
RUAD: unsupervised anomaly detection
in HPC systems

Martin Molana, Andrea Borghesia, Daniele Cesarinib, Luca Beninia,c, Andrea Bartolinia

aDISI and DEI Department, University of Bologna, Bologna, Italy
bCINECA consorzio interuniversitario, Bologna, Italy

cInstitut für Integrierte Systeme, ETH, Zürich, Switzerland

Abstract

The increasing complexity of modern high-performance computing (HPC) systems necessitates the introduction of automated and
data-driven methodologies to support system administrators’ effort toward increasing the system’s availability. Anomaly detection is
an integral part of improving the availability as it eases the system administrator’s burden and reduces the time between an anomaly
and its resolution. However, current state-of-the-art (SoA) approaches to anomaly detection are supervised and semi-supervised, so
they require a human-labelled dataset with anomalies – this is often impractical to collect in production HPC systems. Unsupervised
anomaly detection approaches based on clustering, aimed at alleviating the need for accurate anomaly data, have so far shown poor
performance.

In this work, we overcome these limitations by proposing RUAD, a novel Recurrent Unsupervised Anomaly Detection model.
RUAD achieves better results than the current semi-supervised and unsupervised SoA approaches. This is achieved by considering
temporal dependencies in the data and including long-short term memory cells in the model architecture. The proposed approach is
assessed on a complete ten-month history of a Tier-0 system (Marconi100 from CINECA with 980 nodes). RUAD achieves an area
under the curve (AUC) of 0.763 in semi-supervised training and an AUC of 0.767 in unsupervised training, which improves upon
the SoA approach that achieves an AUC of 0.747 in semi-supervised training and an AUC of 0.734 in unsupervised training. It also
vastly outperforms the current SoA unsupervised anomaly detection approach based on clustering, achieving the AUC of 0.548.

1. Introduction

Recent trends in the development of high-performance com-
puting (HPC) systems (such as heterogeneous architecture and
higher-power integration density) have increased the complex-
ity of their management and maintenance [1]. A typical con-
temporary HPC system consists of thousands of interconnected
nodes; each node usually contains multiple different accelera-
tors such as graphical processors, FPGAs, and tensor cores [2].
Monitoring the health of all those subsystems is an increasingly
daunting task for system administrators. To simplify this mon-
itoring task and reduce the time between anomaly insurgency
and response by the administrators, automatic anomaly detec-
tion systems have been introduced in recent years [3].

Anomalies that result in downtime or unavailability of the
system are expensive events. Their cost is primarily associated
with the time when the HPC system cannot accept new com-
pute jobs. Since HPC systems are costly and have a limited
service lifespan [4], it is in the interest of the system’s opera-
tor to reduce unavailability times. Anomaly detection helps in
this regard as it can significantly reduce the time between the
fault and the response by the system administrator, compared
to manual reporting of faulty nodes [5].

Modern supercomputers are endowed with monitoring sys-
tems that give the system administrators a holistic view of the
system [3]. Data collected by these monitoring systems and his-
torical data describing system availability are the basis for Ma-

chine Learning anomaly detection approaches [6, 7, 8, 9, 10],
which build data-driven models of the supercomputer and its
computing nodes. In this work, we focus on CINECA Tier0
HPC system (Marconi100 [11, 12] ranked 9th in Jun. 2020
Top500 list [13]), which employs a holistic monitoring system
called EXAMON [14].

Production HPC systems are reliable machines that gen-
erally have very few downtime events - for instance, in Mar-
coni100 at CINECA, timestamps corresponding to faulty events
represent, on average, only 0.035% of all data. However, al-
though anomalies are rare events, they still significantly impact
the system’s overall availability - during the observation pe-
riod, there was at least one active anomaly (unavailable node)
14.4% of the time. State-of-the-art (SoA) methods for anomaly
detection on HPC systems are based on supervised and semi-
supervised approaches from the Deep Learning (DL) field [5];
for this reason, these methods require a training set with accu-
rately annotated periods of downtime (or anomalies). In turn,
this requires the monitoring infrastructure to track downtime
events; in some instances, this can be done with specific soft-
ware tools (e.g., Nagios [15]), but properly configuring these
tools is a complex and time-consuming task for
system administrators.

So far, the challenges of anomaly detection on HPC systems
have been approached by deploying anomaly reporting tools by
training the models in a supervised or semi-supervised fashion

Preprint submitted to Future Generation Computer Systems August 30, 2022

ar
X

iv
:2

20
8.

13
16

9v
1

 [
cs

.L
G

]
 2

8
A

ug
 2

02
2

[5, 16, 17, 8]. The need for an accurately labelled training set
is the main limitation of current approaches as it is expensive,
in terms of time and effort of the system administrators, to be
applied in practice. Downtime tracking also has to be able to
record failures with the same granularity as the other monitor-
ing services. Some methods in production HPC systems only
record downtime events by date [1, 2, 3]. In most production
HPC systems, accurate anomaly detection is thus not readily
achievable. For this reason, the majority of the methods from
the literature were tested on historical or synthetic data or in
supercomputers where faults were injected in a carefully con-
trolled fashion [18]. Another limitation for the curation of an
accurately labeled anomaly dataset is the short lifetime of most
HPC systems. In the HPC sector, a given computing node and
system technology have a lifetime of between three and five
years. Short lifetime means, in practice, that the vendor has no
time to create a dataset for training an anomaly detection model
before the system is deployed to the customer site.

A completely unsupervised anomaly detection approach
could be deployed on a new node or even on an entirely new
HPC system. It would then learn online and without any in-
teraction with the system administrators. Additionally, such a
system would be easier to deploy as it would require no ad-
ditional framework to report and record anomalous events (in
addition to the monitoring infrastructure needed to build the
data-driven model of the target supercomputer - a type of in-
frastructure which is becoming more and more widespread in
current HPC facilities [3]).

Unsupervised anomaly detection approaches for HPC sys-
tems exist such
as [19, 20, 21]. They either work on log or sensor data. Ap-
proaches based on log data [19, 21], while useful, can only
offer a post-mortem and restricted view of the supercomputer
state. The SoA for anomaly detection on sensor data [20] is
based on clustering, which requires a degree of manual anal-
ysis from system administrators and offers poor performance
compared to semi-supervised methods. The semi-supervised
methods [5, 6, 22], based on the dense autoencoders, which are
trained to reproduce their input, could be trained in an unsu-
pervised fashion. However, none of the presented works has
explored this possibility. According to the SoA, the models
would perform worse as the dense autoencoder is also capable
of learning the characteristics of the anomalies [5, 6, 22].

The primary motivation for this work is to propose a novel
approach that relies only on the fact that the anomalies are rare
events and works at least equally well when trained in an un-
supervised manner as it does when trained in semi-supervised
manner - this has not been the case in the current SoA. In this
work, we propose an unsupervised approach: RUAD (Recur-
rent Unsupervised Anomaly Detection) that works on sensor
data and outperforms all other approaches, including the cur-
rent SoA semi-supervised approach [5] and SoA unsupervised
approach [20]. RUAD achieves that by taking into account tem-
poral dependencies in the data. We achieve that by using Long
Short-Term Memory (LSTM) cells in the proposed neural net-
work model structure, which explicitly take into consideration
the temporal dimension of observed phenomena. We also show

that the RUAD model, comprising of LSTM layers, is capable
of learning the characteristic of the normal operation even if the
anomalous data is present in the test set - the RUAD model is
thus able to be trained in an unsupervised manner. RUAD tar-
gets single HPC computing nodes: we have different anomaly
detection models for each computing node. The motivation be-
hind this is scalability: in this way, each node can be used to
train its own model with minimal overhead - moreover, this
strategy would work in larger supercomputers as well, as if the
number of nodes increases, we just have to add new detection
models.

1.1. Contributions of the paper
To recap, in this paper, we propose an anomaly detection

framework that can handle complex system monitoring data,
scale to large-scale HPC systems, and be trained even if no la-
belled dataset is available. The key contributions presented in
this paper are:

• We propose a completely unsupervised anomaly detec-
tion approach (RUAD) that exploits the fact that the anoma-
lies are rare and explicitly considers the temporal depen-
dencies in the data by using LSTM cells in an autoen-
coder network. The resulting Deep Learning model out-
performs the previous state-of-the-art semi-supervised
approach [5], based on time-unaware autoencoder net-
works. On the dataset presented and analysed in this
paper (collected from the Marconi100 supercomputer),
the previous approach achieves an Area-Under-the-Curve
(ACU) test set score of 0.7470. In contrast, our unsuper-
vised approach achieves the best test set AUC score of
0.7672. To the best of our knowledge, this work is the
first time such an approach has been applied to the field
of HPC system monitoring and anomaly detection.

• We have conducted a very large-scale experimental eval-
uation of our methods. We have trained four different
deep learning models for each of the 980+ nodes of Mar-
coni100. To the best of our knowledge, this is the largest
scale experiment relating to anomaly detection in HPC
systems, both in terms of the number of considered nodes
and length of time. Previous works only evaluate the
models on a subset of nodes with a short observation
time ([5] paper, for instance, only analyzed 20 nodes of
the HPC system over two months). Per-node training
of models also demonstrates the feasibility of per node
models for large HPC systems. The training time for
the individual model was under 30 minutes on a single
NVIDIA Volta V100 GPU.

