with the number of parameters required to be solved. In

addition, these parameters are correlated with the number of input features (i.e., the number of

visual units). For the data with thousands of features, there would be tens of thousands of

parameters with the object of reducing the data dimensionality into 10 to 100. In addition, to

improve the performance, existing unsupervised feature selection methods tend to estimate the

underlying structure of the data in the original feature space. Once the structured is found , the

subspaces are first searched, and then the feature reduction method is performed on each

subspace [50][51]. In this way, the underlying structure of the data could be learned and the

number of features in a subspace is smaller than that in the full feature set. So that, the number of

parameters of a feature learning model trained on a subspace is much less than the one trained on

the data represented by the full feature space. Therefore, we introduce subspaces into RBMs, and

propose Subspace based RBMs(SRBM) method. We expect SRBM could improve the

performance and decrease the resource consumption of RBMs.

 Existing work [52] argued that the use of a large number of random subspaces can significantly

benefit the unsupervised feature selection accuracy. However, the large number of random

subspaces may increase the time consumption. To decrease the time consumption, this paper

applies the clustering algorithm on the full feature set for finding the subspaces. The flowchart of

SRBM is shown in Fig.2. On the training data in size of [ns, nv], the subspaces are found by

dividing full feature set into feature clusters. The T_SubFi denotes the ith dataset represented by

the ith subspace, where i=1,2,...,K. The size of T_SubFi matrix is [ns,nv
[i]], and nv= nv

[1] +…+ nv
[K].

Then, an RBM is individually trained on each dataset. The RBM1 to RBMK are the RBM models

trained on T_ SubF1 to T_SubFK respectively. The outputs of RBMs on these K datasets are

denoted by T_dSubF1, T_dSubF2,…,T_dSubFK. These are the datasets with reduced feature set

obtained by RBMs. The size of T_dSubFi is [ns,nh
[i]]. All learned features are combined for

characterizing the dataset. T_FinalFeatureSet denotes the output of our method, and the size of

T_FinalFeatureSet is [nv, nh], where nh= nh
[1] +…+ nh

[K].

10

Feature space clustring

T_SubF1

[ns, nv
[1]]

T_SubF2

[ns, nv
[2]]

T_SubFK

[ns, nv
[K]]

RBM1 RBM2 RBMK

T_dSubF1

[ns, nh
[1]]

T_dSubF2

[ns, nh
[2]]

T_dSubFK

[ns, nh
[K]]

T_FinalFeatureSet

[ns, nh]

...

...

...

Training Data

[ns,nv]

Fig.2 Flow Chart of SRBM

 The algorithm of SRBM for unsupervised feature learning is shown in Algorithm 3. It includes

model training and data transforming.

 In the lines 1 and 2 of model training part, the K subspaces are obtained using K-means on the

full feature set. The S.T (in the size of [nv, ns]) is the transposition of S. So that Similar features

are clustered into a subspace by performing K-means. The km is the K-means model for finding

feature subspaces. The SubSet is a dataset array and each dataset in it denotes the dataset

represented by a subspace. In lines 3 to 6, an RBM model is individually trained on the dataset

represented by each subspace through Algorithm 2. The SubSet[i].T (in the size of [ns, n[i]
v]) is the

transposition of SubSet[i]. So that RBM learns features on the dataset represented by ith subspace.

The rbmArray contains all trained RMB models on all feature subspaces. The output of Model

Training part includes rbmArray and km.

 In the line 1 of data transforming part, the feature subspaces of the test dataset are firstly

acquired by the trained km. In lines 2 to 6, the RBM model in rbmArray is performed on

corresponding feature subspace so as to reduce the dimensionality of the dataset represented by

each subspace. After all iterations, all learned features by the RBM models are combined to

represent the origin dataset in lower dimension. The Rdata denotes the dataset with reduced

feature set.

Algorithm 3 SRBM algorithm

Model Training

Input: Training set S, the number of subspaces K

Output: Learned RBM set and trained K-means model

1 km=Kmeans(S.T, K) #performing clustering algorithm on the full feature set

2 SubSet=km(S.T)

3 for i=0 to K-1 do

4 model = rbm.train(SubSet[i].T)

5 rbmArray.append(model)

6 end for

7 return rbmArray, km

Feature reducing

Input: data set DS, learned RBM model set rbmArray, learned K-means model km

Output: data with reduced feature

11

1 SubSet = km(DS.T)

2 Rdata=[]

3 for i=0 to len(SubSet)-1 do

4 RSet= rbmArray[i].Transform(SubSet[i].T)

5 Rdata =Combine(Rdata, RSet) #combine the features in Rdata and RSet

6 end for

7 return Rdata

3.3 Analysis on the number of learned parameters

 This section analyzes the number of learned parameters by RBM and SRBM. Using SRBM, the

number of parameters in RBM could be decreased, so as to decrease the time consumption when

training the RBM models. In RBM, the number of parameters is Np = nv + nv*nh+nh. The nv is the

number of input features, i.e., the number of visual units. The nh is the number of hidden units,

i.e., the number of features that will be leaned. In SRBM, the origin feature space is clustered into

multiple subspaces. The number of parameters in SRBM is calculated as Eq. (15), where K is the

number of subspaces. The number of hidden units in the 1st to the (K-1)th subspace is all set as

⌊nh/K⌋, and that in the Kth Subspace is set as nh-(K-1)* ⌊nh/K⌋. The Np
(s) is smaller than the Np.

The time consumption of SRBM and RBM on the real dataset will be further discussed in Section

5.4.3.

() [] [] [] []

1

[] []

1

(*)

= (* / /)

* /

Ks i i i i

p v v h hi

K i i

v v h hi

v v h h

N n n n n

n n n K n K

n n n K n

=

=

= + +

+ +

= + +

 (15)

4.Datasets and performance evaluation metrics

 This section mainly introduces the datasets and performance evaluation metrics used in the

following experiments.

4.1 Datasets

 The OmniDroid, CIC2019 and CIC2020 datasets are used in the following experiments and they

are introduced as below. The number of features and samples in each dataset could be found in

Table 4.

(1) OmniDroid dataset

 The OmniDroid dataset was publicly shared recently[37]. It includes 11,000 malware and

11,000 benignware samples. The samples are from two different sources, Koodous and AndroZoo

respectively. There are 18785 malware samples from Androzoo, 4386 malware samples from

Koodous, and 13619 benignware from Koodous. The preprocessing of this dataset done in [37] is

as following. Three filtering processes were firstly applied on these samples: removing apks with

same package name, removing invalid apks at the aid of AndroGuard tool and removing apks

without DroidBox analysis (discarding samples that could not be actually executed in the Android

emulator used by DroidBox). The detail of data collection and preprocessing could be further

found in [37]. The static features and dynamic features were extracted from this dataset.

