Cache-aware scheduling of scientific workflows in a multisite cloud

Gaétan Heidsieck®*, Daniel de Oliveira”, Esther Pacitti®, Christophe Pradal®®, Francois Tardieu?, Patrick Valduriez®

%Inria € LIRMM, University of Montpellier, France
b Fluminense Federal University, Niterdi, Brazil
¢CIRAD, UMR AGAP, F-3/8398 Montpellier, France
4INRAE LEPSE, Montpellier SupAgro, France

Abstract

Many scientific experiments are performed using scientific workflows, which are becoming more and more data-intensive.
We consider the efficient execution of such workflows in a multisite cloud, leveraging the heterogeneous resources available
at multiple geo-distributed data centers. Since it is common for workflow users to reuse code or data from previous
workflows, a promising approach for efficient workflow execution is to cache intermediate data in order to avoid re-executing
entire workflows. However, caching intermediate data and scheduling workflows to exploit such caching in a multisite
cloud with heterogeneous sites is complex. In particular, workflow scheduling must be cache-aware, in order to decide
whether reusing cached data or re-executing workflows entirely. In this paper, we propose a solution for cache-aware
scheduling of scientific workflows in a multisite cloud. Our solution is based on a distributed and parallel architecture and
includes new algorithms for adaptive caching, cache site selection, and dynamic workflow scheduling. We implemented our
solution in the OpenAlea workflow system, together with cache-aware distributed scheduling algorithms. Our experimental
evaluation in a three-site cloud with a real application in plant phenotyping shows that our solution can yield major

performance gains, reducing total time up to 42% with 60% of the same input data for each new execution.

Keywords: Multisite cloud, Distributed Caching, Scientific Workflow, Workflow System, Workflow Scheduling

1. Introduction

In many scientific domains, e.g, bio-science [I], complex
numerical experiments typically require many processing
or analysis steps over huge datasets. They can be repre-
sented as scientific workflows, or workflows for short in this
paper (but not to be confused with business workflows).
These workflows facilitate the modeling, management, and
execution of computational activities linked by data depen-
dencies. As data size and computation complexity keep
increasing, these workflows become data-intensive [I], thus
requiring high-performance computing resources.

The cloud is a convenient infrastructure for support-
ing workflow execution, as it allows leasing resources at
a very large scale and relatively low cost. In this paper,
we consider the execution of a data-intensive workflow in
a multisite cloud, i.e., a cloud with geo-distributed data
centers (henceforth named sites). Today, all popular public
clouds, e.g, Microsoft Azure, Amazon EC2, and Google
Cloud, provide a multisite option that allows accessing
multiple cloud sites, or sites for short, with a single cloud
account. The main reason for using multiple sites to exe-
cute data-intensive workflows is that they often exceed the
capabilities of a single site, either because the site imposes

*Corresponding author
Email address: gaetan.heidsieck@inria.fr (Gaétan Heidsieck)

Preprint submitted to Future Generation Computer Systems

usage limits for fairness and security, or simply because
the datasets are too big.

In scientific applications, the storage and computing
capabilities of the different sites, e.g, on premise servers,
HPC platforms from research organizations or federated
sites at the national level [2], can be very heterogeneous.
For instance, plant phenotyping, greenhouse platforms gen-
erate terabytes of raw data from plants. Such data is
typically stored at data centers geographically close to the
greenhouse to minimize data transfers. However, the com-
putation power of those data centers may be limited and
fail to scale when the analyses become complex, such as
in plant modeling or 3D reconstruction. In this case, the
computing capabilities of other sites are required.

Most scientific workflow management systems, or work-
flow systems for short, can execute workflows in the cloud
[B]. Some examples are Swift/T, Pegasus, SciCumulus,
Kepler and OpenAlea [4] [5] [6] [7, [8]. Our work is based
on OpenAlea [§], which is widely used in plant science for
simulation and analysis. Most existing systems use naive
or manual approaches to distribute the tasks across sites.
The problem of scheduling a workflow execution over a
multisite cloud has started to be addressed in [9], using per-
formance models to predict the execution time on different
resources. In [10], the authors proposed a solution based on
multi-objective scheduling and a single site virtual machine
provisioning approach, assuming homogeneous sites, as in

November 23, 2020

a public cloud.

Since it is common for workflow users to reuse code
or data from other workflows or previous executions of
the same workflow [I1], a promising approach for efficient
workflow execution is to cache intermediate data in order
to avoid entire re-execution. Furthermore, a user may need
to re-execute a workflow many times with different values
of parameters and input data depending on the previous
results. When the same workflow is executed several times
with different parameters, some workflow fragments, i.e.,
subsets of workflow activities and dependencies, can be
unchanged, so their intermediate data can be reused. An-
other important benefit of caching intermediate data is to
make it easy for users to share it with other research teams,
thus fostering new analyses at low cost.

Caching has been supported by some workflow systems,
e.g, Kepler [12], VisTrails [I3] and OpenAlea [14]. In [15],
we proposed an adaptive caching method for OpenAlea that
automatically determines the most suited intermediate data
to cache, taking into account workflow fragments, but only
in the case of a single site. Another interesting single site
method, also exploiting workflow fragments, is to compute
the ratio between re-computation cost and storage cost to
determine what intermediate data should be stored [I6].
All these methods are designed for a single site. Distributed
caching in a multisite cloud is addressed in [I7] to deal
with hot metadata (frequently accessed metadata) only,
not intermediate data.

Caching data in a multisite cloud with heterogeneous
sites is much more complex. In addition to the trade-off
between re-computation and storage cost at single sites,
there is the problem of site selection for placing the cached
data. The problem is more difficult than data allocation
in distributed databases [18], which deals only with well-
defined base data, not intermediate data. Furthermore,
the scheduling of workflow executions must be cache-aware,
i.e., exploit the knowledge of cached data to decide whether
reusing and transferring cached data or re-executing the
workflow fragments.

In this paper, we propose a solution for cache-aware
scheduling of scientific workflows in a multisite cloud. Our
solution enables users to automatically store, share, and
reuse intermediate data to speed up their future workflow
executions in a multisite cloud. The solution is based on
a distributed and parallel architecture and includes new
algorithms for adaptive caching, cache site selection and dy-
namic workflow scheduling. We implemented our solution
in OpenAlea. Based on a real data-intensive application
in plant phenotyping (Phenomenal), we provide an ex-
tensive experimental evaluation using a cloud with three
heterogeneous sites.

This paper is organized as follows. Section 2 presents
our real use case in plant phenotyping. Section 3 intro-
duces our workflow system architecture in a multisite cloud.
Section 4 describes our caching solution. Section 5 gives
our experimental evaluation. Section 6 discusses related
work. Finally, Section 7 concludes.

Intermediate datasets
processed by activities

1. Original workflow 2. Workflow activities 3.

in fragments

, DO L4
.
D1 |
| . —
S | TS
0 oty
® @ R
e~
D4 -y |
®) iy N iD5
¥ D§
4. Execution in multisite cloud
cloud site 2 cloud site 3

X workflow
{00 submission

User

Figure 1: Phenomenal plant analysis workflow.

2. Use Case in Plant Phenotyping

In this section, we introduce a real use case in plant
phenotyping that will serve as motivation for the work and
basis for the experimental evaluation. In the last decade,
high-throughput phenotyping platforms have emerged, al-
lowing for the acquisition of quantitative data on thousands
of plants in well-controlled environmental conditions. For
instance, the seven facilities of the French Phenome pro jec1E|
produce each year 200 Terabytes of data, which are vari-
ous (images, environmental conditions and sensor outputs),
multiscale and coming from different sites. Analyzing such
massive datasets is an open, yet important, problem for
biologists [19].

The Phenomenal workflow [20], shown in Figure |1} has
been developed in OpenAlea to analyze and reconstruct
the geometry and topology of thousands of plants through
time in various conditions. Phenomenal is continuously
evolving with the addition of new state-of-the-art methods,
thus yielding new biological insights. The workflow is com-
posed of different fragments, i.e., reusable subworkflows:
binarization (circled in green), 3D volume reconstruction
(blue), images calibration (red), and organ segmentation
(purple). Figure 2 gives an abstract representation of the
workflow, with the activities grouped by fragments F1 to
FJ. The intermediate datasets, processed by the activities
during execution are shown in Figure [[]3. Dataset DO is
the dataset of raw data that serves as input for the first
fragment. Dataset D1 is generated by activity 2 and is the
input of fragment 2 as it is processed by activity 4. The
datasets are grouped by fragments.

The raw data is produced by the Phenoarch platform,
which has a capacity of managing 1,680 plants within a con-
trolled environment (e.g, temperature, humidity, irrigation)

Thttps://www.phenome-emphasis.fr/phenomesng/

https://www.phenome-emphasis.fr/phenome_eng/

1. Phenomenal workflow (Wf1) 2. Light competition workflow (Wf2)

a. Workflow represen- b. Datasets generated
tation colored by by the fragments

fragments
(o
, i.! D1
F1 c—_

a. Workflow represen-
tation colored by
fragments

b. Datasets generated
by the fragments

I
1
. 4

F1

pp . -

F2 21 1y A=
J!
F4 N
%lDG F7
1.3 D7

Figure 2: Two workflows in plant analysis and their intermediate
data (the shared activities have same color).

and automatic imaging through time. The total size of the
raw image dataset for one experiment is 11 Terabytes. The
raw data is stored on a server close to the experimental
platform. This server is considered as a site and has both
data storage and computing resources. However, these
resources may not be sufficient to perform a full workflow
execution in a relatively short time. Thus, the solution
is to use additional resources provided by other sites and
execute the workflow in a distributed way on multiple sites.