1.2. Structure of the paper
We present the current state-of-the-art and position our pa-

per in Section 2. The machine learning approaches used for
anomaly detection, including our novel approach, are described
in section 3. The experimental setting for empirical validation
of our results is detailed in Section 4.1 and our results are dis-
cussed in the rest of Section 4. Finally, Section 5 offers some
concluding remarks.

2

2. Related Works

The drive to detect events or instances that deviate from the
norm (i.e. operational anomalies) is present across many indus-
trial applications. One of the earliest applications of anomaly
detection models was credit card fraud detection in the financial
industry [23, 24]. Recently, anomaly detection (and associated
predictive maintenance) has become relevant in manufacturing
industries [25, 26], internet of things (IoT) [27, 28, 29], energy
sector [30], medical diagnostics [31, 32], IT security [33], and
even in complex physics experiments [34].

Typically, anomalies in an HPC system refer to periods of
(and leading to) suboptimal operating modes, faults that lead
to failed or incorrectly completed jobs, or node and other com-
ponents hardware failures. While HPC systems have several
possible failure mitigation strategies [35] and fault tolerance
strategies [36], anomalies of this type still significantly reduce
the amount of compute time available to users [37]. The transi-
tion towards Exascale and the increasing heterogeneity of hard-
ware components will only exacerbate the issues stemming from
failures, and anomalous conditions that already plague HPC
machines [1, 3, 38]. A DARPA study estimates that the fail-
ures in future exascale HPC systems could occur as frequently
as once every 35-39 minutes [39], thus significantly impacting
the supercomputing availability and system administrator load.

However, when looking at specific components and not at
the entire HPC system (e.g., considering a single computing
node), faults remain very rare events, thus falling under the area
of anomaly detection, which can be seen as an extreme case of
supervised learning on unbalanced classes [40]. Because data
regarding normal operation far exceeds data regarding anoma-
lies, classical supervised learning approaches tend to overfit the
normal data and give a sub-optimal performance on the anoma-
lous data [41]. In order to mitigate the problem of unbalanced
classes, the anomaly detection problem is typically approached
from two angles. Approaches found in the State-of-Art (SoA)
that address the class imbalance either modify the data [42]
or use specialized techniques that work well on anomaly de-
tection problems [5]. Data manipulation approaches address
the dataset imbalance either by decreasing the data belonging
to normal operation (under sampling the majority class) or by
oversampling or even generating anomalous data (over sam-
pling minority class) [42]. Data manipulation for anomaly de-
tection in HPC systems has not yet been thoroughly studied.
Conversely, most existing approaches rely on synthetic data
generation, e.g., injection of anomalies in real (non-production)
supercomputers or HPC simulators [5].

Another research avenue exploits the abundance of normal
data from HPC systems using a different learning strategy,
, namely semi-supervised ML models. Instead of learning on
a dataset containing multiple classes – and consequently learn-
ing the characteristics of all classes – semi-supervised models
are trained only on the normal data. Hence, they are trained
to learn the characteristics of the of the normal class (the ma-
jority class in the dataset). Anomalies are then recognized as
anything that does not correspond to the learned characteristic
of the normal class [40, 6, 43, 22, 44].

Regarding the type of data used to develop and
deploy anomaly detection systems, we can identify two macro-
classes: system monitoring data collected by holistic moni-
toring systems (i.e. Examon [14]) and log data. This data
is then annotated with information about the system or node-
level availability, thus creating a label associated with the data
points. The label encodes whether the system is operating nor-
mally or experiencing an anomaly. Since it is expensive and
time-consuming to obtain labelled system monitoring data, a
labelled dataset for supervised learning can be obtained by ”in-
jecting” anomalies into the HPC system (like [18]). Labels are
important for both supervised, semi-supervised and unsuper-
vised approaches. In the first case, they are used to compute
the loss, in the second case to identify the training dataset and
validation, and in the third case, only for validation. This data
can then be used in a supervised learning task directly or af-
ter processing new features (feature construction). Examples
of this approach are [45, 17, 46] where authors use supervised
ML approaches to classify the performance variations and job-
level faults in HPC systems. For fault detection, [8, 18] propose
a supervised approach based on Random Forest (an ensemble
method based on decision trees) to classify faults in an HPC
system. All mentioned approaches use synthetic anomalies in-
jected into the HPC system to train a supervised classification
model. Approaches [5] and [16] are among the few that lever-
age real anomalies collected from production HPC systems (as
opposed to injected anomalies). In this paper, we are interested
in real anomalies, and thus, we will not include methods using
synthetic/simulated data or injected anomalies in our quantita-
tive comparisons.

All mentioned approaches do not take into account tempo-
ral dependencies of data (models are not trained on time se-
ries but on tabular data containing no temporal information).
System monitoring data approach [47] is the first to take into
account temporal dependencies in data by calculating statisti-
cal features on temporal dimension (aggregation, sliding win-
dow statistics, lag features). Most approaches that deal with
time series anomaly detection do so on system log data. La-
belled anomalies are either analyzed with log parsers [48] or
detected with deep learning methods. Deep learning methods
for anomaly detection are based on LSTM neural networks as
they are a proven approach in other text processing fields.

Compared to labelled training sets, much less work has been
done on unlabelled datasets - despite this case being much more
common in practice. So far, all research on unlabelled datasets
has focused on system log data. [19] propose a k-means based
unsupervised learning approach that does not take into account
temporal dynamics of the log data. A clustering-based approach
on sensor data is proposed by [20]. This approach will serve
as one of the baselines in the experimental section (as it is the
only unsupervised approach on the sensor and not on log data).
An approach [21] works on time series data in an unsupervised
manner. It uses the LSTM-based autoencoder and is trained on
the existing log data dataset. The proposed anomaly detector
achieves the AUC (area under the receiver-operator character-
istic curve) of 0.59. Although it works on a drastically different
type of dataset (log data as opposed to system monitoring data),

3

it is the closest existing work to the scope of the research pre-
sented in this paper. As we show later in the paper, we can
achieve much better results than the one reported for the log
data models [21] by deploying an unsupervised anomaly detec-
tion approach on system monitoring data on a per-node basis.
Table 1 summarizes the most relevant approaches described in
this section, focusing on the training set and temporal depen-
dencies.

Tabular data Time series
Supervised [49, 9] [47, 48, 10]

Semi-supervised [5, 6, 43, 22]
Unsupervised [19, 20] [21]

Table 1: Summary of anomaly detection approaches on HPC systems

The novelty of this paper is, in relation to the existing works,
threefold:

• it introduces an unsupervised time-series based anomaly
detection model named RUAD;

• it proposes a deep learning architecture that captures time
dependency;

• the approach is evaluated on a large scale production
dataset with real anomalies – this is the largest scale eval-
uation ever conducted on this kind of problem, to the best
of our knowledge.

3. Methodology

In this section, we describe the proposed approach for un-
supervised anomaly detection. We do not directly introduce
the proposed method (the LSTM autoencoder deep network)
as we want to show how it is a significant extension to the cur-
rent state-of-the-art; thus, we start by introducing three baseline
methods, i) exponential smoothing (serving as the most basic
method for comparison), ii) unsupervised clustering and iii) the
dense autoencoder used in [5]. We then describe our approach
in detail and highlight its key strengths (the unsupervised train-
ing regime and the explicit inclusion of the temporal dimen-
sion).

3.1. Node anomaly labeling

We aim to recognize the severe malfunctioning of a node
that prevents it from executing regular compute jobs. This mal-
functioning does not necessarily coincide with removing a node
for the production, as reported by Nagios. In our discussions
with system administrators of CINECA, we have concluded
that the best proxy for node availability is the most critical state,
as reported by Nagios. For this reason, we have created a new
label called node anomaly that has a value 1 if any subsystem
reported by Nagios reports a critical state. From these events
(reported anomalies), we then filter out known false positive
events based on reporting tests or configurations in Jira [50].

Jira logs are supplied by CINECA. The labels used in our pre-
vious work [5] do not apply to M100 as they were extensively
used to denote nodes being removed from production for test-
ing and calibration. In this work, we are examining the early
period of the HPC machine life-cycle, when several rounds of
re-configuration were performed, thus partially disrupting the
normal production flow of the system. Comparing the two la-
belling strategies in table 2, we can see that the overlap between
the two is minimal. Additionally, there are far fewer anomalies
as reported by the node anomaly mainly because the M100 went
through substantial testing periods in the first ten months of op-
eration where nodes are marked as removed from production
while still functioning normally. In the remainder of the paper,
class 0 or class 1 will always refer to the value of node anomaly
being 0 or 1 respectively. Normal data is all data where node
anomaly has value 0 and anomalies are instances where node
anomaly has value 1.

