
Journal Pre-proof

Beyond TPC-DS, a benchmark for Big Data OLAP systems
(BDOLAP-Bench)

Roberto Tardío, Alejandro Maté, Juan Trujillo

PII: S0167-739X(22)00055-3
DOI: https://doi.org/10.1016/j.future.2022.02.015
Reference: FUTURE 6406

To appear in: Future Generation Computer Systems

Received date : 1 July 2021
Revised date : 11 February 2022
Accepted date : 17 February 2022

Please cite this article as: R. Tardío, A. Maté and J. Trujillo, Beyond TPC-DS, a benchmark for Big
Data OLAP systems (BDOLAP-Bench), Future Generation Computer Systems (2022), doi:
https://doi.org/10.1016/j.future.2022.02.015.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the
addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
version of record. This version will undergo additional copyediting, typesetting and review before it
is published in its final form, but we are providing this version to give early visibility of the article.
Please note that, during the production process, errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.future.2022.02.015
https://doi.org/10.1016/j.future.2022.02.015

Journal Pre-proof

B

Abstrac

Online A rows or
terabytes making
them sui ences in
query an using a
benchma s, in this
research PC-DS
benchma its sales
data mar tenance
performa

Keyword

1. Intro

Over t
systems
support B
approach
with Sta
[5], Dru
storage o
tens of b
interactiv
high perf
feature t
tools wit

When
tures to c
queries t
OLAP s
tables), a
data. In
son betw
priate is
are sever
OLAP sy
SBB [10
recogniz

Howe
nature of
tectures

∗Corres
Email

vent the
itable to
AP sys-
14, 15]

modify-
in each

ot allow
s from

in chal-
imple-

est. We
roposed
s, since
rchitec-
ized to
several
rk with
els.

bench-
ig Data
bench-

marking
ata SQL
of its (i)
ce met-
prevent
e these

s to en-
l in any
OLAP

rmance

Preprint su 11, 2022

REVISED Manuscript text UNmarked (2nd Revision) Click here to view linked References
Jo
ur

na
l P

re
-p

ro
of

eyond TPC-DS, a Benchmark for Big Data OLAP Systems (BDOLAP-Bench)

Roberto Tardı́oa,∗, Alejandro Matéb, Juan Trujilloa,b

aStrateBI Business Solutions Ltd, Madrid, 28020, Spain
bDept. of Software and Computing Systems, Lucentia Lab, University of Alicante, Alicante, 03690, Spain

t

nalytical Processing (OLAP) systems with Big Data support allow storing tables of up to tens of billions of
of data. At the same time, these tools allow the execution of analytical queries with interactive response times, thus

table for the implementation of Business Intelligence applications. However, since there can be significant differ
d data loading performance between current Big Data OLAP tools, it is worthwhile to evaluate and compare them
rk. But we identified that none of the existing approaches are really suitable for this type of system. To address thi
we propose a new benchmark specifically designed for Big Data OLAP systems and based on the widely adopted T
rk. To overcome TPC-DS inadequacy, we propose (i) a set of transformations to support the implementation of
t on any current Big Data OLAP system, (ii) a choice of 16 genuine OLAP queries, and (iii) an improved data main
nce metric. Moreover, we validated our benchmark through its implementation on four representative systems.

s: Big Data OLAP, Benchmarking, Data Modelling, Kylin, Druid

duction

he past decade, Online Analytical Processing (OLAP)
have evolved their architecture and functionality to
ig Data scenarios [1, 2, 3]. Several Big Data OLAP

es have emerged [4], highlighting open-source tools
ndard Query Language (SQL) support, such as Kylin
id [6], Pinot or Clikhouse. These systems enable the
f analytical data models comprising tables of up to
illions of rows and terabytes of data while allowing
e query latencies (milliseconds-seconds). This very
ormance when executing analytical queries is the main

hat differentiates them from general-purpose Big Data
h SQL support, such as Hive, Spark SQL or Drill.
choosing a Big Data OLAP system, two of the key fea-
onsider are (i) the performance in executing analytical

o maintain user interactivity in applications that require
upport (e.g., dashboards, reports or multidimensional
nd (ii) system efficiency when loading and updating
order to allow for an objective performance compari-
een current Big Data OLAP systems, the most appro-
to apply an industry-standardized benchmark. There
al approaches for benchmarking Data Warehouses and
stems [7, 8, 9, 10, 11, 12, 13], being the TPC-H [9],
] and TPC-DS [8, 7] benchmarks some of the most
ed and widely accepted by the industry.
ver, there is no benchmark that addresses the specific

current Big Data OLAP systems. The different archi-
and constraints posed by Big Data OLAP systems to

ponding author.
address: roberto.tardio@stratebi.com (Roberto Tardı́o)

support extreme data scenarios, challenge or even pre
application of existing benchmarks, which are only su
be used with Data Warehouses (DW) or traditional OL
tems. This leads many vendors and practitioners [13,
to partially apply benchmarks such as TPC-DS or by
ing their definition, without applying the same criteria
implementation. This leads to biased results that do n
for an objective comparison of Big Data OLAP system
different vendors.

We agree with other authors [16] that one of the ma
lenges is the lack of flexibility of current benchmarks to
ment their proposed data model in the system under t
consider that the implementation of the data model p
by the benchmark should not be unique for all system
each Big Data OLAP approach proposes a different a
ture. While some Big Data OLAP systems [5] are optim
work with star [1] or snowflake schemas composed of
tables and relationships, others [6] are designed to wo
simpler data structures, even with single-table data mod

In order to address the issues identified in current
marking approaches, we propose a new benchmark for B
OLAP systems. Our approach is based on the TPC-DS
mark, which has been validated by industry for bench
DW systems and even for some general-purpose Big D
systems, such as Hive [17]. However, the inadequacy
data model, (ii) proposed query set, and (iii) performan
rics to the nature of current Big Data OLAP systems,
its implementation on this kind of systems. To overcom
shortcomings, we propose (i) a set of transformation
able the optimal implementation of its sales data mode
Big Data OLAP system, (ii) a selection of 16 genuine
queries, and (iii) an improved data maintenance perfo

bmitted to Future Generation Computer Systems February

Journal Pre-proof

measure.
In ord

benchma
Druid [6
tative1 B
have cho
performa
different
our prop
performa
specializ
SQL sys
Apache H

In the
proposal
Then, in
OLAP sy
In sectio
posed sy
then disc
tion 6. F
as future

2. Relat

Amon
can high
(TPC-H,
SSB (Sta
we have
18, 16, 2

One o
Created
load sim
benchma
with othe
(3FN) no
systems,
mentatio
normaliz
the indus
tenance.

Rodrig
on sever
Presto, I
They exa
tify the c
tems. Ra
and the
of the ch
search, t
Data OL

The S
signed to

1http:

https://

ased on
queries,
elf-joins
system.
industry
ylin2 or
owever,
oo sim-
ss com-
such as

Apache
a model
rations,
model.
ompare

menting
entified

the need
a model
tem un-
he need
ig Data
x archi-
iques to
, 18, 16]
chmark

en 2006
s today.
able [1]
omplex-
consists
the per-
rison of
tor [26]
stic dis-
scussed.
esented,
ig Data
Among
n of its
ries and

PC-DS
C-DS is
sto and

e partial
justified
ata SQL
ala and
-H and
itations
PC-DS

ive-druid/
Jo
ur

na
l P

re
-p

ro
of

er to demonstrate the application of our proposed
rk, we have chosen Apache Kylin [5] and Apache
] for its implementation, two modern and represen-
ig Data OLAP systems [18, 19, 20, 21, 22]. We
sen these tools as they both promise similar query
nce for Big Data scenarios while presenting a well-

iated architecture that allows us to properly evaluate
osed methods. Furthermore, in order to evaluate the
nce advantages promised by these two Big Data tools
ed in OLAP workloads over general-purpose Big Data
tems, we have also implemented our benchmark on
ive (with LLAP) [17] and Spark SQL.
next section, we analyze the current benchmarking

s and their application to Big Data OLAP systems.
section 3, we present our benchmark for Big Data
stems and propose some guidelines for its application.

n 4, we apply our proposed benchmark to the four pro-
stems. Then, in Section 5, we analyze the results and
uss the applicability of our benchmark proposal in Sec-
inally, in Section 7, we present our conclusions as well
research directions.

ed work

g the benchmarking approaches for OLAP systems, we
light the ones standardized by the TPC organization
TPC-DS and TPCx-BB) [7, 8, 9, 11, 12, 13] and the
r Schema Benchmark) [10]. For all these benchmarks,
found and analyzed use cases of their application [23,
4, 19, 14, 15, 17] to Big Data OLAP systems.
f the most widely adopted benchmarks is TPC-H [9].
in an era before Big Data systems, due to its work-
plicity, this benchmark is still one of the most used
rks today. Despite the advantages of TPC-H, we agree
r authors [10, 18] that the proposed third normal form
rmalized data model, typically used in transactional
is not suitable for analytical systems. For the imple-
n of Data Warehouses (DW) and OLAP systems, de-
ed snowflake or star schemas [1] are widely used by
try due to their performance benefits and ease of main-

ues et al. [24] have applied the TPC-H benchmark
al representative general-purpose Big Data SQL tools:
mpala, Hive on Tez, Spark SQL, Drill and HAWQ.
mine the set of queries proposed by TPC-H to iden-
hallenges these queries pose to DW and OLAP sys-
ndom row retrieval without applying data aggregation,
use of complex expressions or sub-queries are some
allenges identified. Despite the advantages of this re-
he suitability of using TPC-H for benchmarking Big
AP systems is not analyzed.
SB (Star Schema Benchmark) [10] benchmark was de-

make the TPC-H benchmark more suitable for OLAP

//kylin.apache.org/community/poweredby.html

druid.apache.org/druid-powered

systems. This benchmark proposes a star schema b
the TPC-H data model and a new set of 13 OLAP
excluding TPC-H queries that include subqueries or s
since they were considered inappropriate for an OLAP
Thanks to its ease of use, SSB is being applied by the
for benchmarking Big Data OLAP systems, such as K
Druid3, as well as in several researches [19, 18, 16]. H
despite its advantages, the SSB benchmark presents a t
ple workload for use on Big Data systems and also a le
plete definition compared to other existing benchmarks,
TPC-DS [13].

In [19] the authors apply the SSB benchmark on
Druid [6], testing different implementations of the dat
proposed by SSB. Since Druid does not support join ope
they require a denormalized implementation of this data
In [18], the same authors apply the SSB benchmark to c
Apache Druid against Apache Hive and Presto, imple
for each tool the optimal SSB data model design they id
in their previous research [16, 19]. This fact highlights
for benchmarks to enable the adjustment of their dat
design to the specific nature of the Big Data OLAP sys
der test. Furthermore, in [25] the authors highlight t
to adapt data models to the nature of each specific B
database due to the constraints imposed by their comple
tectures and also the usefulness of data modeling techn
perform such adaptation. However, all these studies [19
do not analyze the suitability of applying the SSB ben
to Big Data OLAP systems.

The TPC-DS benchmark [7, 8, 13], developed betwe
and 2012, is also one of the most adopted benchmark
This benchmark proposes a snowflake data model, suit
for DW and OLAP systems, and a workload of higher c
ity than the other benchmarks analyzed. This workload
of a set of 99 data queries and a set of metrics for
formance measurement to enable the objective compa
current systems. Noteworthy, its proposed data genera
relies on the use of real patterns, achieving a more reali
tribution of the test data than in the other benchmarks di
In addition, in [13] the second version of TPC-DS is pr
proposing several adjustments to support its use with B
SQL systems, such as Apache Hive, Impala or Presto.
the proposed modifications, we highlight the relaxatio
implementation restrictions, the rewriting of some que
the elimination of row-level update operations.