The multisite cloud architecture (see Figure [[]4) is
composed of heterogeneous sites, in terms of computing
and storage resources. The site with the raw data is used
to execute some Phenomenal fragments that do not re-
quire powerful resources. Whenever more computational
resources are needed, it is necessary to choose whether
transferring the raw data or some intermediate data to a
more powerful site, or re-executing some fragments locally
before transferring intermediate data.

Figure [1}4 illustrates a case where a user submits the
Phenomenal workflow. The workflow fragments are dis-
tributed and executed on different sites depending on the
site resources. At each site, some intermediate data gener-
ated by the fragment execution is stored in a cache to be
reused in other fragment executions.

Different users can conduct different analyses by execut-
ing some workflow fragments on the same dataset to test
different hypotheses [I5]. To save both time and resources,
it may be useful to reuse the corresponding intermediate
data that has already been computed rather than recom-
pute the fragments again. In our use case, we suppose that
workflow executions are done in sequential order and that
workflows are submitted from the site where the raw data
is produced.

Figure [2] shows two workflows used in plant analysis:
the Phenomenal workflow (Wf1) and a workflow to simulate
light competition for plants in greenhouse (Wf2). Both
workflows use fragments F1 (binarization) and F2 (3D
reconstruction), so the subsequent execution of Wf2 may
benefit from reusing the data generated previously from
the corresponding fragments in Wfl. Suppose for instance
that Wfl execution has generated some data that has been
cached, as shown in Figure 4. Then, a user can reuse

datasets D1 and D2 to speed up the execution of Wf2.
Thus, the only fragment that requires to be executed is F7.

3. Problem Definition and System Model

In this section, we start by giving an overview of dis-
tributed workflow execution. Based on this overview, we
formulate the problem of cache-aware scheduling in a mul-
tisite cloud. Then, we present our workflow system archi-
tecture that integrates caching and reuse of intermediate
data in a multisite cloud. We motivate our design decisions
and describe our architecture in two ways: in terms of
functional layers (see Figure [3)), which shows the different
functions and components; and in terms of nodes and com-
ponents (see Figure [4)), which are involved in the processing
of workflows.

3.1. Problem Definition

We consider a multisite cloud with a set of sites S={s;,
oy Snt. A workflow W (A, D) is a directed acyclic graph
(DAG) of computational activities A and their data de-
pendencies D. A task ¢ is the instantiation of an activity
during execution with specific associated input data. A
fragment f of an instantiated workflow is a subset of tasks
and their dependencies.

We introduce basic cost functions to reflect data transfer
and distributed execution. The time to transfer data d
from site s; to site s;, noted T} (d, si, s;j), is defined by

Size(d)

Ty (d, 86, 85) =
ir(d; 53, 55) TrRate(s;, s;)

(1)
where TrRate(s;, s;) is the transfer rate between s; and
Sj-

The time to transfer input and cached data, In(f) and
Cached(f) respectively, to execute a fragment f at site s;

is ,Tinput (fa 51)

S

T;nput(fa Si) = Z(Ttr<ln(f>7 Sj, S’L)

(2)
+ Ty (Cached(f), s;, 5:))

Note that both the input data In(f) and the cached data
Cached(f) used to execute a fragment can be distributed
on several sites. The time to transfer the data considers
the data transfer from all the different sites.

The time to compute a fragment f at site s, noted
Teompute(f, s), can be estimated using Amdahl’s law [21]:

(& + (A —0a))«W(f)
Ppery(s)

where W (f) is the workload for the execution of f, Ppers ()
is the average computing performance of the processors at
site s and n is the number of processors at site s. We assume
that the local scheduler may parallelize task executions.

Tcompute(f7 5) = (3)

Therefore, a represents the percentage of the workload that
can be executed in parallel.

The expected waiting time to be able to execute a
fragment at site s is noted Tyqit(s), which is the minimum
expected time for s to finish executing the fragments in its
queue.

The time to transfer the intermediate data generated
by fragment f at site s; to site s;, noted Tyrite (Output(f),
Si,5;5), is defined by:

Twrite(Output(f), si, 85) = Ty (Output(f), si,85) (4)

where Output(f) is the data generated by the execution of
I

Based on these different cost functions, we make three
assumptions to define our scheduling problem:

e Al. The frequency of reusing each fragment is un-
known. For each fragment execution, storing data
into the cache has a cost (see Equation, which gets
amortized only if it is reused. Thus, scheduling must
take into account cache management.

e A2. The sites are heterogeneous and have limited
storage and computing resources. For each fragment,
the input data and cached data can be distributed
on multiple sites. The time to retrieve data before
execution (see Equation [2)) can be significant. Thus,
the scheduling decision should consider data transfers,
for both cached and intermediate data.

e A3. The workflows are executed in sequential order.
Thus, we do not consider concurrency in the data
and resources access.

We focus on the problems of workflow scheduling and
cache management. The workflow scheduling problem is to
map each workflow fragment f for execution to a site in S
while minimizing the execution time (from Equations 2| and
3). The cache management problem involves the decision
of choosing which intermediate data should be added to
the cache dynamically. However, the two problems are not
independent. Workflow scheduling depends on cache data
management as the cached data can be reused for execution
but may require to be transferred to the execution site.
On the other hand, cache data management depends on
workflow scheduling as the intermediate data is generated
on the execution site, which may not be the optimal site
where to cache it. However, an efficient solution for one
of these problems may not be optimal when considering
the overall cost of workflow execution. Thus, our goal
is to minimize this cost by managing both the workflow
scheduling and the cache.

3.2. Workflow System Architecture

Our architecture capitalizes on the latest advances in
distributed and parallel data management to offer perfor-
mance and scalability [I8]. We consider a distributed cloud

Workflow mgr (fragment execution)

Metadata
(catalog, cache index,
provenance)

Global scheduling

Scheduler

Local scheduling

Task mgr (task execution)

Data mgr (file mgt, data transfer, intersite replication...)

Figure 3: Workflow System Functional Architecture.

architecture with on premise servers, where raw data is
produced, e.g, by a phenotyping experimental platform
in our use case, and remote sites, where the workflow is
executed. The remote sites are data centers using shared-
nothing clusters, i.e., clusters of server machines, each
with independent processors, disk and memory. We adopt
shared-nothing as it is the most scalable and cost-effective
architecture for big data analysis.

In the cloud, metadata is critical for workflow schedul-
ing as it provides a global view of data location, e.g, at
which nodes some raw data is stored, and enables task
tracking during execution [I7]. We organize the metadata
in three repositories: catalog, provenance database and
cache index. The catalog contains all information about
users (access rights, etc.), raw data location and work-
flows (code libraries, application code). The provenance
database captures all information about workflow specifica-
tion and execution. The cache index contains information
about tasks and cache data, as well as the location of files
that store the cached data. Thus, the cache index itself
is small (only file references) and the cached data can be
managed using the underlying distributed file system. A
good solution for implementing these metadata repositories
is a key-value store, such as CassandraEL which provides
efficient key-based access, scalability and high availability
through replication in a shared-nothing cluster.

The raw data files are initially produced and stored at
some sites, e.g, in our use case, at the phenotyping plat-
form. During workflow execution, the intermediate data is
generated and consumed at one site’s node in memory. It
gets written to disk when it must be transferred to another
node (potentially at the same site) or explicitly added to
the cache.

Figure [3] extends the workflow system architecture pro-
posed in [22] for single site. It is composed of six modules:
workflow manager, global scheduler, local scheduler, task
manager, data manager and metadata manager, to sup-
port both execution and intermediate data caching in a
multisite cloud. The workflow manager provides a user
interface for workflow definition and processing. Before
workflow execution, the user selects a number of virtual
machines (VMs), given a set of possible instance formats,
i.e., the technical characteristics of the VMs, deployed on

?https://cassandra.apache.org

https://cassandra.apache.org

Site 1

Standby Master Node Catalog W Site 2
Master Node (Workflow mgr,| provDB ite
Scheduler) Cache index
Compute Node Compute Node \ Site 3
(Task mgr) (Task mgr)

Data Node Data Node
(Datamgr) | Data (Data mgr) | Data

Figure 4: Multisite Workflow System Architecture.

each site’s nodes. When a workflow execution is started,
the workflow manager simplifies the workflow by removing
some workflow fragments and partitions, depending on the
raw input data and the cached data (see Section . The
global scheduler uses the metadata (catalog, provenance
database, and cache index) to schedule the workflow frag-
ments of the simplified workflow. The VMs on each site
are then initialized, i.e., the programs required for the
execution of the tasks are installed and all parameters are
configured. The local scheduler schedules the workflow
fragments received on its VMs.

The data manager module handles data transfers be-
tween sites during execution for both newly generated
intermediate data and cached data, and manages cache
storage. At a single site, data storage is distributed be-
tween cluster nodes. Finally, the task manager manages
the execution of fragments on the VMs at each site. It
exploits the provenance data to decide whether or not the
task’s output data should be placed in the cache, based
on the cache provisioning algorithm (see Section . Local
scheduling and execution can be performed as in [T5].