Node anomaly
0 1

Removed from production: False 12 139 560 4 280
Removed form production: True 15 783 12

Table 2: Comparison between removed from production and node availability.
The anomalies studied in this work (node availability) significantly differ (and
are more reliable) from anomalies studied in previous works. The new labels
also mark much fewer events as anomalous.

3.2. Reconstruction error and result evaluation
The problem of anomaly detection can be formally stated as

a problem of training the model M that estimates the probabil-
ity P that a sequence of vectors of length W ending at time t0
represents an anomaly at time t0:

M : ~xt0−W+1, · · · , ~xt0 → P(~xt0 is an anomaly). (1)

Vector ~xt collects all feature values at time t; the features are
the sensor measurements collected from the computing nodes.
W is the size of the past window that the model M takes as in-
put. If the model does not take past values into account - like
the dense model implemented as a baseline [5] - and the win-
dow size W is 1, the problem can be simplified as estimating:

M : ~xt0 → P(~xt0 is an anomaly). (2)

In the case of autoencoders, model M is composed of two
parts: autoencoder A (a neural network) and the anomaly score,
which is computed using the reconstruction error of the autoen-
coder. The reconstruction error is calculated by comparing the
output of autoencoder model A and the real value vector ~xt0 .
The task of model A is to reconstruct the last element of its
input sequence:

A : ~xt0−W+1, · · · , ~xt0 → ~̂xt0 . (3)

Vector ~̂xt0 the reconstruction of vector ~xt0 . As in Eq. 2, win-
dow size W can be 1. The model A outputs normalized data .
The reconstruction error is calculated as the sum of the absolute

4

difference between the output of model A and the normalized
input value for each feature: Error(t0) =

∑N
i |x̂i − xi| where N

is the number of features and ~̂xt0 is the output of the model A.
The error is then normalized by dividing it by the maximum er-
ror on the training set: Normalized error(t0) =

Error(t0)
max(Error(t)) . We

estimate the probability for class 1 (anomaly) as

P(~xt0 is an anomaly) =

1, i f : Normalized error ≥ 1,
Normalized error, otherwise

(4)

Based on probability P(~xt0 isananomaly), the classifier makes
the prediction whether the sequence ~xt0−W , · · · , ~xt0 belongs to
class 1 (anomaly) of class 0 (normal operation). This predic-
tion depends on a threshold T , which is a tunable parameter:

Class(~xt0) =

1, i f : P(~xt0 is an anomaly) ≥ T,
0, otherwise

(5)

To avoid selecting a specific threshold T , we introduce the
Receiver-Operator Characteristic curve (ROC curve) as a per-
formance metric. It allows us to evaluate the performance of
the classification approach for all possible decision thresholds
[51]. The receiver-operator characteristic curve plots the true-
positive rate in relation to the false-positive rate. The random
decision represents a linear relationship between the two – for
a classifier to make sense, the ROC curve needs to be above
the diagonal line. For each specific point on the curve, the bet-
ter classifier is the one whose ROC curve is above the other.
The overall performance of the classifier can be quantitatively
computed as the Area Under the ROC Curve (AUC); a classi-
fier making random decisions has the AUC equal to 0.5. AUC
scores below 0.5 designate classifiers that are worse than ran-
dom choice. The best possible AUC score is 1, which is achieved
by a classifier that would achieve a true-positive rate equal to 1
while having a false-positive rate equal to 0 (broadly speaking,
this is only achievable on trivial datasets or very simple learning
tasks).

3.3. Trivial baseline: exponential smoothing

Exponential smoothing is implemented as a trivial baseline
comparison. It is a simple and computationally inexpensive
method that detects rapid changes (jumps) in values. If the
anomalies were simply rapid changes in values with no correla-
tion between features, a simple exponential smoothing method
would be able to discriminate them. Therefore, we chose ex-
ponential smoothing as a first baseline as it is computationally
inexpensive and requires no training set. Additionally, if ex-
ponential smoothing performs poorly, this underlines that we
are indeed solving a non-trivial anomaly detection problem, for
which more powerful models are needed.

For the baseline, we choose to implement exponential smooth-
ing per feature independently. Exponential smoothing for fea-
ture i at time t is calculated as:

x̂i = αxi
t + (1 − α)x̂i

t−1,∀i ∈ F (6)

where x̂i
t is an estimate of xi at time t and α is a parameter

of the method. We do this for all features in set F. The estimate
at the beginning of the observation is equal to the actual value
at time t0: x̂i

t0 = xi
t0 .

3.4. Unsupervised baseline: clustering
A possible approach to unsupervised anomaly detection is

to use standard unsupervised machine learning techniques such
as k-means clustering proposed by [20]. The clusters are deter-
mined on the train set; each new instance belonging to the test
set is associated with one of the pre-trained clusters. We opted
for this particular unsupervised technique for the comparison as
it is the only unsupervised method found in the literature (to the
best of our knowledge) which uses sensor data and not logs -
and thus, we guarantee a fair comparison. It has to be noted,
however, that clustering, while belonging to the field of unsu-
pervised machine learning cannot detect anomalies in an un-
supervised manner - for each of the clusters determined on the
train set, the probability for the anomaly has to be calculated.
This probability can only be calculated using the labels.

In this work, the clustering approach inspired by [20] is im-
plemented to prove the validity of the obtained results. We have
used K-means clustering [19] like it has been proposed in [20].
We have trained the clusters on the train set. Based on the sil-
houette score1 on the train set, we have determined the optimal
number of clusters for each node2. The percentage of instances
that belong to class 1 is calculated for each of the determined
clusters. We use this percentage of anomalous instances as the
anomaly probability for each instance assigned to a specific
cluster. The train and test set split is the same as in all other
evaluated methods.

3.5. Semi-supervised baseline: dense autoencoder
The competitive baseline method is based on the current

state-of-the-art dense autoencoder model proposed by [5]. Au-
toencoders are types of neural networks (NN) trained to repro-
duce their input. The network is split into two (most often sym-
metric) parts: encoder and decoder. The role of the encoder is to
compress the input into a more condensed representation. This
representation is called the latent layer. To prevent the network
from learning a simple identity function, we choose the latent
layer to be smaller than the original input size (number of in-
put features) [6]. The role of the decoder is to reconstruct the
original input using the latent representation.

Dense autoencoders are a common choice for anomaly de-
tection since we can restrict their expressive power by acting
on the size of the latent layer. Compressing the latent dimen-
sion forces the encoder to extract the most salient character-
istics from the input data; unless the input data is highly re-
dundant, the autoencoder cannot correctly learn to recreate its

1the Silhouette score is a measure of performance for a clustering method.
It measures how similar an instance is to others in its own cluster compared to
instances from the other clusters [52]. It is calculated as S score = b−a

max(a,b) where
a is the mean inter-cluster distance, and b is the mean nearest cluster distance
for each sample.

2Optimal number of clusters is the number of clusters that produces the
highest silhouette score on the train set.

5

input after a certain latent size reduction. In the current state-
of-the-art for anomaly detection in production supercomputers
([5]) the dense autoencoder is used in a semi-supervised fash-
ion, meaning that the network is trained using only data points
corresponding to the normal operation of the supercomputer
nodes (Class 0). Semi-supervised training is doable as the nor-
mal points are the vast majority and thus are readily available;
however, this requires having labelled data or at least a certainty
that the HPC system was operating in normal conditions for a
sufficiently long period of time. Once the autoencoder has been
trained using only normal data, it will be able to recognize sim-
ilar but previously unseen points. Conversely, it will struggle to
reconstruct new points which do not follow the learned normal
behaviour, that is, the anomalies we are looking for; hence, the
reconstruction error will be higher. The structure of the autoen-
coder model is presented in Figure 1a. The dense autoencoder
does not take into account the temporal dynamics of the data –
its input and target output are the same vector:

S oA : ~xt0 → ~xt0 . (7)

3.6. Recurrent unsupervised anomaly detection: RUAD
Moving beyond the state-of-the-art model, we propose a

different approach, RUAD. It takes as input a sequence of vec-
tors and then tries to reconstruct only the last vector in the se-
quence:

RUAD : ~xt0−W+1, · · · , ~xt0 → ~xt0 . (8)

The input sequence length is a tunable parameter that spec-
ifies the size of the observation window W. The idea of the pro-
posed approach is similar to the dense autoencoder in principle,
but with a couple of significant extensions: 1) we are encoding
an input sequence into a more efficient representation (latent
layer) and 2) we train the autoencoder in an unsupervised fash-
ion (thus removing the requirement of labelled data). The key
insight in the first innovation is that while the data describing
supercomputing nodes is composed of multi-variate time series,
the state-of-the-art does not explicitly consider the temporal di-
mension – the dense autoencoder has no notion of time nor of
sequence of data points. To overcome this limitation, our ap-
proach works by encoding the sequence of values leading up to
the anomaly. The encoder network is composed of Long Short-
Term Memory (LSTM) layers, which have been often proved
to be well suited to the context where the temporal dimension
is relevant [53]. An LSTM layer consists of recurrent cells that
have an input from the previous timestamp and from the long-
term memory.