There are many studies where applications of the T
benchmark are presented [13, 14, 15, 17]. In [15] TP
applied to benchmark Drill, HAWQ, Hive, Impala, Pre
Spark SQL. Despite the completeness of this study, th
implementation of TPC-DS with only 16 queries is not
and the feasibility of implementing TPC-DS on Big D
tools is not questioned. In [14] Hive, Spark SQL, Imp
Presto systems are benchmarked using TPC-DS, TPC
TPCx-BB. An important insight of this study are the lim
identified that prevent the implementation of all 99 T

2https://github.com/Kyligence/ssb-kylin
3https://blog.cloudera.com/sub-second-analytics-h

2

Journal Pre-proof

queries i
DS to be
new feat
are prese
Hive 3.1
Hive 3.1
TPC-DS
a single
nale for
evaluatin
cussed.
pare two
tradition
applying
support h

In 201
Unlike T
several t
and unst
advantag
tems, th
benchma

After
ing Big D
affect all

• The
suit

• Som
trul
mar
syst

The is
dors to a
tered for
complete
lished pe
parison
technolo

Notice
lenges fo
we ident
and their
for benc
new prop
focuses o
same dat
on the p
the other
point for
reliabilit
validated
with trad
systems

For all
cific ben

bench-
ms and
, in this

lfills the

st com-
llowing
ig Data

the par-
d in the
ta SQL
lex data

g a spe-
porting

n of an-
er huge
onse of
resto is
specif-

merged,
-second
me per-
r highly
level of
r a high
ecution
ly com-
imple-

AP sys-
entation

[13] to
ig Data
ive way.

ark for
mark is

rt repre-
nal data

l imple-
AP sys-
option-
s is one
existing
bench-

ation to

roposed
chmark,
rd those
Jo
ur

na
l P

re
-p

ro
of

n the evaluated tools, but again the suitability of TPC-
nchmark these systems is not questioned. In [17] the

ures of Apache Hive 3.1 for interactive query execution
nted. Although they used TPC-DS for benchmarking
and Hive 1.2.1, to evaluate the integration between
and Druid they chose SSB benchmarking instead of
and also denormalised the multi-table star schema into
table. Despite the advantages of this study, the ratio-
using SSB (denormalised) instead of TPC-DS when
g the integration between Hive and Druid is not dis-
In [13], the new version of TPC-DS is used to com-
unidentified Big Data SQL systems against two more

al non-Big Data systems. However, the feasibility of
TPC-DS to new Big Data systems focused on OLAP
as not been studied.
6, the TPCx-BB benchmark was released [12, 11, 27].
PC-H and TPC-DS, this benchmark adds support for

ypes of processing: OLAP, raw data exploration (semi
ructured) and machine learning processes. Despite its
es, due to its focus on general-purpose Big Data sys-
e TPCx-BB benchmark is only partially suitable for
rking Big Data OLAP tools.

our analysis of the existing approaches for benchmark-
ata OLAP systems, we identified two key issues that

of them, as listed below:

proposed data models [7, 8, 10, 9, 11, 12, 13] present
ability issues for their use in Big Data OLAP systems.

e of the proposed queries [7, 8, 9, 11, 12, 13] are not
y OLAP queries. They are more appropriate for bench-
king general-purpose DW or even transactional OLTP
ems.

sues identified are leading Big Data OLAP system ven-
pply benchmarks, such as TPC-DS, in a partial or al-
m [14, 15], or even to choose [24, 17] simpler but less
benchmarks, such as TPC-H or SSB. As a result, pub-
rformance reports do not allow for an objective com-

of existing Big Data OLAP systems, often favor the
gy of the vendor presenting these reports.

that in our previous work [4] we analyzed the chal-
r benchmarking Big Data OLAP systems. As a result,
ified the key characteristics of the OLAP workloads
related performance metrics that should be evaluated

hmarking Big Data OLAP tools. However, unlike our
osal based on TPC-DS, the benchmark proposed in [4]
n the comparison of different implementations of the

a model in one chosen Big Data OLAP tool rather than
erformance comparison between different tools. On
hand, we believe that using TPC-DS as the starting
the design of our new benchmark provides a higher

y than designing it from scratch, as TPC-DS has been
by industry and the scientific community for its use

itional DW systems or even with some Big Data SQL
such as Hive.
these reasons, we identified the need to develop a spe-

chmark that allows the objective comparison of perfor-

mance between current Big Data OLAP systems. This
mark must consider the specifics of this kind of syste
enable their implementation in any of them. To this end
research we present a new benchmark approach that fu
above goals.

3. Proposed benchmark

We conclude that the TPC-DS benchmark is the mo
plete and realistic of all the benchmarks reviewed, a
benchmarking traditional DW systems and even some B
SQL systems with huge volumes of data. However,
tial implementations of the TPC-DS benchmark analyse
state-of-the-art [14, 15] show that there are still Big Da
tools that do not support the implementation of its comp
model and all of its 99 queries.

Furthermore, our proposal focuses on benchmarkin
cific kind of Big Data SQL tools specialized in sup
OLAP workloads [4, 28], i.e., supporting the executio
alytical summary queries with interactive response ov
volumes of data. As shown in [14, 15, 17], the resp
general-purpose Big Data SQL tools such as Hive or P
not interactive in most cases. However, Big Data tools
ically designed to optimize OLAP workloads have e
such as Apache Kylin or Druid, which promise sub
query execution times. In order to achieve this extre
formance, these tools further restrict SQL support fo
complex analytical queries, i.e. queries with a high
detail, involving a very large number of result rows o
number of attributes. These constraints prevent the ex
of TPC-DS on Big Data OLAP systems. However, high
plex OLAP queries are not commonly required for the
mentation of dashboards or OLAP tables. Big Data OL
tems are therefore the only alternative for the implem
of such applications in Big Data scenarios.

Similarly to how TPC-DS adapted its specification
support general purpose Big Data SQL systems, B
OLAP systems deserve to be benchmarked in an object
To this end, in this research we propose a new benchm
Big Data OLAP systems based on TPC-DS. Our bench
composed of the following elements:

• Data model: We propose to use only the data ma
senting sales (store, web and catalog) in the origi
model proposed by TPC-DS.

• Rules for data modelling: To support the optima
mentation of this data model in any Big Data OL
tem, we propose three transformations that can be
ally applied to obtain equivalent data models. Thi
of the main novelties of our proposal compared to
approaches, in which the structural design of the
mark data model is pre-fixed, preventing its adapt
the nature of the systems to be tested.

• A set of 16 OLAP queries: From the 99 queries p
by TPC-DS, we selected 16 queries for our ben
based on a set of criteria that we defined to disca

3

Journal Pre-proof

que
or t
curr

• A d
ator
whi
Fac

• Per
indi
or m
data
cha
orig

For th
account
discussed
scribe w
benchma

3.1. Mod

To sup
eral appr
Pinot or
tems ena
to tens o
ing inter
treme pe
different
SQL too
executio
and often

To ach
marily on
as those
dexing,
trade-off

table con
especiall
non-Big
straints c
systems
posed by

• Dat
the
betw
ana
only
fact
this

• Dat
stan
part
ing

For in-
ort data
al oper-
OLAP

ta load-
impose

stead of

AP sys-
the ap-

PC-DS.
must be
ifferent
AP ap-

describe
n be ap-

bench-
les data

in any
sforma-

uses a
tation in
his data
-models
ales and
and in-
mented
sion ta-
1 shows
annel in
, please

el: one
to store
t tables,
he sales
s ticket
related
Fig. 1
dimen-

contains
e TPC-

bles and

s of cur-
prevent

ress this
normal-
ning ex-
e. Thus,
Jo
ur

na
l P

re
-p

ro
of

ries that do not really represent an OLAP type query
hose that involve operations constrained by most of the
ent Big Data OLAP systems.

ata generator: We adopted the synthetic data gener-
proposed by TPC-DS, DSDGEN (aka MUDD) [26],

ch allows to set the size of the test data using the Scale
tor (SF) parameter.

formance tests and metrics: We propose to perform
vidual performance tests of (i) data querying, with one
ore concurrent users, (ii) initial data loading, and (iii)
refreshing. For this data maintenance test, we propose

nges to both the process implementation and metrics
inally proposed by TPC-DS.

e design of each of these elements, we have taken into
the particularities of current Big Data OLAP systems,

in the following subsection. Subsequently, we de-
ith more detail each of the elements that are part of our
rk proposal.

ern big data OLAP systems

port OLAP applications on Big Data scenarios, sev-
oaches such as Apache Kylin [5], Apache Druid [6],
Clickhouse have emerged in recent years. These sys-
ble the storage of analytical data models in tables of up
f billions of rows and terabytes of data while maintain-
active query latencies (milliseconds-seconds). This ex-
rformance in the execution of OLAP workloads is what
iates these tools from other general-purpose Big Data
ls such as Apache Hive, Spark SQL or Presto whose
n times [14, 15, 17, 24] are of a few seconds at best

up to tens of seconds.
ieve this very high performance, these tools rely pri-
distributed processing and storage architectures, such

of Hadoop, as well on the use of aggressive data in-
pre-combination or pre-aggregation techniques. As a
, these architectures and techniques impose some no-
straints and differences in the way we should use them,
y if we compare these approaches against traditional
Data OLAP systems. To a lesser extent, such con-
an also be found in general-purpose Big Data SQL
[13]. Below, we enumerate the main constraints im-
current Big Data OLAP systems:

a model:Most of these systems impose constraints to
implementation of relationships and join operations
een the different fact and dimension tables within an

lytical data model. There are even architectures that
allow the use of a single table, thus all data from the
and dimensions tables has to be joined and stored in
table.

a querying: These systems mostly support the use of
dard query language (SQL). However, they are often
ially compliant with the standards (ANSI SQL), focus-
on support for OLAP queries that use mainly clauses

and operators for data aggregation and filtering.
stance, in some cases these systems do not supp
queries that do not apply aggregation, some speci
ators, such as standard deviation, or even advanced
operations, such as OVER or RANK.

• Data loading and refreshing: To maintain high da
ing and query performance, these systems often
the need to refresh data blocks (aka segments) in
allowing row-level updates.

These constraints imposed by current Big Data OL
tems to support extreme data scenarios, make unfeasible
plication of some of the existing benchmarks such as T
Therefore, our benchmark for Big Data OLAP systems
flexible in its implementation, taking into account the d
architectures and functionality of current Big Data OL
proaches. To this end, in the following sections, we
the methods proposed to enable that our benchmark ca
plied to any current Big Data OLAP system.

3.2. Data model

The data model is one of the key components of our
mark. It is based on the TPC-DS, but using only its sa
mart (DM). To enable the implementation of this DM
current Big Data OLAP system, we propose three tran
tions to it that can be optionally applied.

The original data model proposed by TPC-DS
snowflake schema [1], generally suitable for implemen
DW and traditional non-Big Data OLAP systems. T
model represents a retail scenario, composed of 3 sub
or DMs: sales, returns and inventory. In addition, the s
returns DMs consist of 3 sales channels: store, catalog
ternet. Thus, each of the sales and returns DMs is imple
using 3 fact tables, one per channel, and a set of dimen
bles that are mostly shared between the fact tables. Fig.
an excerpt of the entire schema depicting the store ch
both the sales and returns DMs. For the entire schema
refer to the v3.0 public release [29].

As we can see, there are two fact tables per chann
to store product sales (store sales) and a second one
potential product returns (store returns). In these fac
the minimum granularity is given by the products and t
ticket, being able to relate both DMs through the sale
number. At the same time, each of these fact tables is
to a set of dimension tables, which are represented in
by the remaining entities, such as the date or customer
sions. There is also an inventory fact table that only
data for the catalog and internet channels. Altogether, th
DS data model comprises 24 tables, including 7 fact ta
17 dimension tables.

