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Storage systems have not kept the same technology improvement rate as computing systems. As ap-
plications produce more and more data, I/O becomes the limiting factor for increasing application
performance. I/O congestion caused by concurrent access to storage devices is one of the main obsta-
cles that cause I/0 performance degradation and, consequently, total performance degradation.

I/0 Congestion Although task-based programming models made it possible to achieve higher levels of parallelism
I/0-Compute Overlap by enabling the execution of tasks in large-scale distributed platforms, this parallelism only benefited
1/0 Scheduling the compute workload of the application. Previous efforts addressing I/O performance bottlenecks

Auto-tunable Constraints either focused on optimizing fine-grained I/O access patterns using 1/O libraries or avoiding system-
wide I/0 congestion by minimizing interference between multiple applications.

In this paper, we propose enabling I/O Awareness in task-based programming models for improv-
ing the total performance of applications. An I/O aware programming model is able to create more
parallelism and mitigate the causes of I/O performance degradation. On the one hand, more paral-
lelism can be created by supporting special tasks for executing I/O workloads, called /O tasks, that
can overlap with the execution of compute tasks. On the other hand, I/O congestion can be mitigated
by constraining I/O tasks scheduling. We propose two approaches for specifying such constraints: ex-
plicitly set by the users or automatically inferred and tuned during application’s execution to optimize
the execution of variable I/O workloads on a certain storage infrastructure.

We implement our proposal using PyCOMPSs: a Task-based programming model for parallelizing
Python applications. Our experiments on the MareNostrum 4 Supercomputer demonstrate that using
1/0 aware PyCOMPSs can achieve significant performance improvement in the total execution time
of applications with different I/O workloads. This performance improvement can reach up to 43% of
total application performance as compared to the I/O non-aware version of PyCOMPSs.

their data dependencies are satisfied. Unlike programming
models that follow a rigid parallel paradigm such as Map-
Reduce [2] or Spark [3], task-based programming models
allow for easier expression of the irregular and unstructured
parallelism patterns of scientific applications. Other parallel
programming models such as MPI [4] are widely used. How-
ever, gaining performance requires knowledge about the un-
derlying execution infrastructure which could compromise

1. Introduction

The continuous growth in computing power has the abil-
ity to deliver increasing levels of parallelism to satisfy the
computing demands of scientific applications. This increase
in computing power not only has benefited from on-chip pro-
cessors scaling but also from increasing the number of com-
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puting nodes in production systems. Today’s supercomput-
ers typically are compromised of hundreds of thousands of
computing nodes enabling near exascale performance [1].
In order to harness this increasing computing power and
turn it into performance improvements for applications, task-
based programming models offer a flexible approach for par-
allelizing and executing applications in distributed platforms.
Using a task-based execution approach, an application is de-
composed into work units called Tasks. Tasks are organized
into an execution graph by detecting data dependencies be-
tween them. Later, they are executed if and only if all of
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applications programmability.

Along with the demand for computational power, scien-
tific applications also tend to be I/O intensive [5]. Appli-
cations in critical areas such as computational biology and
climate science generate large amounts of data usually for
checkpointing intermediate results and restarting after fail-
ures [6], or for performing post-processing operations such
as visualization and post-mortem analysis [7]. The life cycle
of these applications typically alternates between a comput-
ing phase followed by an I/O phase. During the I/O phase,
large amounts of concurrent I/O requests overwhelm the I/O
bandwidth of the storage system causing I/O congestion. I/O
congestion was observed to cause significant slowdown in
the I/0 performance of applications [8]. Indeed, I/O perfor-
mance slowdown consequently degrades applications total
performance.

Improvements in storage devices such as Burst Buffers
[9] have been introduced to supercomputers to absorb the I/O
of applications. However, as the amount of data generated by
applications continues to grow, relying only on Burst Buffers
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2 RELATED WORK

is not enough to completely hide or mitigate I/O congestion.
This performance gap between storage systems performance
and the I/0 requirements of applications has resulted in I/O
becoming the bottleneck that prevents achieving more per-
formance improvements for applications.

Current task-based programming models do not offer sup-
port targeting the I/O bottleneck of I/O intensive applica-
tions. Addressing the I/O bottleneck is conventionally done
using low-level I/O libraries and middleware (e.g. MPI-IO
[10], HDFS5 [11]). I/O libraries typically focus on paralleliz-
ing I/O access or optimizing I/O access patterns of appli-
cations. However, this approach is limited, as it cannot take
advantage of coarse-grained performance improvements op-
portunities. Additionally, it does not take into account the
problem of I/O congestion.

Other efforts addressed I/O congestion as a global sche-
duling problem using global I/O aware schedulers [12], [13],
[14]. The goal of this approach is to optimize whole system
utilization by minimizing I/O interference between different
applications running on the system. However, this direction
does not offer programming support to express opportunities
of I/O performance improvements that are inherent in I/O
intensive applications. Moreover, it focuses on optimizing
system-wide performance metrics when handling the I/O of
different running applications instead of optimizing the total
performance of applications.

In this work, we address the lack of support for mit-
igating the I/O performance bottleneck in task-based pro-
gramming models. We argue that task-based programming
models offer a suitable abstraction that can be leveraged to
exploit parallelism opportunities in I/O intensive applica-
tions to improve total performance. On the one hand, I/O
workloads can be wrapped by tasks whose execution over-
lap with the execution of compute tasks. Hence, applica-
tion parallelism is increased. Furthermore, fine-grained I/O
libraries can be still used for I/O optimization inside tasks
[15]. On the other hand, task-based programming models
have application-level information such as the number of I/O
tasks and the I/O bandwidth requirement of each task, that
can be used to manage I/O congestion.

More specifically, in this paper we propose enabling /O
Awareness in task-based programming models. The main
objective of an I/O aware task-based programming model is
to improve the performance of I/O intensive applications by
exploiting their inherent performance improvement oppor-
tunities. To this end, I/O aware task-based systems should
support the following capabilities:

e First, increasing task parallelism by defining I/O Tasks
to handle I/O workloads execution. I/O tasks execu-
tion can be overlapped with compute tasks execution.

e Second, managing I/O congestion by controlling I/O
tasks scheduling through constraining tasks execution.

Our proposal is realized by implementing the aforemen-
tioned I/O awareness capabilities in the PyCOMPSs task-
based programming model [16]. I/O aware PyCOMPSs al-

ing. Since the value of this constraint is fixed for the whole
application execution, we call this a Static constraint.

However, identifying a suitable constraint at application
development time may be complex due to the lack of infor-
mation about the amount of I/O that the application will pro-
duce and I/O performance on a given infrastructure. There-
fore, we propose an automatic and abstract constraint mech-
anism that is exposed by the execution manager to settle on
and tune the constraints of I/O tasks during application’s ex-
ecution. Hence, offering greater flexibility and portability.
This mechanism carries out a performance exploration pro-
cess to identify the optimal manner to execute I/O tasks on a
given system. We call this type of constraints: Auto-Tunable
constraint. Using auto-tunable constraints, the burden of
identifying the optimal constraint is removed by making the
runtime system automatically infer and tune I/O tasks’ band-
width constraints with the goal of achieving total time per-
formance benefit.

The main contributions of this paper can be listed as fol-
lows:

1. Programming model extensions to define I/O tasks and
the runtime support to enable overlapping the execu-
tion of I/O tasks and compute task. This will increase
the task parallelism and the application performance.

2. Introducing I/O bandwidth constraints in the task def-
inition and its runtime scheduling support to limit the
number of concurrent I/O tasks and reduce I/O con-
gestion.

3. A methodology to automatically infer I/O bandwidth
constraints at runtime in order to minimize the execu-
tion time of I/O tasks.

4. A prototype implementation of these I/O awareness
capabilities within the PyCOMPSs programming mo-
del.

The prototype has been validated by applying these capa-
bilities in a set of applications with different I/O workloads
on the MareNostrum 4 supercomputer. We have compared
their execution with a version that is not using the I/O aware-
ness capabilities. The results show an improvement in the
total application performance that can reach up to 43%.

The rest of the paper is structured as follows. Section 2
discusses related work. Section 3 presents the main concepts
and capabilities of an I/O aware task-based system. Sec-
tion 4 gives an overview of the PyCOMPSs programming
model and presents the design and implementation of the I/O
awareness capabilities in PyCOMPSs: 1/0 tasks and storage
bandwidth constraints. Section 5 analyzes the performance
results of I/O aware PyCOMPSs on the MareNostrum 4 su-
percomputer using different I/O workloads. Finally, Section
6 concludes the paper and describes future work.

2. Related Work

Task-based programming models have gained popularity
in recent years for orchestrating and executing Python appli-

lows users to set constraints to I/O tasks to control their schedul- cations [17]. For instance, Parsl [18] uses function decora-
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tors to compose workflows. Parsl provides a different set of
extensible executors to address different parallelization re-
quirements of applications and enable execution on different
platforms.

Luigi [19] enables the explicit specification of depen-
dency graphs. Using Luigi, users have to use the provided
object oriented API to explicitly define dependencies in the
code rather than annotating functions. At runtime, Luigi
builds the execution graph by inspecting defined dependen-
cies.

The aforementioned frameworks and libraries target ap-
plications performance improvement through parallelization
of computation and execution on variety of platforms. How-
ever, they do not offer any support that is specific for optimiz-
ing I/0 performance nor addressing I/O performance bottle-
necks. Unlike I/O aware PyCOMPSs, they do not have the
notion of I/O tasks and there is no support for I/O-compute
tasks overlap. Moreover, there is no programming model
support for addressing I/O congestion.