 The static features include API calls, Opcodes, Package, Permissions, Intent receivers, Intent

services, Intent activities, System commands and FlowDroid. FlowDroid features[37] denote the

paths to the results obtained by FlowDroid that is defined as the first fully context, field, object

and flow sensitive taint analysis which considers the Android application lifecycle and UI

widgets, and which features a novel, particularly precise variant of an on-demand alias

analysis[53]. The main goal of this set of static features is to provide an insight of the

12

application’s expected behavior and the range of actions that it could take based on a static

analysis of the code which does not imply code execution[37]. These features could be obtained

before app running.

 Different classification algorithms (AdaBoost, Bagging, ExtraTrees, Gradient Boosting,

Random Forest and Voting) have been performed on OmniDroid datasets represented by different

unions of static feature sets in [37]. The accuracy and precision of detecting malware show that

the API, API+Permission (union of API and Permission) and API+FlowDroid (union of API and

FlowDroid) perform better than other static feature sets. Therefore, the API, API+Permission and

API+FlowDroid feature sets will be used in our following experiments. And the datasets with the

three feature sets are respectively named as API, APIPermission and APIFlowDroid. The #feature

column in Table 4 shows that the features in API, APIPermision, APIFlowDroid are more than

one thousand. Feature reduction is required to decrease the time consumption on training malware

detection models.

 In contrast to static analysis, the use of a dynamic analysis tool allows to model the real behavior

exhibited in a simulated environment where the application is executed[37]. The sequence of

actions performed throughout the execution is extracted. Each action is linked to a category (i.e.

file access), a timestamp and a series of parameters (i.e. the path of the file accessed). In order to

build a feature vector, a Markov chains-based representation was employed. Each state is

represented by the category of the action and a series of arguments. The transitions probabilities

and frequency of each state were extracted as features. The dataset with these dynamic features is

named Dynamic in the following experiments. It owns 5932 features.

 Table 4 The number of features and samples in each dataset

Datasets #Features #Samples

OmniDroid

API 2128 11000Benign/11000Malware

APIPermission 7629 11000Benign/11000Malware

APIFlowDroid 3089 11000Benign/11000Malware

Dynamic 5932 11000Benign/11000Malware

CIC2019 8115 1187Benign /407Malware

CIC2020 9503 39931Benign/40923Malware

4.1.2 CIC2019 and CIC2020 datasets

 The publicly shared datasets named CICInvesAndMal2019 (CIC2019 in short) [39] and CCCS-

CIC-AndMal-2020(CIC2020 in short) [54][55] are also used as our experimental datasets. The

CIC2019 dataset [39] includes the requested Permissions and Intent actions as static features

which are extracted from ManifestFile.xml of app’s Apk files. The 8115 Permission and Intent

features were extracted. For each Apk, the appearance number of each extracted Permission or

Intent feature is counted as the feature value. There are 407 malware samples and 1187 benign

samples. The collected dataset includes 42 malware families, which belong to the following four

categories: adware, ransomware, scareware and SMS malware.

 To evaluate the performance of unsupervised feature learning methods in the case of zeroday

malware detection, CIC2020 dataset[54][55] is also used because this dataset includes zeroday

malware. It includes 14 malware categories including adware, backdoor, file infector, no category,

Potentially Unwanted Apps (PUA), ransomware, riskware, scareware, trojan, trojan-banker,

trojan-dropper, trojan-sms, trojan-spy and zero-day. The main extracted features include activities,

Metadata, the Permissions requested by application, system features (such as camera and internet).

In total, there are 9503 features in this dataset. The training data includes 32084 benign samples

13

and 27596 malware samples; the testing data includes 7847 benign samples and 13327 zeroday

malware samples in this dataset.

4.2 Performance evaluation metrics

 This section introduces the performance evaluation metrics used in the following experiments.

To evaluate the performance of the unsupervised feature learning algorithms, the clustering

accuracy (ACC) and normalized mutual information (NMI) are generally used as clustering

evaluation metrics[56]. The ACC is defined as

=1
(, ())

=

n

i ii
p map q

ACC
n

 (16)

 Where pi denotes the true labels of the dataset, qi the clustering labels obtained by the K-means

clustering algorithm, and map(qi) the mapping function that matches the obtained clustering label

qi to the equivalent label of the dataset. The delta function δ(a,b)=1 if a=b, otherwise, δ(a,b)=0.

 The NMI is the normalized mutual information between the true and predicted labels. It is

defined as

(;)
(,)

() ()

I P Q
NMI P Q

H P H Q
= (17)

 Where P denotes the true labels, Q the clustering results, I(P;Q) the mutual information between

P and Q, and H(P) and H(Q) the entropies of P and Q respectively.

 However, in the field of anomaly detection, the abnormal data are always much less well

represented than the normal data, the ACC metric may, therefore, be biased towards the normal

data. If there are 99 normal samples and 1 abnormal sample in the testing data, the ACC could be

close to 100%, even when the accuracy of abnormal data is 0%. Based on the pi and map(qi), we

can also obtain other evaluation metrics such as the Fscore of anomaly data calculated on the

clustering results. It is defined as

1, 1,

1, 1,

(, ()) (, ())
2*()*()

Fscore
(, ()) (, ())

() ()

i a i a

i a i a

n n

i i i ii p C i q C

a a

n n

i i i ii p C i q C

a a

p map q p map q

n m

p map q p map q

n m

= =

= =

=

+

 (18)

 Where the Ca denotes the normal class, na denotes the number of samples in Ca, and ma denotes

the number of samples predicted as Ca by clustering algorithm. pi ∈Ca represents the samples

whose true label is Ca, and qi ∈ Ca represents the samples whose prediction label is Ca.

 The higher the ACC, Fscore and NMI are, the better the performance of the unsupervised feature

learning algorithm is.

 In some related papers, the classification evaluation metrics are also calculated to evaluate the

performance of unsupervised feature reduction algorithm[57]. The OA and F-measure of anomaly

data are used as evaluation metrics used for classification case. The OA is defined as

TP TN

OA
n

+
= (19)

14

 The F-measure is the composite evaluation of recall (R) and precision (P). If recall is improved

but precision drops significantly, and the F-measure could not be improved.

PR

RP
measureF

+
=−

2
 (20)

where
FNTP

TP
R

+
=

FPTP

TP
P

+
=

In the above equations, TP denotes the True Positives, that is the number of correctly identified

abnormal samples; TN denotes the True Negatives, that is the number of correctly identified

normal samples, FP denotes the False Positives, that is the wrongly identified normal samples;

and FN denotes the False Negatives, that is the number of wrongly identified abnormal samples.

