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Abstract. Equilibrium selection in coordination games has generated a large lit-

erature. Kandori, Mailath and Rob (1993) and Young (1993) studied dynamic

models of aggregate behaviour in which agents choose best responses to observa-

tions of population play. Crucially, infrequent mistakes (“mutations”) allow agents

to take actions contrary to current trends and prevent initial configurations from

determining long run play. An alternative approach is offered here: Harsanyian

trembles are added to agents’ payoffs so that with some probability it is optimal

to act against the flow of play. The long run distribution of population behaviour

is characterised — modes correspond to stable Bayesian Nash equilibria. Allowing

the variance of payoff trembles to vanish, via a purification process, a single equi-

librium is played almost always in the long run. Kandori et al and Young show

that the number of contrarian actions required to escape an equilibrium determines

selection; here, the likelihood that such actions are taken is of equal importance.
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1. Introduction

Many games have multiple Nash equilibria. Optimising agents might play a Nash

equilibrium, but which one? Motivated in part by this question, researchers have

modelled the adaptive evolution of play. Kandori, Mailath and Rob (KMR, 1993)

and Young (1993) analysed the periodic strategy revision of boundedly rational play-

ers. Revising players observe the distribution of either current or historical strategy

choices, and choose a myopic best response. This generates a Markov process that is

path dependent: Play will become locked in to any pure strategy Nash equilibrium.

To remove this feature, revising players are assumed to err with some probability

— referred to as a “mutation.” Such mutations allow the process to move between

equilibria, and permit analysis of the long run distribution of play, independent from

any initial conditions. As the probability of a mutation is allowed to vanish, this dis-

tribution places almost all weight on play corresponding to a single Nash equilibrium.

In the class of 2×2 symmetric coordination games, such a selection process picks the

Harsanyi-Selten (1988) risk dominant equilibrium. This is because a relatively large

number of mutations are required to escape from a risk dominant equilibrium.

In the KMR-Young framework the probability of a mutation is independent of the

state of play. This plays a crucial rôle in the selection process. Bergin and Lipman

(1996) demonstrated that general state dependent mutations can result in the selec-

tion of any equilibrium. Since fully general results are unavailable, it is suggested

that mutation specifications should derive from reasonable underlying justifications.

This paper responds to this idea. The simple example of 2× 2 symmetric coordina-

tion games is considered. Payoffs are subject to Harsanyian (1973) trembles, yielding

a Bayesian game. Errant behaviour, therefore, is caused by the idiosyncrasy of pref-

erences rather than mistaken choices. It follows that long run play may be analysed

while retaining the use of pure best responses. Furthermore, the long run distribution

may be partially characterised without the need for vanishing mutation probabilities:

In fact, the modes of this distribution coincide with stable Bayesian Nash equilibria.

Equilibrium selection with “vanishing mutations” is still possible, via a purification

process. Allowing the variances of payoff trembles to tend to zero at the same rate,

the associated mutation probabilities vanish to zero at different rates. In the sense

of Bergin and Lipman (1996), mutations are (endogenously) state dependent. In

this environment, equilibrium selection depends upon the likelihood of observing a
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contrarian action, as well as the number of contrarian actions needed to escape from

a particular Nash equilibrium. Moreover, the selection criterion applies when the

population consists of only two players, and merely a single mutation is required to

escape from an equilibrium.

The approach matches that of Blume (1999), where mutation probabilities depend

upon the difference in expected payoffs. He describes a sufficient condition of “skew

symmetry” for the selection of a risk dominant equilibrium. In the context of a

Bayesian game, this condition holds when payoff tremble variances are independent

of the strategy profile. The analysis presented here moves further, by identifying

precisely how skew-symmetric the noise process needs to be.

Others have studied alternative models of state dependent mutations: van Damme

and Weibull (1998) analyse a model where mutations are endogenously derived from

agents making costly attempts to control their “trembling hands.” Foster and Young

(1990) have perhaps the earliest discussion of state-dependent mutations (although

with no reference to risk-dominance and equilibrium selection). Binmore and Samuel-

son (1997) also present a model with state dependent mutations. They proceed

directly to the specification of the elements of a tridiagonal Markov matrix in a

single-revision dynamic and hence their approach lacks an explicit economic model,

but is nonetheless related.