However, the constraints imposed by the architecture
rent Big Data OLAP systems make it difficult or even
the implementation of the TPC-DS data model. To add
issue, we can apply certain techniques such as data de
ization [1] to obtain equivalent data models, i.e., contai
actly the same data and relationships as the original on

4

Journal Pre-proof

Fig. 1. Da

by apply
adapted t
ing any c
propose
data mar
lows us
test. The
optional,
constrain
these tra
3 propos
algebra:

• T1
To
invo
twe
met
late
deg
fact

Let
S TO
Let
the
can
fact

If w
S TO
CO
sult
(col
this
as
cha
ble

S TORE×

CN and
fact ta-
the op-

GCN

(1)

of more
y TPC-
les. For
the cus-

related
ension

ics and
ig Data
mposed
normal-

ension
between

B =

s com-
olumns

ces, and
to relate
olumns
ose the
lization
le table

peration

(2)

il all di-
reduced
original
suitable

AP sys-
models

erations
n is the
e big ta-

=

he ap-
tables

e appli-
ES DEN

ation 3.
Jo
ur

na
l P

re
-p

ro
of

ta mart model for the store channel in TPC-DS benchmark.

ing these techniques, the benchmark data model can be
o the nature of each Big Data OLAP system, overcom-
onstraints imposed by these systems. To this end, we
three transformations that can be applied to the sales
t (DM) to generate an equivalent data model that al-
to implement our benchmark with the system under

application of the three proposed transformations is
encouraging a previous study of the architecture and
ts of the system to be tested in order to decide which of

nsformations to apply. In the following, we present the
ed transformations, described using set and relational

- Unification of fact tables across the sales channel:
avoid the execution of UNION operations in queries
lving two or more data mart channels, i.e., queries be-

en fact tables. Since DM channels share most of the
rics stored in the fact table columns and also their re-
d dimension tables, we can model the channel as a new
enerate dimension, i.e., stored in a new column on the
table.

be the fact tables relative to the 3 sales channels:
RE S ALES , WEB S ALES y CAT ALOG S ALES .

COLS TORE , COLWEB y COLCAT ALOG respectively be
sets of columns which compose such fact tables. We
then obtain the columns not common to each of these
tables.

e define the set of not common columns to the
RE S ALES table as COLS TORE di f f = (COLWEB \

LS TORE) ∪ (COLCAT ALOG \ COLS TORE), thus the re-
ing table can be defined as UNCOMMONS TORE =

S TORE di f f 1, colS TORE di f f 2, . . . , colS TORE di f f n). At
point, we can model the channel dimension

a table CHANNELS TORE = (channel) where
nnel ∈ (′store′). Then, we can define the fact ta-
S TORECN as a combination of tables: [S TORECN =

]Πcol1,col2,...,coln (S TORE S ALES×UNCOMMON
CHANNELS TORE).

We repeat the above steps to obtain the WEB
CAT ALOGCN tables. Finally, to build the unified
ble by the sales channel dimension, we can apply
eration proposed in Equation 1.

[S ALES =] S TORECN ∪WEBCN ∪CAT ALO

• T2 - Denormalization of dimensions composed
than one table: In the data model proposed b
DS a dimension can be composed of several tab
example, in Fig. 1 the dimension representing
tomer is composed of the customer table, which is
to the fact table store sales, but also to three dim
tables: customer address, household demograph
customer demographics. Considering that some B
OLAP systems constrain the use of dimensions co
of multiple tables, in these cases we can apply de
ization techniques [1] to reduce the number of dim
tables and thus reduce the number of relationships
tables.

A = (col1, col2, . . . , coln b, coln) and
(col1, col2, . . . , coln) are two dimension table
posed of col1 primary key columns, coln c
representing the attributes of the dimension instan
coln b foreign key columns in table A that allow
this table to B through its primary key. These c
hold values for each row (aka tuples) that comp
table. In these cases, we can apply denorma
between A and B tables, to reduce them to a sing
C. In Equation 2, we define this denormalization o
using relational algebra (|x means left join):

[C =]A |xA.coln b=B.col1 B

This transformation can be applied recursively unt
mensions composed of more than one table are
into a single table. As a result, we will convert the
snowflake schema into a pure star schema, more
for OLAP systems [10, 1, 4].

• T3 - Full denormalization: Some Big Data OL
tems further constrain the complexity of the data
they can implement by not allowing any JOIN op
between tables. In these cases, the only solutio
complete denormalization of all tables into a singl
ble that combines all facts and dimensions.

Assuming the fact table S ALES
(col1 1, col1 2, col1 n, . . . , coln) obtained by t
plication of T1, and all the dimension
DIMi = (col1, col2, . . . , coln) denormalized by th
cation of T2, the fully denormalized table S AL
can be obtained by the operation defined in Equ

5

Journal Pre-proof

Thi
prev

[S

|xS A

By the
transform
original
mentatio
system.
data mod

Howe
duce the
web sale
tory) to
involving
These ty
supporte

It is po
returns f
using the
sible, we
usually o
days. H
most Big
dates are
the abov
table eve

The T
mance o
tial (full)
supports
Factors (
performe
less. Mo
especiall
of data, c
the avail
usefulne
decision-

To ove
propose
sider tha
catalog)
complex
lieve tha
of the su
be on th
be effici
where th
an event
generate

sforma-
by the

includes

k,

, in SQL
d-Hoc,

ht think
porting,
k speci-
queries,
uly suit-
we ob-

e highly
el of de-
number
. These
tructure
tion and

r bench-
be part

ties and
ystems,
e iden-

ults, we
that are
hen, we
iginally
follow-

2, 3, 26,
We use

g these
ypes of
for cur-
aluated

in terms
Jo
ur

na
l P

re
-p

ro
of

s operation combines the fact table SALES with all the
iously denormalized dimension tables.

ALES DEN =] (((S ALES |xS ALES .col1 1=DIM1.col1 DIM1)

LES .col1 2=DIM2.col1 DIM2) . . . |xS ALES .col1 n=DIMn.col1 DIMn)
(3)

selective application of one or more of our proposed
ations, we can obtain a data model equivalent to the

one proposed by TPC-DS. Thus, enabling the imple-
n of the benchmark data model in any Big Data OLAP
Moreover, these transformations can help optimize the
el to the nature of their particular architecture.

ver, although the application of T1 allows us to re-
number of fact tables from 7 (store sales, store returns,
s, web returns, catalog sales, catalog returns, inven-
3 (sales, returns, inventory), there will still be queries

UNION or JOIN operations between fact tables.
pes of queries are not optimized or, in the worst case,
d by most current Big Data OLAP engines.
ssible to apply denormalization between the sales and

act tables, to combine (JOIN) them in a single table
ticket number column. Although this design is fea-
must be aware that the return of a product does not

ccur at the same time of its purchase, but after a few
owever, since row-level updates are not supported in
Data OLAP systems or, if supported, random row up-
not recommended in the fact tables [1], if we apply

e solution, it will be necessary to update the entire fact
ry time we add or refresh data in it.
PC-DS benchmark, in addition to testing the perfor-
f data querying, also tests the performance of the ini-
load and data maintenance. For these tests, TPC-DS
the use of different data set sizes, also called Scale
SF). Thus, if only full loads of the fact table can be
d, the data maintenance test would become meaning-
reover, the time required for a full fact table reloading,
y with high SF factors with up to hundreds of terabytes
ould take up to several days. This fact would prevent

ability of recent data in the system, greatly reducing its
ss due to the loss of value of the data stored on it for
making processes.
rcome the above constraints and their implications, we
to use only the sales DM in our benchmark. We con-
t this DM, consisting of 3 channels (store, web and
related to all dimension tables, represents a data model
enough to evaluate Big Data OLAP systems. We be-

t in these systems, rather than focusing on the structure
pported data model, the focus of benchmarking should
e volume of data or rows that these systems allow to
ently updated and queried. In fact, the sales DM is
e TPC-DS benchmark maintains most data, as sales is
that occurs much more frequently than returns and also
s more data than updating the product inventory.

To exemplify the application of the proposed tran
tions, in Fig. 2 we show a valid data model generated
application of T1 and T2 transformations. This model
all the entities used in our benchmark.

Fig. 2. Instance of the data model proposed for the benchmar
obtained by applying the T1 and T2 transformations.

3.3. Benchmark query set
The TPC-DS benchmark proposes a set of 99 queries

language, which are classified into 4 types: Reporting, A
OLAP and Data Mining. Based on their type, we mig
that at least the queries classified as OLAP, or even re
are suitable for OLAP systems. However, the benchmar
fication [29] does not indicate the type of each of the 99
thus not allowing us to identify those queries that are tr
able for benchmarking OLAP systems. Furthermore,
serve that many of the queries proposed by TPC-DS ar
complex OLAP queries. That is, queries with a high lev
tail, involving a very high number of result rows, a high
of attributes or sub-queries with several levels of nesting
queries are rare in OLAP systems, because the whole s
of the data model is designed to facilitate data aggrega
summarization operations.

To determine which TPC-DS queries are suitable fo
marking Big Data OLAP systems and therefore should
of our benchmark, we first analysed the query capabili
constraints posed by the most current Big Data OLAP s
as well as the characteristics of the OLAP queries that w
tified in our previous research [4]. Based on the res
have defined several criteria to discard those queries
not suitable for benchmarking this kind of systems. T
have applied these criteria to review the 99 queries or
proposed by TPC-DS. As a result, we have selected the
ing 16 queries that compose our benchmark query set:
33, 42, 43, 52, 55, 58, 58, 60, 62, 63, 76, 88, 90 and 95.
the original TPC-DS numbering for referring to them.

In the following, we describe the process of definin
criteria. First, in Table 1 we have identified those t
queries and features that may pose significant issues
rent Big Data OLAP systems. In addition, we have ev
them for a Big Data OLAP system that is quite flexible

6

Journal Pre-proof

Table 1
Capabilitie

Featur
SQL s rd not

Join op

Querie
Querie
(witho
Comp sup-

Known ors

of data m
Kylin, a
pects, Ap
SQL sys
latest ve
by TPC-
to impro
been take
selection

The q
on all cu
plementa
straints i
carding t
marking
part of o

• No
tem
que
thes
eve
(e.g
that

• Join
erat
Dat
we
retu
mat
a si
twe
crite
turn

• Self
are
cuti
Dat
will

entified
alytical

ct table.
d in Big

nctions
P analy-
RANK
current

ure that
ove all

s is less
systems
hen ex-
ll those
ng sub-
ery and
.e., sub-
ries that
in or no
ressions

match-
e prob-
ements,
as those
affected
rformed
roposed

al form
t tables,
owever,
the data
ration is
al query
btaining
Jo
ur

na
l P

re
-p

ro
of

s analysis of two current Big Data OLAP systems

e Apache Kylin Apache Druid
yntax Extensive, close to ANSI SQL:2003.

Not supporting ANSI:89 style joins
Limited, ANSI standa
indicated.

erations Limited:
- Optimizes inner and left joins.
- Very low performance in all other join types.

Not supported.

s with low or no data aggregation Limited, with poor performance Fully Supported
s between dimension tables
ut using fact table)

Limited, with poor performance Not supported

lex sub-queries Limited (poor performance) Limited (no joins
ported)

unsupported functions and operators Standard deviation Rank and Over operat

odel complexity and supported SQL queries, Apache
gainst a system that is more restrictive in these as-
ache Druid. Note that some general-purpose Big Data
tems, Hive and Spark SQL, already support in their
rsions the implementation of the 99 queries proposed
DS. However, as these systems do not specifically aim
ve the performance of OLAP workloads, they have not
n into account for the definition of our proposed query
criteria.

ueries selected for our benchmark must be able to run
rrent Big Data OLAP systems to enable the full im-
tion of our benchmark on any of them. From the con-

dentified in Table 1, we next identify the criteria for dis-
hose TPC-DS queries that are not suitable for bench-
Big Data OLAP systems and therefore should not be

ur benchmark:

data aggregation: The main goal Big Data OLAP sys-
s is to boost the performance of data summarization
ries at extreme data scenarios (Big Data). To this end,
e systems constrain row-level data query features, or

n prevent queries that do not use aggregation operators
., SUM, MAX,...). Thus, we will discard all queries
do not use aggregation operators.

s and unions between fact tables: This kind of op-
ion is not optimized or even supported by current Big
a OLAP systems. Therefore, in the previous section,
decided to use just the sales DM and discard the use of
rns and inventory DMs. We also proposed a transfor-
ion (T1) to unify the 3 channels of the sales DM into
ngle fact table, in order to avoid JOIN operations be-
en the fact tables of these channels. By applying this
rion, we will discard all queries that involve the re-
s or inventory DMs.

joins: Queries involving a join of a table with itself
not common in OLAP systems [10], being the exe-
on performance of these queries very low in those Big
a OLAP systems that support them. For this reason, we
discard all queries that include self-join operations.