5. Experiments

 This section firstly introduces the experiments design and then analyze our experimental results

from different aspects.

5.1 Experiments design

 In this paper, we mainly carry out experiments from the following five aspects: (1) analysis on

the performance in the case of zeroday malware detection, (2) analysis on the performance

evaluated by clustering evaluation metrics, (3) analysis on the performance evaluated by

classification evaluation metrics, (4) discussion on the parameters of SRBM and (5) discussion on

the time consumption of feature reduction methods. In the first three aspects of experiments, we

firstly analyze the performance of feature learning algorithms with different number of learned

features, and then compare the performance of different feature reduction methods with the

optimal number of reduced features.

 To evaluate the performance of SRBM, it is compared with RBM, SAE, PCA and

Agglomeration. SAE and RBM are the unsupervised feature learning algorithms. PCA and

Agglomeration are unsupervised feature extracting methods. PCA has been used in the field of

malware detection[20]. Agglomeration also utilizes feature clusters to find the underlying

structure of data. RBM is introduced in Section 3.1. The SAE, PCA and Agglomeration are

briefly described as below.

(1) SAE

 An auto-encoder is an unsupervised back-propagation neural networks algorithm for feature

extraction[58]. It aims at minimizing the reconstruction error between input and output. It is a

symmetrical structure of artificial neural networks. A single auto-encoder consists of two stages:

encoder and decoder. An encoder aims to map an input vector x into a hidden representation h

through an encoding function:

1 1 1() ()h f x W x b= = + (21)

 where γ1 is a non-linear activation function. The hidden representation h is then reconstructed

using decoding function in order to generate the output vector y. The decoding function γ2 is also

a non-linear mapping function shown as:

2 2 2() ()y g h W h b= = + (22)

15

 W1 and W2 represent the weight matrices of the hidden layer and output layer, respectively. The

b1 and b2 are the bias vectors of the hidden layer and output layer, respectively.

 The object of AEs is to minimize the reconstruction error(L(x,y)), which measures the

differences between origin input and the consequent reconstruction. The mean square error (MSE)

is used as the objective function. The AdaGrad is used to optimize the weights and biases in this

paper. The stacked auto-encoder (SAE) [59] is shown as shown in Fig.3. The first layer takes the

original data vector x as input to train the parameters of the first hidden layer. The output of the

first hidden layer is fed into the second hidden layer to train the parameters. These steps are

repeated until the parameters of all hidden layers are trained.

x1

x2

x3

xn

h1
1

h2
1

hj
1

+1

+1

h1
2

h2
2

hj
2

+1

h1
3

h2
3

hj
3

+1

y1

y2

y3

yn

In
p
u
t
la

y
er

Hidden layer Hidden layer

O
u
tp

u
t

la
y

er

Hidden layer

Encoding Decoding

Fig.3 Stacked auto-encoder diagram

(2)PCA

 PCA is an unsupervised technique for extracting variance structure from high dimensional

datasets[60]. It calculates the eigenvectors from the covariance matrix of the training set, keeping

only the first k eigenvectors that correspond to the highest eigenvalues. These k eigenvectors

define the feature space, i.e., the reduce feature set. It is an orthogonal projection or

transformation of the data into a subspace so that the variance of the projected data is

maximized[60].

(3) Agglomeration

 Similar to agglomerative clustering, but agglomeration recursively merges features instead of

samples[61]. It firstly clusters the features by hierarchical clustering algorithm. And then, in each

feature cluster, feature values are average and transferred into a feature.

 In the following experiments, the K-means algorithm is used for finding the subspaces in SRBM

and the number of clusters of K-means (i.e., the number of subspaces) is set as 10. This parameter

will be further discussed in section 5.4.2. The 10-fold cross validation is executed on OmniDroid

and CIC2019 datasets. That is, the parameters of the unsupervised learning model are trained on

90% of the data (used as training set), and the model is used to transfer the 10% data (used as

testing set) into the reduced dimension data. On the CIC2020 dataset, the training data is used for

training the feature learning model and malware detection model, and the models are evaluated

on the testing data. The training and testing data in CIC2020 are illustrated in Section 4.1.2. All

algorithms are developed using the Python language. Agg and PCA are implemented by invoking

the packages from scikit-learn[62].

16

5.2 Performance evaluated by clustering evaluation metrics

 This section reports the experimental results evaluated by clustering evaluation metrics

5.2.1 Performance with different number of features

 In this section, we analyze the experimental results of SRBM method against the other methods

with different number of learned/extracted features. The number of learned/extracted features is

set in the range of {100,200,300, 400,500,600,700,800,900,1000}.

(1) The performance on detecting zeroday malware

 In the zeroday malware detection case, clustering algorithms are generally used. In such case,

unsupervised feature learning/extracting methods are used for reducing data dimensionality. This

is also an application case of our method. This section carries out experiments on the CIC2020

data to evaluate our method in the case of zeroday malware detection. That is, the malware

categories in the testing data are not included in the training data. The results are shown in Fig.4.

It shows that, SRBM significantly improves the NMI, ACC and Fscore of RBM. In detail, NMI,

ACC and Fscore are respectively improved about 0.12, 0.16 and 0.13. When compared with SAE,

Agg and PCA, the ACC and Fscore of SRBM are much better than others in all cases of learned

features. In terms of NMI, SRBM performs the best when the learned features are more than 400.

(a) NMI (b)ACC

(d) Fscore

Fig. 4 NMI, ACC and Fscore results in the case of zeroday malware detection

 (2) Performance evaluated on the data with static features

 The NMI, ACC and Fscore of different unsupervised feature learning/extracting methods are

shown in Figs. 5, 6 and 7 respectively. With different numbers of learned/extracted features, there

is no trend suggesting that the performance would be better when more features are learned/

extracted.

 In terms of NMI, Fig.5 shows that SRBM perform the best in most cases. The NMIs of Agg and

PCA are close to each other. On the API and APIFlowDroid datasets, the SRBM and RBM

17

perform better than other methods. In addition, SRBM always outperforms RBM and the

improvement is significant on APIPermission and CIC2019 datasets. And it also outperforms

RBM on API and APIFlowDroid datasets. This illustrates that the SRBM is better than the origin

one. This is because that the SRBM benefits from learning the features in the subspace and knows

more about the data structure.