To address the scale of current pre-exascale and future ex-
ascale HPC systems that will consist of thousands of nodes
[3], we want a scalable anomaly detection approach. The most
scalable approach currently for anomaly detection on a whole
supercomputer is a node-specific approach as each compute
node can train its own model. Still, we want to achieve this by
minimally impacting the regular operation of the HPC system.
This is why it is important for the proposed solution to have a
small overhead. Additionally, since we want to train a per-node

model, we want the method to be data-efficient. To address
these requirements, we choose not to make the decoder sym-
metric to the encoder. The proposed approach is thus comprised
of a Dense decoder and an LSTM encoder. LSTM encoder out-
put is passed into a dense decoder trained by reproducing the
final vector in an input sequence. The decoder network is thus
composed of fully connected dense layers. The architecture of
the proposed approach is compared to the state-of-the-art ap-
proach in Figure 1.

The reduced complexity of training allows us to train a sepa-
rate model for each compute node. As shown previously ([54]),
node-specific models provide better results than a single model
trained on all data. We decided to adopt this scheme (one model
per node) after a preliminary empirical analysis showed no sig-
nificant accuracy loss while the training time was vastly re-
duced (by approximately 50%); this is very important in our
case as we trained one DL model for each of the nodes of Mar-
coni 100 (980+), definitely a non-negligible computational ef-
fort.

3.7. Data pre-processing
As introduced in Section 3.6 our proposed methodology

consists of training a model for each node. Thus, the data from
each node is first split into training and test sets. The training
set contains 80% of data, and the test set contains the last 20%
of data (roughly the last two months of data). It is important to
stress that we have chosen to have two not overlapping datasets
for the training and test. This avoids the cross-transferring of in-
formation when dealing with sequencing. Moreover, the causal-
ity of the testing is preserved. (No in-the-future data are used
to train a model). This makes the results valid for in-practice
usage.

For semi-supervised training, the training set is filtered by
removing anomalous events (anomalous events are identified by
the node anomaly label as described in Section 3.1). We name
this filter the semi-supervised filter, as depicted in Figure 2. For
unsupervised learning, the training set is not filtered. For both
the cases (unsupervised and semi-supervised learning), labels
are used to evaluate the results. After filtering, a scaler is fitted
to training data. A scaler is a transformer that scales the data
to the [0, 1] interval. In the experimental part, a min/max scaler
is used on each feature [55]. After fitting to the training data,
the scaler is applied to the test data - for rescaling the test set,
min and max values of the training set are used (as it is stan-
dard practice in DL methods). After scaling, both training and
test sets are filtered out to ensure time consistency: the data is
split into sequences without missing chunks (missing chunks
are the result of the semi-supervised filter). The sequences that
are smaller than W are dropped. Finally, sequences are trans-
formed into batches of sequences with length W. Figure 2 de-
scribes the whole data pre-processing pipeline.

3.8. Summary of evaluated methods
We compare our proposed approach RUAD against estab-

lished semi-supervised and unsupervised baselines. Summary
of pre-processing filters is presented in Table 3. The semi-
supervised filter is applied to all semi-supervised approaches. A

6

Anomaly

probability

Data
Input
(*, I)

Dense
(*, E1)

Dense
(*, D1)

Recon-
stru-
ction
error

Dense
(*, I)

Dense
(*, L)

Layer
size

Data flow
Encoder Decoder

(a) Structure of baseline model - the dense autoencoder.

Anomaly

probability

Data
Dense
(*, E1)

Dense
(*, D1)

Dense
(*, I)

Layer
size

Data flow

LSTM
(*,W,E1)

Input
(*,W,I)

LSTM
(*,W,L)

Encoder DecoderRecurrent dimension

Recon-
stru-
ction
error

3d
vector

3d
vector

3d
vector

(b) Structure of the proposed RUAD model consisting of the LSTM encoder and dense decoder.

Figure 1: The proposed approach replaces the encoder of the baseline model (1a) with the LSTM autoencoder (1b). The last layer of LSTM encoder returns a vector
(not a temporal sequence) which is then passed to the fully connected decoder. W is the window size, I is the size of the input data, L is the size of the latent layer
and E1 and D1 are sizes of encoder and decoder layer respectively. Chosen parameters for L, W, E1 and D1 are listed in Section 4.3.

time consistency filter is applied to methods that explicitly con-
sider the temporal dimension of the data: Exponential smooth-
ing and RUAD. RUAD and the current SoA anomaly detection
approach based on dense autoencoders ([5]) is evaluated in both
semi-supervised and unsupervised version.

Filters
Model Semi-supervised Time consistency Name

Trivial baseline: exponential smoothing NO YES EXP
Unsupervised baseline: clustering NO NO CLU

DENSE autoencoder baseline semi-supervised YES NO DENS Esemi

DENSE autoencoder baseline unsupervised NO NO DENS Eun

RUAD semi-supervised YES YES RUADsemi

RUAD unsupervised NO YES RUAD

Table 3: Short names and training strategies for examined methods.
DENS Esemi is the current SoA [5].

We wish to highlight that, unlike the unsupervised learn-
ing baseline [20], our proposed method RUAD requires no ad-
ditional action after the training of the model. The approach
RUAD, proposed in this work, works on an unlabeled dataset
and requires no additional post training analysis. A summary
of approaches relating to training set requirements is presented
in Table 4.

Method Training set required Post-training
EXP Unlabeled dataset No action required

CLU [20] Unlabeled dataset Assigning anomaly probability to clusters
DENS Esemi [5] Labeled dataset No action required

RUAD Unlabeled dataset No action required

Table 4: Caparison of implemented approaches relating to the training set re-
quirements.

4. Experimental results

4.1. Experimental setting

The focus of the experimental part of this work is Marconi
100 (M100) HPC system, located in the CINECA supercom-
puting centre. It is a tier-0 HPC system that consists of 980
compute nodes organized into three rows of racks. Each com-
pute node has 32 core CPU, 256 GB of RAM and 4 Nvidia
V100 GPUs. In this work, nodes of the HPC system will be
considered independent. This is also in line with the current
SoA works [18, 6, 5] where anomaly detection is performed per
node. Future works will investigate inter-node dependencies in
the anomaly detection task.

7

Training set Train scaling

Testing set
Data

Apply scaling

Apply scaling

Semi-supervised
filter

Time consistency
filter

Evaluation

Training

Figure 2: Data processing schema. Data flow is represented by green (training set) and orange (testing set). Scaling is trained on training set and applied on testing
set to avoid contaminating the testing set. Semi-supervised and time consistency filters are optional and applied only when required by the modeling approach as
indicated in Table 3

The monitoring system in an HPC setting typically con-
sists of hardware monitoring sensors, job status and availabil-
ity monitoring, and server room sensors. In the case of M100,
hardware monitoring is performed by Examon[14], and system
availability is provided by system administrators[15]. This raw
information provided by Nagios, however, contains many false-
positive anomalies. For this reason, we have constructed a new
anomaly label called node anomaly described in Section 3.1.

For each of the 980 nodes of M100, a separate dataset was
created. Dataset details are explained in Section 4.2. DENS E
and RUAD models were trained and evaluated on the node-
specific training and test sets for each node. The training set
consisted of the first eight months of system operation, and the
test set comprised the remaining two months. Such testing split
ensures a fair evaluation of the model as described in Section
4.2. For the baseline, the exponential smoothing operation (de-
fined in equation (6)) was applied only over the test set (as the
approach requires no training). For each node, the scaler (for
min and max scaling) was trained on training data and applied
to test data. All results discussed in this section are combined
results from all 980 nodes of M100.

The dense autoencoder and the RUAD model were trained
in two different regimes: semi-supervised and unsupervised.
For the semi-supervised training, the semi-supervised filter was
applied that removed all data points corresponding to anoma-
lies. In the unsupervised case, no such filtering was performed.
It can hence be noticed one of the key advantages of the un-
supervised approach: no data pre-processing needs to be done
and no preliminary knowledge about the computing nodes con-
dition is required.

For all three approaches (exponential smoothing, dense au-
toencoder and the RUAD), the probability for an anomaly (class
1) was estimated from reconstruction error as explained in Sec-
tion 3.2. The probabilities from the test sets of all nodes from a
single modelling approach (e.g. RUAD with observation win-
dow of length W = 40) were collected together to plot the
Receiver Operator Characteristic (ROC) curve that is a char-
acteristic for the modelling approach across all nodes. For clus-
tering baseline and exponential smoothing (worst performing
baselines), the ROC curve is compared against a dummy clas-
sifier which randomly chooses the class.