• Analytical queries on dimensions: Another id
query pattern that is rare in OLAP analysis is an
queries across dimensions, without involving a fa
These queries are not optimized or even supporte
Data OLAP systems, so we must discard them.

• Unsupported functions and operators: Some fu
and operators that are less frequently used in OLA
sis, such as the standard deviation (STDEV) or the
and OVER operators, are not supported by all
Big Data OLAP systems. As our goal is to ens
our benchmark is generally supported, we will rem
queries containing these unsupported operators.

• Complex subqueries: Since this type of querie
common [10] in OLAP analysis, Big Data OLAP
usually present limitations or performance issues w
ecuting them. For this reason, we will discard a
queries that present one or more of the followi
query patterns: (i) join operations between a subqu
a parent query, (ii) more than one level of nesting, i
queries containing other subqueries or, (iii) subque
meet any of the other discard criteria (e.g., self jo
data aggregation). This also includes WITH exp
presenting any of the above circumstances.

However, we will consider all those queries that, even
ing the criteria defined, can be rewritten to remove th
lematic casuistry while maintaining their original stat
ensuring that the response data are exactly the same
returned by the original query. This applies to queries
by the data model unification and denormalization pe
as a result of the application of one or more of the 3 p
transformations.

For instance, in Fig. 3 we show query 60 in its origin
(left), presenting a UNION ALL operation between fac
thus matching one of the discard criteria identified. H
by the application of T1 (and T2) we have obtained
model shown in Fig. 2, where this UNION ALL ope
no longer necessary. Hence, we can rewrite the origin
(left) to remove all instances of this operation, thus o

7

Journal Pre-proof

an equiv
the origi

Fig. 3. Qu
by TPC-D
data mode
(T1-T3) a

In Tab
mark, se
99 origin
queries t
defined c
cially rep
putationa
card crit
query sta
still repr
tem to be

There
that mig
Neverthe
and com
concludi
tative of
lighted b
of querie
plete set
current B

load of
ifferent
d in the
ension
BY or

a higher
ted. As
es make
Fig. 4b
me 6 or
st of the
the Big

d.

ed.

eir

omputa-
) of dis-
h cardi-
ill con-

en facts
n as the
AP sys-

>1,000
000 in-
tational
roposed
dimen-

ddition,
Jo
ur

na
l P

re
-p

ro
of

alent query (right) that returns exactly the same data as
nal one.

ery 60. On the left is shown the original version proposed
S. Right is shown the query rewritten for the equivalent
l generated by application of the proposed transformations
nd shown in Fig. 2.

le 2, we show the 16 queries included in our bench-
lected by applying the proposed discard criteria on the
al TPC-DS queries. In addition, we specify those

hat have been selected even not meeting some of the
riteria. These are queries 63 and 95, which are espe-
resentative for the benchmark due to their high com-
l requirements. To overcome all their matching dis-
eria, we have applied minor modifications to these
tements. Even after this modification, these queries

esent a very high computational workload for the sys-
tested.

are some more of the 99 queries proposed by TPC-DS
ht meet the criteria and therefore could be accepted.
less, we have performed an analysis of the variability
putational load represented by the 16 selected queries,
ng that this proposed set of queries is enough represen-
a real Big Data OLAP workload. Moreover, as high-
y some studies [13], it is not so important the number
s, but rather the variety of queries included in the com-
allows for testing the different features provided by
ig Data OLAP systems.

In order to analyze the variability and computational
our 16 proposed queries, we first studied how many d
dimension tables and columns of these tables are involve
proposed queries. The higher the number of different dim
tables and columns involved, the more JOIN, GROUP
WHERE filtering operations are needed, thus implying
computational load for the Big Data OLAP system tes
we can observe in Fig. 4a, most of the selected queri
use of 3 or more dimensions. At the same time, in
we observe that 67% of the queries use at the same ti
more dimension attributes. These results show that mo
proposed queries pose a large computational demand on
Data OLAP system tested.

(a) Number of different dimension tables simultaneously use

(b) Number of different dimension columns simultaneously us

Fig. 4. Analysis of concurrent use of dimension tables and th
columns in the proposed query set.

Another factor that has a significant impact on the c
tional load posed by the query is the number (cardinality
tinct values in the dimension columns. High or very hig
nality values in columns used in GROUP BY clauses w
siderably increase the number of combinations betwe
and dimensions in queries. This problem is also know
curse of dimensionality, whose effects on Big Data OL
tems we analyzed in our previous research [4].

In [4], we differentiate between high cardinality (HC,
instances) and ultra-high cardinality (UHC, >300,
stances) dimensions, which generate a very high compu
load to the system. Applying this classification to our p
queries, we observe that all of them use at least one HC
sion and two of them also use UHC dimensions. In a

8

Journal Pre-proof

Table 2
Set of 16 q

Query
2, 3,
42, 43,
58, 60,
88, 90
63 total and

tegories,
ores and

95 shipping
eriod to
ed web

ore than

there are
with mul

From
that the 1
our defin
system to
ing Big D

3.4. Loa
To tes

queries a
a volume
scenario
DSDGEN
applies r
as sales
figure th
Factor (S
respond

For th
data gen
appropri
maintena
ply any
data mod
under tes
cess to e
same rea
ments fo

In Fig
propose
dates (5b
using DS
to be pe
torical d
the load
maintena
data gen
out any

t in the

ns (T1-
ssary to
ew data
enerally
ion pro-
ing lan-
traction,
ted and
tore the
be used

propose
ve [17],
age, (ii)
AP sys-
data up-
ed, they
a OLAP

uired to
ig Data
the data
f.
ata flow
milar to
the data
clude 2

ly affect
e store,

nce, we
used as

process,
y TPC-
roposed
such as
Jo
ur

na
l P

re
-p

ro
of

ueries of our proposed benchmark, selected by applying the discard criteria defined on the 99 original queries proposed by TPC-DS.

Decision Not met criteria Changes New statement
26, 33,
52, 55,
62, 76,

Accepted - - Unchanged

Accepted
with
changes

Unsupported opera-
tors

Suppressing OVER
operation

For a given year calculate the monthly
average sales of items of specific ca
classes and brands that were sold in st
group the results by store manager.

Accepted
with
changes

Join between fact ta-
bles using a WITH
expression

Suppression of the
JOIN clause with the
returns fact table

Produce a count of web sales and total
cost and net profit in a given 60-day p
customers in a given state from a nam
site for returned orders shipped from m
one warehouse.

14 queries that use two or more HC dimensions, along
tiple low cardinality dimensions.
the results of the analysis performed, we can conclude
6 OLAP queries selected thanks to the application of
ed criteria simulate a high computational load for the
be tested. Therefore, they are suitable for benchmark-
ata OLAP systems.

d testing and data maintenance
t the Big Data OLAP system using the proposed
nd data model, we have to load into this data model
and variety of data enough to simulate a real Big Data
[2]. The TPC-DS benchmark proposes the use of the

(aka MUDD) synthetic data generator [26], which
eal distribution patterns from the retail domain, such
seasonality. Furthermore, DSDGEN allows us to con-
e data volume by means of a parameter named Scale
F), having as possible values multiples of 10 that cor-

approximately to the volume of data generated in GB.
e above reasons, we consider the use of the DSDGEN
erator suitable for our benchmark. We also consider
ate the proposed SQL statements to implement the data
nce test using the generated data. However, if we ap-

of the proposed transformations (T1-T3) to adapt the
el design to the nature of the Big Data OLAP system
t, we will need an additional data transformation pro-
nable the test data loading into this system. For the
sons, we will need to adapt the proposed SQL state-
r the data maintenance processes.
. 5, we describe the processes and data flows that we
to implement the initial data load (5a) and the data up-
). In both cases, the first step is the generation of data
DGEN, specifying the SF value and the type of load

rformed. If the load is of the initial type, all the his-
ata for the initial load test (5a) will be generated. If
is of update type, only the data required for the data
nce test (5a) will be generated. The times required for

eration using DSDGEN and for storing this data with-
transformation in the target file system (e.g., HDFS)

are not measured, thus they are not taken into accoun
performance metrics.

If we have applied any of the proposed transformatio
T3), to implement the initial data loading, it will be nece
transform the data sets generated by DSDGEN to the n
model design. However, Big Data OLAP systems g
do not support the implementation of data transformat
cesses, e.g., using SQL statements or other programm
guages. In these cases, it is necessary that the data ex
transformation and loading process, ET L1, be implemen
executed using an external tool. Also, it is necessary to s
resulting data in a Data Warehouse (DW) tool, that will
as a data source of the Big Data OLAP system.

To implement these processes and the repository, we
to use a Big Data SQL technology, such as Apache Hi
that (i) supports efficient distributed processing and stor
can be used as a data source for current Big Data OL
tems, and (iii) facilitates the implementation of SQL
date statements. If such supplementary tools are need
will be part of the tested system along with the Big Dat
technology evaluated.

In addition to ET L1, a second ET L2 process is req
load all the historical data from the DW into the tested B
OLAP system. This process can be implemented using
loading capabilities of the Big Data OLAP system itsel

For the implementation of the data maintenance d
shown in Fig. 5b, the processes required are very si
those required for the initial load. For each execution of
update test, DSDGEN generates 3 data intervals that in
contiguous days. The data updates to be performed on
the fact tables of the sales DM, including data from th
web and catalog channels.

To implement the ET L1 process for data maintena
must carry out the update of the data stored in the DW
a staging repository. For the implementation of this
we will have to adapt the SQL statements proposed b
DS to fit the data model obtained by applying our p
transformations (T1-T3). Again, Big Data DW tools

9

Journal Pre-proof

Fig. 5. Pr tes those
processes

Apache H
for row-l

In con
row-leve
data gro
granulari
that impa
generally
at the ho
data segm
need to u

Thus,
to replac
match or
have to b
show the
TPCDS-
the 3 pos
the Big D

As in
and ET L
The valu
ric TDI =

two com
nition of
maintena
ET L1 +

Howe

than the
e cases,
onal re-
perfor-

ent data
ffecting
systems
ata and
we can

es with-
f small

ify the
in order
at affect
periods,
eal data
the exe-
e to this

updates
weight

frequent

updates
nth. We

Table 3
Example o
 Jo

ur
na

l P
re

-p
ro

of(a) Initial load process.

(b) Data maintenance process.

oposed processes and data flows to implement the initial load and data maintenance tests. The bracket below each image indica
whose execution time has to be measured as part of our proposed benchmark tests.

ive facilitate the data update tasks due to their support
evel updates [17].
trast, Big Data OLAP systems typically do not allow
l updating, restricting updating processes to blocks of
uped into temporary partitions (aka segments). The
ty or size of these segments is a user design decision
cts data loading, update, and query performance. It is
not desirable to maintain small data segments (e.g.,

urly or customer level). However, working with larger
ents will often force us to refresh more data than we

pdate.
the ET L2 process required for data maintenance has
e in the Big Data OLAP system those segments that
otherwise contain the three 2-day intervals whose data
e updated in that test run. For example, in Table 3, we
correspondence between 3 data intervals generated by

GEN (SF=10) for the sales fact table update test and
sible data segments that include these data intervals in
ata OLAP system tested.

the initial load test, both data refresh processes, ET L1

2, are measured for the TPC-DS data integration test.
e of this test is calculated for TPC-DS using the met-
TDataMaintenance1 + TDataMaintenance2 ,i.e., by the sum of

plete data maintenance tests. According to our defi-
the data loading process shown in Fig. 5b, this data
nce performance is calculated as TDataMaintenance1 =

ET L2.
ver, as shown in Table 3, some of the segments to be re-

placed in the Big Data OLAP system are much larger
data sets whose update is required in the test. In thes
the update processes will require much more computati
sources, and therefore may considerably penalize the
mance results obtained.