 (a) API (b) APIFlowDroid

 (c) APIPermission (d) CIC2019

Fig. 5 NMI Results of different feature learning/extracting algorithms

In terms of ACC, the results are similar to those evaluated by NMI. Fig. 6 also shows that

SRBM is able to improve the performance of RBM in ACC. And it performs better than other

methods on all datasets except the ACC on APIPermission when learned features are more than

800. The ACC is evaluated on benign and malware classes. However, this metric may be biases

towards the majority class (the class represented by a large number of samples, i.e. the benign

class), and the performance of the minority class (the class represented by a small number of

samples i.e. the malware class) may be ignored. For example, there are 407 Malware samples and

1187 benign samples CIC2019 dataset. Therefore, this paper also evaluates the performance in

terms of Fscore of malware class that is shown in Fig.7. On CIC2019 dataset, the number of

malware samples is much smaller than that of benign ones, so the domain is said to suffer from

class imbalance problem. The Fscores on the CIC2019 dataset are much worse than those on

other datasets, while the ACC on the CIC2019 dataset is close to those obtained on the other

datasets as shown in Fig.6. This is the class imbalance problem. Nevertheless, the results show

that SRBM still obtains the best Fscore on all datasets. And it improves the Fscore of RBM

significantly on APIPermission and CIC2019 datasets.

The above results demonstrate that SRBM is able to improve the performance of RBM and

outperforms others when they are evaluated by clustering evaluation metrics.

18

 (a) API (b) APIFlowdroid

 (c) APIPermission (d) CIC2019

Fig.6 ACC Results of different feature learning/extracting algorithms

 (a) API (b)APIFlowDroid

 (c) APIPermission (d) CIC2019

Fig.7 Fscore results of different feature learning/extracting algorithms

19

 (3) Performance evaluated on the data with dynamic features

 Above experiments are only carried on the dataset with static features. This section evaluates the

performance of unsupervised feature learning/extracting methods on the dataset with dynamic

features. The NMI, ACC and F-score results of feature learning/extracting methods on the

Dynamic dataset are shown in Fig.8. SRBM significantly improves the performance of RBM.

And its performance is close to the best one obtained by Agg method.

(a) NMI (b)ACC

(c)Fscore

Fig.8 NMI, ACC and Fscore results on the data with dynamic features

5.2.2 Performance with optimal numbers of features

 This section analyzes the performance of unsupervised feature learning/extracting methods with

the optimal numbers of features. In the previous section, we have evaluated different

unsupervised feature learning/extracting methods while varying the numbers of learned features.

In this section, we will evaluate these methods with respect to their optimal numbers of features.

Specifically, the number of features that leads to the best performance (with respect to NMI) will

be adopted for the test method, as the number of features varies from 100 to 1000 with an interval

of 100. The NMI, ACC and Fscore results with the optimal number of features are shown in

Tables 5 to 7. Origin denotes the results obtained with the full feature set. The optimal numbers

of features for different datasets are shown in Table 8.

 The results show that the SRBM performs the best on all datasets in terms of NMI, ACC and

Fscore except the NMI on the Dynamic dataset. In addition, its performance is more stable than

that of RBM. For example, RBM obtains much worse performance on the APIPermission than on

the API and APIFlowDroid datasets. However, the values of NMI, ACC and Fscore obtained by

SRBM on the three OmniDroid datasets with static features are not much different. On CIC2019

dataset, the Fscore (0.418) obtained by SRBM is much higher than those obtained by other

methods. In addition, using SRBM, the Fscore of RBM is improved from 0.085 to 0.418 on the

20

CIC2019 dataset, and improved from 0.260 to 0.843 on CIC2020 dataset. This further proves that

the RBMs trained on the subspaces can benefit by improving its clustering performance.

Table 5 NMI results of different methods with the optimal number of learned/extracted features
Datasets Origin SRBM RBM SAE PCA Agg

API 0.175±0.015 0.193±0.018 0.192±0.019 0.142±0.073 0.175±0.015 0.176 ±0.015

APIFlowDroid 0.175±0.015 0.193±0.018 0.185±0.019 0.106±0.088 0.175±0.015 0.176±0.015

APIPermission 0.176±0.015 0.198±0.076 0.083±0.031 0.137±0.070 0.176±0.015 0.177±0.015

CIC2019 0.021±0.021 0.101±0.069 0.019±0.025 0.012±0.024 0.053±0.037 0.079±0.061

CIC2020 0.195 0.265 0.227 0.112 0.198 0.207

Dynamic 0.025±0.005 0.025±0.005 0.027±0.006 0.018±0.013 0.025±0.007 0.025±0.004

Table 6 ACC results of different methods with the optimal number of learned/extracted features
Datasets Origin SRBM RBM SAE PCA Agg

API 0.696±0.012 0.721±0.014 0.717±0.015 0.694±0.015 0.696±0.013 0.697±0.013

APIFlowDroid 0.696±0.013 0.720±0.014 0.709±0.016 0.695±0.015 0.696±0.013 0.697±0.013

APIPermission 0.697±0.013 0.735±0.054 0.662±0.039 0.694±0.014 0.697±0.013 0.697±0.014

CIC2019 0.745±0.033 0.775±0.029 0.735±0.032 0.748±0.035 0.726±0.076 0.675±0.078

CIC2020 0.623 0.804 0.629 0.516 0.629 0.629

Dynamic 0.578±0.010 0.580±0.011 0.507±0.025 0.579±0.010 0.579±0.010 0.578±0.008

Table 7 Fscore results of different methods with the optimal number of learned/extracted features
Datasets Origin SRBM RBM SAE PCA Agg

API 0.599±0.014 0.653±0.019 0.643±0.017 0.595±0.021 0.599±0.014 0.600±0.014

APIFlowDroid 0.599±0.014 0.651±0.016 0.628±0.020 0.596±0.020 0.599±0.014 0.600±0.015

APIPermission 0.600±0.015 0.685±0.034 0.650±0.038 0.593±0.016 0.600±0.015 0.601±0.016

CIC2019 0.030±0.042 0.418±0.123 0.085±0.112 0.067±0.069 0.082±0.057 0.279±0.202

CIC2020 0.579 0.843 0.260 0.680 0.773 0.773

Dynamic 0.450±0.013 0.464±0.049 0.044±0.131 0.453±0.020 0.452±0.018 0.450±0.010

 The optimal numbers of learned/extracted features with the best NMI obtained by different

methods are shown in Table 8. For example, the SRBM with 400, 1000, 100, 400, 1000 and 300

learned features on API, APIFlowDroid, APIPermission, CIC2019, CIC2020 and Dynamic

datasets respectively obtain the best NMI when compared with other numbers of learned features.

And the optimal numbers of features using SRBM are less than those using RBM on most of

datasets. This suggests that SRBM requires to learn less features than RBM. This is able to

further decrease the time consumption for training malware detection models.