2. Adaptive Play of a Bayesian Game

The model is based upon a symmetric 2× 2 coordination game with generic payoffs:

1 2

1
a

a

c

b

2
b

c

d

d

or equivalently

1 2

1
a− c

a− c

0

0

2
0

0

d− b

d− b

(1)

where a > c and d > b ensure that the game has two pure strategy Nash equilibria

(1, 1) and (2, 2).1 Without loss of generality, it is assumed that a−c > d−b, ensuring

that the equilibrium (1, 1) is risk dominant (Harsanyi and Selten, 1988). Players care

only about the difference in expected payoffs when making a choice, and hence the

1The genericity requirement is for convenience only, helping to eliminate integer problems and hence
simplify the exposition. Such integer problems are avoided when dn/(a+ d) /∈ Z for n ∈ Z. For this
to hold it is sufficient to assume that a and d are irrational numbers.
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coordination game is strategically equivalent to the pure coordination game on the

right hand side of Equation (1). It is further without loss of generality to set b = c = 0

throughout. In this formulation, the mixed strategy Nash equilibrium entails mixing

probabilities of [x∗, 1− x∗] where x∗ = d/(a+ d) < 1/2 since a > d by assumption.

The payoffs a and d represent mean utilities. To generate a Bayesian game, any

individual player has idiosyncratic payoffs ã and d̃, generated by the addition of

normally and independently distributed Harsanyian (1973) payoff trembles:

ã = a+ σεa

d̃ = d+ σεd

where

[
εa

εd

]
∼ N

([
0

0

]
,

[
ξ2
a ρξaξd

ρξaξd ξ2
d

])
The parameters ξa and ξd allow the variance of the trembles to be strategy profile

specific. Section 6 of Blume (1999) offers a similar “random utility” approach. In his

model any payoff noise is added directly to the expected payoff difference of the two

pure strategies, rather than to the payoffs from particular strategy profiles. Such a

specification is equivalent to setting ρ = −1 and ξa = ξd. The same observation can

also be made of related papers by Brock and Durlauf (2001) and Blume and Durlauf

(2001). The parameter σ is a common scaling factor which is allowed to vanish

for the limiting results of Section 4. The normal distribution proves convenient for

the subsequent analysis.2 Its crucial property, however, is the unboundedness of the

support, allowing either strategy to be dominant with some probability.

Play evolves adaptively among a finite population of n players. In a single period,

each individual plays a fixed strategy against randomly selected opponents from the

remaining n− 1 players. The state of play is the number of players using strategy 1,

denoted z ∈ Z = {0, . . . , n}. At the end of each period, a randomly selected player

is replaced. The new entrant is equipped with newly trembled payoffs ã and d̃. This

player observes the strategy distribution among n − 1 remaining incumbents and

selects a best response. This is a “one step at a time” dynamic, similar to the one

proposed by Binmore and Samuelson (1997), but unlike the process of KMR (1993)

in which all players revise together. Although the dynamic is set in discrete time,

it would be equivalent to cast the model in continuous time, and allow individual

players to be woken by independent Poisson alarm clocks and subsequently replaced.

2For σ → 0 the key features are the asymptotic properties of the densities and hazard rates of the
disturbances. Thus any other distribution sharing these features will lead to similar results. It is
also worth noting that full generality of trembles, particularly allowing trembles to vary by state,
as Bergin and Lipman (1996) have shown, would lead to inconclusive results.
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An entrant’s choice depends only upon the current strategy distribution, and hence

the adaptive play dynamic describes a homogeneous Markov chain on the state space

Z. Beginning in state z, and following the exit of an incumbent, there will be either

i = z or i = z−1 of the remaining incumbents using strategy 1. Use x = i/(n−1) to

denote the fraction using strategy 1. Against this strategy distribution, the payoffs

to pure strategies 1 and 2 are x(a+σεa) and (1−x)(d+σεd) respectively. An entrant

chooses strategy 1 whenever the first term is larger than the second. Rearranging,

this occurs whenever: (1 − x)εd − xεa < [xa − (1 − x)d]/σ. The left hand side is

normal with zero mean and variance x2ξ2
a + (1 − x)2ξ2

d − 2x(1 − x)ρξaξd. It follows

that the entrant will choose pure strategy 1 with probability:

Pr [1 |x] = Φ

(
xa− (1− x)d

σ
√
x2ξ2

a + (1− x)2ξ2
d − 2x(1− x)ρξaξd

)
where Φ represents the cumulative distribution function of the standard normal. By

inspection, it is clear that an entrant is more likely to choose strategy 1 when x (and

hence z) is sufficiently high. This fact is reflected in Definition 1, where the notation

due indicates the integer above u, and buc indicates the integer below u.3

Definition 1. The basins of attraction for strategies 1 and 2 are:

Z1 = {d(n− 1)x∗ + 1e, . . . , n} and Z2 = {0, . . . , b(n− 1)x∗c}

The basin depth faced by an entrant is κ(x)2 or equivalently κ2
i , where:

κ(x) =
xa− (1− x)d√

x2ξ2
a + (1− x)2ξ2

d − 2x(1− x)ρξaξd
and κi = κ

(
i

n− 1

)
so that an entrant will choose pure strategy 1 with probability Φ(κ(x)/σ).

The “flow of play” is toward a strategy from states within its basin of attraction.

Starting from z ∈ Z1, an entrant will observe at least i = z − 1 incumbents using

strategy 1. Following Definition 1, i = z − 1 ≥ d(n − 1)x∗e > (n − 1)x∗,4 and

hence x = i/(n − 1) > x∗: The expected payoff from strategy 1 is higher than that

from strategy 2. Equivalently, κ(x) = κi > 0 and hence Pr[1 |x] > 1
2
. Similarly,

from a state z ∈ Z2, any entrant is more likely to choose strategy 2. Finally, state

z = d(n−1)x∗e belongs to neither basin of attraction. The most likely entrant choice

depends upon the identity of the exiting player.

3More formally due = inf{k ∈ Z : k ≥ u} and buc = sup{k ∈ Z : k ≤ u}; u /∈ Z ⇒ due > buc.
4For generic a and d, (n− 1)x∗ does not take an integer value.
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Whereas the basins of attraction reflect the flow of play, the basin depth indexes the

difficulty of moving against that flow. Returning once again to a state z ∈ Z1, an

entrant is most likely to play strategy 2 when a strategy 1 player exits. In this case,

the probability of a contrarian action is simply 1 − Φ(κi/σ) where i = z − 1. For

large κ2
i , it is highly unlikely the choice will be made against the flow of play.

The transition probabilities of adaptive play may now be calculated. Write pzz′ =

Pr[zt+1 = z′ | zt = z] for the probability of a transition from state z to state z′. A

single player is replaced each period, and hence pzz′ = 0 for |z − z′| > 1. For states

z < n, the probability of a step up is:

pz,z+1 =
n− z

n
× Φ

(κz

σ

)
A step up requires the exit of strategy 2 incumbent, which occurs with probability

(n−z)/n. The entrant must choose strategy 1, which occurs with probability Φ(κz/σ).

Similar procedures lead to expressions for other transitions:

pz,z−1 =
z

n
×
[
1− Φ

(κz−1

σ

)]
and pz,z =

n− z

n
×
[
1− Φ

(κz

σ

)]
+
z

n
Φ
(κz−1

σ

)
3. Long Run Behaviour

Adaptive play exhibits path dependence in the short run. An entrant to state z = n,

for instance, is most likely to choose strategy 1, and hence the process remains in the

basin of attraction Z1. In the long run, however, contrarian actions against the flow

of play allow the process to escape from a basin of attraction. Formally, the Markov

chain is ergodic, and its long run behaviour is independent of any initial conditions.

To see this, first observe that the process is irreducible: There is positive probability

of moving between any two states in a finite number of steps, and hence permanent

“lock in” to any state cannot occur. Second, all states are aperiodic: There is positive

probability of remaining in a state, and this prevents the occurrence of established

cycles. These two features are sufficient for ergodicity (Grimett and Stirzaker, 2001).

By the Ergodic Theorem, any finite ergodic Markov chain has a unique stationary

distribution. This is a probability vector [πz]z∈Z satisfying πz = limt→∞ Pr[zt = z],

independent of any initial conditions. No matter where the process starts, in the long

run the process will be in state z with probability πz. The stationary distribution

is the unique solution to the detailed balance equations πz =
∑

z′∈Z πz′pz′z ∀z ∈ Z.

The one-step-a-time nature of adaptive play ensures that these equations take a
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particularly simple form:

π0 = π0p00 + π1p10, πn = πnpnn + πn−1p(n−1)n

and πz = πzpzz + πz−1p(z−1)z + πz+1p(z+1)z

Solving these equations yields the unique solution:

πz =
qz∑

j∈Z qj
where qz =

∏
0≤j<z

pj(j+1)

∏
z<j≤n

pj(j−1) ⇒ πz

πz+1

=
p(z+1)z

pz(z+1)

(2)

This familiar form is common to birth-death processes. The final element of Equa-

tion (2) has an easy interpretation: The long run relative likelihood of neighbouring

states is the relative probability of jumping backward and forward between them.

Employing the explicit transition probabilities for the adaptive play dynamic yields

the following.

Lemma 1. Adaptive play has a unique stationary (ergodic) distribution π satisfying:

πz =
qz∑

j∈Z qj
where qz =

∏
0≤j<z

n− j

n
Φ
(κj

σ

) ∏
z<j≤n

j

n

(
1− Φ

(κj−1

σ

))
(3)

Proof. Substitute the transition probabilities into Equation (2). �

The distribution characterized by Lemma 1 is related to the Bayesian Nash equilibria

of the underlying stage game. Suppose that a fraction x < Φ(κ(x)/σ) of incumbent

players are using strategy 1. A strategy 1 player is less likely to exit (with probability

x) than to enter (with approximate probability Φ(κ(x)/σ)). Similarly, a strategy 2

player is more likely to exit than to enter. In expectation, the number of strategy

1 players is growing. Identical logic suggests that the number of strategy 1 players

is likely to decrease when x > Φ(κ(x)/σ). Intuitively, the process is moving toward

stable fixed points of Φ(κ(x)/σ). Such a fixed point x̃ = Φ(κ(x̃)/σ) is, of course, a

Bayesian Nash equilibrium of the stage game. Lemma 2 describes such equilibria. An

equilibrium (and hence fixed point) x̃ will be denoted stable if it is a downcrossing.

Formally, for small ε, Φ(κ(x̃− ε)/σ) > x̃− ε and Φ(κ(x̃+ ε)/σ) < x̃+ ε. This means

that a sequence of best responses will lead from any point in a neighbourhood of x̃

toward x̃. An equilibrium will be denoted unstable if the opposite is true.
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Figure 1. Parameters are a = 3, d = 2, ξa = ξd = 1, ρ = 0 and n = 30.

Lemma 2. For σ sufficiently small, there are three Bayesian Nash equilibria: x̃L <

x̃M < x̃H . The central BNE x̃M is unstable, the remaining equilibria are stable.

Moreover, x̃L → 0, x̃M → x∗ and x̃H → 1 as σ → 0. For σ sufficiently large, there is

a unique and stable BNE x̃. For a > d⇔ x∗ < 1
2

this satisfies x̃ > 1
2
.

Proof. See the appendix. �

The correspondence between stable Bayesian Nash equilibria and the long run be-

haviour of the adaptive play dynamic is stated formally in Proposition 1, and illus-

trated graphically in Figure 1. Notice that for σ large enough (σ = 2.25) there is a

single Bayesian Nash equilibrium above the halfway point (x̃ > 1
2
), and the corre-

sponding ergodic distribution is unimodal. On the other hand, when σ is sufficient

small (for instance, σ = 1.25), there are three Bayesian Nash equilibria. Two of these

equilibria are stable (downcrossings), and are associated with the two maxima of the

bimodal ergodic distribution.
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Proposition 1. The local maxima (modes) of the ergodic distribution coincide with

stable Bayesian Nash equilibria of the stage game. The local minima coincide with

unstable Bayesian Nash equilibria. Formally, for generic x, and sufficiently large n:

x < Φ

(
κ(x)

σ

)
⇒ πbxnc < πdxne and x > Φ

(
κ(x)

σ

)
⇒ πbxnc > πdxne

As n grows large all weight focuses on a single stable Bayesian Nash equilibrium x̃:

lim
n→∞

∑
b(x̃−ε)nc≤z≤d(x̃+ε)ne

πz = 1 for any ε > 0

If a > d, ξa = ξd, and σ is sufficiently small for there to be three Bayesian Nash

equilibria x̃L < x̃M < x̃H (see Lemma 2), then all weight focuses on x̃H .

Proof. Take any x such that x < Φ(κ(x)/σ), so that 1− x > 1− Φ(κ(x)/σ). Then:

πbxnc

πdxne
=
pdxnebxnc

pbxncdxne
=
dxne

[
1− Φ

(
κbxnc/σ

)]
(n− bxnc) Φ

(
κbxnc/σ

) −→
n→∞

x[1− Φ(κ(x)/σ)]

(1− x)Φ(κ(x)/σ)
< 1

Analysis of further limiting behaviour (n→∞) is relegated to the appendix. �

4. Equilibrium Selection

KMR (1993) and Young (1993) allow the probability of an error (a mutation) to

vanish. In the limit, the ergodic distribution places all weight on a single state,

and “selects” a pure strategy Nash equilibrium. The specification considered here

involves no errors — players best respond against the observed population frequency,

contingent on their own payoffs. The analogue of a mutation is a contrarian action

taken against the flow of play. Suppose that a fraction x > x∗ of observed incumbents

are using strategy 1, so that κ(x) > 0. Without payoff idiosyncrasy, an entrant would

choose strategy 1. With payoff idiosyncrasy, an entrant will choose the contrarian

strategy 2 with probability 1−Φ(κ(x)/σ). Following a Harsanyian (1973) purification

process (σ → 0) ensures that the probability of such a “mutation” vanishes to zero.

The use of purification to select equilibria generates the following observations.

The probability of a contrarian action differs across states: For κ(y) > κ(x) > 0,

such probabilities satisfy 1−Φ(κ(y)/σ) < 1−Φ(κ(x)/σ), and are in some sense state

dependent. Bergin and Lipman (1996), however, employed a more stringent definition

of state dependence. They demonstrated that the critical feature is the rate at which
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a mutation probability vanishes to zero in the selection process. Taking σ → 0:

1− Φ(κ(x)/σ)

1− Φ(κ(y)/σ)
=

φ(κ(y)/σ)/ (1− Φ(κ(y)/σ))

φ(κ(x)/σ)/ (1− Φ(κ(x)/σ))
× φ(κ(x)/σ)

φ(κ(y)/σ)

→ κ(y)/σ

κ(x)/σ
exp

(
−κ(x)

2 − κ(y)2

2σ2

)
→ ∞

The first equality follows from multiplying and dividing both numerator and denom-

inator by the normal density φ. This yields a ratio of hazard rates as the first term,

and a ratio of densities as the second term. The second step follows from recognising

that the hazard rate of the normal distribution is asymptotically linear: Formally

u − [φ(u)/(1− Φ(u))] → 0 as u → ∞, yielding the ratio on the left.5 The expo-

nential term on the right follows from the combination of the two normal densities.

The third step follows from dominance of exponential terms in the limit, and that

κ(x)2 < κ(y)2 by assumption. Notice that the rate at which the mutation probability

dies away to zero is determined by the basin depth κ(x)2. Hence the endogenously

generated mutations meet the definition of state dependence proposed by Bergin and

Lipman (1996).

A further observation is that the model fits into the framework described by Blume

(1999), where the probability of a mutation (the “noise” specification) depends upon

the expected payoff difference between the strategies. Facing a proportion x of strat-

egy 1 opponents, this difference is ax−d(1−x), which is a monotonic transformation

of x. The adaptive play process described here is, therefore, a special case of Blume’s

specification. He obtained the following results: When the noise process is “skew

symmetric,” meaning that the mutation probability depends only on the absolute

difference in payoffs, then the risk dominant equilibrium is selected in the limit.

Here, the noise process is skew symmetric whenever ξa = ξd. It remains to inves-

tigate selection when ξa 6= ξd. A first step is to establish that only extreme states

(corresponding to pure Nash equilibria) matter in the limit.

5Apply l’Hôpital’s rule to obtain:

lim
u→∞

{
φ(u)

1− Φ(u)
− u

}
= lim

u→∞

φ(u)− u(1− Φ(u))
1− Φ(u)

= lim
u→∞

Φ(u)− 1
−φ(u)

= 0
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Figure 2. Basin Depths and Volumes. Parameters are a = 3 and d = 2.

Lemma 3. Interior states carry no weight in the limit: z /∈ {0, n} ⇒ limσ→0 πz = 0.

Proof. Consider a state z ∈ Z1 where z < n. Note that κz > 0. Allowing σ →∞:

πz ≤
πz

πz+1

=
p(z+1)z

pz(z+1)

=
z + 1

n
× n

n− z
× 1− Φ(κz/σ)

Φ(κz/σ)
−→ 0

which follows since Φ(κz/σ) → 1 as σ → 0. �

It follows that limσ→0(π0+πn) = 1. The relative likelihood of observing these extreme

states is determined by the relative difficulty of moving between them. Two factors

influence this. The first is the basin width. This is the number of steps (or mutations)

required to escape from a basin of attraction. Since x∗ < 1
2
, the basin Z1 is wider

than Z2. In the models of KMR (1993) and Young (1993) each mutative step is

taken with equal probability. It follows that the strategy with the widest basin of

attraction (in this case, the risk dominant strategy 1) is selected. Here, however, the

basin depth is of importance. Both width and depth together influence the selection

process. An extension of Definition 1 reflects these ideas.

Definition 2. basin volumes are defined as B1 =
∑

z∈Z1
κ2

z−1 and B2 =
∑

z∈Z2
κ2

z.

The basin depths and volumes are both illustrated in Figure 2. The solid line illus-

trates the basins of attraction when the payoff trembles have equal variances. The
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basin of attraction for strategy 1 is both wider and deeper. In contrast, the broken

line illustrates the case where the payoff trembles have unequal variances. Whereas

the basin Z2 is narrower, it is also far deeper. This is because the payoff ã is more

volatile, the probability of observing a contrarian action in this basin is much higher,

and hence the basin volume is greater. The effect of basin volume is demonstrated

in the central selection result of the paper.

Proposition 2. The strategy with the largest basin volume is selected as σ → 0.

Formally, if B1 > B2 then limσ→0 πn = 1 and if B2 > B1 then limσ→0 π0 = 1.

Proof. Using Lemma 1 take the ratio of πn and π0 to obtain:

πn

π0

=

∏
z<n

n−z
n

Φ(κz/σ)∏
z>0

z
n

(1− Φ(κz−1/σ))
=

∏
z∈Z1

Φ(κz−1/σ)∏
z∈Z2

(1− Φ(κz/σ))

∏
z∈Z2

Φ(κz/σ)∏
z∈Z1

(1− Φ(κz−1/σ))

The follows from the cancellation of terms such as z/n and (n−z)/n, and re-indexing

and separating the products as appropriate. The numerator and denominator of the

first term on the right hand side both tend to unity as σ → 0. For instance, when

z ∈ Z1, reference to Definition 1 confirms that κz−1 > 0. It follows strategy selection

is determined by the second term, where both numerator and denominator tend to

zero. Write this term as:∏
z∈Z2

Φ(κz/σ)∏
z∈Z1

(1− Φ(κz−1/σ))
=

∏
z∈Z2

φ(κz/σ)∏
z∈Z1

φ(κz−1/σ)
×
∏

z∈Z1
φ(κz−1/σ)/ (1− Φ(κz−1/σ))∏
z∈Z2

φ(κz/σ)/Φ(κz/σ)

The first term is explicitly:∏
z∈Z2

φ(κz/σ)∏
z∈Z1

φ(κz−1/σ)
= (2π)(n−2d(n−1)x∗e)/2 exp

(
−
∑

z∈Z2
κ2

z −
∑

z∈Z1
κ2

z−1

2σ2

)
(4)

Consider a typical element in the numerator of the second term. Since κz−1 > 0 for

z ∈ Z1, κz−1/σ → +∞ as σ → 0. Since the hazard rate of the normal is asymptot-

ically linear, it follows that limσ→0 φ(κz−1/σ)/ (1− Φ(κz−1/σ)) = limσ→0 κz−1/σ. A

similar argument holds for the denominator, where κz < 0. Hence:∏
z∈Z1

φ(κz−1/σ)/ (1− Φ(κz−1/σ))∏
z∈Z2

φ(κz/σ)/Φ(κz/σ)
→ σd(n−1)x∗e

σn−d(n−1)x∗e

∏
z∈Z1

κz−1∏
z∈Z2

(−κz)

which is polynomial in σ. The first term, (4), is exponential in σ. The limit becomes:

lim
σ→0

πn

π0

= lim
σ→0

(√
2π

σ

)n−2d(n−1)x∗e

exp

(
−
∑

z∈Z2
κ2

z −
∑

z∈Z1
κ2

z−1

2σ2

) ∏
z∈Z1

κz−1∏
z∈Z2

(−κz)
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Figure 3. Strategy Selection Regions (ρ = 0))

The exponential term dominates asymptotically, and hence the limit diverges when-

ever the numerator of the fractional term in the exponent is negative. In conclusion:∑
z∈Z1

κ2
z−1 >

∑
z∈Z2

κ2
z ⇒ lim

σ→0

πn

π0

= ∞ and
∑
z∈Z1

κ2
z−1 <

∑
z∈Z2

κ2
z ⇒ lim

σ→0

πn

π0

= 0

which is precisely the desired result. �

Proposition 2 yields an immediate and simple corollary.

Corollary 1. For n = 2, strategy 1 is selected (limσ→0 πn = 1) whenever a/ξa > d/ξd.

The n = 2 case is of interest precisely because it corresponds to a situation where

the population size matches the number of players. In this case, the models of KMR

(1993) and Young (1993) do not offer a selection result. Each basin of attraction

has a single member, and hence escape from either requires exactly one mutation.

Here, however, a selection result is obtained. This is because the probability of a

contrarian action depends upon the payoffs and tremble variances of the game. In

the n = 2 case, selection is driven entirely by basin depth and not by basin width.
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From Corollary 1 it is clear that strategy 1 is selected whenever ξa = ξd, since its risk

dominance corresponds to a > d. This is also true for larger populations.

Corollary 2. Suppose that ξa = ξd. Strategy 1 is risk dominant and hence selected.

Proof. See appendix. �

When payoffs are trembled in the same way, risk dominant equilibria continue to be

selected, confirming the analysis of Blume (1999). When trembles are payoff specific

(equivalent to a skew asymmetric noise specification), then either equilibrium may

be selected. The basin volume of Definition 2 captures the relative influence of these

factors. The degree to which asymmetry in tremble variances can overcome the effect

of relative payoff size is illustrated in Figure 3. To the right of the vertical dotted

line, strategy 1 is risk dominant. When payoff variances are equal (ξ2
a/(ξ

2
a − ξ2

d) = 1
2
)

the selection criterion coincides with risk dominance. As the trembles become more

skew asymmetric (for instance, for relatively large ξ2
a) the criterion diverges. The

dashed line, for instance, shows the equilibrium selected for n = 5.
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Appendix A. Omitted Results

Proof of Lemma 2: Fixed points of Φ(κ(x)/σ) are roots of f(x) = Φ(κ(x)/σ) − x.

Notice that f ′ (x) = φ (κ(x)/σ)κ′(x)/σ − 1. As σ → ∞, f ′ (x) → −1 uniformly

for x ∈ [0, 1]. Thus, for sufficiently large σ, f (x) is decreasing everywhere. Hence

f (x) only has one root local to x = 1
2
. When σ → 0, f (x) → 1 − x if x > x∗

and f (x) → −x if x < x∗, so there cannot be a fixed point unless it is local to

{0, x∗, 1}. Consider the interval [0, ε]. For sufficiently small σ, f (x) is decreasing in

this interval. Moreover, f (0) > 0 and f (ε) < 0. Therefore there is exactly one root

in this interval. A similar argument applies to [1−ε, 1]. Now consider [x∗−ε, x∗+ε].

Then f (x∗ − ε) < 0 and f (x∗ + ε) > 0. Again there is at least one root in the

interval. Φ (κ(x)/σ) is strictly increasing. A fixed point of Φ (κ(x)/σ) corresponds

to a fixed point of its inverse. Local to x∗ the derivative of the inverse is less than

one. This locality expands as σ gets small. Within this region there can be only one

fixed point of the inverse and hence in this interval the root of f (x) is unique. �

Proof of Proposition 1: Take a proportion x of strategy 1 players and a corresponding

state z = dnxe or z = bnxc. Take logs of Equation (3) and divide by n:

log qz
n

=
1

n

{∑
j<z

log

[
n− j

n
Φ
(κj

σ

)]
+
∑
j>z

log

[
j

n

(
1− Φ

(κj−1

σ

))]}

→ Q(x) ≡
∫ x

0

log(1− y)Φ

(
κ(y)

σ

)
dy +

∫ 1

x

log y

(
1− Φ

(
κ(y)

σ

))
dy

which is an integral approximation similar in spirit to that employed by Young (1998).

Differentiation reveals that Q′(x) = 0 ⇔ x = Φ(κ(x)/σ). In other words, maxima

and minima x̃ of Q(x) correspond to Bayesian Nash equilibria. This reaffirms the

first part of the proposition. Generically, Q(x) has a unique global maximiser x̂. For

arbitrarily small ε, define:

4ε = {x ∈ [0, 1] : Q(x) ≥ Q(x̂)− ε}

For sufficiently small ε, this is a convex neighbourhood of x̂. 42ε may be defined

similarly. Now consider the following:∑
z: z

n
∈4ε

πz∑
z: z

n
/∈42ε

πz

=

∑
z: z

n
∈4ε

qz∑
z: z

n
/∈42ε

qz
≥

minz: z
n
∈4ε qz

maxz: z
n

/∈42ε qz
×

#{z : z
n
∈ 4ε}

#{z : z
n
/∈ 42ε}
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The right hand term converges to a non-zero number. Taking the left hand term:

log

[
minz: z

n
∈4ε qz

maxz: z
n

/∈42ε qz

]
= n

[
min

z: z
n
∈4ε

log qz
n

− max
z: z

n
/∈42ε

log qz
n

]
−→
n→∞

n [(Q(x̂)− ε)− (Q(x̂)− 2ε)] = nε −→
n→∞

∞

It follows that all weight in the ergodic distribution must accrue in a neighbourhood

of x̂. It remains to show that x̂ = x̃H when ξa = ξd. For sufficiently small σ there

are two stable Bayesian Nash equilibria satisfying x̃L < 1/2 < x̃H (Lemma 2). It is

sufficient, therefore, to show that x̂ > 1/2. Suppose not, so that x̂ < 1/2. Since x̂

is the unique global maximiser of Q(x) it must be the case that Q(x̂) > Q(1 − x̂).

Computing the difference of these two terms:

Q(x̂)−Q(1− x̂) =

∫ 1−x̂

x̂

log y

(
1− Φ

(
κ(y)

σ

))
dy −

∫ 1−x̂

x̂

log(1− y)Φ

(
κ(y)

σ

)
dy

=

∫ 1−x̂

x̂

log y

(
1− Φ

(
κ(y)

σ

))
dy −

∫ 1−x̂

x̂

log yΦ

(
κ(1− y)

σ

)
dy

=

∫ 1−x̂

x̂

log

[
1− Φ(κ(y)/σ)

Φ(κ(1− y)/σ)

]
dy

=

∫ 1/2

x̂

log

[
1− Φ(κ(y)/σ)

Φ(κ(1− y)/σ)

]
dy +

∫ 1−x̂

1/2

log

[
1− Φ(κ(y)/σ)

Φ(κ(1− y)/σ)

]
dy

=

∫ 1/2

x̂

log

[
1− Φ(κ(y)/σ)

Φ(κ(1− y)/σ)

]
dy +

∫ 1/2

x̂

log

[
1− Φ(κ(1− y)/σ)

Φ(κ(y)/σ)

]
dy

=

∫ 1/2

x̂

log

[
1− Φ(κ(y)/σ)

Φ(κ(1− y)/σ)

] [
1− Φ(κ(1− y)/σ)

Φ(κ(y)/σ)

]
dy

For this to be positive, it must be true that for some y < 1
2

the integrand is positive.

This reduces to:

1− Φ(κ(y)/σ) > Φ(κ(1− y)/σ) ⇔ −κ(y) > κ(1− y)

⇔ −ya+ (1− y)d > (1− y)a− yd

⇔ d > a

But this is a contradiction, since by assumption a > d. �

Proof of Corollary 2: The basin volume condition is:

bx∗(n−1)c∑
j=0

(ja− (n− j − 1)d)2

j2 + (n− j − 1)2
<

n−1∑
j=dx∗(n−1)e

(ja− (n− j − 1)d)2

j2 + (n− j − 1)2
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Consider the right hand term. Make a change of variable k = n− j − 1 to yield:

bx∗(n−1)c∑
j=0

(ja− (n− j − 1)d)2

j2 + (n− j − 1)2
<

n−1−dx∗(n−1)e∑
k=0

((n− k − 1)a− kd)2

k2 + (n− k − 1)2

If strategy 1 is risk-dominant, then a > d and dx∗(n−1)e < n−1−dx∗(n−1)e. The

condition becomes:

bx∗(n−1)c∑
j=0

(ja− (n− j − 1)d)2 − ((n− j − 1)a− jd)2

j2 + (n− j − 1)2

<

n−1−dx∗(n−1)e∑
k=dx∗(n−1)e

((n− k − 1)a− kd)2

k2 + (n− k − 1)2

The right hand side of this expression is positive. Multiply out the numerator in each

of the left hand terms:

(ja− (n− j − 1)d)2 − ((n− j − 1)a− jd)2 = (j2 − (n− j − 1)2)(a2 − d2)

This is negative since a2 > d2 and j2 < (n− j− 1)2 for j ≤ bx∗(n− 1)c. The inequal-

ity holds, yielding sufficiency. Necessity follows since if a < d the same procedure

establishes the dominance of strategy 2. �

Calculation of Basin Volume for Large n: Figure 3 displays the basin volume selection

criterion for large n. Using λ = a/(a + d), ψ = ξ2
a/(ξ

2
a + ξ2

d) and setting ρ = 0, the

basin depth is proportional to:

κ̃(x)2 =
(λx− (1− λ)(1− x))2

ψx2 + (1− ψ)(1− x)2
(5)

Dividing the the basin volume by n obtain:

B1

n
=

1

n

∑
z∈Z1

κ2
z−1 −→

n→∞

∫ 1

x∗
κ(x)2 dx ∝

∫ 1

x∗
κ̃(x)2 dx

and similarly for B2. An explicit form for the last integral is available:∫
κ̃(x)2dx = x+

λ2 − ψ − 2λψ + 2ψ2√
ψ(1− ψ)

arctan

{
x− (1− ψ)√
ψ(1− ψ)

}
+ (λ− ψ) log

(
ψx2 + (1− ψ)(1− x)2

)
+ constant

Differentiation of the above yields the expression from Equation (5). This enables

the calculation of the line for n→∞ in Figure 3. �
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