The Dask [20] Python library implements parallel ver-
sions of Python libraries such as Numpy [21] and Pandas
[22]. Dask enables specifying constraints on tasks execution
which is similar to one of our contributions. Additionally, it
is possible to explicitly specify zero CPU requirements for
tasks which can allow for overlapping I/O and computation.
However, the Dask runtime does not provide an automatic
mechanism for setting and tuning constraints such as the one
proposed in this paper.

Addressing the 1/0O performance bottleneck, numerous
studies have been carried out at different levels. A traditional
approach to improve application’s I/O performance is to use
I/0 libraries, such as MPI-IO [10], HDF5 [11] and NetCDF
[23]. These libraries provide a programming API to manip-
ulate data access. Therefore, applications do not need to as-
sume the POSIX interface. MPI-1O provides a low-level in-
terface to enable parallel I/O. This interface can be used to
define how to access a file system to perform parallel I/O op-
erations. On the other hand, HDF5 and NetCDF provide file
formats that optimize the storage of large amounts of data by
stipulating their formats and performing low-level optimiza-
tions.

Using I/O libraries allows for fine-grained I/O optimiza-
tion related to I/O access and storage. However, this ap-
proach does not address the problem of I/O congestion. An-
other limitation of this approach is portability: once these
libraries are used in an application for a specific platform, it
is not a straightforward task to use it on other platforms.

More recently, I/O congestion has received a lot of re-
search attention. Efforts in this direction addressed I/O con-
gestion as a classical scheduling problem with the goal of
optimizing for system-wide performance metrics. Gainaru
et al. [8] proposed a global I/O scheduler that has global
view of the system and of the past behaviour of all applica-
tions running on it. These information can be used to op-
timize scheduler heuristics such as maximum efficiency or
fairness.

Liang et al. [12] proposed a contention-aware resource

scheduling strategy to improve the performance of burst
buffers by minimizing I/O congestion caused by I/O of dif-
ferent applications. This strategy analyzes I/O load on the
burst buffers nodes and assigns incoming I/O to burst buffer
nodes with least I/O load. Herbein et al. [13] incorporated
I/0 workload scheduling into existing policies such as First
Come First Served (FCFS) and EASY backfilling. The idea
is to add I/O as additional constraint when determining if a
job can be scheduled. Jobs are only scheduled for execution
if and only if there are available resources to satisfy their I/O
requirements.

Zhou et al. [14] presented an I/O batch scheduler with
two policies: conservative and adaptive. The conservative
policy avoids I/O congestion as much as possible targeting
system-performance metrics. Whereas the adaptive policy
allows I/0 congestion to happen to increase jobs performance.

Unlike global I/O schedulers, our proposal does not tar-
get optimizing any system-wide performance metric, nor does
it have any information about any other applications running
on the system. I/O aware PyCOMPSs addresses I/O conges-
tion from the view point of the application to increase its to-
tal performance. We consider that the previously mentioned
efforts targeting I/O performance improvement (i.e. I/O li-
braries and 1/O schedulers) can jointly work along with our
proposal to achieve optimal application performance while
improving the system-wide performance targets.

Tillenius et al. [24] proposed a predictive model for task
performance degradation and a resource aware scheduling
policy by enabling users to set constraints for tasks execution
using task annotation, similar in spirit to one of our contri-
butions.

3. I/0 Awareness in Task-based Programming
Models

A typical I/O intensive application consists of two phases:
a computation phase and an I/O phase. Figure 1 shows a
high-level abstraction of the life cycle of such applications.
Each compute phase is followed by an I/O phase (e.g. check-
pointing the results of the previous compute phase). Once
each I/O phase is over, it is followed by another compute
phase except at the end of application’s execution where there
is no more computation. The time of each I/O phase varies
depending on the size of I/O workload in each phase. It
should be noted that this model assumes that the data con-
sumed by the i-th I/O phase cannot be invalidated by the i+1
compute phase. This assumption is valid if the i+1 compute
phase is independent from previous compute phases. Oth-
erwise, if there is a data dependency between two compute
phases (e.g. the i-th and i+1 compute phase), then the i+1
compute phase should receive an independent copy of the
data so as to not invalidate the data consumed by i-th I/O
phase.

Taking a closer look at Figure 1, one can observe opti-
mization opportunities that are possible due to the compute-
I/0 workloads pattern. For instance, the start of each com-
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Figure 1: Life cycle of an 1/0O intensive application

pute phase (i+1) is delayed until the previous I/O phase (i)
has finished. However, since there is no dependency be-
tween each I/O phase and the following compute phase, their
execution can be overlapped.

A traditional task-based system will not be able to ex-
ploit the parallelism opportunities of applications with such
pattern. Figure 2 shows a high-level abstraction of how a tra-
ditional system can be used to execute an I/O intensive appli-
cation. Computation and I/O are executed in one task with-
out the ability to differentiate between each workload. Using
such approach wastes a lot of performance improvement op-
portunities for both computation and I/O. This is due to two
reasons: (i) application’s parallelism is decreased because
computing resources cannot execute any compute workload
while they are waiting for I/O completion. (ii) the scheduling
of workloads is limited; tasks scheduling can be optimized
for either compute performance or I/O performance but not
for both. For instance, launching more computing workloads
in parallel usually results in more performance. However, in
the case of I/O workloads it could result in increasing I/O
congestion.

[ Task performing computation and /0

Tstart} s { Tend

Figure 2: /O intensive application executed with a traditional
task-based programming model

To take advantage of the performance improvement op-
portunities present in Figure 1, we propose enabling
I/0 awareness. 1/0 Awareness enables task-based models
to separate compute and I/O workloads. Therefore, allow-
ing for the optimization of each workload depending on its
properties. Figure 3 shows the life cycle of an application
executed with an I/O aware task-based model. This appli-
cation has two types of tasks: tasks that execute compute
workloads and tasks that execute I/O workloads. In an I/O
aware execution, compute workloads execution can be over-
lapped with the execution of dependency free I/O workloads
(i.e. the I/O workloads executed by tasks which their data de-
pendencies are satisfied and can be released for execution).
Thus, the level of parallelism is increased due to the overlap-
ping execution of tasks. In addition to that, I/O workloads

can be scheduled independently from compute workloads to
improve I/O performance by minimizing I/O congestion.
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Figure 3: 1/0 intensive application executed with an /O aware
task-based programming model

Sections 3.1 to 3.3 present the I/O awareness capabil-
ities that we propose to be supported by task-based mod-
els: Section 3.1 introduces the concept of I/O Tasks, which
allow to take advantage of the proprieties of I/O workload
to increase task parallelism by overlapping tasks execution.
Next, Section 3.2 focuses on addressing I/O-specific per-
formance problems such as I/O congestion by constraining
tasks scheduling. Finally, Section 3.3 proposes the auto-
matic inference of task constraints during application’s exe-
cution.

3.1. 1/O Tasks

We define 1/O tasks as special tasks for exclusively exe-
cuting I/O workloads in applications. Indeed, I/O tasks can
contain a single I/O request or several consecutive requests
(e.g., a loop of write accesses).

Unlike current task-based systems that schedule all tasks
based on computing constraints, I/O aware systems should
be able to schedule I/O tasks according to their I/O band-
width requirements instead of computing requirements.
Hence, 1/0 tasks scheduling will not be bounded by com-
puting infrastructure nor by the compute workload in the
application because their scheduling will not depend on the
availability of computing units. This approach allows the
scheduling of as many concurrent I/O tasks to reach the peak
performance of the storage infrastructure.

The execution of I/O tasks can be overlapped with the
execution of compute tasks. Dependency-free I/O tasks can
be executed along with compute tasks on the same CPU with
negligible impact on the performance of compute tasks. This
takes advantage that CPUs remain idle during I/O execu-
tion, waiting for the I/O request to be completed and the data
to be transferred to the storage device. This capability in-
creases task parallelism in applications because computing
resources will not be occupied solely for executing I/O work-
loads.

Moreover, Using I/O tasks to identify I/O workloads en-
ables the scheduling of I/O tasks to specialized storage sub-
systems in distributed heterogeneous infrastructures. These
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storage subsystems allow higher I/O performance because
they are equipped with different storage hardware such as
Solid State Drives (SSDs) or Non-Volatile Memories
(NVMe) [25] that offer higher bandwidth capabilities than
traditional Hard Disk Drives (HDDs).

3.2. Storage Bandwidth Constraints

The second capability that we propose to enable /O
awareness in task-based systems is the ability to address the
problem of I/O congestion. I/O congestion mainly occurs
because the aggregate amount of data to be written by the
concurrently running I/O tasks surpasses the maximum I/O
bandwidth of the storage devices. Consequently, assuming
that the I/O bandwidth is fairly allocated between concurrent
I/O tasks, the more I/O tasks running concurrently, the less
I/0 bandwidth would be allocated to serve the requirements
of each task. Therefore, the execution time of I/O tasks in-
creases leading to not only degraded I/O performance but
also total performance degradation. Therefore, I/O aware-
ness which only supports I/O tasks may not be enough to
achieve total performance improvement.

I/0 congestion can be tackled by constraining the schedul-
ing of I/O tasks. Using constraints to control I/O tasks schedul-
ing guarantees that only a maximum number of tasks can run
concurrently at any given time of application’s execution.
Hence, I/O bandwidth can be managed and I/O congestion
can be minimized or completely avoided.

To this end, we propose enabling the use of Storage Band-
width constraints to specify an estimate for the I/O band-
width requirements of a task. Using the storage bandwidth
constraint implies that if scheduling a task will over-allocate
the storage bandwidth of the available storage resources, then
this task should not be scheduled even though compute re-
sources are idle. Tasks with storage bandwidth constraint
will only be scheduled if there is available I/O bandwidth to
satisfy their constraints. Otherwise, they will wait for more
storage bandwidth to become available.

One approach to specify the storage bandwidth constra-
ints is to extend the programming model to allow users to set
it at application development time. Hence, users can plan the
execution of applications by controlling the level of I/O tasks
parallelism that would benefit their applications on a given
infrastructure.