Figure [shows how these components are organized,
using the traditional master-worker model, in a multisite
cloud. Each site provides the same functionality, i.e., all the
components described in Figure |3 Thus, users can trigger
a workflow execution at any site. However, for a given
workflow execution, there is one coordinator site, where
the execution is started. The coordinator site performs
workflow management and global scheduling, and manages
the execution with other participant sites. The workflow
manager and the global scheduler modules are involved
only on the coordinator site while all other modules are
involved on all sites.

At each site, there are three kinds of nodes: master,
compute and data nodes, which are mapped to cluster
nodes at configuration time, e.g, using a cluster manager
like YarnPl Each site has one active master node and
a standby node to deal with master node failure. The
master nodes are the only ones to communicate across sites.
Each master node supports the top layers of the functional

3http://hadoop.apache.org

architecture: workflow manager, global scheduler, local
scheduler and metadata management.

The master nodes are responsible for transferring data
between sites during execution. They are lightly loaded as
most of the work of serving clients is done by the compute
and data nodes (or worker nodes), which perform local
execution and data management, respectively.

4. Cache-aware Workflow Execution

In this section, we present in more details the cache-
aware workflow execution in a multisite cloud. In particular,
the global scheduler must decide which data to cache (cache
data selection) where (cache site selection), and where
to execute workflow fragments (execution site selection).
Since these decisions are not independent, we propose a
cost function to make a global decision, based on the cost
components for individual decisions. First, we present
the methods and cost functions for cache data selection,
cache site selection, execution site selection, and global
decision. Then, we introduce our algorithms for cache-
aware scheduling.

The execution of a workflow W (A, D) in S starts at a
coordinator site s. and proceeds in three main steps:

1. The global scheduler at s. simplifies and partitions
the workflow into fragments. Simplification uses
metadata to decide whether a task can be replaced by
corresponding cached data references. Partitioning
uses the dependencies in D to produce fragments.

2. For each fragment, the global scheduler at s, com-
putes a cost function to make a global decision on
which data to cache where, and on which site to
execute. Then, it triggers fragment execution and
caching of data at the selected sites.

3. At each selected site, the local scheduler performs
the execution of the received fragments using its task
manager (to execute tasks) and data manager (to
transfer the required input data). It also applies
the decision of the global scheduler on storing new
intermediate data into the cache.

4.1. Workflow Simplification

Workflow simplification is performed by the workflow
manager before execution, transforming the workflow into
an executable workflow and considering the metadata, in-
put, and cache data location. It is based on the workflow
simplification method presented in [23].

First, the workflow W (A, D) is transformed into an ex-
ecutable workflow W, (A4, D, T, Input), where T is a DAG
of tasks corresponding to the activities in A and Input is
the input data. The goal is to transform an executable
workflow We, (A, D, T, Input) into an equivalent, simpler
subworkflow W/ (A’, D', T', Input’), where A’ is a sub-
graph of A with dependencies D’, T" is a subgraph of T'
corresponding to A’ and Input’ is a subset of Input.

http://hadoop.apache.org

The workflow simplification algorithm is recursive and
traverses the DAG T starting from the sink tasks to the
source tasks. The algorithm marks each task whose output
is already in the cache. Then, the subgraphs of T that have
each of their sink tasks marked are removed, and replaced
by the associated data from the cache. The remaining
graph is noted T”. Finally, the algorithm determines the
fragments of T”, i.e., the subgraphs that still need to be
executed.

4.2. Cache Data Selection

To determine what new intermediate data to cache,
we consider two different methods: greedy and adaptive.
Greedy data selection simply adds all new data to the cache.
Adaptive data selection extends our method proposed in
[15] to a multisite cloud. It achieves a good trade-off
between the cost saved by reusing cached data and the cost
incurred to feed the cache.

To determine whether it is worth adding some interme-
diate data Output(f) at site s;, we consider the trade-off
between the cost of adding Output(f) to the cache and
the potential benefit if it was reused. The cost of adding
Output(f) to site s; is the time to transfer it from where it
was generated, say site s; The potential benefit is the time
saved from loading Output(f) from s; to the site of com-
putation instead of re-executing the fragment. We model
this trade-off with the ratio between the cost and benefit of
the cache, noted p(f, s;, s;), which can be computed from

Equations [2] 3] and [

Twrite(OUtPUt(f)a Si, Sj)
Tinput (fa Sz) + Tcmnpute(fa Si)
7Tt?“ (OUtPUt(f)7 Sjs SZ)

p(f;si,85) = (5)

In the case of multiple users, the probability that Out —
put(f) will be reused or the number of times fragment f will
be re-executed is not known when the workflow is executed.
Thus, we introduce a threshold Threshold (computed on
behalf of the user) as the limit value to decide whether a
fragment output will be added to the cache. The decision
on whether Output(f) generated at site s; is stored at site
s; can be expressed by

if p(f,si,s;) < Threshold.

1
df;: = 6
" {O otherwise. (6)

4.8. Cache Site Selection

Cache site selection must take into account the data
transfer cost and the heterogeneity of computing and stor-
age resources. We propose two methods to balance either
storage load (bStorage) or computation load (bCompute)
between sites. The bStorage method prevents bottlenecks
when loading cached data. To assess this method at any
site s, we use a load indicator, noted ngtomge(s), which
represents the relative storage load as the ratio between

the storage used for the cached data (Storageysed(s)) and
the total storage (Storageiorai(s)).

_ Storageysea(s)
Storagetota(s)

LbStorage (5) (7)

The bCompute method balances the cached data be-
tween the most powerful sites, i.e., with more processors,
to prevent computing bottlenecks during execution. Using
the knowledge on the sites’ computing resources and usage,
we use a load indicator for each site s, noted Lycompute(S),
based on processors idleness (P;g.(s)) versus total proces-
sor capacity (Protai(s))-

1 — Piaie(s)

Ptotal (3) (8)

LbCompute(S) =
The load of a site s, depending on the method used, is
represented by L(s), ranging between 0 (empty load) and
1 (full). Given a fragment f executed at site s;, and a set
of sites {s;} with enough storage for Output(f), the best
site s* to add Output(f) to its cache can be obtained using
Equation [I] (to include transfer time) and Equation [6] (to
consider multiple users),

5" (f)s; = argmax(df’i’j % (1—L(sy)) o)

sj Twrite(OUtp’U/t(f)v Si, Sj)

4.4. Ezxecution Site Selection

To select an execution site s for a fragment f, we need
to estimate the execution time for f as well as the time to
feed the cache with the result of executing f. The execution
time of f at site $ (Tegecute(f,s)) is the sum of the time
to transfer input and cached data to s, the time to get
computing resources and the time to compute the fragment.
It is obtained using Equations [2 and [3]

Temecute(fa S) = Enput(fa 5) + Tcompute(f7 5) + Euait(s)
(10)
Given a fragment f executed at site s; and its interme-
diate data Output(f), the time to write Output(f) to the

cache (Trecd_cache ([, Si,8;)) can be defined as:

Tfeed,cache (f7 Siy Sy, df,i,j) = df,i,j *Twrite(OUtPUt(f)a Siy Sj)
(11)

where s; is given by Equation @

4.5. Global Decision

At Step 2 of workflow execution, for each fragment f,
the global scheduler must decide on the best combination
of individual decisions regarding cache data, cache site,
and execution site. These individual decisions depend on
each other. The decision on cache data depends on the
site where the data is generated and the site where it will
be stored. The decision on cache site depends on the site

where the data is generated and the decision of whether
or not the data will be cached. Finally, the decision on
execution site depends on what data will be added to the
cache and at which site. Using Equations[I0]and [T} we can
estimate the total time (Tiorq;) for executing a fragment f
at site s; and adding its intermediate data to the cache at
another site s;:

Ttotal(f, SiySj, df,i,j) = Tea:ecute(fv Si)

(12)

+‘]}éedxache(f78iasjadfﬂJ>

Then, the global decision for cache data (d;; ;), cache

site (s¥,.5.) and execution site (s},..) implies minimizing
the following equation for the n? pairs of sites s; and S;

(Serc’ SZachev dfﬂ%j) = argmin(Ttotal(fv Sis 54, df7i7j)) (13)
Si,Sj

This decision is performed by the coordinator site before

each fragment execution. It only takes into account the

site’s status at that time. Note that s?_... and s* can

exec cache
be the same site, including the coordinator site.

4.6. Cache-Aware Scheduling

In this section, we present in details our solution to
cache-aware scheduling in our architecture. We propose
three algorithms: GlobalGreedyCache, SiteGreedyCache
and FragGreedyCache. GlobalGreedyCache is a new greedy
algorithm that performs cache-aware scheduling. The two
other algorithms extend distributed greedy scheduling algo-
rithms [I0] to become cache-aware. These three algorithms
are dynamic in that they produce scheduling plans that dis-
tribute and allocate executable tasks to computing nodes
during workflow execution [22]. This kind of scheduling is
appropriate for our workflows, where the workload is diffi-
cult to estimate, or for environments where the capabilities
of the computers varies much during execution.

4.6.1. GlobalGreedyCache.

The GlobalGreedyCache algorithm (see Algorithm [1)) is
based on the global decision (see Equation made by
the coordinator site. It takes the simplified workflow graph
as input and, starting from the root fragment, computes
the global decision for each fragment. Recall that the
global decision combines individual decisions regarding
cache data, cache site, and execution site, before scheduling
each fragment.