4.2. Dataset

The dataset used in this work consists of a combination of
information recorded by Nagios (the system administration tool
used to visually check the health status of the computing nodes)
and the Examon monitoring systems; the data encompasses the

Source Features

Hardware monitoring

ambient temp., dimm[0-15] temp.,
fan[0-7] speed, fan disk power,
GPU[0-3] core temp. ,
GPU[0-3] mem temp. ,
gv100card[0-3], core[0-3] temp. ,
p[0-1] io power,
p[0-1] mem power,
p[0-1] power, p[0-1] vdd temp. ,
part max used,
ps[0-1] input power,
ps[0-1] input voltage,
ps[0-1] output current,
ps[0-1] output voltage, total power

System monitoring

CPU system, bytes out, CPU idle,
proc. run, mem. total,
pkts. out, bytes in, boot time,
CPU steal, mem. cached, stamp,
CPU speed, mem. free, CPU num.,
swap total, CPU user, proc. total,
pkts. in, mem. buffers, CPU idle,
CPU nice, mem. shared, PCIe,
CPU wio, swap free

Table 5: An anomaly detection model is created only on hardware and applica-
tion monitoring features. More granular information regarding individual jobs
is not collected to ensure the privacy of the HPC system users.

first ten months of operation of the M100 system. The proce-
dure for obtaining a node anomaly label is described in Section
3.1. The features collected in the dataset are listed in table 5.
The data covers 980 compute nodes and five login nodes. Lo-
gin nodes have the same hardware as the compute nodes but are
reserved primarily for job submission and accounting. Thus we
removed them from our analysis. The data is collected by the
University of Bologna with approval from CINECA3.

In order to align different sampling rates of different re-
porting services (each of the sensors used has a different sam-
pling frequency), 15 minute aggregates of data points were cre-
ated. 15 minute interval was chosen as it is the native sampling
frequency of the Nagios monitoring service (where our labels
come from). Four values were calculated for each 15 minute
period and each feature: minimum, maximum, average, and
variance.

3CINECA is a public university consortium and the main supercomputing
centre in Italy[56].

8

4.3. Hyperparameters

Hyper-parameters for all methods discussed in this paper
were determined based on initial exploration on the set of 50
nodes. Chosen parameters performed best on the test from the
initial exploration nodes (they achieved the highest AUC score
on the test set). Results from the initial exploration set are ex-
cluded from the results discussed further in the chapter. Tuned
hyperparameters include the structure of the neural nets (num-
ber and size of layers) and the smoothing factor of the exponen-
tial smoothing:

• Exponential smoothing: smoothing factor α = 0.1

• Clustering: hyper-parameter (number of clusters) is trained
on a train set for each node independently.

• Dense autoencoder: Structure of the network consists of
5 layers of shapes: (*,462), (*,16), (*,8), (*16), (*462).

• RUAD (LSTM encoder, dense decoder): Structure of the
network consists of 5 layers of shapes: (*,W,462), (*,W,16),
(*,W,8), (*,16), (*,462). W is the length of the observa-
tion window. Chosen window lengths W were: 5, 10, 20, 40.

4.4. Exponential smoothing

As mentioned in the methodology, exponential smoothing
(EXP) is implemented to demonstrate that the anomalies we
observe are not simply unexpected spikes in the data signal.
Furthermore, exponential smoothing is applied to each feature
independently of other features. As shown in Figure 3, expo-
nential smoothing performs even worse than a dummy classifier
(random choice). Poor performance of exponential smoothing
shows that the anomalies we are searching for are more com-
plex than simple jumps in values for a feature.

Figure 3: Combined ROC curve from all 980 nodes of M100 for the expo-
nential smoothing baseline. Exponential smoothing performs even worse than
the dummy classifier - anomaly detection based on exponential smoothing is
completely unusable.

4.5. Clustering

The simple clustering baseline performs better than the ex-
ponential smoothing baseline and better than the dummy classi-
fier, as seen in Figure 4. However, as we will illustrate in the fol-
lowing sections, it performs worse than any other autoencoder
method. This demonstrates that the problem we are addressing
(anomaly detection on an HPC system) requires more advanced
methodologies like semi-supervised and unsupervised autoen-
coders.

Figure 4: Combined ROC curve from all 980 nodes of M100 for the simple
clustering baseline. This baseline performs only marginally better than the
dummy classifier.

4.6. Dense autoencoder

Figure 5: Combined ROC curve from all 980 nodes of M100 for the Dense au-
toencoder model. In the area interesting for practical application - True Positive
Rate between 0.6 and 0.9 - semi-supervised approach outperforms unsupervised
approach.

We consider now the dense autoencoder. We train a dif-
ferent network for each computing node of Marconi 100. The
optimal network topology was determined during a prelimi-
nary exploration done on the sub-sample of the nodes of the
system and following the guidelines provided by Borghesi et

9

al.[54]. In line with the existing work[5], the semi-supervised
learning approach DENS Esemi slightly outperforms the unsu-
pervised learning approach DENS Eun as seen in Figure 5. The
better performance in the semi-supervised case is due to the
nature of the autoencoder learning model - its capability to re-
construct its input. For example, suppose the autoencoder is fed
with anomalous input during the training phase, as in the unsu-
pervised case. In that case, anomalous examples in the training
data constitute a type of “noise” that renders the autoencoder
partially capable of reconstructing the anomalous examples in
the test set.

4.7. RUAD

This section examines the experimental results obtained with
the RUAD model (unsupervised LSTM autoencoder). The most
important parameter is the length of the input sequence W that
is passed to the model. This parameter encodes our expectation
of the length of the dependencies within the data. Since each
data point represents 15 minutes of node operation, the actual
period we observe consists of W × 15 min. In this set of ex-
periments, we selected the following time window sizes: 5 (75
minutes), 10 (2h30), 20 (5h), 40 (10h). These period lengths
were obtained after a preliminary empirical evaluation; more-
over, these time frames are in line with the typical duration of
HPC workloads, which tend to span between dozens of min-
utes to a few hours[57]. We have trained the model in both
semi-supervised RUADsemi and unsupervised RUAD fashion
for each selected window length. Results across all the nodes
are collected in Figure 6.

4.8. Comparison of all approaches

The main metric for evaluating model performance is the
area under the ROC curve (AUC). This metric estimates the
classifiers’ overall performance without the need to set a dis-
crimination threshold [51]. The closer the AUC value is to 1,
the better the classifier performs. AUC scores for implemented
methods are collected in table 6. From the lower table in table
6 (rows correspond to different training regimes and columns
to window size for RUAD network) and upper table in 6 (rows
correspond to the performance of different implemented base-
lines), we see that the proposed approach outperforms the exist-
ing baselines. The highest AUC achieved by the previous base-
lines is 0.7470 (achieved by the DENS Esemi. This is outper-
formed by RUAD for all window sizes. The best performance
of RUAD is achieved by selecting the windows size 10 where it
achieves an AUC of 7.672. This result clearly shows that some
temporal dynamics contribute to the appearance of anomalies.

The final consideration is the impact of observation window
length W on the performance of the RUAD model. One might
expect that considering longer time sequences would bring ben-
efits, as more information is provided to the model to recreate
the time series. This is, however, not the case (as seen in ta-
ble 6) as the RUAD achieves the best performance of 0.7672
with window size 10. The performance then reduces sharply
with window size 40, only achieving an AUC of 0.7473. Sev-
eral factors might explain this phenomenon. For instance, in

tens of hours, the workload on a given node might change dras-
tically. Considering longer time series might thus force the
RUAD model to concentrate on multiple workloads, hinder-
ing its learning task. Finally, an issue stems from the fact that
there are gaps (periods of missing measurements) in the col-
lected data (a very likely problem in many real-world scenar-
ios). Longer sequences mean that more data has to be cut from
the training set to ensure time-consistent sequences; this is be-
cause we are not applying gap-filling techniques at the mo-
ment4, thus, sub-sequences missing some points need to be re-
moved from the data set. Combining these two factors con-
tributes to the model’s decline in performance with longer ob-
servation periods.

Considering all discussed factors, the optimal approach is to
use the proposed model architecture with window size W = 10
(i.e. 2 hours and 30 minutes), trained in an unsupervised man-
ner. This configuration outperforms semi-supervised RUADsemi

as well as the dense autoencoder. As mentioned in the related
work (Section 2), labelled datasets are expensive to obtain in
the HPC setting. Good unsupervised performance is why this
result is promising - it shows us that if the anomalies repre-
sented a small fraction of all data, we could train an anomaly
detection model even on an unlabeled dataset (in an unsuper-
vised manner). Such a model not only achieves the state-of-the-
art performance but outperforms semi-supervised approaches.
The best AUC, achieved by the previous SoA DENS Esemi, is
0.7470. The best AUC score achieved by RUAD is 0.7672.
Moreover, unsupervised training makes this anomaly detection
model more applicable to a typical HPC (or even datacentre)
system.

Method Combined ROC score
EXP 0.4276
CLU 0.5478

DENS Esemi 0.7470
DENS Eun 0.7344

Method Combined ROC score
Sequence length 5 10 20 40

RUADsemi 0.7632 0.7582 0.7602 0.7446
RUAD 0.7651 0.7672 0.7655 0.7473

Table 6: According to expectations, the semi-supervised dense autoencoder
outperforms the unsupervised dense one (highlighted by the higher AUC score).
RUAD and RUADsemi outperform all previous baselines. In contrast to the
dense autoencoders, the proposed approach RUAD performs best in unsuper-
vised manner.