However, in a real data scenario, updates on more rec
periods in time are much more frequent than those a
older data periods. To optimize these cases, Big OLAP
allow defining smaller data segments for more recent d
larger ones for older data. By applying this strategy,
improve the performance of most data update process
out degrading query performance, since the number o
segments does not increase significantly.

Considering the above, we propose to mod
TDataMaintenance metric originally defined by TCP-DS
to give more weight to the performance of processes th
more recent data periods versus those that affect older
since these segments are updated less frequently in a r
scenario. Below, we define the proposed weighting for
cution time of each segment according to the date rang
segment belongs to:

• DR1 ∈ [2002 − 12 − 01, 2002 − 12 − 31]: Data
that affect the last month of the historical data. We
their execution time with 1 as they are the most
updates.

• DR2 ∈ [2002 − 07 − 01, 2002 − 11 − 30]: Data
affecting the 5 months prior to the most recent mo

f correspondence between the date ranges to be updated in the benchmark and the data segments stored in a Big Data OLAP system.

TPC-DS GEN Data ranges Segments a in big data OLAP system
Start date End date No. of rows Start date End date No. of rows

2002-11-12 2002-11-13 110,046 2002-11-12 2002-11-13 110,046
2000-05-20 2000-05-21 31,884 2000-01-01 2000-07-01 2,897,763
1999-09-18 1999-09-19 72,618 1999-07-01 2000-01-01 6,975,700

10

Journal Pre-proof

wei
that

• DR
the
wei
infr

To app
propose
mark the

TDataM

In Equ
system,
process,
system w
proposed
tained by
the data f
nance tes
allel exe
update ti
sub-proc
date rang

3.5. Gui

To hel
define be
OLAP sy

1. Dat
of t
whe
mat
be
sale
the

2. Rew
the
and
tem
less
mar
data

3. Imp
cess
Dat
proc
to a
obta
alyz
the
men
Dat

applica-
eral in-
allow a
AP sys-

metric
of per-
ing and

ose two
n of the
est runs
Second,
peat the
d 10 si-
random

we will
elected.
measur-

ig Data
on two

e selec-
pularity

ese Big
ata sys-
he Hive

P tech-
eviewed
support
s of up
of data

iques to
tructure
d query
tar and
rehouse

itecture,
r bench-

anks to
ent both
g. 5.

the im-
API.
Jo
ur

na
l P

re
-p

ro
of

ght their execution time with 0.5 since they are updates
occur less frequently.

1 ∈ [1998−01−01, 2002−06−31]: Updates affecting
rest of the historical data, i.e., older time periods. We
ght their execution time with 0.1 since they are very
equent updates.

ly the above proposed weighting, in Equation 4, we
a new definition of the TDataMaintenance metric to bench-
data update performance of Big Data OLAP systems.

aintenance = ET L1+

MAX(ET L2DR1 , (ET L2DR2 ∗ 0.5), (ET L2DR3 ∗ 0.1)) (4)

ation 4, the ET L1 process will be executed in a DW
hence not suffering the same constraints as the ET L2
which will be executed in the same Big Data OLAP
here the data has to be updated. For this reason, the
weighting is applied only on the execution time ob-
each of the three sub-processes in ET L2 that update

or each of the 3 segments that involves the data mainte-
t. Moreover, as Big Data OLAP systems allow the par-

cution of multiple segment update processes, the data
me will be given by the execution time of the slowest
ess, being its execution time weighted according to the
e to which this segment belongs.

delines for benchmark implementation

p with the application of our proposed benchmark, we
low the steps for its implementation in the Big Data
stem to be tested:

a model design review: Starting from the definition
he TCP-DS sales Data Mart, the first step is to decide
ther to apply one or more of the 3 proposed transfor-
ion rules (T1-T3). Thanks to their application, we will
able to obtain data models equivalent to the original
s DM in order to adapt its design to the architecture of
Big Data OLAP system to be tested.
riting of the proposed SQL queries: Depending on

design of the data model generated in the previous step
the SQL syntax supported by the Big Data OLAP sys-
under test, we will have to rewrite, to a greater or

er extent, the 16 OLAP queries proposed in our bench-
k. The rewritten queries must return exactly the same
as the original queries, never altering their statements.
lementation of data loading and updating pro-
es: To enable data loading and updating in the Big
a OLAP system under test, we have to implement the
esses proposed in Fig. 5. To this end, it is necessary

dapt their functional logic to the data model design we
ined in the step 1. It is also highly recommended to an-
e the features of the Big Data OLAP system to select
most appropriate technology for supporting the imple-
tation of the ET L1, ET L2 processes and the staging

a Warehouse.

4. Benchmark execution: In order to simplify the
tion of the proposed benchmark, we propose sev
dividual performance tests. These isolated tests
lower-level of comparison between Big Data OL
tems compared to using the global performance
proposed in TPC-DS [7]. We propose two classes
formance tests: (i) data querying, and (ii) data load
updating.
For query execution performance testing, we prop
tests. First, we will perform sequential executio
16 proposed queries by performing 10 complete t
that randomly alter the order of query execution.
to test concurrency in the data querying, we will re
above test by simulating multiple users (e.g. 1, 5 an
multaneous users), each executing in parallel their
sequences of the 16 benchmark queries.
As for the data load and update performance tests,
first run the initial load test for the different SFs s
After that, we will run the data maintenance test,
ing the results with the proposed Equation 4.

4. Benchmark implementation

In order to validate our benchmarking proposal for B
OLAP systems, we have carried out its implementation
current Big Data OLAP systems: Kylin and Druid. Th
tion of these systems has been made based on their po
[18, 19, 20, 21, 22].

Furthermore, in order to study the advantages of th
Data OLAP tools over general-purpose SQL Big D
tems, we have implemented our benchmark on Apac
and Spark.

4.1. Apache Kylin

One of the most mature and powerful Big Data OLA
nologies is Apache Kylin [5], whose architecture we r
with greater detail in our previous research [4]. To
sub-second query latencies on data models with table
to billions of rows, Kylin relies on the intensive use
pre-aggregation techniques. By applying such techn
the data sources, it generates a pre-aggregated data s
named OLAP cube that can be queried with the standar
language (SQL). In addition, Kylin fully supports s
snowflake schemas, the de facto standard for Data Wa
design [1] as a source for most OLAP applications.

Of the multiple options supported by the Kylin arch
we will use the following for the implementation of ou
mark:

• Apache Hive as the source Data Warehouse. Th
its power and functionality, it allows us to implem
DW storage and the ET L1 process described in Fi

• Map Reduce as the cube building engine, i.e. for
plementation of the ET L2 process using the Kylin

11

Journal Pre-proof

Fig. 6. Da

Once
applied
model sh
the fact
taking in
ation bet
of this ty

Secon
malize a
such as C
Snowflak
ports the
apply T2
than one
sulting O
data load

Finally
T3 trans
normaliz
with all
pre-aggr
increasin
cesses or

Once
impleme

syntax
in types
roposed

d, since
used by

normal-

s of one
s these
ension

s are re-
HERE

ery op-
l2)) that
clusion

involves
el query
s of this
Jo
ur

na
l P

re
-p

ro
of

ta model for the implementation of our benchmark in Kylin. Obtained by applying the T1 and T2 transformations.

the Kylin architecture was instantiated for the test, we
the proposed transformation rules to obtain the data
own in Fig. 6. To obtain it, we first applied T1 to unify

tables of the 3 sales channels. We made this decision
to account that Kylin does not optimize the JOIN oper-
ween fact tables, severely penalizing the performance
pe of queries, even making their execution unfeasible.
d, we have applied the T2 transformation to denor-
ll dimensions composed of more than one table,
ustomer and Customer Demographics, converting the
e model into a pure Star Schema. Although Kylin sup-
Snowflake model and therefore it is not mandatory to
, as we discussed in [4] dimensions composed of more
dimension table will affect the complexity of the re-
LAP cube and thus penalize the performance of the
ing and updating processes.
, we have not considered it convenient to apply the

formation. As we also pointed out in [4], if we de-
e all the tables of the model into a single fact table
dimension columns included, Kylin requires to apply
egation on all dimension columns (attributes), greatly
g the complexity of the data loading or updating pro-
even making their execution unfeasible.

we have obtained a data model design suitable for its
ntation in Kylin, we have to adapt the 16 proposed

OLAP queries to this data model and also to the SQL
supported by Kylin. The following is a list of the ma
of modifications we carried out in the structure of the p
queries:

• Rewrite of JOIN operations to the ANSI:92 standar
Kylin does not support the older ANSI:89 standard
TPC-DS.

• Removal of JOIN operations on queries that use de
ized dimensions. (e.g. Customer).

• Removal of UNION operations between fact table
of the 3 sales channels (store, web or catalog). A
fact tables been unified through a new channel dim
by the application of T1, these UNION operation
moved from the original query or replaced by W
filtering operations on the channel.

• Because Kylin does not support row-level data qu
erations, aggregation operations (e.g. sum(col1-co
operate on non-aggregated columns require the in
of these columns in the GROUP BY clause. This
the addition of a subquery, which uses a higher-lev
to apply the final aggregation required. Example
are the queries 43 and 62.

12

Journal Pre-proof

Finally, i
data into
of the da
formance
for recen
pacted w
progress
strategy:
2-day seg
ments ∈
∈ [1998

4.2. Apa
Apach

Data OL
tributed,
supports
billions o
chitectur
and, opt
of roll-u
Kylin, pr
feature p

Druid
ferences
does not
ing the im
single la

Simila
dates.
Apache H
in a sim
Hive.

Of the
we will u
mark:

• Apa
the

• Hiv
Dru

• Dru
OLA

• Exe

Once
impleme
rules (T1
To obtain
did to ob
Druid do
must add
perform
a single l
columns
fact table

OLAP
pported
made to

and di-
implic-

rmaliza-

channel
at orig-
f one of

that re-
d) date,
) by the
e time
’)=11).

the size
recom-

700MB,
paction
advan-

egments
data set.
involve

efficient
strategy

ive and

adoop,
queries,
of data

entation
r to the
g LLAP
nse, the
Snappy

rting all
achine
has its

used by
e RAM
on disk.
d to run
s Spark
the file

hat they
d trans-
chmark.
ruid as
Jo
ur

na
l P

re
-p

ro
of

t is necessary to define a segment strategy to load the
the cube. This strategy will impact the performance

ta maintenance processes. To maintain high query per-
, Kylin recommends storing small data segments only
t data. These small, recent segments should be com-
ith the other, large, historical data segments as time

es. Considering this, we define the following segment
1-day segments ∈ [2002 − 12 − 01, 2002 − 12 − 31] ,
ments ∈ [2002−11−01, 2002−12−01] , 15-day seg-

[2002−07−01, 2002−11−01] and 6-month segments
− 01 − 01, 2002 − 07 − 01].

che Druid
e Druid [6] is another of the most consolidated Big
AP systems. As Apache Kylin, it proposes a dis-
and therefore horizontally scalable architecture that
sub-second queries on tables that store up to tens of
f rows. To achieve this high performance, Druid’s ar-

e is based on the intensive use of indexing techniques
ionally, also supports data pre-aggregation by means
p operations that can be applied at data ingest. Unlike
e-aggregation is not mandatory in Druid, therefore this
lays a less important role in its architecture.
also supports the SQL language, with some syntax dif-
compared to Kylin. But regarding data model, Druid
support JOIN operations between tables, thus requir-
plementation of fully denormalized data models in a

rge table.
r to Kylin, Druid does not support row-level data up-

However, it does support seamless integration with
ive, allowing data to be loaded and updated in Druid

ple and efficient way by defining SQL processes in

multiple options supported by the Druid architecture,
se the following for the implementation of our bench-

che Hive as source DW and for the implementation of
ET L1 and ET L2 batch processes described in Fig. 5.

e (on Apache Tez) for loading and updating data into
id, i.e., for the implementation of the ET L2 process.

id columnar storage using HDFS as deep storage of the
P cube.

cution of SQL queries through the Druid JDBC driver.

the Druid architecture was instantiated for benchmark
ntation, we applied the three proposed transformation
,T2 and T3) in order to obtain a suitable data model.
it, we have to apply T1 and T2 in the same way as we

tain the Kylin model shown in Fig. 6. However, since
es not support the JOIN operation between tables, we
itionally apply the T3 transformation on this model to
a complete denormalization. As a result, we generated
arge table consisting of 402 columns, including all the
of the dimensions tables and all the metrics of the sales
.