Algorithm [I] proceeds as follows. The workflow is parti-
tioned into fragments (line 1), where F' represents the set
of all fragments of the workflow. Whenever a fragment is
ready for execution, it is selected (line 3). Then (line 4),
the global decision is computed using Equation [13]|to de-
termine the best execution site Se,c., cache placement site
Secache and cache decision dy; ;. At line 5, the fragment is
transferred to the site Seze. to be executed. Recall that the
cache decision dy; ; determines whether the intermediate

data will be cached. Whenever the intermediate data is
to be stored in the cache (lines 6-8), it is transferred at
site Scache (line 7). At line 8, the Cache Indez is updated
locally and the update is propagated at all replicas at other
sites. Finally (line 11), the fragment is removed from F.

Algorithm 1: GlobalGreedyCache

Input: WF': a workflow,
Cache index: the index of the placement of the
data existing in the cache
1 F « partition WF into fragment;
2 while F' not empty do
3 f + select a fragment of F' that is next to be
computed ;
4 Sezecs Scache, dt,i,; + compute from Equation
Ef
Schedule f execution on site Sezec ;
if dy; ; is True then

/* The intermediate data is cached
*/
7 Place the intermediate data on site Scqcne;
Update the Cache Index
9 else
/* The intermediate data will not be
cached */
10 end
11 Remove f from F;
12 end

4.6.2. SiteGreedyCache and FragGreedyCache.

SiteGreedyCache (site greedy with caching) extends the
SiteGreedy algorithm presented in [10]. The scheduling
decision of SiteGreedy works as follows. Let F' be the set
of workflow fragments. Whenever a site s is available, it
requests the execution of a ready fragment in F' to the
coordinator site. The selection of the fragment is based
on a cost function that takes into account data transfer
time and execution time. The idea of this scheduling is
to keep sites as busy as possible, scheduling a fragment
whenever a site is available. The caching decision is done
after the workflow fragment is scheduled for execution by
the local scheduler at each site. Unlike GlobalGreedyCache,
SiteGreedyCache does not make a global decision. Instead,
the caching decision is done in two steps. First, the choice
of the site where the cached data should be stored is deter-
mined by Equation[d] Then, the decision on whether or not
to store the intermediate data is determined by Equation
considering the execution time and the time to transfer
the intermediate data. Note that Equation [5| considers
both the execution site and the cache site, which are al-
ready determined when computed during the execution of
SiteGreedyCache.

FragGreedyCache (fragment greedy with caching) ex-
tends the ActGreedy algorithm presented in [I0]. Frag-
GreedyCache schedules each workflow fragment at the site

that minimizes a cost function based on execution time
and input data transfer time. The cost function is the sum
of the initialization time, expected execution time, and
data transfer time for each fragment at each site. Then,
after each fragment execution at the selected site, the local
scheduler performs the cache site and cache data decisions
based on Equations [9] and

These two greedy algorithms generate a dynamic schedul-
ing plan. After each fragment execution, the decision con-
cerning caching is made by the local scheduler. In contrast,
GlobalGreedyCache makes a global decision for each frag-
ment. Note that SiteGreedyCache and FragGreedyCache
needs less operations to schedule the fragments.

4.6.3. Analysis.

In this section, we analyze the runtime and storage
complexity of the GlobalGreedyCache algorithm.

Runtime complexity analysis. Let n be the num-
ber of given plant image sets. Our algorithm generates a
constant number of tasks for each set of images, i.e., less
than 14 tasks per set. Let |T'| be the number of generated
tasks, then we have |T'|= n*c, where ¢ <= 14 is a constant
value. Our algorithm groups tasks into fragments to be
scheduled, generating at most |T'| fragments. Our algo-
rithm performs one scheduling operation for each fragment,
and the time needed for each operation is constant. Thus,
the time complexity of the algorithm is O(|T|). Since we
have |T|= n x ¢ and c is a constant, the time complexity
of the algorithm is O(n), where n is the number of sets of
images.

Storage complexity analysis. The largest data struc-
ture used by our algorithm is a list containing the fragments.
As before, the number of fragment generated by the algo-
rithm is at most |T'|. Thus, the storage complexity of the
algorithm is O(|T]), so O(n), where n is the number of sets
of images.

5. Experimental Evaluation

In this section, we first present our experimental setup,
which features an heterogeneous multisite cloud with mul-
tiple users that re-execute part of the workflow. Then, we
compare the performance of our multisite cache scheduling
algorithms against two baseline algorithms. We end the
section with concluding remarks.

5.1. Experimental Setup

We use a real multisite cloud, with three sites, in France.
Site 1 in Montpellier is the raw data server of the Phe-
noarch phenotyping platform, with the smallest number of
processors and largest amount of storage among the sites.
The raw data is stored at this site. Site 2 is the coordinator
site, located in Lille. Site 3, located in Lyon, has the largest
number of processors and the smallest amount of storage.

To model site heterogeneity in terms of storage and
computing resources, we use heterogeneity factor H in

three configurations: H =0, H = 0.3 and H = 0.7. For
the three sites altogether, the total number of processors is
96 and the total storage 180 GB. With H = 0 (homogeneous
configuration), each site has 32 processors and 60 GB. With
H = 0.3, we have 22 processors and 83 GB for Site 1, 30
processors and 57 GB for Site 2 and 44 processors and
40 GB for Site 3. With H = 0.7 (most heterogeneous
configuration), we have 6 processors and 135 GB for Site 1,
23 processors and 35 GB for Site 2 and 67 processors and
10 GB for Site 3.

To determine the data transfer rate between the sites,
each site sends to the other sites a 10 MB test file and
measures the time. This operation is repeated every 30
minutes and the information is updated at the coordinator
site.

The workflow we use for testing is the Phenomenal
workflow (presented in Section. It is composed of 9 main
activities. The input dataset for the Phenomenal workflow
is produced by the Phenoarch platform (see Section .
Each execution of the workflow is performed on a subset of
the input dataset, i.e., 200 GB of raw data, which represents
the execution of 15,000 tasks. The workflow is executed
by several users. Each user wants the results produced by
the last activity, which requires the execution of all other
activities when executed from scratch. For each user, 60%
of the raw data is reused from previous executions. Thus,
each execution requires only 40% of new raw data. For the
first execution, no data is available in the cache.

For the experiments 3, 4 and 5 the workflow executions
have been performed three times. Presented values are the
average of the three executions.

We implemented our solution in OpenAlea and deployed
it at each site using the Conda multi-OS package manager.
The metadata database is implemented using the Cassan-
dra NoSQL data store. Communication between the sites
is done using the protocol library ZeroM Q. Data transfer
between sites is done through SSH. We have also imple-
mented two baseline scheduling methods: 1) ActGreedy,
a multisite scheduling algorithm [I0] that schedules the
fragments at multiple sites given a cost function based on
execution time and input data transfer time. This algo-
rithm is not cache aware and does not reuse intermediate
data for future executions. 2) a centralized version of
the three cache-aware scheduling algorithms proposed in
this paper(GlobalGreedyCache, SiteGreedyCache and Frag-
GreedyCache). In our experiments, the centralized cache is
managed on Site 1.

Table [[l summarizes the different variants of the schedul-
ing algorithms used in our experiments. Prefix "C-" in-
dicates that the cache is centralized at a single site while
prefix "D-" that it is distributed. For all algorithms that
use a cache, the cache index is fully replicated at all sites.

5.2. Experiments

We compare the three algorithms we proposed (Global-
GreedyCache, SiteGreedyCache, FragGreedyCache) in terms

Table 1: Scheduling algorithms and their main dimensions.

Algorithm Cost function parameters Cache decision | Cache placement
ActGreedy Execution time of Local No cache
Activity & input transfer time after execution
C-GlobalGreedyCache | Execution time of Fragments (Frag.) | Global per frag. Single
(C-G) Input & Cache transfer time before execution cache site
C-SiteGreedyCache Execution time Local Single
(C-S) Frag. Input transfer time after execution cache site
C-FragGreedyCache Execution time Local Single
(C-F) Frag. Input transfer time after execution cache site
D-GlobalGreedyCache Execution time Global per frag. Distributed
(D-G) Frag. Input & Cache transfer time | before execution
D-SiteGreedyCache Execution time Local Distributed
(D-S) Frag. Input transfer time after execution
D-FragGreedyCache Execution time Local Distributed
(D-F) Frag. Input transfer time after execution

of execution time and amount of data transferred with two
baselines. The total time is defined as the workflow exe-
cution time plus the transfer time. We consider different
workflow executions: with and without caching (Experi-
ment 1); on a monosite or a multisite cloud (Experiment 2);
and using a centralized or distributed cache (Experiment 3).
Then, we consider multiple users that execute the workflow
in the following cases: on the same multisite configuration,
where 60% of the data is the same (Experiment 4); on dif-
ferent multisite configurations (Experiment 5); and when
adding or removing workflow fragments (Experiment 6).

5.2.1. Experiment 1: with and without caching.

The goal of this experiment is to show that reusing
cached data can speed up workflow execution while caching
data is also time consuming. Thus, without a minimum
amount of cached data reused, the cost of having a cache
exceeds the benefits. To do so, we compare two work-
flow executions: with caching, using the D-GlobalGreedy-
Cache scheduling algorithm and the bStorage load balanc-
ing method; and without caching, using the ActGreedy
algorithm. We consider one re-execution of the workflow
on different input datasets, from 0% to 60% of data reuse.
D-GlobalGreedyCache outperforms ActGreedy from 20%
of reused data. Below 20%, the overhead of caching out-
weighs its benefit. For instance, with no reuse (0%), the
total time with D-GlobalGreedyCache is 16% higher than
with ActGreedy. But with 30%, it is 11% lower, and with
60%, it is 42% lower.