3.3. Automatic Inference of Storage Bandwidth
Constraints

Identifying a suitable storage bandwidth constraint that
minimizes I/O congestion and improves I/O and total appli-
cation performance may be difficult at application develop-
ment time. Indeed, a high storage bandwidth constraint leads
to a lower number of concurrent tasks and more bandwidth
allocated to each task. Hence, I/O congestion will be mini-
mized and I/O performance will increase but task parallelism
will decrease. Similarly, a low storage bandwidth constraint
will allow more tasks to be executed concurrently but less

1/0 bandwidth will be allocated for each task. Hence, task
parallelism will increase but increased I/O congestion will
negatively affect application’s performance.

To overcome the aforementioned difficulty, we propose
that I/O aware systems support the automatic inference of
storage bandwidth constraints. The main objective of this
mechanism is to allow the runtime system to automatically
estimate a constraint that is not very high so it allows more
/O tasks to run concurrently in order to maximize task par-
allelism. At the same time, this constraint should not be very
low so it minimizes I/O congestion as much as possible by
avoiding the launch of a lot of I/O tasks concurrently.

More specifically, the automatic inference of a constraint
is the process of finding a constraint that maximizes task par-
allelism and minimizes I/O congestion.

In order to identify such a constraint, we propose a two-
steps mechanism: First, the runtime system runs a learning
phase, in which it collects information about the I/O tasks
performance with different levels of I/O tasks parallelism
(i.e. different constraint values). Second, the information
collected during the learning phase is applied to a heuristic
function with the objective of minimizing the execution time
of the I/O tasks to be scheduled.

Section 3.3.1 describes in more detail the learning phase,
whereas Section 3.3.2 presents the objective function for set-
ting an optimal constraint given a number of I/O tasks.

3.3.1. Learning Phase

During the learning phase, the system keeps track of the
average I/0O task time when running different number of con-
current I/O tasks. Indeed, the number of concurrent I/O
tasks at any moment of the application execution is con-
trolled by the value of the constraint that is used. Therefore,
the system tries different constraint values to launch different
number of concurrent I/O tasks.

The learning phase consists of several Learning Epochs.
In each learning epoch, the system uses a different constraint
value to launch different number of concurrent I/O tasks.
The purpose of each learning epoch is to identify the average
I/O task time when using a certain constraint value. There-
fore, a learning epoch can be defined as the set of I/O tasks
that are allowed to run concurrently when using a certain
constraint.

It should be noted that the lifetime of an epoch is not de-
fined by any time limits nor by any assumptions based on the
task-graph properties. For example, if the maximum num-
ber of tasks allowed to run concurrently when using a certain
constraint is 5, then the lifetime of the learning epoch of this
constraint is the execution time of the 5 concurrent tasks.
Once the average /O task time of the maximum number of
tasks allowed to run concurrently at any given time is ob-
tained, a learning epoch is ended and the next epoch (where
different constraint is used) is started.

Different approaches can be used to determine the details
of the learning phase (i.e. the number of learning epochs and
how to progress the learning phase). We propose two types
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of auto-tunable constraints: bounded and unbounded.

In the case of the bounded auto-tunable constraint, three
values can be used to control the learning phase: minimum
and maximum constraint values that set the boundaries of
the constraint and a delta value which represents the step
size that allows the progression from the minimum value
to maximum value. The first learning epoch in the learn-
ing phase starts with the minimum constraint value, then the
learning phase progresses until it reaches the maximum con-
straint value by multiplying the current constraint by the value
of delta.

However, in the case of the unbounded automatic con-
straint, no values are used to bound or guide the learning
phase, instead such values are estimated by the runtime sys-
tem. An unbounded auto-tunable constraint starts with the
lowest constraint value that would allow the maximum num-
ber of I/O tasks to run concurrently. After each learning
epoch, the constraint value is doubled and used as the con-
straint of the next learning epoch. Doubling the constraint
would progress the constraint value without risking skipping
possible optimal constraint values.

After each learning epoch, the following condition is eval-
uated to decide whether to continue or end the learning phase:

tEpoch(i) < tEpoch(i—l)/z

where:
! Epoch(i): average execution time of I/O tasks in learn-
ing epoch i

This condition assumes that since the constraint is dou-
bled each new learning epoch (i.e. the number of concur-
rent tasks is halved), then the average task time in a learning
epoch should decrease by at least half compared to the aver-
age task time recorded in the previous learning epoch.

Comparing the bounded and unbounded auto constraints,
the bounded auto constraint has the ability to achieve more
fine-grained results. This is because it has a longer learning
phase where it tries as high constraint as the maximum con-
straint value set by the user. Whereas the unbounded auto
constraint follows a stricter learning approach. It follows the
assumption that not getting the expected I/O task time im-
provement in a learning epoch will lead to a divergence path
where no more improvement should be expected. Indeed,
these different behaviours lead to different application per-
formances.

More details on how to acquire and calculate the hyper-
parameters of the learning phase for the bounded constraint
(i.e. minimum, maximum and delta) and the starting con-
straint value for the unbounded constraint are described in
the implementation section (Section 4.2.3).

3.3.2. Objective Function

After the learning phase ends, the information that has
been collected about the average task time when launching
a certain number of concurrent tasks (i.e. using a certain
constraint) are applied to minimize the following objective
function:

Ve € C: min T(numTasks,c) (1)

where:
C: is the set of constraints used during the learning phase.
T (numT asks, ¢): is the time estimation for executing the
given number of I/O auto-constrained tasks using the con-
straint ¢. This function can defined as:

T(numT asks, c) =
(numT asks/max NumT asks,) * t,

where:
maxNumT asks,: is the maximum number of concur-
rent I/O tasks allowed to run using the given constraint c.
t.: is the average I/O task time when using the given
constraint c.

The objective of this function is to choose a constraint
that minimizes the execution time of the auto-constrained
tasks waiting to be scheduled. In this function, the number
of execution groups in which the tasks will be executed is
calculated by dividing the given number of tasks by the max-
imum number of concurrent tasks using a given constraint c.
Then this number is multiplied by the average task time ob-
tained during the learning phase.

After evaluating the objective function with all the con-
straints used during the learning phase, the constraint that
results in the least execution time is assigned to the task.

4. Implementation

This section describes the PyCOMPSs framework and
the implementation details of the proposed I/O awareness
capabilities. Section 4.1 starts by giving a general overview
of the PyCOMPSs programming model and runtime sys-
tem. Next, Section 4.2 describes some implementation de-
tails about the I/O awareness capabilities in PyCOMPSs.

4.1. PyCOMPSs Overview

PyCOMPSs is a Task-based programming model that en-
ables the parallel execution of Python applications in a task-
based manner on distributed infrastructures. PyCOMPSs re-
lies on the COMPSs framework [26] to exploit application
parallelism at task level and manage the execution of tasks on
various distributed infrastructures such as grids, large clus-
ters and clouds. Section 4.1.1 describes the programming
semantics of PyCOMPSs. Whereas Section 4.1.2 gives an
overview about the COMPSs runtime.
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4.1.1. PyCOMPSs Programming Semantics

The objective of PyCOMPSs is to allow distributed ex-
ecution of applications without compromising programma-
bility and ease of development. Therefore, the programming
model of PyCOMPSs allows converting sequential applica-
tions to task-parallel applications with minimal code modi-
fication. Using PyCOMPSs, a functions can be defined as a
task by annotating it with the @task Python decorator.

The code snippet in Listing 1 shows an example of a Py-
COMPSs application. This example has two functions that
are declared as tasks: (i) scale (line 2) and (ii) accumulate
(line 7). In the etask decorator, users have to specify the re-
turn types of the task outputs -if any- and the directionality
of the task parameters. For each of the task parameters, the
directionality of a certain parameter describes whether this
parameter will be read (IN), updated (INOUT) or written (OUT).
The directionality parameters are used later by the runtime
to identify dependencies between tasks.

In Listing 1, the scale task is invoked for each INT in the
inputs list. Then, the accumulate task is called to sum the
scaled values where it updates the parameter valuel. Since
PyCOMPSs tasks return future objects in order to allow asyn-
chronous execution, a synchronization point is defined at line
16 (compss_wait_on) to request the final output value.

In addition to the etask decorator, PyCOMPSs provides
other decorators such as the @constraint decorator to en-
force hardware or software requirements on task execution.
For instance, the computingUnits constraint specifies a re-
quired number of CPUs for a task. A constrained task will
be launched for execution only if its constraints are satisfied.
In line 5 of Listing 1, a constraint of 2 computing units is
set as a requirement for the execution of the accumulate task.

1 @task(returns=int)
2> def scale(c):
3 return ¢ * 10

5 @constraint(computingUnits=2)
6 @task(valuel=INOUT)
7 def accumulate(valuel, value2):

8 valuel += value2

9

1o if __NAME__ == "__main__":

1 inputs = [INT1, INT2, .., INTn]
12 result = 0

13 for num in d:

14 scaled = scale(num)

15 accumulate(result, scaled)
16 result = compss_wait_on(result)

Listing 1: PyCOMPSs Sample Code

4.1.2. The COMPSs Runtime

The COMPSs runtime is responsible for detecting data
dependencies between tasks and managing their execution.

To allow execution on distributed infrastructure, the deploy-
ment of the COMPSs runtime follows a master-worker
paradigm: one node acts as the master node and the rest of
the nodes act as worker nodes.