Table 8 The optimal numbers of learned/extracted features with the best NMI

Datasets SRBM RBM SAE PCA Agg

API 400 1000 800 900 700

APIFlowDroid 1000 1000 900 400 600

APIPermission 100 200 500 100 800

CIC2019 400 700 400 900 500

CIC2020 1000 500 400 100 100

Dynamic 300 1000 200 100 300

5.3 Performance evaluated by classification evaluation metrics

 This section evaluates the performance of learned/extracted features in terms of classification

evaluation metrics, i.e., OA and F-measure. In[57], the unsupervised feature learning algorithm is

also evaluated using classification algorithms. In this paper, Random Forest is applied as the basic

classification algorithm. The OA and F-measure obtained by these feature learning/extraction

algorithms are shown in Figs. 9 and 10 respectively. The results on the CIC2020 datasets are not

shown, because the experiments on this dataset aims at illustrating the performance of

unsupervised feature learning method used in the case of unsupervised zeroday malware detection.

So, it is not evaluated in terms of classification performance.

21

 (a) API (b) APIFlowdroid

 (c) APIPermission (d)CIC2019

(e) Dynamic

Fig.9 OA results of different feature learning/extracting algorithms

 In terms of OA and F-measure, the SRBM outperforms RBM on APIPermission and CIC2019

datasets. Even though RBM performs better than SRBM on API and APIFlowdroid, the OAs and

F-measures of SRBM are close to those of RBM. In detail, the best OA of SRBM is 0.877, and

the one of RBM is 0.873; the best F-measure of SRBM is 0.876 and that of RBM is 0.872 when

evaluated on APIPermission dataset; the best OA of SRBM is 0.871, and the one of RBM is 0.878;

the best F-measure of SRBM is 0.877 and that of RBM is 0.871 when evaluated on API dataset.

22

 (a) API (b) APIFlowdroid

 (c) APIPermission (d)CIC2019

(e) Dynamic

Fig.10 F-measure results of different feature learning/extracting algorithms

 The OA and F-measure with the optimal numbers of learned/extracted features are shown in

Tables 9 and 10 respectively. The Origin denotes the results obtained by Random Forest with

origin full feature set. The results show that the OA and F-measure are decreased by feature

reduction methods when compared with Origin on API and CIC2019 datasets. This is because

that the unsupervised feature learning/extracting methods did not use the label information and

may lose some information that benefit for classification. The OA and F-measure are decreased a

little bit on API and APIFlowDroid; but these are increased on APIPermission and CIC2019

datasets when SRBM is compared with RBM. In addition, the results in Section 5.4.2 show that

the OA and F-measure of SRBM could be further improved when the number of subspaces is

increased. Results show that the OA and F-measure could be close to that obtained by Agg when

the number of subspaces is 1000.

23

Table 9 OA results of different methods with the optimal number of learned/extracted features

Datasets Origin SRBM RBM SAE PCA Agg

API 0.893±0.007 0.871±0.007 0.876±0.007 0.858±0.013 0.867±0.007 0.890±0.007

APIFlowDroid 0.893±0.009 0.870±0.007 0.878±0.007 0.860±0.010 0.865±0.007 0.893±0.006

APIPermission 0.894±0.007 0.869±0.007 0.849±0.010 0.893±0.007 0.871±0.008 0.895±0.007

CIC2019 0.960±0.013 0.916±0.015 0.905±0.017 0.954±0.018 0.952±0.017 0.959±0.017

Dynamic 0.786±0.008 0.744±0.007 0.734±0.009 0.738±0.010 0.752±0.012 0.783±0.008

Table 10 F-measure results of different methods with the optimal number of learned/extracted

features

Datasets Origin SRBM RBM SAE PCA Agg

API 0.892±0.009 0.870±0.008 0.874±0.009 0.857±0.014 0.861±0.008 0.889±0.008

APIFlowDroid 0.892±0.010 0.869±0.008 0.877±0.009 0.859±0.009 0.861±0.009 0.893±0.007

APIPermission 0.893±0.008 0.867±0.009 0.848±0.011 0.892±0.008 0.868±0.009 0.893±0.009

CIC2019 0.973±0.009 0.945±0.111 0.939±0.111 0.970±0.013 0.968±0.012 0.972±0.012

Dynamic 0.781±0.006 0.742±0.009 0.731±0.010 0.739±0.010 0.753±0.017 0.778±0.011

5.4 Discussion

 This section mainly discusses the number of subspaces and the clustering method used in our

method.

5.4.1 Discussion regarding the number of subspaces

 The number of subspaces in SRBM may influence the performance. This section carries out

experiments on evaluating the performance of SRBM with the number of subspaces in the range

[10,20,30,40,50,60,70,80, 90,100]. The results on the API dataset with different numbers of

subspaces are shown in Fig. 11. The results on the other datasets have the same trend. The NMI,

ACC and Fscore are decreased a little bit by increasing the number of subspaces. For example,

the NMI is decreased from 0.192 to 0.179, the ACC decreased from 0.720 to 0.703, and Fscore

decreased from 0.652 to 0.616. The OA and F-measure are increased by increasing the number of

subspaces. The OA is increased from 0.869 to 0.878 and F-measure increased from 0.867 to

0.876.

(a) NMI, ACC and Fscore metrics (b) OA and F-measure metrics

Fig. 11 Discussion on the number of subspaces used in SRBM with the number of 100 learned

features

 When the number of learned features is 1000, the number of subspaces is set in the range

[100,200, 300,400,500,600,700,800,900,1000]. The results are shown in Fig.12. The trend of

these performance evaluation metrics with increasing the number of subspaces is the same as

those shown in Fig.11. In addition, the SRBM can obtain about 0.89 OA and 0.89 F-measure

when the number of subspaces is 1000 with 1000 learned features. That is close to the Origin

24

(0.893) shown in Table 9. This suggests that the classification performance could be further

improved by increasing the number of subspaces.

(a) NMI, ACC and Fscore metrics (b) OA and F-measure metrics

Fig. 12 Discussion on the number of subspaces used in SRBM with the number of 1000 learned

features

5.4.2 Discussion on the clustering methods

 To find the subspaces in SRBM, the K-means algorithm, which is popular for clustering, is

applied in this paper. This section will carry out experiments to evaluate the other clustering

methods for finding the subspaces. AgglomerativeClustering, SpectralClustering,

MinibatchKmeans and Birch algorithms in the Sklearn module are evaluated in this section. The

results obtained by SRBM with different clustering algorithms on the API dataset are shown in

Fig.13.

(a) NMI results (b)ACC results

(c) Fscore results (d) OA results

25

(e) F-measure results

Fig.13 Discussion on the clustering methods used in SRBM

 The K-means algorithm is that used in the earlier experiments. The results show that the SRBM

with K-means obtains the best results in most cases where the performance is evaluated by the

clustering metrics, i.e., NMI, ACC and Fscore. Its performance is more stable than that of other

methods as the number of learned features changes. For example, the Spectral and

MiniBatchKmeans obtain about 0.71 Fscore with 100 learned features, but Fscore drops to 0.65

with 200 learned features. The NMI, ACC, Fscore, OA and F-measure obtained by the SRBM

with K-means does not fluctuate significantly.