5.2.2. FExperiment 2: single site versus multisite execution.

The goal of this experiment is to show, in the case of
sites with limited resources, that increasing the number
of sites reduces the workflow execution total time despite
increased data transfers and network latencies. To do so,
we compare the total time in four cases with monosite and
multisite clouds:

6000 4 I Execution time
EEm Transfer time to cache data
mmm Transfer time to read cached data

5000 - Transfer time to read intermediate data

N
o
o
o

3000 -

Time (sec)

2000 -

- - . l
04

«@ O
& \o°

O
c\° *C

@t oF o (,\ \‘\9 \6‘?‘

> >
9(' Bo

Infrastructure

Figure 5: Total time of Phenomenal workflow execution in four cases.

1. a raw data site (Site 1), with only 10 processors,
where the raw data is stored;

2. another site (Site 3) with 96 processors, which can
perform computation on the raw and cache data (that
needs to be transferred from Site 1);

3. a multisite cloud composed of three sites with config-
uration H = 0.7, using C-FragGreedyCache;

4. the same multisite cloud but using D-GlobalGreedy-
Cache.

Figure [5| shows the total time of the workflow for the
different cases. When executing on the raw data site (first
chart on Figure , all the input data is already stored on
Site 1 as well as the cached data, thus there is no data
transfer between sites during workflow execution. However,
due to the reduced number of available processors, the
total time is by far longer than on any other infrastructure
(66% longer than the execution on Site 3, 238% longer
than the multisite execution with C-FragGreedyCache and
334% longer than the multisite execution with D-Global-
GreedyCache). An execution of the workflow on the full
raw dataset on Site 1 takes more than a week to compute.

In practice, the raw dataset is first sent to a site with more
computing resources available before being executed.

The execution on Site 3 yields the shortest execution
time, outperforming the multisite execution with C-Frag-
GreedyCache and D-GlobalGreedyCache in terms of execu-
tion time by 21% and 26% respectively. However, the time
for transferring the raw data makes its total time much
longer, so it is outperformed by the multisite execution
using D-GlobalGreedyCache by 61%.

The intermediate data transfer time on the multisite
cloud is much smaller (83% smaller for the execution with
D-GlobalGreedyCache) than the raw data transfer time of
the execution on Site 3. In a multisite cloud, fragments
can be executed on the site of their input data. In this
case, the raw data is not transferred between sites, but
locally processed on Site 1 by the first workflow fragment.
The intermediate data generated by the first fragment is
smaller than the raw data and is more easily transferred
to other sites, where the other fragments are scheduled.

5.2.8. Fxperiment 3: centralized versus distributed cache.

The goal of this experiment is to show that in a multisite
cloud, distributing the cache enables reducing significantly
the data transfer times, as well as the total time. Fig-
ure [6] shows the total time of the workflow for the three
algorithms Site GreedyCache, FragGreedyCache and Glob-
alGreedyCache. The algorithms used with a centralized
cache on Site 1 are C-SiteGreedyCache, C-FragGreedyCache
and C-GlobalGreedyCache. They are compared with D-
GlobalGreedyCache, which uses a distributed cache in two
configurations: (a) with two users; (b) with different site
heterogeneity.

Let us first analyze the results of Figure [6]a, where
two users execute the Phenomenal workflow with 60% of
common raw data in two configurations: centralized cache
on Site 1 and distributed cache with H = 0.7. For the
first user execution, D-GlobalGreedyCache outperforms C-
SiteGreedyCache in terms of total time by 44%. This is
due to D-GlobalGreedyCache outperforming C-SiteGreedy-
Cache in terms of intermediate and cache data transfer
times by 66% and 60% respectively. D-GlobalGreedyCache
outperforms C-FragGreedyCache in terms of total time by
24%, even though D-GlobalGreedyCache’s execution time
is lower than C-FragGreedyCache (5%). This is due to D-
GlobalGreedyCache outperforming C-FragGreedyCache in
terms of data transfer time by 44%. D-GlobalGreedyCache
outperforms C-GlobalGreedyCache in terms of total time
by 15%. The execution time and intermediate data transfer
time are similar (17% shorter and 11% longer). Yet D-Glob-
alGreedyCache outperforms C-GlobalGreedyCache in terms
of cache data transfer by 32%. For the first execution D-
GlobalGreedyCache outperforms the three algorithms with
centralized cache, mostly due to shorter data transfer times.
This is because the distributed cache enables executing the
workflow at a site with more computing resources and
storing the cached data on that site. For re-execution, D-
GlobalGreedyCache outperforms the three algorithms with

10

centralized cache, C-SiteGreedyCache, C-FragGreedyCache
and C-GlobalGreedyCache, in terms of total time by 63%,
47% and 23%, respectively.

Figure [6]b shows the total time of the workflow for
the second user and the four different algorithms: C-Site-
GreedyCache, C-FragGreedyCache, C-GlobalGreedyCache
and D-GlobalGreedyCache. The execution is performed on
three values of H in two configurations: centralized cache
on Site 1 and distributed cache. In any configuration, D-
GlobalGreedyCache outperforms the three other algorithms
with centralized cache, C-SiteGreedyCache, C-FragGreedy-
Cache and C-GlobalGreedyCache, in terms of total time by
44%, 33% and 17%, respectively for H = 0, by 53%, 40%
and 25%, respectively for H = 0.3, and by 61%, 44% and
22%, respectively for H = 0.7. The performance gain is
due to less data transfers.

5.2.4. FExperiment 4: multiple users.

The goal of this experiment is to show that the proposed
algorithms reduce the workflow execution total time in the
case of multiple users executing the workflow. Figure
shows the total time of the workflow for the three scheduling
algorithms, four users, H = 0.7, and our two cache site
selection methods: (a) bStorage, and (b) bCompute.

Let us first analyze the results in Figure a (bStorage
method). For the first user execution, D-GlobalGreedy-
Cache outperforms D-SiteGreedyCache in terms of execu-
tion time by 10% and in terms of data transfer time by 36%.
The reason that D-SiteGreedyCache is slower is because
it schedules some compute-intensive fragments at Site 1,
which has the lowest computing resources. Furthermore, it
does not consider data placement and transfer time when
scheduling fragments.

Again for the first user execution, D-GlobalGreedyCache
outperforms D-FragGreedyCache in terms of total time
by 20%, when considering the time to transfer data the
cache. However, its execution time is a bit slower (by
11%). The reason that D-FragGreedyCache is slower is
that it does not take into account the placement of the
cached data, which leads to larger amounts (by 66%) of
cache data to transfer. For other users’ executions (when
cached data exists), D-GlobalGreedyCache outperforms D-
SiteGreedyCache in terms of execution time by 29%, and
for the fourth user execution by 31%. This is because D-
GlobalGreedyCache better selects the cache site in order
to reduce the execution time of the future re-executions.
Furthermore, D-GlobalGreedyCache balances the cached
data and computations. It outperforms D-SiteGreedyCache
and D-FragGreedyCache in terms of intermediate data
transfer time (by 63% and 11%, respectively) and cache
data transfer time (by 78% and 69%, respectively).

Overall, D-GlobalGreedyCache outperforms D-Site Greedy-
Cache and D-FragGreedyCache in terms of total time by
61% and 41%, respectively. The workflow fragments are
not necessarily scheduled to the site with shortest execution
time, but to the site that minimizes overall total time. Con-
sidering the multiuser perspective, D-GlobalGreedyCache

Time (sec)

25001

2000 A

1500 4

1000

500

I Execution time

I Transfer time to cache data

I Transfer time to read cached data
Transfer time to read intermediate data

C-S C-F C-GD-G C-S C-F C-GD-G

1 2
Number of users

(a) Two users

Time (sec)

1600
1400 4
1200 4
1000 4
800 -
600
400 -

200 4

=mmmm Execution time

mmmm Transfer time to cache data

mssmm Transfer time to read cached data
Transfer time to read intermediate data

C-S C-F C-GD-G
0.0

C-S C-F C-GD-G

0.3
Heterogeneity factor

C-S C-F C-GD-G
0.7

(b) Site heterogeneity

Figure 6: Centralized versus distributed cache in terms of execution time. Three scheduling algorithms with centralized cache: C-SiteGreedyCache
(C-S), C-FragGreedyCache (C-F) and C-GlobalGreedyCache (C-G), and one with distributed cache: D-GlobalGreedyCache (D-G).