Figure 4 depicts a high-level overview of the COMPSs
runtime during application execution. After launching the
application, the COMPSs master component on the master
node starts to receive tasks creation and execution requests.
After analyzing data dependencies between the tasks, the
COMPSs scheduler assigns dependency-free tasks to one of
the workers to be executed. When tasks execution end, the
worker component of the worker node notifies the master
with the execution status.
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Figure 4: Overview of the COMPSs Runtime

Figure 5 depicts an overview of the architecture of the
worker component of the COMPSs runtime. Every worker
component consists of a Java process called the Execution
Manager which is responsible for setting up and managing
an execution platform at the launch time of the application.
The execution platform consists of a Java thread pool with as
many threads as the number of CPUs on the worker. These
Java threads are called Executors. Each Java executor han-
dles the execution of one task. Furthermore, each Java ex-
ecutor launches a Python process, called Python Worker, that
will ultimately carry out the execution of the task. Java ex-
ecutors and Python workers communicate with each other
using operating system pipes. In order to facilitate the com-
munication between the Java and Python components of the
system and data transfer between nodes, tasks outputs are
stored in a serialized format.

In order for the COMPSs scheduler to make scheduling
decisions that honours task constraints, the COMPSs run-
time allows users to describe the available execution resources
by providing a Resource Description file in an XML formal.

During tasks execution, the COMPSs runtime keeps track
of how much resources are consumed by currently running
tasks and how much resources are free. When a task arrives
for scheduling, the COMPSs scheduler compares the con-
straints/requirements of this task to the available resources
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Figure 5: COMPSs Worker Component

at the moment of task arrival to decide if there are enough
resources to launch the task for execution.

4.2. 1/0O Awareness in PyCOMPSs

In this section we present implementation details of the
I/O awarness capabilities in PyCOMPSs. Section 4.2.1
presents the special handling of the I/O workload through the
use of I/O Tasks and how can their execution be overlapped
with the execution of compute tasks. Section 4.2.2 describes
how task constraints are used to control I/O tasks scheduling
to minimize I/O congestion. Finally, Section 4.2.3 presents
the details of the automatic storage bandwidth constraint in-
ference in PyCOMPSs.

4.2.1. I/0 Tasks

Following task declaration conventions of PyCOMPSs, a
task is declared as I/O task by the means of the @10 decorator.
Listing 2 shows the I/O tasks annotation in PyCOMPSs. Be-
sides using the @task decorator to define a PyCOMPSs task,
the @10 decorator is used to declare that this task should be
handled as an I/O task.

1 @IOQO)

2 @task()

3 def io_task(data):

4 # perform I/0 operations on data

Listing 2: /0O Task Annotation

Figure 6 shows how using I/O tasks affect the execu-
tion. In the main code snippet, a loop launches three tasks:
(i) generate_block task which returns a block of a certain
size. (ii) checkpoint task which writes the block to the disk.
(iii) scale task which does some computation on the block,
the output of this task is stored in the results list. Both
checkpoint and scale tasks are dependent on the
generate_block task, however, they do not have dependencies
between each other. Therefore, their execution can overlap.

As shown in Figure 6, the checkpoint task can be handled
in two different ways during the execution of the application
depending on how it is defined in the code: On the one hand,
it can be defined as a normal task by only using the etask
decorator. Consequently, the execution of the scale tasks

will be delayed until the checkpoint tasks finish execution.
On the other hand, the checkpoint task can be defined as an
I/O task by using the e10 decorator. This way, the COMPSs
runtime handles the checkpoint tasks as I/O tasks, hence, the
scale compute tasks are launched and the execution of both
tasks is overlapped.

if __name ="

results = [0, 0, 0]

main__":

i ] generate_block |
{ M  checkpoint
[ee] scal

1
2
3
4 for i in range(3):

5 block = generate_block()
6 checkpoint (block, i)

7 results[i] = scale(block)

Main segment of the application
1 Gtask()

2 def checkpoint(block, i):
3 S

Tstart }—{ Tend

Normal (non-1/0) Task

1 0100

2 Otask()

s def checkpoint(block, i):
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Figure 6: 1/0O tasks overlap with compute tasks

In order to enable the overlapping execution between de-
pendency free I/O tasks and compute tasks like in Figure 6,
modifications were made to the master and worker compo-
nents of the COMPSs runtime. In the master component,
by default, the COMPSs runtime assigns one CPU to every
task. Consequently, the runtime scheduler will not launch
any new tasks for execution unless there is enough CPUs to
execute the task. However, unlike regular compute tasks,
when the COMPSs runtime receives an I/O task creation
request, it sets its computing requirements to zero. Conse-
quently, incoming I/O tasks will be scheduled immediately
even if all the CPUs in the infrastructure are consumed by
compute tasks.

In the case a shared working directory between tasks is
specified, it will be used to store tasks outputs in a serialized
format. Therefore, no node-to-node data transfer is required
and, as a consequence, I/O tasks are scheduled to the first
candidate node. However, if the working directory is not
shared, then I/O tasks will be scheduled taking into consid-
eration data locality.

Indeed, for the case when a shared working directory is
used, alternative design approaches can be adopted to dis-
tribute the tasks to candidate workers (e.g. round-robin).
However, the aforementioned behavior provides the most gen-
eral approach and least intrusive implementation. In addi-
tion to that, our focus in this paper is to schedule I/O tasks
based on their bandwidth requirements using task constraints
instead of imposing a certain scheduling policy.

As for the worker component of the runtime, it needs
to support CPU oversubscription to enable the execution of
I/0 tasks side by side with compute tasks on the same CPU.
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Therefore, we added an execution platform, called /O Exe-
cution Platform, dedicated to handling I/O tasks execution
while the other execution platform, called Compute Execu-
tion Platform, is dedicated to handling compute tasks exe-
cution.

Figure 7 illustrates a high-level overview of the architec-
ture of the I/O aware worker component. Similar to the com-
pute execution platform, the I/O execution platform handles
the execution of I/O tasks by managing a number of execu-
tor threads. These executor threads are created at the launch
time of the application and their number can be set in the
PyCOMPSs launch command.
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Platform
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Figure 7: 1/O Aware PyCOMPSs Worker; |/O Execution Plat-
forms handles the execution of 1/O tasks

4.2.2. Static Storage Bandwidth Constraints

In order to constrain I/O scheduling to avoid I/O con-
gestion, we extended the @constraint decorator to support a
storage bandwidth constraint. During application execution,
the COMPSs runtime keeps track of the state of the available
I/O bandwidth of the system by updating its value based on
the storage bandwidth requirement of each task.

Listing 3 shows a sample I/O task with the storage band-
width constraint. Using the storageBW argument of the
@constraint decorator, users can set an estimated bandwidth
for I/0 tasks. During the scheduling of the
constrained_write task, the PyCOMPSs scheduler will use
its storage bandwidth constraint value to determine when
this task should be scheduled. If the storage bandwidth con-
straint of the constrained_write task is not satisfiable, then
its execution will be blocked until its requirement becomes
available.

The storage bandwidth constraint presented in Listing 3
is a Static constraint. This means that the value of the con-
straint is set before launching the application. Moreover, the
value of this constraint does not change during the execution
of the application.

In order to allow the COMPSs scheduler to reason about

1 @constraint(storageBW = 20)
2 QIO()

3 @task()

4+ def constrained_write(data):

Listing 3: Constrained I/O task using storage bandwidth
constraint

the available storage bandwidth in the system, we extended
the resources description file to enable users to specify the
maximum I/O bandwidth of the storage devices. This value
will be used by the COMPSs runtime during applications
execution to make better scheduling decisions. The currently
supported unit to specify the required bandwidth for tasks in
the @constraint decorator is MB/second.

4.2.3. Auto-tunable Storage Bandwidth Constraints

In this section, we present how auto-tunable constraints
can be specified programmatically in PyCOMPSs, then we
discuss more details about the learning phase and the ob-
jective function. For brevity, we will refer to Auto-tunable
Storage Bandwidth Constraints as Auto Constraints in the
rest of this paper.

A) Auto Constraints Syntax

As discussed in Section 3.3, we enabled two different
types of auto constraints: Bounded and Unbounded. On the
one hand, users can set bounded auto constraint as auto(min,
max, delta); where min represents the minimum starting con-
straint, max represents the maximum possible constraint and
delta represents the value by which the runtime advances
the constraint value from min to max. On the other hand,
users can specify an unbounded auto constraint by setting
the value of the storage bandwidth constraint to auto.

Listing 4 shows an example of bounded auto constraint.
To set a bounded auto constraint, users have to estimate the
hyper-parameters that will guide the learning phase (i.e. min,
max and delta). Whereas Listing 5 shows an unbounded auto
constraint, in which the runtime will estimate the min, max
and delta hyper-parameters.

1 @constraint(storageBW =
2 @IO(Q)

3 @task()

4+ def constrained_io_task(data):

"auto(10,50,4)")

Listing 4: Bounded Automatic Constraint with Syntax
auto(min, max, delta).

B) The Learning Phase

The COMPSs runtime automatically estimates the auto-
constraints by carrying out the two-steps mechanism dis-
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1 @constraint(storageBW = "auto")
2 @IOQO
3 @task()

4+ def constrained_io_task(data):

Listing 5: Unbounded Automatic Constraint.

cussed in Section 3.3. After the completion of the learn-
ing phase, the runtime will have an Auto Constraint Registry
for each auto-constrained task. This auto constraint registry
contains pairs of: constraint value and the average I/O task
time when using this constraint ({ Constraint — Avg I/0 Task
Time}).

It should be noted that defining an auto constraint for a
certain task will not affect how the runtime handles the other
tasks in the application. In addition to that, it is possible to
have different auto-constrained tasks in the same application.
The COMPSs runtime will run a separate learning phase for
each auto-constrained task and will set a constraint suitable
for the workload of each task. We assume that an I/O task
will always produce the same I/O workload during the ap-
plication lifetime.

In the case of an unbounded automatic constraint, the
runtime calculates the value of the starting constraint by di-
viding the maximum I/O bandwidth of the storage device by
the number of I/O executors in each worker node. The num-
ber of I/O executors is a convenient choice for calculating the
starting constraint because it represents the maximum num-
ber of I/O tasks that can run concurrently during any time of
application execution.