At this point, we have to adapt the 16 proposed
queries to our data model design and the SQL syntax su
by Druid. The following is a list of the main changes
the shape of the benchmark queries:

• Removal of all JOIN operations between the fact
mension tables, as these relationships are already
itly included in the sales fact table after the deno
tion performed.

• Addition of a WHERE filter by the (degenerate)
dimension in the fact table, for all those queries th
inally queried independently the sales fact table o
the 3 channels (store, web or catalog).

• To obtain the best performance, in those queries
quire filtering by columns of the dimension (sol
we replace the original filters (e.g. sdd moy=11
TIME EXTRACT(time, <unit>) function on th
column (e.g. TIME EXTRACT(time, ’MONTH

Finally, it is also necessary to define a strategy for
or number of data segments. The Druid architecture
mends maintaining segment sizes between 300MB and
therefore, unlike Kylin, it does not benefit from the com
of historical data into very large segments. This is an
tage of Druid over Kylin, as we can maintain smaller s
(e.g. days to months segments) for the entire historical
Thanks to this, data maintenance processes in Druid can
updating less data than in Kylin, thus being much more
approach. Considering this, we decided to implement a
of daily segments for the whole data set.

4.3. General-purpose Big Data SQL tools: Apache H
Spark SQL

Hive is a general-purpose Big Data SQL tool in H
which allows the execution of OLAP queries, detail
data exploration, table creation or the implementation
transformation processes. In our benchmark implem
we have used 3.1 version using a configuration simila
one used in the TPC-DS test presented in [17]: applyin
(Live Long and Process) to support interactive respo
new transactional tables and the ORC file format with
compression.

Apache Spark is even more flexible than Hive, suppo
kinds of SQL query processing, data transformation, m
learning or graph processing, even in real time. Spark
own distributed processing engine that differs from Tez (
Hive) in that it loads all the data to be processed into th
memory of the cluster nodes, instead of storing any data
To test Spark with our proposed benchmark, we decide
it using the Spark Thrift J/ODBC service, which allow
to work as an in-memory SQL database server. As for
format, we also used ORC with Snappy compression.

One advantage of these two general-purpose tools is t
do not require the application of any of the 3 propose
formations (T1-T3) for the implementation of our ben
However, in order to compare them with Kylin and D

13

Journal Pre-proof

objective
model in
impleme
in Fig. 6

4.4. Har

For th
with the
This clus
of RAM
Hive (3.1
for the T
impleme

For ou
(SF): 10
of the te
the SF is
contrast,
test is mu

Table 4
Size in GB

Howe
be loade
dimensio
the comp
tering op
Data OL
bles of u
generate
the maxi

In Tab
GEN for
6. On the
model ob
will be t
include a

For th
two type
rency an
test, we
dom ord
other que
in order
As for th
carried o
the proce
different
test, test
the perfo
data upd

53,371
01
,801
9

0

0

lyze the
roposed

queries
process
he aver-
random
S cache
ave dis-
ol. The

samples
f all the
we have
) as the
time of

observe
to 6.79
anding

dividual
he other
e SF30

of the
s, while
han one

rse than
ecuting
the case
n any of
st of the

o Druid
e SF50,
Jo
ur

na
l P

re
-p

ro
of

ly as possible, we have decided to use the same data
both tools. This data model is the one obtained for the
ntation of the Kylin version of our benchmark, shown
.

dware and configuration of the performance tests

e benchmark execution, we have used a Hadoop cluster
Hortonworks Data Platform (HDP) 3.1 distribution.
ter comprises 4 nodes, each with 8 vCores and 32 GB
, where we have installed Kylin (2.6), Druid (0.12.1),
, on Apache Tez with LLAP) and Spark (2.3.2). As
PC-DS data generator (DSDGEN), we have used an
ntation adapted to run on Hadoop [30].
r test set, we have chosen three different Scale Factors
, 30, and 50. In Table 4, we show the volume in GB
st data generated and stored in HDFS. As we can see,

close to the volume in GB of the generated data. In
the volume of data generated for the data maintenance
ch smaller, but enough suitable to test these systems.

of the data generated by DSDGEN for our experimentation.

SF 10 SF 30 SF 50
Historical data 11.4 26.5 44.4

Update data 0.17 0.14 0.22

ver, it is not only relevant the size in GB of the data to
d, but also the number of rows stored in the fact and
n tables. The greater the number of rows, the greater
utational needs to execute the join, aggregation or fil-
erations involved in our proposed OLAP queries. Big
AP systems promise sub-second performance with ta-
p to tens of billions of rows, thus it is necessary to
a volume of rows high enough to stress their power to
mum.
le 5, we show the number of rows generated by DSD-
each of the tables of the data model proposed in Fig.
other hand, in the case of the fully denormalized data
tained for Druid, the number of rows in the fact table

he same as shown in Table 5, but this fact table will
ll columns and data from all dimension tables.
e 3 proposed SF (10, 30, and 50), we performed the
s of proposed tests: (i) Query execution and concur-
d (ii) data load and update. First, for the query latency
executed the 16 proposed SQL-OLAP queries in ran-
er and by a single user. Then, we have performed an-
ry execution test simulating 5 and 10 concurrent users
to test concurrency on query execution performance.
e second type of proposed performance tests, we have
ut the initial load test, measuring the execution time of
sses that load all the historical data generated for the
SFs. Finally, we have performed the data maintenance

ing our proposed Equation 4 to measure and compare
rmance of the two Big Data OLAP systems tested on
ate processes.

Table 5
Number of rows of fact and dimension tables for SF 10, 30 and 50.

Table SF 10 SF 30 SF 50
sales 49,029,880 147,116,524 245,1
customer addr. 250,001 216,001 383,0
customer dem. 1,920,801 1,920,801 1,920
date 73,049 73,049 73,04
household dem. 7,201 7,201 7,201
item 102,000 40,000 62,00
promotion 500 411 522
ship mode 21 21 21
store 103 79 145
time 86,400 86,400 86,40
warehouse 11 11 11
web page 201 469 877
web site 43 27 23

5. Results

In the following two subsections we present and ana
results of the performance tests executed as part of our p
benchmark.

5.1. Query performance and concurrency
First, we performed a execution of the 16 proposed

by a single user, but in random order. We have run this
10 times to obtain more reliable results by calculating t
age execution time of each query. The purpose of the
execution of the queries is to reduce the effects of the O
of the node itself, which can have effects even if we h
abled the caching functions of the Big Data OLAP to
results of this test are shown in Table 6.

The time for each query is the arithmetic mean of the
in the 10 runs. The total execution time is the sum o
average execution times of the 16 queries. In addition,
calculated the query performance increase (aka speedup
total execution time of the slowest tool divided by the
the fastest tool at that SF.

Looking at the total execution times obtained, we
that Druid is the most efficient tool in all cases, being up
times faster than Hive (the slowest tool) for the most dem
scaling factor (SF50). However, when examining the in
query times, we can observe that Kylin is faster than t
tools for most queries, up to 70% of the queries in th
and SF50 tests. Furthermore, Kylin executed about 50%
queries in less than one second in any of the tested SF
Druid has only managed to execute one query in less t
second in the SF50 test.

The results obtained by Hive and Spark are much wo
those obtained by the two Big Data OLAP tools, not ex
any query in the benchmark in less than one second. In
of Hive, no query was executed in less than 5 seconds i
the SFs tested, and for the SF30 and SF50 factors, mo
execution times were greater than 10 seconds.

The overall worsening of Kylin results compared t
and the closeness to the results obtained by Spark in th

14

Journal Pre-proof

Table 6
Results of

Query park
2 .54
3 .17
26 .79
33 .85
42 .88
43 .75
52 .53
55 .03
58 1.71
60 .55
62 .70
63 .91
76 .58
88 3.76
90 .47
95 .14
Total 7.37
Speedu .07
Best qu
Querie
Querie

is due to
62 and 7
involves
This data
server an
the optim
called po
not been
poses a s
quired is
Spark an
queries 6
significa

Based
test, we
executio
individua
post agg
times ac
data volu
Druid ar
second f
over 5 se

Howe
in a real
user test
10 users
parallel.
shown in

sers in-
mostly

ted than
g an in-
e in the
the tool
sible to
est with
ll users

stem in
onsider
in data

ncluded
, as they

e test of
measure
on time
a. The

th tools,
he Hive
r, ET L2
for each
between
time of
Jo
ur

na
l P

re
-p

ro
of

the single-user query execution performance test.

SF 10 SF 30 SF 50
Kylin Druid Hive Spark Kylin Druid Hive Spark Kylin Druid Hive S
3.47 2.64 5.74 4.34 3.51 5.12 12.28 6.51 3.83 7.29 17.56 5
0.23 0.65 6.31 4.49 0.23 0.69 11.19 5.65 0.24 1.33 19.52 7
1.90 2.48 9.98 4.36 2.14 2.70 19.18 8.72 1.64 3.98 27.54 5
0.42 1.20 6.96 3.71 0.51 1.82 11.75 4.82 0.66 1.72 16.70 5
0.26 0.67 5.98 2.03 0.35 0.66 10.34 2.81 0.50 1.21 14.66 3
0.67 0.74 5.36 2.60 0.71 1.48 10.55 3.59 0.75 1.74 14.19 3
0.21 0.48 6.05 3.07 0.28 0.81 10.19 7.63 0.35 1.70 14.86 4
0.50 0.47 6.38 3.00 0.52 0.66 10.38 3.46 0.51 1.12 14.73 4
1.83 1.70 14.38 10.78 2.06 1.14 25.75 10.44 2.46 1.81 35.12 1
0.62 2.56 7.05 3.75 0.83 2.07 12.09 5.19 1.08 3.22 17.19 6
11.33 1.13 6.02 2.69 43.31 2.51 10.41 3.98 63.06 4.10 14.18 3
0.89 0.39 6.41 3.00 1.02 0.62 12.03 3.39 1.19 0.83 16.87 3
5.20 1.41 7.41 3.07 15.03 1.51 13.30 4.88 17.15 3.26 19.04 5
1.29 2.52 13.67 6.76 1.94 3.96 20.65 11.37 2.94 5.72 25.56 1
0.31 1.15 5.81 4.48 0.33 2.13 9.76 3.74 0.35 3.39 13.44 7
2.14 0.67 10.57 2.97 2.73 0.95 12.70 6.40 3.20 1.63 18.11 4
31.27 20.85 124.06 65.10 75.51 28.84 212.54 92.59 99.91 44.05 299.27 9

p 3.97 5.95 1.00 1.91 2.81 7.37 1.00 2.30 3.00 6.79 1.00 3
eries 9 7 0 0 11 5 0 0 11 4 0 1

s <1s 9 7 0 0 8 6 0 0 7 1 0 0
s <5s 14 16 0 14 14 15 0 8 14 14 0 7

the high execution times obtained by Kylin for queries
6. Query 62 has to be rewritten to run in Kylin, which
the addition of a subquery that returns many results.
must be aggregated directly at runtime on the Kylin

d not in HBase, because Kylin cannot make use of
ization that allows the data pre-aggregation. This is

st-aggregation in Kylin, since this data aggregation has
pre-computed at OLAP cube building time. Query 76
imilar issue as in Kylin, but the post-aggregation re-
less than required by query 62. Meanwhile, Druid,
d Hive do not suffer from this particular issue, as
2 and 76 are executed in a time that does not differ

ntly from those obtained by the rest of the queries.

on the results of this single-user query performance
can conclude that Druid is the fastest tool at full test
n. However, Kylin is faster than the other tools in the
l execution of most queries, except for those involving

regation, such as queries 62 and 76. In any case, the
hieved by all tools except Hive are very fast for the
mes involved in the benchmark. However, Kylin and

e the only ones to achieve execution times close to one
or most queries, while Spark times are often close to or
conds.

ver, this first test does not consider user concurrency
OLAP scenario. Therefore, in addition to the single-

, we performed two additional tests simulating 5 and
executing the random sequences of the query set in
The results of these concurrency tests for an SF50 are
Fig. 7.