1600 | wemmmm Execution time
mmmm Transfer time to cache data
1400 { mmmsm Transfer time to read cached data
Transfer time to read intermediate data
1200 4
g 1000 1
o
¢ 8004
£
=
600 -
400 A
200 4
oA
D-S D-F D-G D-S D-F D-G D-S D-F D-G
0.0 0.3 0.7

Heterogeneity factor

(a) Total time

Size (GB)

mmmmm Cached data read

120 1 ==mmm Cached data write

mmmm Intermediate data
1001
801
60
401
204
o

D-S D-F D-G D-S D-F D-G D-S D-F D-G
0.0 0.3 0.7

Heterogeneity factor

(b) Amount of data transfer

Figure 7: Execution for one user (60% of same raw data used) on heterogeneous sites with three scheduling algorithms (D-SiteGreedyCache

(D-S), D-FragGreedyCache (D-F) and D-GlobalGreedyCache (D-G)).

mmmm Execution time
2000+ mmmm Transfer time to cache data
msssm Transfer time to read cached data
17501 Transfer time to read intermediate data
1500 1
@ 12501
)
€ 10001
£
7504
500
250 4
D-S D-F D-G D-S D-F D-G D-S D-F D-G D-S D-F D-G
1 2 3 4

Number of users

(a) bStorage method

Time (sec)

= Execution time
2000 mmmm Transfer time to cache data
mmssm Transfer time to read cached data
1750 4 Transfer time to read intermediate data
1500 4
1250 4
1000 4
750 4
500 -
250 4
D-S D-F D-G D-S D-F D-G D-S D-F D-G D-S D-F D-G
1 2 3 4

Number of users

(b) bCompute method

Figure 8: Total times for multiple users (60% of same raw data per user) for three scheduling algorithms (D-SiteGreedyCache (D-S), D-

FragGreedyCache (D-F) and D-GlobalGreedyCache (D-G)).

11

outperforms D-SiteGreedyCache and D-FragGreedyCache,
reducing the total time for each new user.

Let us now consider Figure b (bCompute method).
For the first user execution, D-GlobalGreedyCache out-
performs D-SiteGreedyCache and D-FragGreedyCache in
terms of total time by 38% and 12% respectively. bCom-
pute stores the cache data on the site with the most idle
processors, which is often the site with the most processors.
This leads the cached data to be stored close to where it is
generated, thus reducing data transfers when adding data
to the cache. For the second user, D-GlobalGreedyCache
outperforms D-SiteGreedyCache and D-FragGreedyCache
in terms of total time by 54% and 24% respectively. The
cached data generated by the first user is stored on the
sites with more available processors, which minimizes the
transfers of intermediate and cached data. From the third
user, the storage at some site gets full, i.e., for the third
user’s execution, Site 3’s storage is full and from the fourth
user’s execution, Site 2’s storage is full. Thus, the perfor-
mance of the three scheduling algorithms decreases due to
higher cache data transfer time. Yet, D-GlobalGreedyCache
outperforms D-SiteGreedyCache and D-FragGreedyCache
in terms of total time by 47% and 22% respectively.

5.2.5. FExperiment 5: site heterogeneity.

We now compare the three algorithms in the case of
heterogeneous sites by considering the amount of data
transferred and execution time. In this experiment (see
Figure [7)), we consider one user with the cache already
provisioned by previous executions on 60% of the same raw
data. We use the bStorage method for cache site selection.

Figure [7] shows the execution times and the amount
of data transferred using the three scheduling algorithms.
With homogeneous sites (H = 0), the three algorithms have
almost the same execution time. D-GlobalGreedyCache
outperforms D-SiteGreedyCache in terms of amount of data
transferred and total time by 47% and 32%, respectively.
The execution time of D-GlobalGreedyCache is similar to D-
FragGreedyCache (9% longer). The cached data is balanced
as the three sites have same storage capacities. Thus, total
times of D-GlobalGreedyCache and D-FragGreedyCache are
almost the same.

With heterogeneous sites (H > 0), the sites with more
processors have less available storage but can execute more
tasks, which leads to a larger amount of intermediate and
cached data being transferred between the sites. For H =
0.3, D-GlobalGreedyCache outperforms D-SiteGreedyCache
and D-FragGreedyCache in terms of total time (by 41%
and 17%, respectively) and amount of data transferred (by
48% and 21%, respectively).

With H = 0.7, D-GlobalGreedyCache outperforms D-
SiteGreedyCache and D-FragGreedyCache in terms of to-
tal time (by 58% and 42%, respectively) and in terms of
amount of data transferred (by 55% and 31%, respectively).
D-GlobalGreedyCache is faster because its scheduling leads
to a smaller amount of cached data transferred when reused

12

WF1 WF2 WF3

WF4

®e

@-®

Figure 9: Four subworkflows derived from the Phenomenal workflow.

(50% smaller than D-FragGreedyCache) and added to the
cache (57% smaller than D-FragGreedyCache).

5.2.6. Experiment 6: adding and removing fragments.

In this experiment, we evaluate how our approach per-
forms in terms of total time when subworkflows (with com-
mon fragments) derived from the Phenomenal workflow
are executed independently. Figure [J] shows four subwork-
flows, each corresponding to a different analysis required
by the user: WF1 performs image binarization, WF2 gen-
erates an analysis of the binary images, WF3 generates a
3D reconstruction of the plant and WF4 performs maize
analysis. WF1 is mostly data-intensive, the image binariza-
tion fragment performing little computation but consuming
Terabytes of data. WF2 requires more computational re-
sources but is still mostly data-intensive. Fragment F3
in WF3 (composed of activities 3 and 4 in Figure E[) is
mostly computation-intensive. Finally, WF4 is both data-
and computation-intensive. The subworkflows are executed
two times starting without cached data and 60% of the
raw input data is common between the users. Each user
wants the output data generated by the last activity of
the workflow, i.e. activity 2 for WF1, activity 3 for WF2,
activity 5 for WF3, and activity for WF9. All executions
use method bStorage.

Figure shows the total times for executing WF1,
WEF2, WF3 and WF4 by two users, one after the other.
The first user executes the subworkflow without existing
cached data, then the second user executes the subwork-
flow using 60% of the same raw data. In the case of WF1
(see Figure , D-SiteGreedyCache outperforms both
D-FragGreedyCache and D-GlobalGreedyCache in terms
of execution times by 92% for the first user and by 83%
for the second user. This is becauseD-SiteGreedyCache
uses all processors at all sites, whereas D-FragGreedyCache
and D-GlobalGreedyCache almost only use the processors

= Execution time =mmmm Execution time
700 4 mmmmm Transfer time to cache data 500 4 mmmmm Transfer time to cache data
mmmmm Transfer time to read cached data msmmm Transfer time to read cached data
600 Transfer time to read intermediate data Transfer time to read intermediate data
400 1
—~ 5001 -
o o
G i 300
3 400 "
E E
[] F
300 2004
200 +
100 4
1001
0 o0
D-S D-F D-G D-S D-F D-G D-S D-F D-G D-S D-F D-G
1 2 1 2
Two users Two users
(a) WF1 (b) WF2
mmmm Execution time = Execution time
1400 1 mmmmm Transfer time to cache data 2000 1 mmmmm Transfer time to cache data
msssm Transfer time to read cached data mmsmm Transfer time to read cached data
1200 4 Transfer time to read intermediate data 1750 4 Transfer time to read intermediate data
10001 1500 1
o o
@ @ 1250 4
< 800 2z
g £ 1000
F 600 I
750 4
400 A 500 4
200 4 250 A
o 04
D-S D-F D-G D-S D-F D-G D-S D-F D-G D-S D-F D-G
1 2 1 2
Two users Two users
(c) WF3 (d) WF4

Figure 10: Total times for executing the four subworkflows by two users (with 60% of same raw data for second user) with three algorithms
(D-SiteGreedyCache (D-S), D-FragGreedyCache (D-F) and D-GlobalGreedyCache (D-G)).

13

of Site 1 (where the raw input data is). However, D-
GlobalGreedyCache transfers less intermediate data (70%
less) during execution, which makes D-GlobalGreedyCache
outperforming D-Sgreedy in terms of total time by 49%.
D-GlobalGreedyCache and D-FragGreedyCache have simi-
lar total times (D-GlobalGreedyCache is outperformed by
only D-FragGreedyCache by 2%). Since WF1 is mostly
data-intensive, both methods D-GlobalGreedyCache and
D-FragGreedyCache try to execute the workflow at the site
where the input data is.

In the case of WF?2 (see Figure[10b), D-SiteGreedyCache
also outperforms both D-FragGreedyCache and D-Global-
GreedyCache in terms of execution times by 91% for the
first user and by 79% for the second user. This is because
the added fragment can be executed right after the execu-
tion of WF1 without delay as it does not required much
computational resources. However, D-GlobalGreedyCache
outperforms D-SiteGreedyCache in terms of total time by
39% due to longer data transfer times with D-SiteGreedy-
Cache. D-GlobalGreedyCache and D-FragGreedyCache also
have similar total times, D-GlobalGreedyCache outperforms
D-FragGreedyCache by 4% for the second user. WF1 and
WEF?2 are both data-intensive, not compute-intensive. Since
the raw data is stored on Site 1, the site with the most
storage capacities, it is the most likely to be used as cache
site. For these subworkflows, the selection of the execution
site by both algorithms D-FragGreedyCache and D-Glob-
alGreedyCache depends mostly on the intermediate data
location. In this case, they make similar decisions, and
thus have similar performance.

In the case of WF3 (see Figure, for the first user, D-
GlobalGreedyCache outperforms both D-SiteGreedyCache
and D-FragGreedyCache in terms of total time by 30% and
8% respectively. Then, for the second user, D-GlobalGreedy-
Cache also outperforms both D-SiteGreedyCache and D-
FragGreedyCache by 47% and 18% respectively. This is
due to D-GlobalGreedyCache outperforming D-SiteGreedy-
Cache and D-FragGreedyCache in terms of data transfers
by 69% and 35% respectively. D-FragGreedyCache selects
the best sites that minimize execution times and interme-
diate data transfer times. In the case of WF3, which has
a compute-intensive fragment, most of the computation
will be scheduled on the site with the most computational
resources. D-GlobalGreedyCache, however, will schedule
some of the computation to the sites where the interme-
diate data will be cached and these sites may have less
computational resources. This is why D-FragGreedyCache
has shorter execution time, but is outperformed by D-
GlobalGreedyCache in terms of total time.

In the case of WF4 (see Figure , D-GlobalGreedy-
Cache outperforms both D-SiteGreedyCache and D-Frag-
GreedyCache by 32% and 24% for the first user and 60%
and 40% for the second one respectively. In the case of
WF4, the fragments are both data- and compute-intensive,
thus the scheduling decision becomes more complex. D-
FragGreedyCache is scheduling fragments to minimize the
execution and intermediate data transfer times, which leads

14

D-FragGreedyCache to outperform D-GlobalGreedyCache
in terms of execution time and intermediate data transfer
by 8%. However, the intermediate data that will be cached
is bigger than in WF3, and the time to transfer the cached
data becomes a major element of the total time. This is
why D-GlobalGreedyCache outperforms D-Site GreedyCache
and D-FragGreedyCache in terms of total time.

5.8. Concluding Remarks

The main result of this experimental evaluation is that
GlobalGreedyCache always outperforms the two greedy al-
gorithms SiteGreedyCache and FragGreedyCache, both in
the case of multiple users and heterogeneous sites.

The first experiment (with or without caching) shows
that storing and reusing cached data becomes beneficial
when 20% or more of the input data is reused. The fourth
experiment (multiple users) shows that D-GlobalGreedy-
Cache outperforms D-SiteGreedyCache and D-FragGreedy-
Cache in terms of total time by up to 61% and 41%, re-
spectively. It also shows that, with increasing numbers of
users, the performance of the three scheduling algorithms
decreases due to higher cache data transfer times. The
fifth experiment (heterogeneous sites) shows that D-Global-
GreedyCache adapts well to site heterogeneity, minimizing
the amount of cached data transferred and thus reducing
total time. It outperforms D-SiteGreedyCache and D-Frag-
GreedyCache in terms of total time by up to 58% and 42%
respectively.

Both cache site selection methods bCompute and bStor-
age have their own advantages. bCompute outperforms
bStorage in terms of data transfer time by 13% for the first
user and up to 17% for the second user. However, it does
not scale with the number of users, and the limited storage
capacities of Site 2 and 3 lead to a bottleneck. On the other
hand, bStorage balances the cached data among sites and
prevents the bottleneck when accessing the cached data,
thus reducing re-execution times In summary, bCompute
is best suited for compute-intensive workflows that gener-
ate smaller intermediate datasets while bStorage is best
suited for data-intensive workflows where executions can
be performed at the site where the data is stored.

6. Related Work

Several workflow systems support caching and reuse of
intermediate data during workflow execution [13], 8] [24].
However, no solution we are aware of takes into account the
geo-distributed aspect of workflow execution when using
cached data. There is no definitive solution for two im-
portant problems: 1) how to determine what intermediate
data should be cached, taking into account data transfers;
2) how the workflow should be scheduled when the interme-
diate data and the cached data processed are distributed
over a multisite cloud. The related work provides two kinds
of methods, either to reuse intermediate data in a monosite
cloud or to optimize workflow execution in a multisite cloud,
but without any reuse of intermediate data.

Several workflow systems, such as Kepler, VisTrails,
OpenAlea, exploit intermediate data for more efficient
workflow execution. Each system has its unique way of
addressing data reuse. VisTrails provides visual analy-
sis of workflow results and provenance, i.e., captures the
graph of execution and the intermediate data generated
[13]. The intermediate data stored is reused when tasks
are re-executed on a local computer. The user can then
change some activities and parameters in the workflow and
efficiently re-execute each workflow activity to analyze the
different results. The intermediate data cache is used to
enhance reproducibitily when associated with provenance
metadata [25]. Caching and reuse of intermediate data
is done whenever possible, but does not scale up as the
data size increases, i.e., the data cannot be stored locally.
Finally, VisTrails does not take distribution into account
when storing and using the cache. Our approach is differ-
ent as it works in a distributed environment where data
transfer costs may be significant.

When storing intermediate data in the cloud, the trade-
off between the cost of re-executing tasks and the costs
of storing intermediate data is not easy to estimate [26].
Yuan et al. [16] propose an algorithm based on the ratio
between re-computation cost and storage cost at the frag-
ment level. The algorithm uses the provenance data to
generate a graph of the intermediate datasets dependen-
cies. Then, the cost of storing each intermediate data set
is weighted by the number of dependencies in the graph.
The algorithm determines the optimized set of intermediate
datasets to store. Cases et al. [27] propose a scheduling
algorithm based on the trade-off between the cost of re-
executing tasks and the costs of storing intermediate data
in a cloud. The algorithm splits scientific workflows into
multiple sub-workflows to balance system utilization via
parallelization. It also exploits data reuse and replication
techniques to optimize the amount of data that needs to
be transferred among tasks at run-time. However, both of
these approaches require global knowledge of executions,
such as the execution time of each task, the size of each
dataset and the number of incoming re-executions, which
is hard to monitor in practice. Furthermore, it does not
take data transfer into account.

Kepler [28] provides intermediate data caching that can
be used by workflows executed on a monosite cloud. The
cache data is stored on a remote server. When a workflow is
re-executed, the workflow is modified to access the cached
data. Then, all the cached data that will be reused by
the workflow is sent to the cloud where the workflow will
be executed. This solution is improved in [24] to store
the cache data on the same site than the execution. This
method selects which intermediate data will be cached using
an algorithm based on Ant Colony System optimization
to find a near optimum data caching policy. Owsiak et
al. [I2] propose a Kepler architecture to enable multiple
users to execute workflows and reuse intermediate data
through a cache system. The approach encapsulates all
Kepler instances into Docker containers, which can easily

15

be deployed in the shared environment. During workflow
execution, each user can generate cached data. However,
the cache is not shared between the users. Moreover, these
solutions do not take data transfer into account and only
work on monosite cloud. Our approach is different as it
manages cache and workflow execution in a multisite cloud.

OpenAlea [8] uses caching both in memory and on
disk. In memory caching is used on a local computer
for smaller workflow execution. Disk caching is based on
an adaptive cache decision that automatically determines
which intermediate data is to be stored [I5]. This solution
only works on monosite cloud and the cached data is always
reused.

Multisite cloud scheduling algorithms have been pro-
posed to allow distributed workflow execution on multiple
sites. Liu et al. [29] propose a scheduling algorithm based
on data location, that minimizes data transfer during work-
flow executions. The algorithm is further improved in [10]
with a multi-objective cost function, which includes the
time and monetary cost of workflow execution in a dy-
namic environment. Zhang et al. [30] propose another
interesting approach based on a specialized hybrid genetic
algorithm, that optimizes the transfer data between the
sites. These distributed scheduling approaches focus on
optimizing workflow execution, but do not consider caching
and reusing intermediate data.

7. Conclusion

In this paper, we considered the efficient execution
of data-intensive scientific workflows in a multisite cloud,
using caching of intermediate data produced by previous
workflows. However, caching intermediate data and schedul-
ing workflows to exploit such caching is complex, because
of the heterogeneity of cloud data centers. In particular,
workflow scheduling must be cache-aware, in order to decide
whether reusing cached data or re-executing workflows.

We proposed a solution for cache-aware scheduling of sci-
entific workflows in a multisite cloud. Our solution is based
on a distributed and parallel architecture and includes new
algorithms for adaptive caching, cache site selection and
dynamic workflow scheduling. Our solution has been im-
plemented in the OpenAlea workflow system. An extensive
experimental evaluation is performed in a three-site cloud
with a real application in plant phenotyping. We compared
our solution with two baselines: 1) a multisite workflow
scheduling algorithm that does not consider intermediate
data cache, 2) and a centralized cache architecture for
workflow execution.

For further comparisons, we extended two multisite
scheduling algorithms to exploit our caching architecture.
First, we showed that our solution for caching and reusing
intermediate data can reduce the total workflow execution
up to 42% with 60% of same input data for each new ex-
ecution. Second, we showed that our solution efficiently
distributes the fragments to the sites, which reduces the
data transfer times, and thus the total time up by to 61%

compared with a single remote site. Third, we showed
that our distributed cache architecture enables reducing
the total time by 22% compared with our algorithm Glob-
alGreedyCache with a centralized cache architecture. We
showed that the performance gain gets higher with hetero-
geneous sites. Fourth, we showed that the two methods
bStorage and bCompute efficiently distribute the cache data
to reduce the total time in the case of multiple users execut-
ing the workflow. Each method provides different benefits.
bStorage distributes the cache data so that each site still
has available storage for future intermediate data caching.
bCompute enables faster workflow re-executions but the
cache of the most powerful sites is rapidly full, which re-
duces the gain for future workflow executions. Fifth, we
showed that our solution provides similar results as the
adapted baseline algorithm in the case of homogeneous sites.
And as site heterogeneity increases, it reduces total time
up to 42%. Finally, we showed that our solution reduces
the total time of several data-intensive subworkflows from
Phenomenal. For compute-intensive subworkflows only, our
solution has a small overhead of up to 4% compared with
the adapted baseline algorithm.

The cost model of our solution focuses on minimizing
the makespan. Some other objectives, such as minimizing
financial costs, meeting deadline constraints, or following se-
curity constraints would change the decisions on scheduling
and data caching. Furthermore, the objective of minimiz-
ing environmental cost becomes essential and could be
integrated with the cache decision. The work proposed in
this paper presents a solution for workflow caching in the
environment of a multisite cloud with multiple users. A
possible improvement would be to consider other objectives
in the cost model.

Acknowledgement

This work was supported by the #DigitAg French initia-
tive, the SciDISC and HPDaSc Inria associated teams with
Brazil, the Phenome-Emphasis project (ANR-11-INBS-
0012) and IFB (ANR-11-INBS-0013) from the Agence Na-
tionale de la Recherche and the France Grille Scientific
Interest Group.

References

[1] S. Kelling, W. M. Hochachka, D. Fink, M. Riedewald, R. Caru-
ana, G. Ballard, G. Hooker, Data-intensive science: a new
paradigm for biodiversity studies, BioScience 59 (7) (2009) 613—
620.

S. Crago, K. Dunn, P. Eads, L. Hochstein, D.-I. Kang, M. Kang,
D. Modium, K. Singh, J. Suh, J. P. Walters, Heterogeneous
cloud computing, in: 2011 IEEE International Conference on
Cluster Computing, IEEE, 2011, pp. 378-385.

D. de Oliveira, F. A. Baido, M. Mattoso, Towards a taxonomy
for cloud computing from an e-science perspective, in: Cloud
Computing. Computer Communications and Networks., Springer,
2010, pp. 47-62.

J. M. Wozniak, T. G. Armstrong, M. Wilde, D. S. Katz,
E. Lusk, I. T. Foster, Swift/t: Large-scale application com-
position via distributed-memory dataflow processing, in: 2013

2]

16

(5]

[7]

[10]

[11]

[12]

[20]

21]

[22]

23]

13th IEEE/ACM International Symposium on Cluster, Cloud,
and Grid Computing, IEEE, 2013, pp. 95-102.

E. Deelman, K. Vahi, M. Rynge, G. Juve, R. Mayani, R. F.
Da Silva, Pegasus in the cloud: Science automation through
workflow technologies, IEEE Internet Computing 20 (1) (2016)
70-76.

D. de Oliveira, E. Ogasawara, F. Baido, M. Mattoso, Scicumulus:
A lightweight cloud middleware to explore many task computing
paradigm in scientific workflows, in: 2010 IEEE 3rd International
Conference on Cloud Computing, IEEE, 2010, pp. 378-385.

P. Korambath, J. Wang, A. Kumar, L. Hochstein, B. Schott,
R. Graybill, M. Baldea, J. Davis, Deploying kepler workflows
as services on a cloud infrastructure for smart manufacturing,
Procedia Computer Science 29 (2014) 2254-2259.

C. Pradal, C. Fournier, P. Valduriez, S. Cohen-Boulakia, Ope-
nalea: scientific workflows combining data analysis and sim-
ulation, in: Int. Conf. on Scientific and Statistical Database
Management (SSDBM), 2015, pp. 11:1-11:6.

K. Maheshwari, E. Jung, J. Meng, V. Vishwanath, R. Ket-
timuthu, Improving multisite workflow performance using model-
based scheduling, in: IEEE nt. Conf. on Parallel Processing
(ICPP), 2014, pp. 131-140.

J. Liu, E. Pacitti, P. Valduriez, D. de Oliveira, M. Mattoso,
Multi-objective scheduling of scientific workflows in multisite
clouds, Future Generation Computer Systems(FGCS) 63 (2016)
76-95.

D. Garijo, P. Alper, K. Belhajjame, O. Corcho, Y. Gil, C. Goble,
Common motifs in scientific workflows: An empirical analysis,
Future Generation Computer Systems (FGCS) 36 (2014) 338—
351.

M. Owsiak, M. Plociennik, B. Palak, T. Zok, C. Reux,
L. Di Gallo, D. Kalupin, T. Johnson, M. Schneider, Running
simultaneous kepler sessions for the parallelization of parametric
scans and optimization studies applied to complex workflows,
Journal of Computational Science 20 (2017) 103-111.

J. Freire, D. Koop, F. S. Chirigati, C. T. Silva, Reproducibility
using vistrails, Implementing Reproducible Research 33.

C. Pradal, S. Artzet, J. Chopard, D. Dupuis, C. Fournier,
M. Mielewczik, V. Negre, P. Neveu, D. Parigot, P. Valduriez,
et al., Infraphenogrid: a scientific workflow infrastructure for
plant phenomics on the grid, Future Generation Computer Sys-
tems (FGCS) 67 (2017) 341-353.

G. Heidsieck, D. de Oliveira, E. Pacitti, C. Pradal, F. Tardieu,
P. Valduriez, Adaptive caching for data-intensive scientific work-
flows in the cloud, in: Int. Conf. on Database and Expert Systems
Applications (DEXA), 2019, pp. 452-466.

D. Yuan, Y. Yang, X. Liu, W. Li, L. Cui, M. Xu, J. Chen,
A highly practical approach toward achieving minimum data
sets storage cost in the cloud, IEEE Trans. on Parallel and
Distributed Systems 24 (6) (2013) 1234-1244.

J. Liu, L. P. Morales, E. Pacitti, A. Costan, P. Valduriez, G. An-
toniu, M. Mattoso, Efficient scheduling of scientific workflows
using hot metadata in a multisite cloud, IEEE Trans. on Knowl-
edge and Data Engineering (2018) 1-20.

M. T. Ozsu, P. Valduriez, Principles of Distributed Database
Systems, Fourth Edition, Springer, 2020.

F. Tardieu, L. Cabrera-Bosquet, T. Pridmore, M. Bennett, Plant
phenomics, from sensors to knowledge, Current Biology 27 (15)
(2017) R770-R783.

S. Artzet, N. Brichet, J. Chopard, M. Mielewczik, C. Fournier,
C. Pradal, Openalea.phenomenal: A workflow for plant pheno-
typing (Sep. 2018). doi:10.5281/zenodo. 1436634l

J. Zhang, J. Luo, F. Dong, Scheduling of scientific workflow in
non-dedicated heterogeneous multicluster platform, Journal of
Systems and Software 86 (7) (2013) 1806-1818.

J. Liu, E. Pacitti, P. Valduriez, M. Mattoso, A survey of data-
intensive scientific workflow management, Journal of Grid Com-
puting 13 (4) (2015) 457-493.

G. Heidsieck, D. de Oliveira, E. Pacitti, C. Pradal, F. Tardieu,
P. Valduriez, Efficient execution of scientific workflows in the
cloud through adaptive caching, in: Transactions on Large-Scale

http://dx.doi.org/10.5281/zenodo.1436634

(28]

29]

30]

Data-and Knowledge-Centered Systems XLIV, Springer, 2020,
pp. 41-66.

W. Chen, I. Altintas, J. Wang, J. Li, Enhancing smart re-run
of kepler scientific workflows based on near optimum prove-
nance caching in cloud, in: IEEE World Congress on Services
(SERVICES), 2014, pp. 378-384.

S. C. Dey, K. Belhajjame, D. Koop, T. Song, P. Missier,
B. Ludascher, Up & down: Improving provenance precision
by combining workflow-and trace-level information, in: USENIX
Workshop on the Theory and Practice of Provenance (TAPP),
2014.

I. F. Adams, D. D. Long, E. L. Miller, S. Pasupathy, M. W.
Storer, Maximizing efficiency by trading storage for computa-
tion., in: HotCloud, 2009.

I. Casas, J. Taheri, R. Ranjan, L. Wang, A. Y. Zomaya, A
balanced scheduler with data reuse and replication for scien-
tific workflows in cloud computing systems, Future Generation
Computer Systems 74 (2017) 168-178.

I. Altintas, O. Barney, E. Jaeger-Frank, Provenance collection
support in the kepler scientific workflow system, in: International
Provenance and Annotation Workshop, 2006, pp. 118-132.

J. Liu, V. Silva, E. Pacitti, P. Valduriez, M. Mattoso, Scientific
workflow partitioning in multisite cloud, in: European Conf. on
Parallel Processing (Euro-Par), 2014, pp. 105-116.

J. Zhang, J. Chen, J. Zhan, J. Jin, A. Song, Graph partition—
based data and task co-scheduling of scientific workflow in geo-
distributed datacenters, Concurrency and Computation: Prac-
tice and Experience 31 (24) (2019) e5245.

17

	Introduction
	Use Case in Plant Phenotyping
	Problem Definition and System Model
	Problem Definition
	Workflow System Architecture

	Cache-aware Workflow Execution
	Workflow Simplification
	Cache Data Selection
	Cache Site Selection
	Execution Site Selection
	Global Decision
	Cache-Aware Scheduling
	GlobalGreedyCache.
	SiteGreedyCache and FragGreedyCache.
	Analysis.

	Experimental Evaluation
	Experimental Setup
	Experiments
	Experiment 1: with and without caching.
	Experiment 2: single site versus multisite execution.
	Experiment 3: centralized versus distributed cache.
	Experiment 4: multiple users.
	Experiment 5: site heterogeneity.
	Experiment 6: adding and removing fragments.

	Concluding Remarks

	Related Work
	Conclusion