5. Conclusions

The paper presents an anomaly detection approach for HPC
systems (RUAD) that outperforms the current state-of-the-art
approach based on the dense autoencoders [5]. Improving upon

4We decided not to consider such techniques for the moment, as we wanted
to focus on the modelling approach and gap-filling methods tend to require
additional assumptions and to introduce noise in the data.

10

(a) Window length 5 (b) Window length 10

(c) Window length 20 (d) Window length 40

Figure 6: Combined results from all 980 nodes of M100. Comparison of different window lengths for the RUAD model. For all window lengths, performances
of semi-supervised and unsupervised approaches are similar. Performance of the proposed model (red and blue line) is compared to the state-of-the-art baseline
semi-supervised autoencoder proposed by Borghesi et al.[5].

state-of-the-art is achieved by deploying a neural network ar-
chitecture that considers the temporal dependencies within the
data. The proposed model architecture achieves the highest
AUC of 0.77 compared to 0.75, which is the highest AUC
achieved by the dense autoencoders (on our dataset).

Another contribution of this paper is that the
proposed method – unlike the previous work [5, 16, 17, 8] –
achieves the best results in an unsupervised training case. Un-
supervised training is instrumental as it offers a possibility of
deploying an anomaly detection model to the cases where (ac-
curately) labelled dataset is unavailable. The only stipulation
for the deployment of unsupervised anomaly detection models
is that the anomalies are rare – in our work, the anomalies ac-
counted for only 0.035% of the data. The necessity to have a
few anomalies in the training set, however, is not a significant
limitation as HPC systems are already highly reliable machines
with low anomaly rates [58, 1].

To illustrate the capabilities of the approach proposed in this
work, we have collected an extensive and accurately labelled
dataset describing the first 10 months of operation of the Mar-

coni100 system in CINECA [56]. The creation of accurately
labelled dataset was necessary to compare the performance of
different models on the data rigorously. Because of the high
quality and large scale of the available dataset, we can con-
clude that for the model proposed in the paper, the unsuper-
vised model outperforms semi-supervised model even if accu-
rate anomaly labels are available. This is the first experiment
of this type and magnitude conducted on a real, in-production
datacentre (both in terms of the number of computing nodes
considered and the length of the observation period).

In future works, we will further explore the problem of
anomaly detection in HPC systems, in particular, discovering
the root causes of the anomalies - e.g., why a computing node
is entering a failure state? We also have plans to further extend
and refine the collected dataset and make it available to the pub-
lic, in accordance with the facility owners and regulations about
users’ personal data (albeit not considered in this work, infor-
mation about the users submitting the jobs to the HPC system
can indeed be collected). Moreover, in this work, we focused on
node-level anomalies; this was done to be comparable with the

11

state-of-the-art and for scalability purposes; in the future, we
will explore the possibility of detecting systemic anomalies as
well, i.e., anomalies involving multiple nodes at the same time.
In this direction, the natural follow-up to the present work is
to build hierarchical approaches which generate anomaly sig-
nals based on the composition of the signals generated by the
node-specific detection models.

6. Acknowledgments

This research was partly supported by the EuroHPC EU PI-
LOT project (g.a. 101034126), the EuroHPC EU Regale project
(g.a. 956560), EU H2020-ICT-11-2018-2019 IoTwins project
(g.a. 857191), and EU Pilot for exascale EuroHPC EUPEX (g.
a. 101033975). We also thank CINECA for the collaboration
and access to their machines and Francesco Beneventi for main-
taining Examon.

References

[1] W. Shin, V. Oles, A. M. Karimi, J. A. Ellis, F. Wang, Revealing power,
energy and thermal dynamics of a 200pf pre-exascale supercomputer,
in: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’21, Association for
Computing Machinery, New York, NY, USA, 2021, pp. 1–14. doi:

10.1145/3458817.3476188.
URL https://doi.org/10.1145/3458817.3476188

[2] D. Milojicic, P. Faraboschi, N. Dube, D. Roweth, Future of hpc: Di-
versifying heterogeneity, in: 2021 Design, Automation Test in Europe
Conference Exhibition (DATE), 2021, pp. 276–281. doi:10.23919/

DATE51398.2021.9474063.
[3] A. Netti, W. Shin, M. Ott, T. Wilde, N. Bates, A conceptual framework for

hpc operational data analytics, in: 2021 IEEE International Conference
on Cluster Computing (CLUSTER), 2021, pp. 596–603. doi:10.1109/
Cluster48925.2021.00086.

[4] L. A. Parnell, D. W. Demetriou, V. Kamath, E. Y. Zhang, Trends in high
performance computing: Exascale systems and facilities beyond the first
wave, in: 2019 18th IEEE Intersociety Conference on Thermal and Ther-
momechanical Phenomena in Electronic Systems (ITherm), 2019, pp.
167–176. doi:10.1109/ITHERM.2019.8757229.

[5] A. Borghesi, M. Molan, M. Milano, A. Bartolini, Anomaly detection and
anticipation in high performance computing systems, IEEE Transactions
on Parallel and Distributed Systems 33 (4) (2022) 739–750. doi:10.

1109/TPDS.2021.3082802.
[6] A. Borghesi, A. Bartolini, et al., Anomaly detection using autoencoders

in hpc systems, in: Proceedings of the AAAI Conference on Artificial
Intelligence, 2019, pp. 24–32.

[7] A. Borghesi, M. Milano, L. Benini, Frequency assignment in high per-
formance computing systems, in: International Conference of the Italian
Association for Artificial Intelligence, Springer, 2019, pp. 151–164.

[8] A. Netti, Z. Kiziltan, O. Babaoglu, A. Sı̂rbu, A. Bartolini, A. Borghesi, A
machine learning approach to online fault classification in hpc systems,
Future Generation Computer Systems (2019).

[9] A. Netti, Z. Kiziltan, O. Babaoglu, A. Sı̂rbu, A. Bartolini, A. Borghesi,
Online fault classification in hpc systems through machine learning, in:
European Conference on Parallel Processing, Springer, 2019, pp. 3–16.

[10] M. Du, F. Li, G. Zheng, V. Srikumar, Deeplog: Anomaly detection and
diagnosis from system logs through deep learning, in: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’17, Association for Computing Machinery, New York,
NY, USA, 2017, p. 1285–1298. doi:10.1145/3133956.3134015.
URL https://doi.org/10.1145/3133956.3134015

[11] F. Iannone, G. Bracco, C. Cavazzoni, et al., Marconi-fusion: The new
high performance computing facility for european nuclear fusion mod-
elling, Fusion Engineering and Design 129 (2018) 354–358.

[12] N. Beske, Ug3.2: Marconi100 userguide, accessed: 2020-08-17 (2020).
URL https://wiki.u-gov.it/confluence/pages/viewpage.

action?pageId=336727645

[13] Top500list, https://www.top500.org/lists/top500/2020/06/ (2020).
[14] A. Bartolini, F. Beneventi, A. Borghesi, D. Cesarini, A. Libri, L. Benini,

C. Cavazzoni, Paving the way toward energy-aware and automated dat-
acentre, in: Proceedings of the 48th International Conference on Paral-
lel Processing: Workshops, ICPP 2019, Association for Computing Ma-
chinery, New York, NY, USA, 2019, pp. 1–8. doi:10.1145/3339186.
3339215.
URL https://doi.org/10.1145/3339186.3339215

[15] W. Barth, Nagios: System and network monitoring, No Starch Press,
2008.

[16] M. Molan, A. Borghesi, F. Beneventi, M. Guarrasi, A. Bartolini, An ex-
plainable model for fault detection in hpc systems, in: H. Jagode, H. Anzt,
H. Ltaief, P. Luszczek (Eds.), High Performance Computing, Springer In-
ternational Publishing, Cham, 2021, pp. 378–391.

[17] O. Tuncer, E. Ates, Y. e. a. et Zhang, Online diagnosis of performance
variation in hpc systems using machine learning, IEEE Transactions on
Parallel and Distributed Systems (9 2018).

[18] A. Netti, Z. Kiziltan, et al., Finj: A fault injection tool for hpc systems,
in: European Conference on Parallel Processing, Springer, 2018, pp. 800–
812.

[19] M. Dani, H. Doreau, S. Alt, K-means application for anomaly detec-
tion and log classification in hpc, in: Lecture Notes in Computer Sci-
ence book series (LNAI,volume 10351), 2017, pp. 201–210. doi:

10.1007/978-3-319-60045-1_23.
[20] A. Morrow, E. Baseman, S. Blanchard, Ranking anomalous high perfor-

mance computing sensor data using unsupervised clustering, in: 2016
International Conference on Computational Science and Computational
Intelligence (CSCI), 2016, pp. 629–632. doi:10.1109/CSCI.2016.

0124.
[21] S. Bursic, A. D’Amelio, V. Cuculo, Anomaly detection from log files

using unsupervised deep learning (09 2019).
[22] A. Borghesi, A. Libri, et al., Online anomaly detection in hpc systems,

in: 2019 IEEE International Conference on Artificial Intelligence Circuits
and Systems, IEEE, 2019, pp. 229–233.

[23] G. Moschini, R. Houssou, J. Bovay, S. Robert-Nicoud, Anomaly and
fraud detection in credit card transactions using the arima model (2020).
arXiv:2009.07578.

[24] M. Ahmed, A. N. Mahmood, M. R. Islam, A survey of anomaly detection
techniques in financial domain, Future Generation Computer Systems 55
(2016) 278–288. doi:https://doi.org/10.1016/j.future.2015.
01.001.
URL https://www.sciencedirect.com/science/article/pii/

S0167739X15000023

[25] K. B. Lee, S. Cheon, C. O. Kim, A convolutional neural network for fault
classification and diagnosis in semiconductor manufacturing processes,
IEEE Transactions on Semiconductor Manufacturing 30 (2) (2017) 135–
142.

[26] L. Rosa, T. Cruz, M. B. de Freitas, P. Quitério, J. Henriques, F. Caldeira,
E. Monteiro, P. Simões, Intrusion and anomaly detection for the next-
generation of industrial automation and control systems, Future Gener-
ation Computer Systems 119 (2021) 50–67. doi:https://doi.org/

10.1016/j.future.2021.01.033.
URL https://www.sciencedirect.com/science/article/pii/

S0167739X21000431

[27] I. Martins, J. S. Resende, P. R. Sousa, S. Silva, L. Antunes, J. Gama,
Host-based ids: A review and open issues of an anomaly detection sys-
tem in iot, Future Generation Computer Systems 133 (2022) 95–113.
doi:https://doi.org/10.1016/j.future.2022.03.001.
URL https://www.sciencedirect.com/science/article/pii/

S0167739X22000760

[28] F. Cauteruccio, L. Cinelli, E. Corradini, G. Terracina, D. Ursino, L. Vir-
gili, C. Savaglio, A. Liotta, G. Fortino, A framework for anomaly detec-
tion and classification in multiple iot scenarios, Future Generation Com-
puter Systems 114 (2021) 322–335. doi:https://doi.org/10.1016/
j.future.2020.08.010.
URL https://www.sciencedirect.com/science/article/pii/

S0167739X19335253

[29] R. Xu, Y. Cheng, Z. Liu, Y. Xie, Y. Yang, Improved long short-term

12

https://doi.org/10.1145/3458817.3476188
https://doi.org/10.1145/3458817.3476188
https://doi.org/10.1145/3458817.3476188
https://doi.org/10.1145/3458817.3476188
https://doi.org/10.1145/3458817.3476188
https://doi.org/10.23919/DATE51398.2021.9474063
https://doi.org/10.23919/DATE51398.2021.9474063
https://doi.org/10.1109/Cluster48925.2021.00086
https://doi.org/10.1109/Cluster48925.2021.00086
https://doi.org/10.1109/ITHERM.2019.8757229
https://doi.org/10.1109/TPDS.2021.3082802
https://doi.org/10.1109/TPDS.2021.3082802
https://doi.org/10.1145/3133956.3134015
https://doi.org/10.1145/3133956.3134015
https://doi.org/10.1145/3133956.3134015
https://doi.org/10.1145/3133956.3134015
https://wiki.u-gov.it/confluence/pages/viewpage.action?pageId=336727645
https://wiki.u-gov.it/confluence/pages/viewpage.action?pageId=336727645
https://wiki.u-gov.it/confluence/pages/viewpage.action?pageId=336727645
https://doi.org/10.1145/3339186.3339215
https://doi.org/10.1145/3339186.3339215
https://doi.org/10.1145/3339186.3339215
https://doi.org/10.1145/3339186.3339215
https://doi.org/10.1145/3339186.3339215
https://doi.org/10.1007/978-3-319-60045-1_23
https://doi.org/10.1007/978-3-319-60045-1_23
https://doi.org/10.1109/CSCI.2016.0124
https://doi.org/10.1109/CSCI.2016.0124
http://arxiv.org/abs/2009.07578
https://www.sciencedirect.com/science/article/pii/S0167739X15000023
https://www.sciencedirect.com/science/article/pii/S0167739X15000023
https://doi.org/https://doi.org/10.1016/j.future.2015.01.001
https://doi.org/https://doi.org/10.1016/j.future.2015.01.001
https://www.sciencedirect.com/science/article/pii/S0167739X15000023
https://www.sciencedirect.com/science/article/pii/S0167739X15000023
https://www.sciencedirect.com/science/article/pii/S0167739X21000431
https://www.sciencedirect.com/science/article/pii/S0167739X21000431
https://doi.org/https://doi.org/10.1016/j.future.2021.01.033
https://doi.org/https://doi.org/10.1016/j.future.2021.01.033
https://www.sciencedirect.com/science/article/pii/S0167739X21000431
https://www.sciencedirect.com/science/article/pii/S0167739X21000431
https://www.sciencedirect.com/science/article/pii/S0167739X22000760
https://www.sciencedirect.com/science/article/pii/S0167739X22000760
https://doi.org/https://doi.org/10.1016/j.future.2022.03.001
https://www.sciencedirect.com/science/article/pii/S0167739X22000760
https://www.sciencedirect.com/science/article/pii/S0167739X22000760
https://www.sciencedirect.com/science/article/pii/S0167739X19335253
https://www.sciencedirect.com/science/article/pii/S0167739X19335253
https://doi.org/https://doi.org/10.1016/j.future.2020.08.010
https://doi.org/https://doi.org/10.1016/j.future.2020.08.010
https://www.sciencedirect.com/science/article/pii/S0167739X19335253
https://www.sciencedirect.com/science/article/pii/S0167739X19335253
https://www.sciencedirect.com/science/article/pii/S0167739X20302235

memory based anomaly detection with concept drift adaptive method
for supporting iot services, Future Generation Computer Systems 112
(2020) 228–242. doi:https://doi.org/10.1016/j.future.2020.
05.035.
URL https://www.sciencedirect.com/science/article/pii/

S0167739X20302235

[30] S. Fu, S. Zhong, L. Lin, M. Zhao, A re-optimized deep auto-encoder for
gas turbine unsupervised anomaly detection, Engineering Applications of
Artificial Intelligence 101 (2021) 104199. doi:https://doi.org/10.
1016/j.engappai.2021.104199.
URL https://www.sciencedirect.com/science/article/pii/

S0952197621000464

[31] C. Zhang, D. Song, Y. Chen, X. Feng, C. Lumezanu, W. Cheng, J. Ni,
B. Zong, H. Chen, N. V. Chawla, A deep neural network for unsupervised
anomaly detection and diagnosis in multivariate time series data, CoRR
abs/1811.08055 (2018). arXiv:1811.08055.

[32] P. V. Astillo, D. G. Duguma, H. Park, J. Kim, B. Kim, I. You, Feder-
ated intelligence of anomaly detection agent in iotmd-enabled diabetes
management control system, Future Generation Computer Systems 128
(2022) 395–405. doi:https://doi.org/10.1016/j.future.2021.
10.023.
URL https://www.sciencedirect.com/science/article/pii/

S0167739X21004192

[33] T. Salman, D. Bhamare, A. Erbad, R. Jain, M. Samaka, Machine learning
for anomaly detection and categorization in multi-cloud environments,
2017 IEEE 4th International Conference on Cyber Security and Cloud
Computing (CSCloud) (2017). arXiv:1812.05443, doi:10.1109/

CSCloud.2017.15.
[34] M. Molan, Pre-processing for Anomaly Detection on Linear Accelerator.

CERN openlab online summer intern project presentations (Sep 2020).
[35] M. Gamell, K. Teranishi, et al., Modeling and simulating multiple fail-

ure masking enabled by local recovery for stencil-based applications at
extreme scales, IEEE Transactions on Parallel and Distributed Systems
28 (10) (2017).

[36] E. Meneses, X. Ni, et al., Using migratable objects to enhance fault toler-
ance schemes in supercomputers, IEEE Transactions on Parallel and Dis-
tributed Systems 26 (7) (2015) 2061–2074. doi:10.1109/TPDS.2014.
2342228.

[37] I. Boixaderas, D. Zivanovic, et al., Cost-aware prediction of uncorrected
dram errors in the field, in: 2020 SC20: International Conference for
HPC, Networking, Storage and Analysis (SC), IEEE Comp. Soc., Los
Alamitos, CA, USA, 2020, pp. 1–15.

[38] G. Iuhasz, D. Petcu, Monitoring of exascale data processing, in:
2019 IEEE International Conference on Advanced Scientific Computing
(ICASC), 2019, pp. 1–5. doi:10.1109/ICASC48083.2019.8946279.

[39] K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Den-
neau, P. Franzon, W. Harrod, K. Hill, J. Hiller, et al., Exascale comput-
ing study: Technology challenges in achieving exascale systems, Defense
Advanced Research Projects Agency Information Processing Techniques
Office (DARPA IPTO), Tech. Rep 15 (2008).

[40] G. Pang, C. Shen, L. Cao, A. V. D. Hengel, Deep learning for anomaly
detection: A review, ACM Comput. Surv. (mar 2020). doi:10.1145/

3439950.
[41] G. Pang, C. Shen, L. Cao, A. V. D. Hengel, Deep learning for anomaly

detection: A review, ACM Comput. Surv. 54 (2) (Mar. 2021). doi:10.

1145/3439950.
URL https://doi.org/10.1145/3439950

[42] G. Lemaı̂tre, F. Nogueira, C. K. Aridas, Imbalanced-learn: A python tool-
box to tackle the curse of imbalanced datasets in machine learning, Jour-
nal of Machine Learning Research 18 (17) (2017) 1–5.

[43] A. Borghesi, A. Bartolini, M. Lombardi, M. Milano, L. Benini, A semisu-
pervised autoencoder-based approach for anomaly detection in high per-
formance computing systems, Engineering Applications of Artificial In-
telligence 85 (2019) 634–644.

[44] P. Wu, C. A. Harris, G. Salavasidis, A. Lorenzo-Lopez, I. Kamarudza-
man, A. B. Phillips, G. Thomas, E. Anderlini, Unsupervised anomaly
detection for underwater gliders using generative adversarial networks,
Engineering Applications of Artificial Intelligence 104 (2021) 104379.
doi:https://doi.org/10.1016/j.engappai.2021.104379.
URL https://www.sciencedirect.com/science/article/pii/

S095219762100227X

[45] O. Tuncer, E. Ates, et al., Diagnosing performance variations in hpc ap-
plications using machine learning, in: International Supercomputing Con-
ference, Springer, 2017, pp. 355–373.

[46] B. Aksar, B. Schwaller, O. Aaziz, V. J. Leung, J. Brandt, M. Egele, A. K.
Coskun, E2ewatch: An end-to-end anomaly diagnosis framework for pro-
duction hpc systems, in: European Conference on Parallel Processing,
Springer, 2021, pp. 70–85.

[47] B. Aksar, Y. Zhang, E. Ates, B. Schwaller, O. Aaziz, V. J. Leung,
J. Brandt, M. Egele, A. K. Coskun, Proctor: A semi-supervised per-
formance anomaly diagnosis framework for production hpc systems, in:
B. L. Chamberlain, A.-L. Varbanescu, H. Ltaief, P. Luszczek (Eds.), High
Performance Computing, Springer International Publishing, Cham, 2021,
pp. 195–214.

[48] E. Baseman, S. Blanchard, N. DeBardeleben, A. Bonnie, A. Morrow, In-
terpretable anomaly detection for monitoring of high performance com-
puting systems, in: Outlier Definition, Detection, and Description on De-
mand Workshop at ACM SIGKDD. San Francisco (Aug 2016), 2016, pp.
1–27.

[49] B. Aksar, B. Schwaller, O. Aaziz, V. J. Leung, J. Brandt, M. Egele, A. K.
Coskun, E2ewatch: An end-to-end anomaly diagnosis framework for pro-
duction hpc systems, in: L. Sousa, N. Roma, P. Tomás (Eds.), Euro-
Par 2021: Parallel Processing, Springer International Publishing, Cham,
2021, pp. 70–85.

[50] Wikipedia, Jira (software) — Wikipedia, the free encyclope-
dia, http://en.wikipedia.org/w/index.php?title=Jira%

20(software)&oldid=1052315603, [Online; accessed 04-December-
2021] (2021).

[51] Receiver operating characteristic (Nov 2021).
URL https://en.wikipedia.org/wiki/Receiver_operating_

characteristic

[52] K. R. Shahapure, C. Nicholas, Cluster quality analysis using silhou-
ette score, in: 2020 IEEE 7th International Conference on Data Science
and Advanced Analytics (DSAA), 2020, pp. 747–748. doi:10.1109/

DSAA49011.2020.00096.
[53] B. Lindemann, T. Müller, H. Vietz, N. Jazdi, M. Weyrich, A survey on

long short-term memory networks for time series prediction, Procedia
CIRP 99 (2021) 650–655.

[54] A. Borghesi, A. Bartolini, M. Lombardi, M. Milano, L. Benini, A semisu-
pervised autoencoder-based approach for anomaly detection in high per-
formance computing systems, Engineering Applications of Artificial In-
telligence 85 (2019) 634–644. doi:https://doi.org/10.1016/j.

engappai.2019.07.008.
URL https://www.sciencedirect.com/science/article/pii/

S0952197619301721

[55] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay,
Scikit-learn: Machine learning in Python, Journal of Machine Learning
Research 12 (2011) 2825–2830.

[56] Wikipedia, CINECA — Wikipedia, the free encyclopedia, http://en.
wikipedia.org/w/index.php?title=CINECA&oldid=954269846,
[Online; accessed 04-December-2021] (2021).

[57] M. C. Calzarossa, L. Massari, D. Tessera, Workload characterization: A
survey revisited, ACM Computing Surveys (CSUR) 48 (3) (2016) 1–43.

[58] J. Dongarra, Report on the fujitsu fugaku system, University of
Tennessee-Knoxville Innovative Computing Laboratory, Tech. Rep.
ICLUT-20-06 (2020).

13

https://www.sciencedirect.com/science/article/pii/S0167739X20302235
https://www.sciencedirect.com/science/article/pii/S0167739X20302235
https://doi.org/https://doi.org/10.1016/j.future.2020.05.035
https://doi.org/https://doi.org/10.1016/j.future.2020.05.035
https://www.sciencedirect.com/science/article/pii/S0167739X20302235
https://www.sciencedirect.com/science/article/pii/S0167739X20302235
https://www.sciencedirect.com/science/article/pii/S0952197621000464
https://www.sciencedirect.com/science/article/pii/S0952197621000464
https://doi.org/https://doi.org/10.1016/j.engappai.2021.104199
https://doi.org/https://doi.org/10.1016/j.engappai.2021.104199
https://www.sciencedirect.com/science/article/pii/S0952197621000464
https://www.sciencedirect.com/science/article/pii/S0952197621000464
http://arxiv.org/abs/1811.08055
https://www.sciencedirect.com/science/article/pii/S0167739X21004192
https://www.sciencedirect.com/science/article/pii/S0167739X21004192
https://www.sciencedirect.com/science/article/pii/S0167739X21004192
https://doi.org/https://doi.org/10.1016/j.future.2021.10.023
https://doi.org/https://doi.org/10.1016/j.future.2021.10.023
https://www.sciencedirect.com/science/article/pii/S0167739X21004192
https://www.sciencedirect.com/science/article/pii/S0167739X21004192
http://arxiv.org/abs/1812.05443
https://doi.org/10.1109/CSCloud.2017.15
https://doi.org/10.1109/CSCloud.2017.15
https://doi.org/10.1109/TPDS.2014.2342228
https://doi.org/10.1109/TPDS.2014.2342228
https://doi.org/10.1109/ICASC48083.2019.8946279
https://doi.org/10.1145/3439950
https://doi.org/10.1145/3439950
https://doi.org/10.1145/3439950
https://doi.org/10.1145/3439950
https://doi.org/10.1145/3439950
https://doi.org/10.1145/3439950
https://doi.org/10.1145/3439950
https://www.sciencedirect.com/science/article/pii/S095219762100227X
https://www.sciencedirect.com/science/article/pii/S095219762100227X
https://doi.org/https://doi.org/10.1016/j.engappai.2021.104379
https://www.sciencedirect.com/science/article/pii/S095219762100227X
https://www.sciencedirect.com/science/article/pii/S095219762100227X
http://en.wikipedia.org/w/index.php?title=Jira%20(software)&oldid=1052315603
http://en.wikipedia.org/w/index.php?title=Jira%20(software)&oldid=1052315603
https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://doi.org/10.1109/DSAA49011.2020.00096
https://doi.org/10.1109/DSAA49011.2020.00096
https://www.sciencedirect.com/science/article/pii/S0952197619301721
https://www.sciencedirect.com/science/article/pii/S0952197619301721
https://www.sciencedirect.com/science/article/pii/S0952197619301721
https://doi.org/https://doi.org/10.1016/j.engappai.2019.07.008
https://doi.org/https://doi.org/10.1016/j.engappai.2019.07.008
https://www.sciencedirect.com/science/article/pii/S0952197619301721
https://www.sciencedirect.com/science/article/pii/S0952197619301721
http://en.wikipedia.org/w/index.php?title=CINECA&oldid=954269846
http://en.wikipedia.org/w/index.php?title=CINECA&oldid=954269846

	1 Introduction
	1.1 Contributions of the paper
	1.2 Structure of the paper

	2 Related Works
	3 Methodology
	3.1 Node anomaly labeling
	3.2 Reconstruction error and result evaluation
	3.3 Trivial baseline: exponential smoothing
	3.4 Unsupervised baseline: clustering
	3.5 Semi-supervised baseline: dense autoencoder
	3.6 Recurrent unsupervised anomaly detection: RUAD
	3.7 Data pre-processing
	3.8 Summary of evaluated methods

	4 Experimental results
	4.1 Experimental setting
	4.2 Dataset
	4.3 Hyperparameters
	4.4 Exponential smoothing
	4.5 Clustering
	4.6 Dense autoencoder
	4.7 RUAD
	4.8 Comparison of all approaches

	5 Conclusions
	6 Acknowledgments