5.4.3 Discussion on the time consumption

 This section analyzes the time consumption of feature learning and classification model training.

In order to evaluate the overhead of different feature learning/extraction methods, taking API data

as an example, the time consumed for learning or extracting features by different methods is

shown in Fig.14(a). The experiments are carried out on a server with Intel(R) Xeon(R) Gold 6142

CPU and 192GB memory. Each experiment is repeated 10 times. The time consumed by RBM

increases with the increase of learned features. This is because the number of parameters required

to be solved increases with the increase of learned features. In addition, the results show that

SRBM consumes much less time than RBM. This demonstrates that SRBM can decrease the

resource consumption of RBM.

 (a) Time consumption of feature (b) Time consumption

 learning/extracting methods of training Random Forest model

Fig.14 Time consumption results

 Tables 9 and 10 show that the Random Forest with the full feature set obtains the best OA and

F-measure on 3 over 5 datasets. This suggests that the feature reduction may degrade

classification accuracy. Here is a question: if it is worth to perform feature reduction in such case?

One benefit of feature reduction is that it could reduce the time consumption of training

26

classification models. So, we further looking at the training time consumption of using Random

Forest to illustrate if it is worth to perform feature reduction. Taking API dataset as an example,

the time consumption results are shown in Fig.14(b). SRBM+RF denotes the time consumption of

performing SRBM on the training data and that of training Random Forest model on the training

data with reduced feature set. We did not add the training time of SRBM model. This because

that we only need to perform the trained SRBM model and train the classification model on the

future data to obtain the classification model once the SRBM model is already trained.

FullFeatuareSet+RF denotes the time consumption of training Random Forest model on the data

with full feature set. The results show that the time consumption of SRBM+RF is much less than

that of FullFeatureSet+RF. This further proves that the trained SRBM model is able to reduce the

time consumption on training Random Forest model.

6. Conclusions and future work

 This paper proposes an unsupervised feature learning method for mobile malware detection. It is

based on RBM and it could be used for reducing the data dimensionality in the case of

unsupervised mobile malware detection. In order to decrease resource consumption and to

improve the performance of RBM, it optimizes RBM by introducing the subspaces concept.

Before feature learning, a search for appropriate subspaces is conducted using a clustering

method on the full feature set, and an RBM is used for learning the features under each feature

subspace. Finally, all learned features are combined to represent origin data in lower dimension.

The SRBM is compared with RBM, SAE, Agg and PCA in our experiments. The results show

that SRBM performs better than other methods on most of datasets in terms of clustering

evaluation metrics especially in the case of zeroday malware detection. And, SRBM improves the

NMI, ACC and Fscore of RBM. On average, the NMI, ACC and Fscore are respectively improved

about 6.2%, 6.9% and 15.4% over all datasets. In addition, its performance is more stable than

that of other methods.

 SRBM is able to improve the performance of RBM, but the performance is still not good on

some datasets. In the future, we plan to study the method for improving the performance of

unsupervised feature learning method in the field of mobile malware detection. And we will also

study the multimodal feature learning algorithms on hybrid features, aiming at decreasing the

number of hybrid features in an unsupervised way for malware detection. And the subspaces

division will be further studied in other methods such as the SAE etc. in future.

Acknowledgements

 We thank the anonymous reviewers for their constructive comments. This work is supported by

the National Natural Science Foundation of China [Grant No. 61501128, 61976239], financial

support from China Scholarship Council, Natural Science Foundation of Guangdong Province

[Grant Nos. 2017A030313345, 2020A1515010783].

References
[1] Hou, S. F., Ye, Y. F., Song, Y. Q., et al. HinDroid: An intelligent android malware detection system

based on structured heterogeneous information network. the 23rd ACM International Conference

on SIGKDD, 2017: 1-9.

[2] 10 mobile usage statistics every marketer should know in 2021. https://www.oberlo.com/blog/

mobile-usage-statistics, Last accessed: 2021-01-05.

[3] What is mobile malware? https://www.crowdstrike.com/epp-101/mobile-malware/, Last accessed:

2021-01-05.

[4] AV-Test malware report, https://www.av-test.org/en/statistics/malware/, Last accessed: 2021-01-

05.

https://www.oberlo.com/blog/mobile-usage-statistics
https://www.oberlo.com/blog/mobile-usage-statistics

27

[5] 2019 Kaspersky Cybersecurity Report, https://www.techarp.com/cybersecurity/2019-kaspersky-

cybersecurity-report/, Last accessed: 2021-01-05.

[6] G DATA Mobile Malware Report 2019: New high for malicious Android apps,

https://www.gdatasoftware.com/news/g-data-mobile-malware-report-2019-new-high-for-

malicious-android-apps, Last accessed: 2021-01-05.

[7] Chen, Z., Yan, Q., Han, H., et al. Machine learning based mobile malware detection using highly

imbalanced network traffic. Information Sciences, 2018, 433-434: 346-364.

[8] Jain, A. K., Gupta B. B. A machine learning based approach for phishing detection using

hyperlinks information. Journal of Ambient Intelligence & Humanized Computing, 2019, 10(5):

2015-2028.

[9] Al-Sharif, Z. A., Al-Saleh, M. I., Alawneh L., et al. Live forensics of software attacks on cyber-

physical systems. Future Generation Computer Systems. 2020, 108: 1217-1229.

[10] Perera, C., Barhamgi, M., Bandara, A. K., et al., Designing privacy-aware internet of things

applications. Information Sciences, 2020, 512: 238-257.

[11] Ouaguid, A., Abghour, N., Ouzzif, M. A novel security framework for managing android

permissions using blockchain technology. International Journal of Cloud Applications and

Computing,2018, 8(1): 55-79.

[12] Azad, M. A., Arshad, J., Kamal, S. M. A., et al. A first look at privacy analysis of COVID-19

contact tracing mobile applications. IEEE Internet of Things Journal, 2020: 1-11.

[13] Tam, K., Feizollah, A., Anuar, N. B., et al, The evolution of android malware and android analysis

techniques. ACM Computing Surveys, 2017, 49(4): 76:1-76:41.

[14] Zheng, M., Sun, M., Lui, J. C. S.. DroidAnalytics: A signature based analytic system to collect,

extract, analyze and associate android malware. Proceedings of 12th IEEE International

Conference on Trust, Security and Privacy in Computing and Communications, 2013: 163-171.

[15] Sharma, K., Gupta, B. B. Mitigation and risk factor analysis of android applications. Computers &

Electrical Engineering, 2018, 71: 416-430.

[16] Seo, S.H., Gupta, A., Sallam, A.M., et al. Detecting mobile malware threats to homeland security

through static analysis. Journal of Network and Computer Applications, 2014, 38: 43-53.

[17] Yuan, Z., Lu, Y., Wang, Z., et al. Droid-sec: deep learning in Android malware detection. In

Proceedings of the 2014 ACM Conference on SIGCOMM, 2014: 371-372.

[18] Potharaju, R., Newell, A., Nita-Rotaru, C., et al. Plagiarizing smartphone applications: attack

strategies and defense techniques. ACM International Symposium on Engineering Secure

Software and Systems, 2012: 106-120.

[19] Xiao, X., Xiao, X., Jiang, Y. et al. Identifying Android malware with system call co-occurrence

matrices. Transactions on Emerging Telecommunications Technologies, 2016, 27: 675-684.

[20] Thiyagarajan, J., Akash, A., Murugan, B., Improved real-time permission based malware detection

and clustering approach using model independent pruning, IET Information Security, 2020, 14(5):

531-541.

[21] Pai, S., Troia, F. D., Visaggio, C. A., et al. Clustering for malware classification. Journal of

Computer Virology and Hacking Techniques, 2017, 13(2): 95-107.

[22] Yerima, S. Y., Sezer, S. DroidFusion: A novel multilevel classifier fusion approach for Android

malware detection, IEEE Transactions on Cybernetics, 2018, 49(2): 453-466.

[23] Taheri, R., Ghahramani, M., Javidan, R., et al. Similarity-based Android malware detection using

Hamming distance of static binary features. Future Generation Computer Systems, 2020,

105(2020): 230-247.

[24] Badhani, S., Muttoo, S. K., CENDroid-A cluster-ensemble classifier for detecting malicious

Android applications. Computers&Security, 2019, 85(2019): 25-40.

[25] Duc, N. V., Giang, P. T., NADM: Neural network for android detection malware. The 9th

International Symposium on Information and Communication Technology, 2018: 449-455.

[26] Karbab, E. B., Debbabi, M., Derhab, A. et al. MalDozer: Automatic framework for android

malware detection using deep learning. Digital Investigation, 2018, 24 (2018): 48-59.

[27] Mercaldo, F., Santone, A., Deep learning for image-based mobile malware detection, Journal of

Computer Virology and Hacking Techniques, 2020, 16(6): 1-15.

https://dblp.org/pid/23/328.html
https://dblp.org/pid/126/5031.html
https://dblp.org/pid/l/JohnCSLui.html

28

[28] Alam, S., Alharbi, S. A., Yildirim, S. Mining nested flow of dominant APIs for detecting android

malware. Computer Networks, 2020, 167 (2020): 1-10.

[29] Mariconti, E., Onwuzurike, L., Andriotis, P., et al. MaMaDroid: Detecting android malware by

building markov chains of behavioral models. Network and Distributed System Security

Symposium, 2017:1-16.

[30] Yen, Y. S., Sun, H. M. An Android mutation malware detection based on deep learning using

visualization of importance from codes. Microelectronics Reliability, 2019, 93(2019): 109-114.

[31] Ananya, A., Aswathy, A., Amal, T. R., et al. SysDroid: a dynamic ML-based android malware

analyzer using system call traces. Cluster Computing, 2020:1-20.

[32] Duarte-Garcia, H. L., Cortez-Marquez, A., Sanchez-Perez, G., et al. Automatic malware clustering

using word embeddings and unsupervised learning, IAPR/IEEE International Workshop on

Biometrics and Forensics, 2019: 1-6.

[33] Shamsi, F. A., Woon W. L., Aung, Z., Discovering similarities in malware behaviors by clustering

of API call sequences. International Conference on Neural Information Processing, 2018: 122-133

[34] Pang, Y., Peng, L. Z., Chen, Z. X. et al. Imbalanced learning based on adaptive weighting and

Gaussian function synthesizing with an application on Android malware detection. Information

Sciences, 2019, 484(2019): 95-112.

[35] Angelo, G., Ficco, M., Palmieri, F. Malware detection in mobile environments based on

Autoencoders and API-images. Journal of Parallel and Distributed Computing, 2020, 137(2020):

26-33.

[36] Xiao, X., Zhang, S. F., Mercaldo, F., et al. Android malware detection based on system call

sequences and LSTM. Multimedia Tools and Applications, 2019, 78(4): 3979-3999.

[37] Martin, A., Lara-Cabrera, R., Camacho, D., Android malware detection through hybrid features

fusion and ensemble classifiers: The AndroPyTool framework and the OmniDroid dataset.

Information Fusion, 2019, 52 (2019): 128-142.

[38] Scalas, M., Maiorca, D., Mercaldo, F., On the effectiveness of system API-related information for

Android ransomware detection. Computers&Security, 2019, 86(2019): 168-182.

[39] Taheri, L., Kadir, A. F. A., Lashkari, A. H. Extensible android malware detection and family

classification using network-flows and API-Calls. 2019 International Carnahan Conference on

Security Technology, 2019: 1-9.

[40] Alzaylaee, M. K., Yerima, S. Y., Sezer, S. DL-Droid: Deep learning based android malware

detection using real devices, Computers & Security, 89(2020)101663.

[41] Saif, D., EI-Gokhy, S. M., Sallam, E., Deep belief networks-based framework for malware

detection in Android systems. Alexandria Engineering Journal, 2018, 57(2018): 4049-4057.

[42] Feizollah, A., Anuar, N. B., Salleh, R., et al. A review on feature selection in mobile malware

detection. Digital Investigation, 2015,13: 22-37.

[43] Suresh, S., Di, Troia F., Potika, K., et al. An analysis of android adware. Journal of Computer

Virology and Hacking Techniques, 2019, 15:147-160.

[44] Lashkari, A. H., Kadir, A. F. A., Taheri, L. G., Toward developing a systematic approach to

generate benchmark android malware datasets and classification, Proc. of IEEE International

Carnahan Conference on Security Technology (ICCST), 2018: 1-7.

[45] Sheen, S., Anitha, R., Natarajan, V. Android based malware detection using a multifeature

collaborative decision fusion approach. Neurocomputing, 2015, 151: 905-912.

[46] Srivastava, N., Salakhutdinov, R. Multimodal learning with deep boltzmann machines. Journal of

Machine Learning Research, 2012, 15:1-32.

[47] Smolensky, P. Information processing in dynamical systems: Foundations of harmony theory. In

Parallel Distributed Processing: Explorations in the Microstructure of Cognition, 1986, 1(1986):

194-281.

[48] Fischer, A., Igel, C. An introduction to restricted boltzmann machines. Iberoamerican Congress on

Pattern Recognition. 2012:14-36.

[49] Carreira-Perpinan, M.A., Hinton, G.E. On contrastive divergence learning. Aistats 2005, 10: 33-

40.

[50] Gu, Q., Li, Z., Han, J., Joint feature selection and subspace learning, Proc. of International Joint

29

Conference on Artificial Intelligence, IJCAI, 2011: 1294-1299.

[51] Du, L., Shen Y. D., Unsupervised feature selection with adaptive structure learning, International

Conference on Knowledge Discovery and Data Mining, 2015: 209-218.

[52] Huang, D., Cai, X., Wang, C. D. Unsupervised feature selection with multi-subspace

randomization and collaboration, Knowledge-Based Systems, 182 (2019): 104856.

[53] Arzt, S., Rasthofer, S., Fritz, C., et al. Flowdroid: precise context, flow, field, object-sensitive and

lifecycle-aware taint analysis for android apps, in: Proceedings of the ACM SIGPLAN

Conference on Programming Language Design and Implementation, 2014: 259–269.

[54] Rahali, A., Lashkari, A. H., Kaur G., et al., DIDroid: Android Malware Classification and

Characterization Using Deep Image Learning, 10th International Conference on Communication

and Network Security, 2020.

[55] CCCS-CIC-AndMal-2020, https://www.unb.ca/cic/datasets/andmal2020.html, Last accessed:

2021-01-05.

[56] Zhou, P., Chen, J., Fan, M., et al. Unsupervised feature selection for balanced clustering.

Knowledge Based Systems. 2020, 193: 105417.

[57] Yan, X., Nazmi, S., Erol, B. A., et al. An Efficient Unsupervised Feature Selection Procedure

Through Feature Clustering. Pattern Recognition Letters, 2020, 131: 277-284.

[58] Telikani, A., Gandomi, A. H. Cost-sensitive stacked auto-encoders for intrusion detection in the

Internet of Things, 2019: 1-19 (published online).

[59] Ng., W.W., Zeng, G., Zhang, J., et al. Dual autoencoders features for imbalance classification

problem, Pattern Recognition, 60 (2016): 875-889.

[60] Gormley, M., Principal Component Analysis and Dimensionality Reduction,

https://www.cs.cmu.edu/~mgormley/courses/10701-f16/slides/lecture14-pca.pdf, Last accessed:

2021-01-05.

[61] Agglomeration Feature Selection, https://scikit-learn.org/stable/modules/generated/sklearn.cluster.

FeatureAgglomeration.html, Last accessed: 2021-01-05.

[62] Scikit-learn, https://scikit-learn.org, Last accessed: 2021-01-05.

[63] Wenbin Zhang and Eirini Ntoutsi. Faht: an adaptive fairness-aware decision tree classifier. In

International Joint Conference on Artificial Intelligence (IJCAI), pages 1480–1486, 2019.

[64] Wenbin Zhang, Xuejiao Tang, and Jianwu Wang. On fairness-aware learning for non-

discriminative decision-making. In International Conference on Data Mining Workshops

(ICDMW), pages 1072–1079, 2019.

[65] Wenbin Zhang and Albert Bifet. Feat: A fairness-enhancing and concept-adapting decision tree

classifier. In International Conference on Discovery Science, pages 175–189. Springer, 2020.

[66] Wenbin Zhang et al. Flexible and adaptive fairness-aware learning in non-stationary data streams.

In IEEE 32nd International Conference on Tools with Artificial Intelligence (ICTAI), pages 399–

406, 2020.

[67] Wenbin Zhang and Liang Zhao. Online decision trees with fairness. arXiv preprint

arXiv:2010.08146, 2020.

[68] Wenbin Zhang. Learning fairness and graph deep generation in dynamic environments. 2020.

[69] Wenbin Zhang, Albert Bifet, Xiangliang Zhang, Jeremy C Weiss, and

[70] Wolfgang Nejdl. Farf: A fair and adaptive random forests classifier. In Pacific-Asia Conference on

Knowledge Discovery and Data Mining, pages 245–256. Springer, 2021.

[71] Wenbin Zhang and Jeremy Weiss. Fair decision-making under uncertainty. In 2021 IEEE

International Conference on Data Mining (ICDM). IEEE, 2021.

[72] Wenbin Zhang and Jeremy C Weiss. Longitudinal fairness with censorship. In Proceedings of the

AAAI Conference on Artificial Intelligence, volume 36, pages 12235–12243, 2022.

[73] Wenbin Zhang, Shimei Pan, Shuigeng Zhou, Toby Walsh, and Jeremy C Weiss. Fairness amidst

non-iid graph data: Current achievements and future directions. arXiv preprint arXiv:2202.07170,

2022.

[74] Wenbin Zhang, Tina Hernandez-Boussard, and Jeremy C Weiss. Censored fairness through

awareness. In Proceedings of the AAAI Conference on Artificial Intelligence, 2023.

[75] Wenbin Zhang and Jeremy Weiss. Fairness with censorship and group constraints. Knowledge and

30

Information Systems, 2022.

[76] Wenbin Zhang and Jianwu Wang. A hybrid learning framework for imbalanced stream

classification. In IEEE International Congress on Big Data (BigData Congress), pages 480–487,

2017.

[77] Wenbin Zhang, Jian Tang, and Nuo Wang. Using the machine learning approach to predict patient

survival from high-dimensional survival data. In IEEE International Conference on

Bioinformatics and Biomedicine (BIBM), 2016.

[78] Wenbin Zhang and Jianwu Wang. Content-bootstrapped collaborative filtering for medical article

recommendations. In IEEE International Conference on Bioinformatics and Biomedicine (BIBM),

2018.

[79] Xuejiao Tang, Liuhua Zhang, et al. Using machine learning to automate mammogram images

analysis. In IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pages

757–764, 2020.

[80] Mingli Zhang, Xin Zhao, et al. Deep discriminative learning for autism spectrum disorder

classification. In International Conference on Database and Expert Systems Applications, pages

435–443. Springer,2020.

[81] Wenbin Zhang, Jianwu Wang, Daeho Jin, Lazaros Oreopoulos, and Zhibo Zhang. A deterministic

self-organizing map approach and its application on satellite data based cloud type classification.

In IEEE International Conference on Big Data (Big Data), 2018.

[82] Xuejiao Tang, Xin Huang, et al. Cognitive visual commonsense reasoning using dynamic working

memory. In International Conference on Big Data Analytics and Knowledge Discovery. Springer,

2021.

[83] Wenbin Zhang, Liming Zhang, Dieter Pfoser, and Liang Zhao. Disentangled dynamic graph deep

generation. In Proceedings of the SIAM International Conference on Data Mining (SDM), pages

738–746, 2021.

	Blank coversheet.pdf
	FGCS (1)