In order to guarantee the integrity of the learning phase,
the scheduler dedicates a worker node for each auto-constr-
ained task in an active learning phase. These nodes are called
Active Learning Nodes. Once a node is marked as an active
learning node for a specific auto-constrained task, the sched-
uler avoids scheduling any other I/O tasks or auto-constrain-
ed I/O tasks to that node. Therefore, it is guaranteed that the
learning phase of an auto-constrained task will not be inter-
fered by the other I/0 tasks. As soon as the learning phase
of an auto-constrained task ends, the scheduler un-marks the
associated active learning node and use it for scheduling as
normal. It should be noted that the compute tasks are sched-
uled normally on all available nodes because they do not con-
sume any storage bandwidth resources.

We study the performance of both types of automatic
constraint and the effect of changing their hyper-parameters
(the values of max, min, delta in the bounded constraint and
the number of I/O executors per worker node in the unbou-
nded constraint) in the evaluation section (Section 5).

C) The Objective Function

After finishing the learning phase for a certain auto-
constrained task, the runtime applies the auto constraint reg-
istry to objective function 1 to choose a constraint that will
result in the execution of the pending auto-constrained tasks
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in the least possible time.

Some cases are considered when evaluating objective
function 1 for a given number of scheduling-ready auto-
constrained tasks:

o If the number of tasks is not divisible by the maximum
number of concurrent tasks, then the time for execut-
ing any remainder is estimated. Then, it is added to
the original time estimate T'(numT asks, c).

e If there is a tie and several constraints result in the
same execution time for a given number of ready tasks,
then the highest constraint is used because it result in
the minimum I/O congestion.

It should be noted that the objective function is reeval-
uated and a new constraint is set -if necessary- every time
new execution requests of an auto-constrained task arrive to
the scheduler. This approach allows tuning the value of the
constraint depending on the number of I/O auto-constrained
tasks.

5. Evaluation

In this section, we show the improvement that I/O aware
PyCOMPSs can achieve in the total performance of applica-
tions with different workloads.

We start this section with describing the infrastructure
of the MareNostrum 4 supercomputer and its storage archi-
tecture (Section 5.1). Next, we present a brief description of
the applications used in the evaluation, their I/O workload
characteristics and their performance results (Section 5.2).
Finally, the section ends with presenting the experiments re-
sults that show the impact of the hyperparameters of the auto
constraints on applications performance (Section 5.3).

5.1. Infrastructure

The MareNostrum 4 supercomputer [27] of the
Barcelona Supercomputeing Center (BSC) is composed of
3,456 nodes. Each node has two Intel Xeon Platinum chips,
each with 24 processors for a total of 48 cores per node. The
MareNostrum 4 supercomputer contains two types of nodes:
low memory and high memory. The low memory nodes con-
tain 92 GB main memory whereas the high memory nodes
contain 370 GB of main memory.

Figure 8 shows a high-level overview of the MareNos-
trum 4 supercomputer storage infrastructure. All nodes have
access to a shared Hard Disk Drive (HDD) with total capac-
ity of 14 PetaBytes mounted with the IBM General Parallel
File System (GPFS). Moreover, each node has a local Solid
State Drive (SSD) with a capacity of 200 GB and bandwidth
of 470 MB/s and 450 MB/s for reading and writing respec-
tively.

In all our experiments, the GPFS is used to store the input
data and final results -if any- of the applications. The GPFS
has a performance expectancy of 210 and 140 GB/s for read
and write operations respectively. This performance is lim-
ited by the network speed at the node level to 12.5 GB/s.
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As the GPFS servers are shared between all the users of the
MareNostrum4 supercomputer, its performance in practice
is much lower than the maximum theoretical values.

In addition to that, the GPFS is also used in our experi-
ments as a shared working directory to store tasks logs and
dependencies between tasks. Therefore, no node-to-node
data transfer is required.

Node-local SSD disks are used as Burst Buffers to check-
point the intermediate results of the applications. On the one
hand, as they are used exclusively by the nodes running the
experiments, they offer better performance than the globally
shared HDD-backed GPFS. This is because the whole band-
width of the SSDs are dedicated for our experiments and no
interference occurs from the experiments of other MareNos-
trum4 users. On the other hand, they offer a controlled en-
vironment in which performance benefit can be planned and
expected. Using SSDs as a caching layer to absorb inten-
sive I/O of applications has been discussed in previous I/O

research [9, 28, 29].
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Figure 8: High-Level Overview of the Storage Infrastructure
on the MareNostrum 4 Supercomputer

5.2. Experiments

We implemented three different I/O intensive applica-
tions with PyCOMPSs. Each application exhibits a differ-
ent I/O workload which allows for evaluating the impact of
the I/O awareness capabilities in different scenarios. These
three applications are:

e The HMMER application: an application that produces
Homogeneous 1/0 workload, there is only one task
that execute I/O in the application. In addition to that,
for a given input size, the checkpointing task writes
the same amount of I/O every time it is called dur-
ing the lifetime of the application. This application is
intended to show the impact of using I/O awareness
capabilities on I/O throughput, I/O task time and to-
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tal time. In addition to the behaviour of auto-tunable
constraints with homogeneous 1/O workloads.

e The Variants Discovery Pipeline: exhibits a Hetero-
geneous 1/0 workload, because it has more than one
checkpointing task. Each checkpointing task writes
different amount of data to the disk. This application
is intended to show the behaviour of auto-tunable con-
straints when different I/O workloads.

e Kmeans: an iterative algorithm to test the effect of the
number of available tasks on the total performance of
the application when using auto-tunable constraints.

In all the experiments, the I/O non-aware PyCOMPSs
implementation (i.e. no I/O tasks nor storage bandwidth
constraints) is used as the baseline version. Moreover, for
the HMMER and Variants Discovery Pipeline, we launched
several runs of the I/O aware implementation. Each run has
a different setting of the storage bandwidth constraint for the
I/O tasks. These runs include:

e A non-constrained run where I/O tasks are used to
execute I/O workload but no storage bandwidth con-
straints are used.

e Several runs with increasing values of static storage
bandwidth constraint.

e Two runs with the both types of the auto-tunable con-
straints. For each of the runs with an auto-tunable con-
straint, we show graphs of its learning phase progress
during application execution.

It should be noted that for the HMMER application and
the Variants Discovery Pipeline, reading I/O tasks have been
used in order to read input data. However, they do not offer
any performance benefit because they do not overlap with
compute tasks.

To test the effectiveness of our proposals for solving the
problem of I/O congestion, writing I/O tasks in all experi-
ments is avoided using system buffers by flushing the data
to storage devices. This is achieved by using the fsync call
of the os library of the Python programming language [30].

All the experiments were run on 12 high-memory
MareNostrum 4 nodes plus one node dedicated as the master
node. The master node runs the master component of the
COMPSs runtime and manages the execution without taking
part in any computation.

5.2.1. HMMER Application

The HMMER Application is used for searching sequence
databases for sequence homologous proteins or nucleotide
sequences using a variant of Hidden Markov Models (HMM)
called profile-HMM. It takes two inputs: a sequence database
and a sequence file. Figure 9 depicts a sample PyCOMPSs
tasks dependency graph of the application for a small data-
set. This application first splits the sequence file and se-
quence database into multiple fragments. A hmmpfam task
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is called for each sequence and database fragment. The
hmmpfam task calls the HMMER tool [31] on its sequence
fragment and database fragment. Each hmmpfam task has
as a checkpointFrag successor task that is responsible for
checking the results of the HMMER tool. Later, the applica-
tion calls a gatherDB task which gathers the results obtained
of running a single sequence fragment against all database
fragments. Finally, all the sequence fragments are gathered
into one single file in the gatherSeq task.

Compute
Phase !

110
Phase

Compute
Phase

Figure 9: Task Skeleton of the HMMER application

For running the experiments of this application, we used
as inputs a 64.5 GB HMM protein-families database (pfam)
and a sequence file that contains 14,942,208 sequences with
atotal size of 3.2 GB. Databases and sequence files are avail-
able on the ftp servers of the European Bioinformatics In-
stitute (EMBL-EBI) [32] which hosts up-to-date sequences,
databases and software widely used by academics and life
science researchers.

We set the number of database fragments and the se-
quence fragments to 48 each. This means that every run of
the application will have 2,304 hmmpfam tasks followed by
the same number of checkpointFrag tasks. Each checkpoint-
Frag task writes 290 MB of data to a separate file on the
node-local SSD disk. As each of the 12 worker nodes used
in this experiment has 48 cores, then the maximum num-
ber of tasks that can run at the same time across the whole
system is 576 tasks. Consequently, the application will be
executed in multiple compute-IO phases.

Figure 10 presents the performance results of the appli-
cation. In Figure 10, the red bar represents the baseline run
where non of the I/O capabilities (i.e. I/O tasks and stor-
age bandwidth constraint) are used. Whereas the yellow bar
represents a non-constrained run where only one capabil-
ity of I/O aware PyCOMPSs is used; declaring the check-
pointFrag as an /O task but without using any storage band-
width constraint for the I/O tasks. The blue bars represent
runs with both I/0 capabilities of PyCOMPSs, each run us-
ing a higher static storage bandwidth constraints. Finally,
there are two bars: one represents using the unbounded auto-
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matic storage bandwidth constraint and the other represents
a run with a bounded auto storage bandwidth constraint of
auto(2,256,2). For the non-constrained run we used 500 I/O
executors, whereas 225 I/O executors are used for the static
and auto storage bandwidth runs.
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Figure 10: Experimental results for the HMMER Application

As can be noted in Figure 10 using the I/O awareness ca-
pabilities of PyCOMPSs can achieve more than 38% perfor-
mance improvement in the total time of the application com-
pared the baseline version. In the baseline run, the check-
pointFrag are treated as compute tasks, no overlap between
I/0O and computations occurs and only 48 checkpointFrag
task can be executed at a time. However, using I/O tasks
without setting any storage bandwidth constraint (as in the
non-constrained run) results in a much worse total time than
the baseline. Even though the execution of the checkpoint-
Frag /O tasks is overlapped with the execution of the hmmp-
fam compute tasks, the effect of the I/O congestion nega-
tively affects the total time of the application, since no con-
straints are used.

Nevertheless, continuing with Figure 10, as we start set-
ting a storage bandwidth constraint for the I/O tasks, appli-
cation’s total time starts to decrease not only because I/O and
compute tasks overlap execution but also I/O congestion is
controlled. As the value of the storage bandwidth constraint
increases, the total time of the application improves until a
certain point where it starts to deteriorate again. Indeed, in-
creasing the value of the constraint decreases the maximum
number of concurrent I/O tasks. Even though executing less
I/O tasks concurrently minimizes I/O congestion and im-
proves I/O task time, this improvement in I/O task time does
not compensate the decreased task parallelism. This is most
apparent when using a storage bandwidth constraint of 256
where only one I/O task is allowed to run at a time. In this
case, even though the whole I/O bandwidth is entirely ded-
icated for the currently running I/O task, the sequential ex-
ecution of I/O tasks drastically harms the total time of the
application.

Furthermore, it can be observed in Figure 10 that both
runs with the auto storage bandwidth constraint achieve to-
tal time improvements compared to the baseline experiment.
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However, it can be noted that the total time when using a
bounded auto constraint is worse than the total time when
using the unbounded auto constraint.

Figure 11 presents the achieved I/O throughput for I/O
tasks. The non-constrained experiment has the worst I/O
throughput due to the increased and uncontrolled I/O con-
gestion. As we start to control the number of I/O tasks run-
ning concurrently by using bandwidth constraints, I/O con-
gestion decreases and the achieved I/O throughput begins to
increase until it reaches the peak value when a constraint of 8
is used (which is the same value at which the application has
the best total time in Figure 12(a)). As the constraint value
keeps increasing, the number of I/O tasks running concur-
rently decreases, therefore I/0 throughput slightly decreases
because the local-SSDs of the nodes are not fully utilized.
Furthermore, it can be observed that both of the auto con-
straints achieve peak I/O throughput similar to using the op-
timal constraint.
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Figure 11: Achieved I/O Throughput in the HMMER Appli-
cation

In order to understand the auto constraints behaviour, we
refer to Figure 12 that shows the progress of the learning
phases of both auto constraints during application’s execu-
tion time. Figure 12(a) depicts the progress of the learning
phase when using an unbounded auto constraint. First, the
runtime sets the initial constraint to 2, because this run used
225 1/O executors on each worker node to handle the execu-
tion of I/O tasks. After the end of the first learning epoch
the runtime registers the average I/O task time during this
epoch and doubles the value of the constraint to progress the
learning phase. When the second epoch ends, in order to
decide whether to continue or abort the learning phase, the
runtime checks whether the I/O task time in the second learn-
ing epoch is at least half of the I/O task time in the previous
epoch. Since this condition is met, the runtime registers the
average I/O task time during the second epoch. Next, the
runtime progresses the learning phase until it stops after the
fourth epoch because the continuation condition is violated;
the task time in the fourth epoch is not at least half of the task
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time in the third epoch. Upon the termination of the learn-
ing phase, the runtime applies the auto constraint registry,
that now contains the average I/O task time in three learning
epochs, to objective function 1. Finally, the runtime sets the
constraint to 8 which is the value that minimizes the execu-
tion time of the auto constrained checkpointFrag 1/0 tasks
ready for scheduling.

auto
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Figure 12: Auto-tunable Constraints Learning Phase Progress
in the HMMER Application

Similarly, the learning phase progress of the bounded
auto constraint auto(2,256,2) is depicted in Figure 12(b). Us-
ing this type of auto constraints, the runtime starts the first
epoch with the minimum constraint value provided in the
@constraint decorator in the user code: 2. After the end
of the first epoch, the runtime registers the average 1/O task
time and progress the learning phase by multiplying the cur-
rent constraint value by the value of delta provided in the
user code: 2. Therefore, the second learning epoch has a
constraint of 4. The learning phase keeps progressing in
this manner until the current value of the constraint becomes
bigger than the maximum value provided by the user: 256.
Therefore, the learning phase stops after the eighth learning
epoch. Now that the runtime has filled the auto constraint
registry, it uses the auto constraint registry to minimize the
execution which in this case is 8.

As the bounded auto constraint spends more time in the
learning phase, its application total time is worse than the
unbounded auto constraint that follows a stricter and shorter
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learning process. In addition to that, the bounded auto con-
straint has a more fine-grained auto constraint registry, since
it tries higher constraint values. During most of the execu-
tion time, the final constraint value of the bounded auto con-
straint and the unbounded auto constraint is the same (in this
application, this constraint value is 8). However, for a cer-
tain number of scheduling-ready checkpointFrag 1/O tasks,
the fine-grained auto constraint registry of the bounded auto
constraint may result in a different constraint value than the
unbounded auto constraint for smaller number of tasks. How-
ever, the value of the constraint is re-adjusted and the min-
imization function is re-evaluated every time a new check-
pointFrag 1/O task arrives to the scheduler and the num-
ber of scheduling-ready checkpointFrag 1/O tasks increases.
Therefore, if the runtime sets a high constraint value for a
certain number of scheduling-ready tasks, this constraint
value will be adjusted in the next scheduling iteration.

5.2.2. Variants Discovery Pipeline

The Variants Discovery Pipeline is popular in the field
of bioinformatics and computational genomics. The purpose
of this pipeline is to discover genomic variants in sequence
data. Figure 13 illustrates the PyCOMPSs tasks dependency
graph of this pipeline. Since the pipeline performs a lot of
operations, we split it for into three phases for visualization
purposes: Data Preprocessing, Data Mapping and Variant
Calling. We defined a checkpointing task for each major step
in the pipeline to checkpoint the results of the pipeline so far.
We define a major step in the pipeline as the last step in each
processing phase (e.g. convertSAMtoFASTQ at the end of
Data Processing phase) or any step that is not easily recom-
puted (e.g. after bwa_map in the Data Mapping phase).

When two compute tasks produce output of the same
size, they call the same checkpointing task. For instance,
the bwa_map that maps its input to the reference genome and
the sort task that sorts the mapped sequence, use the check-
point_mapped task because they produce almost the same
size of output data.

We launched the experiments for this application with
1,728 sample sequence files. Each sequence file has a size of
72 MB in a compressed gzipped format. For each input, the
application launches a separate pipeline to discover its vari-
ants. The input sequence files and the meta-data are publicly
available on the GATK Broad Institute servers [33] which
is a well-known resource for providing human sequencing
data (e.g. sample sequences, genome references, variants
databases, etc.). Table 1 lists the checkpointing tasks in the
application and the data sizes that each task writes.

Figure 14 presents the performance results of different
runs of the application. Using both capabilities of I/O aware-
ness (i.e. I/O tasks and storage bandwidth constraints) can
achieve up to 43% performance improvement in the total
time of the application compared to the baseline run. The
non-constrained run has the worst total time because of the
I/O congestion that happens as all the I/O tasks concurrently
access the node-local SSD disk of the same worker node. In
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Figure 13: Task Skeleton of the Variants Discovery Pipeline

Table 1

Amount of data written by checkpointing tasks
H Task Amount of Data Produced H

checkpoint_fastq 162 MB
checkpoint _mapped 290 MB
checkpoint_merged 330 MB
checkpoint _marked 596 MB
checkpoint__grouped 615 MB

this run, a maximum of 325 I/O tasks are allowed to run con-
currently because 325 I/O executors are used. Using the stor-
age bandwidth constraint immediately mitigates the I/O con-
gestion problem and the total time starts to improve. How-
ever, as the static storage bandwidth constraint increases, the
total time starts to degrade due to the decreased level of task
parallelism. Moreover, both auto constraints runs achieve
performance improvement comparable to the optimal total
time when using a static constraint of 4 with some overhead
incurred due to the time spent in the learning phase.

It should be noted that in the static constraint runs, the
same static constraint is used for all the checkpointing tasks
mentioned in Table 1. However, in the auto constraint runs,
the final value of the auto constraint is different for each
checkpointing task. Each of these checkpointing tasks has
its own learning phase, and the objective function is evalu-
ated for each of them separately. Figures 15 to 19 show the
learning phase progress for each checkpointing task with the
unbounded and bounded auto constraint.
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Table 2
Constraint values for the checkpointing Tasks
H Task Constraint H
checkpoint_fastq 16
checkpoint__mapped 8
checkpoint__merged 4
checkpoint__marked 4
checkpoint__grouped 4

It can be noticed from Figures 15 to 19 that each check-
pointing task goes through its own learning phase. The run-
time uses the constraint value that will optimize the execu-
tion of the I/O workload of this task independently of the
other checkpointing tasks. Table 2 lists the final auto con-
straints that were used for each checkpointing I/O task.

Although different constraints are used for each check-
pointing I/O task, using auto constraints can achieve a total
time performance close to the optimal total time achieved
when static constraint of 4 is used. This is possible because
the runtime sets the auto constraint for the checkpoint_merged
and checkpoint_grouped tasks to 4, which is the constraint
that leads to the best total time. Therefore, unlike static con-
straints where a certain constraint value maybe optimal for
one checkpointing task but not optimal for the others, auto
constraints will use the constraint that achieve best possible
I/O task time and total execution time.