We can observe that as the number of concurrent u
creases in Kylin, the average execution time remains
constant. Meanwhile Druid and Spark are more affec
Kylin by the higher number of concurrent users, showin
crease to about 15 seconds in the average execution tim
10-user test compared to the single-user test. Hive is
showing the worst results. Moreover, it was only pos
run the tests with 1 and 5 simultaneous users, as in the t
10 users Hive did not have enough resources to serve a
simultaneously.

5.2. Data loading and updating performance

In addition to the evaluation of the Big Data OLAP sy
terms of query latency and user concurrency, we also c
very relevant its evaluation in terms of its performance
loading and updating processes. Note that we have not i
general-purpose Big Data SQL tools in this second test
are outside the main scope of this research.

In first place, we have run the initial load performanc
the entire generated data set using the 3 SFs tested. To
the initial load performance, we must sum the executi
of the ET L1 and ET L2 processes described in Fig. 5
execution time of the ET L1 process is the same for bo
since it is a common process to load data into Apac
using the data model design shown in Fig. 6. Howeve
requires implementing a specific data loading process
Big Data OLAP tool, so the performance differences
Kylin and Druid in this test will be due to the execution
this ET L2 process.

15

Journal Pre-proof

Fig. 7. Co

The re
load perf
obtained
minutes
very sma
when co
the time
ones obt
about 9
takes abo

Fig. 8. In

Based
ing proc
Druid w
ence is m
pre-aggr
processe
called D
previous

Howe
as the cu
ported a
with Spa

the ini-
ure data

a large
al loads
g much
. There-
ark we

evaluat-
ecution

time it
tiguous
for the

tenance
measure
d ET L2

ig Data
rocesses
g more
roposed
l execu-
to their

ecent in
ig Data
ally up-

M) per-
sent the
tric ap-
btained

function

Kylin,
nces be-
ose that
the par-
[14, 15,
ark has

possible
h allow
and the
er hand,
into ac-
[4] and
that we
rentiate

marking

orkload,
S that,

ig Data
Jo
ur

na
l P

re
-p

ro
of

ncurrency test results using SF50.

sults of the Kylin and Druid execution of the initial
ormance test are shown in Fig. 8. The common times
by the execution of the ET L1 process are 8, 12, and 18

for SFs 10, 30, and 50 respectively, thus representing a
ll percentage of the full test execution time. Whereas,
nsidering the overall execution time (ET L1 + ET L2),
s obtained by Kylin are significantly longer than the
ained by Druid. For example, for a SF50 Druid takes
hours to complete the full load process while Kylin
ut 34 hours, thus being up to 3.8x slower than Druid.

itial load test results for the 3 SF tested.

on these results, we can guess that an initial load-
ess in Kylin could take up to several days, while in
e can probably do it in less than a day. This differ-

ainly due to the heavy use that Kylin makes of data
egation and pre-combination, making the data loading
s more complex and slower since it suffers from the so-
imensionality Course problem that we analyzed in our
research [4].

ver, it should be noted that we have used Map Reduce
be building engine in Kylin, when Spark is also sup-
nd promises better performance. But experimenting
rk as an alternative cube building engine in Kylin is

beyond the scope of this research.
On the other hand, we must also be aware that, once

tial and full data load process has been executed, fut
loads and updates usually do not usually involve such
amount of data. Instead, we will often run increment
for adding new data to the OLAP cube or for refreshin
smaller periods of historical data than in an initial load
fore, in addition to the initial load test, in our benchm
propose to run a data maintenance test with the aim of
ing the performance of Big Data OLAP tools in the ex
of data update processes.

This data maintenance test consists of measuring the
takes to update 3 historical data intervals spanning 2 con
days. The update data is also generated by DSDGEN
same 3 SFs used in the initial load test. In the data main
test originally proposed by TPC-DS, the performance
consists in adding the execution times of the ET L1 an
processes described in Fig. 5b.

However, in our benchmark we identified that B
OLAP current approaches constraint data updating p
to the use of data segments that often require updatin
data than necessary. To address this particularity, we p
the Equation 4, which weights in ET L2 the individua
tion times of each of the 3 data segments according
age, giving more weight to segments that are more r
time. By doing this, we consider the fact that in a real B
OLAP scenario the most recent data segments are usu
dated more frequently than the oldest ones.

Figure 9 shows the result of the Data Maintenance (D
formance test for the different SFs used. The bars repre
data maintenance times obtained using the original me
proach (ET L1 + ET L2), while the lines show the times o
using the proposed Equation 4 that weights ET L2 as a
of the age of each segment.

6. Discussion

To our knowledge, this is the first study in which
Druid, Hive and Spark are benchmarked and the differe
tween general-purpose SQL tools for Big Data and th
optimize OLAP workloads are analysed. Compared to
tial implementations of TPC-DS in Big Data systems
17] reviewed in the state of the art, our proposed benchm
been fully implemented in all 4 tested systems. This is
thanks to our 3 proposed transformations (T1-T3), whic
implementing the selected TPC-DS sales data model
16 queries in any Big Data OLAP system. On the oth
the selection of these 16 queries has been made taking
count the specific characteristics of OLAP workloads
the common limitations of current Big Data OLAP tools
have identified. These are the main novelties that diffe
our approach compared to TPC-DS and the other bench
approaches analysed.

Note that our aim is not to define a totally new w
rather to create a new benchmark derived from TPC-D
unlike TPC-DS, could be implemented on current B

16

Journal Pre-proof

Fig. 9. Da

OLAP sy
(section
Kylin an
sent a su

Howe
sions of
tionally
we consi
query ge
or table,
their ana
one, acco
through
ample, in
in a drill
cific yea
erate a s
(d dom)
(i item i

Throu
wider va
model, th
In additio
generate
sion attri
which im
tween at
ator (DS
dimensio

Regar
Kylin an
sub-seco
than 1 T
to 100 TB
in our ex
GB, 30 G
structure
ultra-hig
disk spac
tests wit
current s
shown th

are exe-
quire up
e results

ylin and
ery high
hieving
cond as

results
ive and
execut-

tools do
aintain

such as

that par-
similar
or even

cuted in
ntations
ss com-
r study,
in sub-

ditional

in our
mainte-
kes into
a OLAP
hat data
Conse-
ance in

te times
e results
n Kylin
ool than
cesses.

y aimed
proven

a OLAP
ries [4]
econds)
to hun-

of exist-
d a sig-
roaches
PC-DS

features
ystems.
roposed
rchitec-
ementa-
Jo
ur

na
l P

re
-p

ro
of

ta maintenance test results for the 3 SF tested.

stems. The detailed analysis on the 16 selected queries
3.3), as well as the results of running the benchmark on
d Druid, demonstrate that the proposed queries repre-
itable workload for benchmarking this type of systems.
ver, this workload could be improved in future ver-
our benchmark to represent an even more computa-

demanding and realistic OLAP scenario. To this end,
der applying the OLAP session concept as well as the
nerator proposed in [28]. When using an OLAP viewer
users typically start from a base query and deepen

lysis by generating new queries derived from the initial
rding to their analysis goals. This is mainly achieved

drill-down, roll-up or slice OLAP operations. For ex-
TPC-DS query 60 shown in Fig. 3, the data is queried

-down manner by product code and filtered by a spe-
r and month. For deeper analysis, the user could gen-
econd query by adding the day number of the month
as an additional grouping attribute to the product code
d).
gh these derived queries we can ensure the use of a
riety of the attributes and metrics available in the data
us obtaining a more realistic and complete workload.
n, to increase the computational requirements of these

d queries, we propose to increase the number of dimen-
butes that are used simultaneously in the same query,
plies more JOIN type operations and combinations be-

tributes. Finally, we propose to modify the data gener-
DGEN) to generate more ultra-high cardinality (UHC)
ns to be used in the queries.

ding the results of our benchmark implementation on
d Druid, it should be noted that these systems promise
nd query latency with data volumes equal to or greater
B (SF100), being able to maintain this performance up

(SF100000) in the most extreme scenarios. However,
periments we have used smaller Scale Factors of 10
B, and 50 GB respectively. The pre-aggregated data

s (the OLAP cubes) that Kylin generates to achieve an
h query performance have required hundreds of GB of
e in our tests. As such, it has been unfeasible to run

h higher scaling factors, since the data exceeded our
torage capabilities. Despite this limitation, the results
at the tests performed were able to stress all four tools

benchmarked. While many of the benchmark queries
cuted in less than 1 second in Kylin and Druid, others re
to tens of seconds, something that is more evident in th
obtained by Hive and Spark.

The results of our benchmark implementation on K
Druid allow us to conclude that both systems provide v
performance in the execution of OLAP data queries, ac
in most cases query latencies below or close to the se
promised in their specifications. On the other hand, the
obtained by the general-purpose Big Data SQL tools, H
Spark, show how these tools perform much worse when
ing OLAP workloads. Unlike Kylin and Druid, these
not achieve the sub-second query latency required to m
user interactivity [4] when using OLAP applications,
dashboard reports or OLAP views.

If we compare our results with those of other studies
tially implement TPC-DS [15] on Hive and Spark with
scaling factors, we can observe that they obtain similar
worse times for some of the queries that we also exe
our test. In the case of Druid, we only found impleme
[17, 24] of the SSB benchmark, whose data model is le
plex than our model derived from TPC-DS. As in ou
these results show how Druid is able to execute queries
second times unlike Hive or Spark, which require ad
time to obtain the results.

Another of the advantages that can be highlighted
benchmark is the proposed performance test for data
nance processes. Unlike TPC-DS, our benchmark ta
account (i) the constraints imposed by current Big Dat
systems on data refresh processes and (ii) the fact t
refreshes usually affect the most recent data in time.
quently, we propose Equation 4 to measure the perform
data refresh processes, giving more weight to the upda
of more recent data blocks (aka segments) in time. Th
of executing our data maintenance performance test i
and Druid showed that Druid is a much more efficient t
Kylin in the execution of data loading and updating pro

7. Conclusions and future work

In this paper we present a new approach specificall
at benchmarking Big Data OLAP systems, based on the
and widely used TPC-DS benchmark. Modern Big Dat
systems allow the execution of analytical OLAP que
with interactive response times (from milliseconds to s
on data models of up to tens of billions of rows, i.e., up
dreds of terabytes of data if we talk about data volume.