Note that the constraint choice of both: checkpoint_mer-
ged and checkpoint_grouped has bigger impact on the total
time than the other checkpointing tasks because these two
tasks are executed at the end of the pipeline where there are
no compute tasks that can hide the effect of using a bad con-
straint.

5.2.3. Kmeans Application

In order to evaluate the impact of the number of I/O tasks
on the time of the learning phase of the auto constraints and
consequently the application total time, we run multiple ex-
periments with the Kmeans application as an example of iter-
ative applications. The Kmeans Application is a well-known
machine learning algorithm that is widely used for differ-
ent purposes such as cluster analysis in data mining fields.
The Kmeans application follows an iterative process where
it groups a set of multidimensional points into a number of
clusters following a nearest mean distance rule. By changing
the number of iterations, we change the number of tasks that
will be executed in the application. Increasing the number of
iterations will generate more tasks to be executed, whereas
decreasing the number of iterations will decrease the number
of tasks available for execution.

The dataset considered for evaluating the Kmeans ap-
plication is composed of 10,000,000 points of 1000 dimen-
sions, 3,000 centers and 500 fragments. Each of the check-
pointing tasks writes 109 MB to the SSD storage disks.

Figure 20 shows a sample task dependency graph of the
Kmeans application implemented with PyCOMPSs for a sm-
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all dataset. A generate_fragment generates fragments of ran-
dom data given a specific seed. In each iteration, the par-
tial_sum task is called on each fragment to calculate the dis-
tance of each point to all cluster centers. The new centers
are checkpointed using the checkpointCenters task.

partial_sum
checkpointCenters

kmeans_merge

compute | N\ ./ N\ i s
Phase !

K-means
Iteration

Figure 20: Task Skeleton of the Kmeans Application

Figure 21 shows the experiments results of the Kmeans
applications with different number of iterations. It can be
noticed that with a single iteration the results of both of the
auto constraints experiments do not show a performance im-
provement. This can be explained due to the small number of
auto-constrained checkpointing tasks in the application. Out
of 500 checkpointing tasks to be executed, the unbounded
auto constraint uses 435 checkpointing tasks for learning,
whereas the bounded auto constraint uses 446 checkpointing
tasks. Therefore, after the learning phase ends, a very small
number of checkpointing tasks remains to take advantage of
the results of the learning phase.

In order to validate this conclusion, we repeated the ex-
periments but this time with more number of iterations (3
and 6). In the case of 3 iterations, the total number of check-
pointing task available for execution increases to 1500 tasks.
Consequently, the number of auto-constrained tasks avail-
able for execution increases and we start getting performance
improvement for both of the auto constraints. This gain in-
creases with increasing the number of iterations because the
application can make up the time spent in the learning phase
and more I/O tasks overlap with the execution of compute
tasks.

5.3. Hyperparameters Experiments

In this section, we evaluate the performance impact of
changing the values of the hyperparameters of both of the
auto constraints. In the case of the bounded auto constraint,
these parameters are min, max and delta set by the user in
the @constraint decorator. Whereas in the case of the un-
bounded auto constraint, the hyperparameter is the number
of I/0 executor threads per worker node.
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Figure 21: Kmeans Application with different number of iter-
ations

To this end, we repeated the experiments of the HMMER
application (homogeneous I/O workload) and the Variants
Discovery Pipeline (heterogeneous I/O workload) using auto
constraints with different hyperparameter values. Figure 22
shows the experiments results for both applications. It can
be noted that in both applications, changing the values of
the hyperparameters impacts the total performance. In the
HMMER application (Figure 22(a)), the optimal constraint
is 8 so setting the constraint to auto(2,256,2) incurs a long
learning phase. Whereas adjusting the min and max values
to auto(4,16,2) shortens the learning phase and results in a
better total time. In another run, Setting a big value of delta
like in the constraint auto(4,256,4) to speed up the learning
phase resulted in a worse total time because a big value of
delta skipped the optimal constraint (i.e. 8).

Furthermore, continuing with Figure 22(a), we can see
that the unbounded auto constraint achieves better results.
Using an unbounded auto constraint with 225 I/O executors
incurs a longer learning time because the starting constraint
is 2. However, the learning time in this case is not as long as
auto(2,256,2) due to the strict conditions of the unbounded
auto constraint. Decreasing the number of I/O executors re-
sults in a better total time since it approaches the optimal
constraint: 8. With 112 I/O executors, the constraint of the
first learning epoch will be set to 4 whereas it will be set to
8 with 56 I/O executors.

Likewise, a similar behaviour can be seen with the Vari-
ants Discovery Pipeline (Figure 22(b)). Adjusting the bound-
aries of the hyperparameters like in auto(4,16,2) to decrease
the learning phase improves the total time. Also, using a
larger value of delta (auto(2,256,4)) may result in an increase
in the total time because optimal constraints are skipped. On
the other hand, using unbounded constraints achieve better
total time; using 225 I/O executor achieves better total time
than auto(2,256,2) because of the shorter learning phase.
Moreover, using 112 I/O executors achieves better total time
because the learning epoch starts with constraint value 4
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Figure 22: Hyperparameters Experiments

which is the optimal constraint for the two checkpointing
tasks at the end of the pipeline (i.e. checkpoint_merged and
checkpoint_grouped) and the learning phase is shorter.

6. Conclusions and Future Work

This paper proposes to enable I/O awareness in Task-
based programming models. I/O awareness increases the
amount of parallelism inherent in I/O intensive applications
by taking advantage of the optimization opportunities possi-
ble due to I/O workloads and compute-1/O patterns. With an
I/O aware task-based programming model, opportunities for
compute-1/O execution overlap can be exploited. In addition
to that, I/O performance bottlenecks such as I/O congestion
can be mitigated, thus resulting in total time performance
improvements.

In order to take advantage of the I/O awareness capabil-
ities, it is necessary to separate I/O from computation when
programming applications. Hence, an I/O aware runtime
system can take advantage of I/O properties to improve the
performance of applications.

We implemented the I/O awareness capabilities in the
PyCOMPSs tasking framework and evaluated it with differ-
ent I/O workloads. The evaluation demonstrated that signif-
icant total performance improvement can be achieved com-
pared to the default I/O non-aware PyCOMPSs implementa-
tion.
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As future work, we plan to extend our proposals to ad-
dress the case when shared resources are used to absorb the
I/O of applications. In this scenario, certain assumptions and
modified mechanisms have to be adopted to take into ac-
count the I/O performance variability on shared resources.
Furthermore, we aim to extend the auto-tunable constraints
to support the inference of other constraints such as as mem-
ory size and number of processes in MPI tasks executions.

7. Acknowledgements

This work is partially supported by the European Union
through the Horizon 2020 research and innovation programme
under contracts 721865 (EXPERTISE Project) by the Span-
ish Government (TIN2015-65316-P) and the Generalitat de
Catalunya (contract 2014-SGR-1051).

References

[1] TOP 500 Supercomputer List. Web page at https://www. top500.org/
lists/top500/, (Date of last access: 10th September, 2020).

[2] J. Dean and S. Ghemawat. MapReduce: Simplified Data Process-
ing on Large Clusters. Communications of the ACM, 51(1):107-113,
2008.

[3] M. Zaharia, X. Reynold, and P. Wendelland et al. Apache spark:
A Unified Engine for Big Data Processing. Communications of the
ACM, 59:56-65, 11 2016. doi: 10.1145/2934664.

[4] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: portable parallel
programming with the message-passing interface, volume 1. MIT
press, 1999.

[5] B.Xie,J. Chase, D. Dillow, O. Drokin, S. Klasky, S. Oral, and N. Pod-
horszki. Characterizing output bottlenecks in a supercomputer. In SC
’12: Proceedings of the International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis, pages 1-11,
2012.

[6] D. Ibtesham, D. Arnold, P. G. Bridges, K. B. Ferreira, and
R. Brightwell. On the Viability of Compression for Reducing the
Overheads of Checkpoint/Restart-Based Fault Tolerance. In 2012
41st International Conference on Parallel Processing, pages 148—
157, 2012.

[7]1 S. Byna, J. Chou, O. Rubel, Prabhat, H. Karimabadi, W. S. Daugh-
ter, V. Roytershteyn, E. W. Bethel, M. Howison, K. Hsu, K. Lin,
A. Shoshani, A. Uselton, and K. Wu. Parallel i/o, analysis, and visu-
alization of a trillion particle simulation. In SC ’12: Proceedings of
the International Conference on High Performance Computing, Net-
working, Storage and Analysis, pages 1-12, 2012.

[8] A. Gainaru, G. Aupy, A. Benoit, F. Cappello, Y. Robert, and M. Snir.
Scheduling the I/0 of HPC Applications Under Congestion. In 2015
IEEE International Parallel and Distributed Processing Symposium,
pages 1013-1022, 2015.

[9] N.Liu,J. Cope, P. Carns, C. Carothers, R. Ross, G. Grider, A. Crume,
and C. Maltzahn. On the role of burst buffers in leadership-class stor-
age systems. In 2012 IEEE 28th Symposium on Mass Storage Systems
and Technologies (MSST), pages 1-11, 2012.

[10] P. Corbett, D. Feitelson, S. Fineberg, Y. Hsu, B. Nitzberg, J. Prost,
M. Snir, B. Traversat, and P. Wong. Overview Of The MPI-IO Parallel
1/0 Interface, 1995.

[11] Hierarchical data format version 5. http://www.hdfgroup.org/HDFS,
2000-2010. Date of Last Access: 20th September, 2020.

[12] W. Liang, Y. Chen, J. Liu, and H. An. CARS: A contention-aware
scheduler for efficient resource management of HPC storage systems.
Parallel Comput., 87:25-34, 2019.

[13] S.Herbein, D. H. Ahn, D. Lipari, T. Scogland, M. Stearman, M. Gron-
dona, J. Garlick, B. Springmeyer, and M. Taufer. Scalable I/O-Aware
Job Scheduling for Burst Buffer Enabled HPC Clusters. In HPDC ’16,
2016.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

Z. Zhou, X. Yang, D. Zhao, P. Rich, W. Tang, J. Wang, and Z. Lan.
I/O-Aware Batch Scheduling for Petascale Computing Systems. In
2015 IEEE International Conference on Cluster Computing, pages
254-263, 2015.

H. Elshazly, F. Lordan, J. Ejarque, and R. M. Badia. Performance
meets programmability: Enabling native python mpi in pycompss.
In 28th Euromicro International Conference on Parallel, Distributed
and Network-based Processing, 2020.

E. Tejedor, Y. Becerra, G. Alomar, A. Queralt, R. Badia, J. Torres,
T. Cortes, and J. Labarta. Pycompss: Parallel computational work-
flows in python. International Journal of High Performance Com-
puting Applications, 2015.

Workflow Systems. Computational Data Analysis Workflow Systems.
https://s.apache.org/existing-workflow-systems, 2015. Date of Last
Access: 20th September, 2020.

Y. Babuji, A. Woodard, Z. Li, D. Katz, B. Clifford, R. Kumar,
L. Lacinski, R. Chard, J. Wozniak, I. Foster, M. Wilde, and K. Chard.
Parsl: Pervasive Parallel Programming in Python. In Proceedings
of the 28th International Symposium on High-Performance Parallel
and Distributed Computing, HPDC 19, page 25-36. Association for
Computing Machinery, 2019. ISBN 9781450366700. doi: 10.1145/
3307681.3325400. URL https://doi.org/10.1145/3307681.3325400.
Luigi. Source code on Github. Github at https://github.com/spotify/
luigi, 2015. Date of Last Access: 6th February, 2020.

M. Rocklin. Dask: Parallel Computation with Blocked algorithms
and Task Scheduling. In Kathryn Huff and James Bergstra, editors,
Proceedings of the 14th Python in Science Conference, pages 130 —
136, 2015.

T. E. Oliphant. A guide to NumPy, volume 1. Trelgol Publishing USA,
2006.

W. McKinney. Data structures for statistical computing in python. In
Stéfan van der Walt and Jarrod Millman, editors, Proceedings of the
9th Python in Science Conference, pages 51 — 56, 2010.

R. Rew and G. Davis. Netcdf: an interface for scientific data access.
IEEE Computer Graphics and Applications, 10(4):76-82, 1990.

M. Tillenius, E. Larsson, R. Badia, and X. Martorell. Resource-aware
task scheduling. ACM Trans. Embed. Comput. Syst., 14(1), January
2015. ISSN 1539-9087. doi: 10.1145/2638554. URL https://doi.
org/10.1145/2638554.

High Performance Storage List. Web Page at https://www.vi4io.org/,
2020. Date of Last Access: 6th October, 2020.

R. M. Badia et al. COMP superscalar, an interoperable pro-
gramming framework. SoftwareX, 3(7-8):32-36, 2015. [Online].
Available:https://doi.org/10.1016/j.softx.2015.10.004.
MareNostrum 4 Supercomputer. Web Page at https://www.bsc.es/
marenostrum/marenostrum, 2017. Date of Last Access: 26th September,
2020.

D. Henseler, B. Landsteiner, D. Petesch, C. Wright, and N.J. Wright.
Architecture and design of cray datawarp cray user group cug. 2016.
R. daSilva, S. Callaghan, and E. Deelman. On the use of burst buffers
for accelerating data-intensive scientific workflows. Association for
Computing Machinery, 2017. doi: 10.1145/3150994.3151000.

os Python Library. Web Page at https://docs.python.org/3/1library/
os.html, 2020. Date of Last Access: 15th January, 2020.

HMMER. Biosequence Analysis using Profile Hidden Markov Mod-
els. Web Page at http://hmmer.org/, 2019. Date of Last Access: 26th
September, 2020.

EMBL-EBI. FTP Server. Web Page at http:ftp://ftp.ebi.ac.uk/
pub/, 2019. Date of Last Access: 26th September, 2020.
GATK-Broad Institute. https://gatk.broadinstitute.org/hc/en-us/
articles/360035890811-Resource-bundle, Date of Last Access: 26th
September, 2020.

Hatem Elshazly is a marie-curie Ph.D. student in
the Computer Architecture department at the Tech-
| nical University of Catalonia (DAC-UPC). Since
2017, he has been working as a research engineer at
the Barcelona Supercomputing Center (BSC) op-


https://www.top500.org/lists/top500/
https://www.top500.org/lists/top500/
https://doi.org/10.1145/3307681.3325400
https://github.com/spotify/luigi
https://github.com/spotify/luigi
https://doi.org/10.1145/2638554
https://doi.org/10.1145/2638554
https://www.vi4io.org/
https://doi.org/10.1016/j.softx.2015.10.004
https://www.bsc.es/marenostrum/marenostrum
https://www.bsc.es/marenostrum/marenostrum
https://docs.python.org/3/library/os.html
https://docs.python.org/3/library/os.html
http://hmmer.org/
http:ftp://ftp.ebi.ac.uk/pub/
http:ftp://ftp.ebi.ac.uk/pub/
https://gatk.broadinstitute.org/hc/en-us/articles/360035890811-Resource-bundle
https://gatk.broadinstitute.org/hc/en-us/articles/360035890811-Resource-bundle

REFERENCES

REFERENCES

timizing task-based programming models for I/O
and memory critical applications. He holds a MSc.
degree in the optimization of data intensive ap-
plications on distributed infrastructures from Nile
University, Egypt (2016). He is currently collabo-
rating in the EXPERTISE multidisciplinary Euro-
pean project under the Horizon 2020 research and
innovation programme targeting the optimization
of I/O intensive applications. He also collaborated
in a multidisciplinary international project with the
Harvard Medical School targeting the performance
and cost optimization of personalized medicine
workflows for clinical use. His current research in-
terests include parallel programming models, high
performance computing, mitigating the I/O and
memory bottlenecks and the management of het-
erogeneous distributed infrastructure.

Jorge Ejarque holds PhD on Computer Science
(2015) from the UPC. From 2005 to 2008 he
worked as research support engineer at the UPC,
and joined BSC at the end of 2008. He has con-
tributed in the design and development of different
tools and programming models for complex dis-
tributed computing platforms. He has published
over 30 research papers in conferences and journals
and he has been involved in several National and
European R&D projects (FP6, FP7 and H2020).
He is member of a program committee of several
international conferences, reviewer of journal arti-
cles and he was member of the Spanish National
Grid Initiative panel. His current research inter-
ests are focused on parallel programming models
for heterogeneous parallel distributed computing
environments and the interoperability between dis-
tributed computing platforms.

Francesc Lordan obtained the Ph.D. in Computer
Architecture from the Universitat Politecnica de
Catalunya in 2018 after defending his Ph.D. thesis:
"Programming Models for Mobile Environments".
Since 2010, Francesc is part of the Workflows and
Distributed Computing group of the Barcelona Su-
percomputing Center. His efforts have focused on
the COMPSs programming model: a task-based
model for developing parallel applications running
on large distributed infrastructures such as clus-
ters, supercomputers, grids and clouds. Francesc
has published more than 20 articles in Interna-
tional conferences and journals, and he has been
directly involved in the European projects mF2C,
ASCETIC and OPTIMIS. He has also provided
support to other collaborative projects such as
Venus-C, EU-Brasil OpenBio, Transplant and the
Human Brain Project. His research focuses on pro-
gramming models that aim to ease the development
of parallel applications by hiding the technical con-
cerns of heterogeneous and distributed infrastruc-
tures.

19

Rosa M. Badia holds a PhD on Computer Science
(1994) from the Technical University of Catalo-

. nia (UPC). She is the manager of the Workflows

and Distributed Computing research group at the

i Barcelona Supercomputing Center (BSC). She is

also a lecturer at the Technical University of Cat-
alonia. Her current research interest are program-
ming models for complex platforms (from edge,
fog, to Clouds and large HPC systems) and its con-
vergence with big data analytics and artificial intel-
ligence. The group led by Dr. Badia has been de-
veloping StarSs programming model for more than
10 years, with a high success in adoption by ap-
plication developers. Currently the group focuses
its efforts in PyCOMPSs/COMPSs, an instance
of the programming model for distributed com-
puting, and its application to the development of
large heterogeneous workflows that combine HPC,
Big Data and Machine Learning. Dr Badia has
published near 200 papers in international confer-
ences and journals in the topics of her research.
She has been very active in projects funded by
the European Commission, participating in around
20 projects and in contracts with industry (Fujitsu,
IBM and Intel). She has been actively contributing
to the BDEC international initiative and is a mem-
ber of HIPEAC Network of Excellence.



	1 Introduction
	2 Related Work
	3 I/O Awareness in Task-based Programming Models
	3.1 I/O Tasks
	3.2 Storage Bandwidth Constraints
	3.3 Automatic Inference of Storage Bandwidth Constraints
	3.3.1 Learning Phase
	3.3.2 Objective Function


	4 Implementation
	4.1 PyCOMPSs Overview
	4.1.1 PyCOMPSs Programming Semantics
	4.1.2 The COMPSs Runtime

	4.2 I/O Awareness in PyCOMPSs
	4.2.1 I/O Tasks
	4.2.2 Static Storage Bandwidth Constraints
	4.2.3 Auto-tunable Storage Bandwidth Constraints


	5 Evaluation
	5.1 Infrastructure
	5.2 Experiments
	5.2.1 HMMER Application
	5.2.2 Variants Discovery Pipeline
	5.2.3 Kmeans Application

	5.3 Hyperparameters Experiments

	6 Conclusions and Future Work
	7 Acknowledgements