However, as a result of the state-of-the-art analysis
ing benchmarks [7, 10, 8, 9, 11, 12, 13] we identifie
nificant lack of suitability of current benchmarking app
for use in Big Data OLAP systems. However, the T
approach [7, 8, 13] presents some very interesting
that can be used for benchmarking Big Data OLAP s
Nonetheless, the inadequacy of its (i) data model, (ii) p
queries and (iii) performance metrics to the nature and a
tures of current Big Data OLAP systems make its impl
tion in them unfeasible.

17

Journal Pre-proof

To add
ing appro
mark for
posed be
formatio
adapted
be tested
ing those
benchma
criteria t
are part o

To de
mark, we
OLAP sy
also imp
(SQL), t
Kylin an
the execu
mark, it i
systems
Our benc
data load
Data OL

In our
using hi
mance c
tures, bo
proaches
also plan
the work
as well a

Acknow

This r
(PID202
and Inno
TEO/202
versitats,

Referen

[1] R. K
dime

[2] R. Ta
data

[3] L. Be
and o

[4] R. Ta
desig
(2020

[5] L. Q
10,35

[6] F. Ya
A rea
MOD
168.

[7] M. P
work
on Ve

edings of
, 2006, p.

sages and
y Confer-
61–76.
b), http:
cessed 15

Al-Kateb,
bench, in:
g (ICDE),

Jacobsen,
rks, 2012,

t standard
the 2017

n, Cluster

luation of
ddle East-

bucketing
al of Big

O’Malley,
th, et al.,
ehousing,
gement of

op perfor-
siness In-

analytical
onference

olap sys-
n Compu-
0.
onal anal-
3rd IEEE

s (ICCC),

ube build-
n Human

. Gambin,
genomic

tools: An
Reviews:

ent: What
08 (2017)

generator,
–109.

n, J. Poel-
ation of a
e Evalua-

f realistic
formation

t accessed

e, https:
cessed 15
Jo
ur

na
l P

re
-p

ro
of

ress the issues identified in the existing benchmark-
aches, in this paper we propose a new specific bench-
Big Data OLAP systems based on TPC-DS. Our pro-
nchmark includes in its definition three types of trans-
ns that allow to generate equivalent data models but
to the specific nature of the Big Data OLAP system to
. In addition, we have identified criteria for discard-
queries proposed in TPC-DS that are not suitable for

rking current Big Data OLAP systems, applying those
o the selection and modification of the 16 queries that
f our benchmark workload.

monstrate the applicability of our proposed bench-
have selected two modern and representative Big Data
stems, Apache Kylin and Druid. Moreover, we have

lemented our benchmark on Hive (LLAP) and Spark
wo general-purpose Big Data SQL tools that unlike
d Druid do not focus on performance optimisation for
tion of OLAP queries. Thanks to our proposed bench-
s the first time that the performance of these 4 different
in the execution of OLAP queries has been compared.
hmark also allowed us to compare the differences in
ing and updating performance between the two Big

AP systems.
future work, we plan to implement our benchmark

gher scale factors (>= 1 TB) and extend the perfor-
omparison to other Big Data systems with OLAP fea-
th on-premise (e.g. Pinot or Clickhouse) and cloud ap-
(e.g. Azure Analysis Services or Imply). Finally, we
to improve the richness and computational demand of

load by implementing the OLAP session concept [28],
s evaluate the scalability of these systems.

ledgements

esearch has been funded by the AETHER-UA project
0-112540RB-C43) of the Spanish Ministry of Science
vation and by the BALLADEER project (PROME-
1/088), funded by the Conselleria d’Innovació, Uni-
Ciència i Societat Digital.

ces

imball, M. Ross, The data warehouse toolkit: the complete guide to
nsional modeling, John Wiley & Sons, 2011.
rdı́o, A. Maté, J. Trujillo, An iterative methodology for defining big
analytics architectures, IEEE Access 8 (2020) 210597–210616.
llatreche, A. Cuzzocrea, I.-Y. Song, Advances in data warehousing
lap in the big data era, Information Systems 53 (2015) 39–40.
rdı́o, A. Maté, J. Trujillo, A new big data benchmark for olap cube
n using data pre-aggregation techniques, Applied Sciences 10 (23)
) 8674.

. Han, X. Jiang, Y. Song, C. Li, Hadoop olap engine, uS Patent
3,923 (Jul. 16 2019).
ng, E. Tschetter, X. Léauté, N. Ray, G. Merlino, D. Ganguli, Druid:
l-time analytical data store, in: Proceedings of the 2014 ACM SIG-
international conference on Management of data, 2014, pp. 157–

oess, R. O. Nambiar, D. Walrath, Why you should run tpc-ds: A
load analysis, in: Proceedings of the 33rd International Conference
ry Large Data Bases, 2007, p. 1138–1149.

[8] R. O. Nambiar, M. Poess, The making of tpc-ds, in: Proce
the 33rd International Conference on Very Large Data Bases
1049–1058.

[9] P. Boncz, T. Neumann, O. Erling, Tpc-h analyzed: Hidden mes
lessons learned from an influential benchmark, in: Technolog
ence on Performance Evaluation and Benchmarking, 2013, pp.

[10] P. O’Neil, B. O’Neil, X. Chen, The star schema benchmark (ss
//www.cs.umb.edu/~poneil/StarSchemaB.pdf, (Last ac
April 2021) (2007).

[11] A. Ghazal, T. Ivanov, P. Kostamaa, A. Crolotte, R. Voong, M.
W. Ghazal, R. Zicari, Bigbench v2: the new and improved big
2017 IEEE 33rd International Conference on Data Engineerin
IEEE, 2017, pp. 1225–1236.

[12] T. Rabl, A. Ghazal, M. Hu, A. Crolotte, F. Raab, M. Poess, H.
Bigbench specification v0. 1, in: Specifying Big Data Benchma
pp. 164–201.

[13] M. Poess, T. Rabl, H.-A. Jacobsen, Analysis of tpc-ds: the firs
benchmark for sql-based big data systems, in: Proceedings of
Symposium on Cloud Computing, 2017, pp. 573–585.

[14] V. Aluko, S. Sakr, Big sql systems: an experimental evaluatio
Computing 22 (4) (2019) 1347–1377.

[15] M. Rodrigues, M. Y. Santos, J. Bernardino, Experimental eva
big data analytical tools, in: European, Mediterranean, and Mi
ern Conference on Information Systems, 2019, pp. 121–127.

[16] E. Costa, C. Costa, M. Y. Santos, Evaluating partitioning and
strategies for hive-based big data warehousing systems, Journ
Data 6 (1) (2019) 34.

[17] J. Camacho-Rodrı́guez, A. Chauhan, A. Gates, E. Koifman, O.
V. Garg, Z. Haindrich, S. Shelukhin, P. Jayachandran, S. Se
Apache hive: From mapreduce to enterprise-grade big data war
in: Proceedings of the 2019 International Conference on Mana
Data, 2019, pp. 1773–1786.

[18] J. Correia, C. Costa, M. Y. Santos, Challenging sql-on-hado
mance with apache druid, in: International Conference on Bu
formation Systems, 2019, pp. 149–161.

[19] J. Correia, M. Y. Santos, C. Costa, C. Andrade, Fast online
processing for big data warehousing, in: 2018 International C
on Intelligent Systems (IS), 2018, pp. 435–442.

[20] W. Chen, H. Wang, X. Zhang, Q. Lin, An optimized distributed
tem for big data, in: 2017 2nd IEEE International Conference o
tational Intelligence and Applications (ICCIA), 2017, pp. 36–4

[21] F. Ming, S. Guannan, L. Shuaishuai, Research on multidimensi
ysis method of drilling information based on hadoop, in: 2017
International Conference on Computer and Communication
2017, pp. 2319–2322.

[22] M. Song, M. Li, Z. Li, E. Haihong, A distributed self-adaption c
ing model based on query log, in: International Conference o
Centered Computing, 2017, pp. 382–393.

[23] M. S. Wiewiórka, D. P. Wysakowicz, M. J. Okoniewski, T
Benchmarking distributed data warehouse solutions for storing
variant information, Database 2017 (2017).

[24] M. Rodrigues, M. Y. Santos, J. Bernardino, Big data processing
experimental performance evaluation, Wiley Interdisciplinary
Data Mining and Knowledge Discovery 9 (2) (2019) e1297.

[25] V. C. Storey, I.-Y. Song, Big data technologies and managem
conceptual modeling can do, Data & Knowledge Engineering 1
50–67.

[26] J. M. Stephens, M. Poess, Mudd: a multi-dimensional data
ACM SIGSOFT Software Engineering Notes 29 (1) (2004) 104

[27] P. Cao, B. Gowda, S. Lakshmi, C. Narasimhadevara, P. Nguye
man, M. Poess, T. Rabl, From bigbench to tpcx-bb: Standardiz
big data benchmark, in: Technology Conference on Performanc
tion and Benchmarking, 2016, pp. 24–44.

[28] S. Rizzi, E. Gallinucci, Cubeload: A parametric generator o
olap workloads, in: International Conference on Advanced In
Systems Engineering, 2014, pp. 610–624.

[29] Public release of tpc-ds (v3.0), http://tpc.org/tpcds, (Las
15 April 2021) (2021).

[30] A testbench for experimenting with apache hive at any data scal
//github.com/hortonworks/hive-testbench, (Last ac
April 2021) (2017).

18

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Highlights

 A novel approach for benchmarking Big Data OLAP systems based on TPC-DS.

 Provides a specifc set of rules to obtain equivalent designs of the proposed data

model.

 Applicable to any of the current wide array of Big Data OLAP systems.

 It has been completely tested with two Big Data OLAP systems: Apache Kylin and

Druid.

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Roberto Tardío holds a Computer Science Engineering degree from the University of Alicante since 2013,

where he also obtained a Msc in Computer Science Technology in 2014 and a PhD in 2021. He joined

Lucenta in 2015, a research group associated to the University of Alicante. He currently works as Head

of Big Data at the consultng frm Stratebi Business Intelligence, based in Madrid, (Spain). For this

company, he manages projects and R&D in Big Data. His research interests are in the areas of Big Data

architectures, requirements engineering, data modeling, OLAP tools and database benchmarking.

Alejandro Maté holds a Computer Science Engineering degree from the University of Alicante since

2009, where he also obtained a Msc in Computer Science Technology in 2010 and a PhD in 2013. Since

2019, he has been Associate Professor at the University of Alicante. He has published over 50 papers in

internatonal conferences (e.g. ER, CAiSE, RE) and JCR journals (e.g. Informaton Systems, Future

Generatons, Informaton & Sofware Technology). His research involves conceptual modeling, data

warehouses, model driven development, and requirements engineering.

Juan Trujillo is a Full Professor at the University of Alicante, Dept. of Sofware and Computng Systems.

Since he got his PhD in 2001, he has been leading the Business Intelligence and Big Data research in the

department and has also been the founder and director of The Lucenta Research Group since 2008. His

main research topics include Business Intelligence, Big Data, Data Warehouses, Decision Support

Systems and Artfcial Intelligence. He is author of more than 200 conference paper, such as ER, UML,

DAWAK or CAiSE, and more than 60 JCR papers, such as DKE, DSS, ISOFT, IS, or InfSci.

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Roberto Tardío: Conceptualization, Methodology, Investigation,
Software, Data Curation, Writing - Original Draft, Writing - Review &
Editing, Visualization Alejandro Maté: Conceptualization, Validation,
Writing - Review & Editing, Supervision, Project administration,
Funding acquisition Juan Trujillo: Conceptualization, Supervision,
Project administration, Funding acquisition

Journal Pre-proof

Robert

Alejan

Juan T
Jo
ur

na
l P

re
-p

ro
of

o Tardio

dro Mate

rujillo

1

Journal Pre-proof

Decla

☒ Th ips
that

☐Th ed
as po
Jo
ur

na
l P

re
-p

ro
of

ratio if ioterettt

e authors declare that they have no known competng fnancial interests or personal relatonsh
could have appeared to infuence the work reported in this paper.

e authors declare the following fnancial interestsppersonal relatonships which may be consider
tental competng interests:

