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ABSTRACT

In this paper, we consider a class of infinitely repeated games with imperfect public monitoring.
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Γ∞, but that Γk is completely degenerate. Moreover, this last result is essentially independent of
the discount factor.
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1. Introduction

For the last ten years, the analysis of Abreu, Pearce, and Stacchetti (APS) (1990) has

been the foundation for the analysis of repeated games with imperfect public monitoring.

They develop a recursive representation for the set of equilibrium payoffs in such games.

However, this representation relies crucially on players’ being able to use strategies that

depend on arbitrarily long histories of past events. For example, they demonstrate in some

games, an equilibrium with high initial payoffs for all players involves a particular realization

of the public signal’s triggering infinite repetition of a stage-game equilibrium.

There are at least two concerns with such equilibria. The first is obvious: is it plausible

that players keep track of a long sequence of events? The second arises from recent work by

Mailath and Morris (2000). They perturb repeated games with public monitoring by adding

a small amount of idiosyncratic noise. They show that strategies that exhibit infinite history

dependence are not robust to this type of perturbation. These concerns suggest a natural

question: does requiring strategies to exhibit finite history dependence radically change the

set of equilibria if we allow the extent of history dependence to be arbitrarily long?

This paper seeks to address this question within a simple repeated game with imper-

fect public monitoring. We examine the extent to which the set of equilibrium payoffs with

infinite-memory strategies is a good approximation to the set of equilibrium payoffs with ar-

bitrarily long finite-memory strategies. (Throughout, we use the terms memory and history

dependence equivalently.) In particular, we look at strongly symmetric perfect public equilib-

ria with memory K: equilibria in which strategies are restricted to depend only on the last K

observations of public signals. Define ΓK to be the set of payoffs of equilibria with memory

K. We show that for some specifications of the parameters of the stage game, ΓK = Γ∞ for



sufficiently large K. However, for other specifications of the stage game, we show that not

only is limK→∞ ΓK 6= Γ∞, but that Γk is a singleton. Moreover, this last result depends only

on the parameters of the stage game, and so is independent of the discount factor.

Our arguments are similar in spirit to those of Bhaskar (1998). He shows that in an

overlapping generations economy, with one player in each cohort, there is a unique equilibrium

to the Hammond transfer game when players know only a finite number of periods of past

play. Our results extend those of Bhaskar to a class of repeated games with imperfect public

monitoring, at least for the case of perfect public equilibria.

2. A Class of Games

We describe a class of repeated games with imperfect public monitoring.

A. Stage Game

Consider the following stage game, which is similar to the partnership game considered

by Radner, Myerson and Maskin (1986). There are two players. Player 1 and player 2’s action

sets are both {C,D}. Player i0s payoffs are given by:

y − c, if ai = C

y, if ai = D

The variable y is random, and has support {0, 1}. The probability distribution of y depends

on action choices:

Pr(y2 = 1|a1 = a2 = C) = p2
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Pr(y2 = 1|ai = D,aj = C) = p1

Pr(y2 = 1|a1 = a2 = D) = p0

Throughout, we assume that:

1 > p2 > p1 > p2 − c > p0 > p1 − c

These inequalities guarantee that the probability of receiving a good payoff is increasing in

the number of players that choose C. They also guarantee that both players playing C is

Pareto superior to their playing D, and that both players’ playing D is a unique equilibrium

of the stage game.

B. Information Structure and Equilibrium

The stage is infinitely repeated; players have a common discount factor δ, 0 < δ <

1. We also assume that there is a public randomizing device; specifically, let {θt}∞t=0 be a

collection of independent random variables, each uniformly distributed on the unit interval.

We define θt = (θ0, ..., θt) and yt = (y1, ..., yt).

We assume that player i’s action choices are unobservable, but the outcome of y

is observable to both players. Hence, player i’s history after period t is given by hti =

((ais)
t
s=1, y

t, θt). The public history after period t is ht = (yt, θt). We denote by ys(ht) and

θs(h
t), s ≤ t, the realizations of ys and θs in public history ht. We use the notation (yrs, θrs)

to represent (yt, θt)rt=s.

In this world, a strategy for player i is a mapping σi from the collection of possible

histories for player i into {C,D}. A public strategy σi is a strategy which maps any two

histories for player i with the same public history into the same action.
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Given these notions of strategies, we restrict attention to strongly symmetric public

equilibria, in which both players use the same public strategy. Thus, an equilibrium is a

public strategy σ such that σ is a player’s optimal strategy, given that the other player is

using σ.

C. Finite Memory Equilibria

We are interested in exploring equilibria in which the players’ strategies are restricted

to depend only in a limited way upon histories. A public strategy with memory K is a public

strategy such that σ(ht) = σ(ht0) if yt−s(ht) = yt−s(ht0) and θt−s(ht) = θt−s(ht0), for all s

such that 0 ≤ s ≤ min(K, t) − 1. Thus, the strategy can only depend on (at most) the last

K realizations of the public signals. Correspondingly, an equilibrium with memory K is an

equilibrium in which the strategy has memory K. (Thus, definitionally, an equilibrium with

infinite memory is the same as an equilibrium.)1

In any equilibrium, all players receive the same expected utility at any stage of the

game. We use the notation ΓK to refer to the set of payoffs delivered by equilibria of memory

K. The key propositions that follow are about the question: does limK→∞ ΓK = Γ∞?

3. Equilibrium Payoffs with Infinite Memory

From APS (1990), we know that Γ∞ is a closed interval. It is also straightforward to

show that the minimax payoff in the stage game is p0, which is also an equilibrium payoff in

the stage game. Hence, the lower bound of Γ∞ is given by vmin ≡ p0/(1− δ).

1Note that in this definition of an equilibrium with memory k, we have not imposed limited recall on the
players. Hence, players can contemplate using arbitrary functions of past histories, but choose in equilibrium
to use strategies that depend only on the last k lags of the public signal. In contrast, in a game with recall
limit k, players can only contemplate using strategies that are measurable with respect to what they have
seen in the last k periods. We discuss allowing for bounded recall later in the paper.
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What about the upper bound, vmax, of Γ∞?We know from APS (1990) that if vmax >

vmin, then the equilibrium that delivers vmax has the form:

σ(ht) = D if for some s ≤ t, ys(ht) = 0 and θs(ht) ≥ π,(1)

σ(ht) = C otherwise.

Verbally, we can think of two possible phases in this equilibrium: a “cooperate” phase and

a “non-cooperate” phase. Players start in the cooperate phase, and stay there until they

observe y = 0 and a sufficiently high realization of θ. Then they start playing a permanent

“non-cooperate” phase in which they both play D forever. The possibility of switching from

the cooperative to the noncooperative phase whenever the outcome is y = 0 is in effect a

punishment for low output, and this punishment is what induces the players to play C in the

cooperation phase even though it is costly.

The continuation payoff in the cooperate phase is vmax, and the continuation payoff in

the non-cooperate phase is vmin. Hence, we can see that:

vmax = p2(1+ δvmax) + (1− p2)[δ(πvmax + (1− π)vmin)]− c(2)

For the strategy to be an equilibrium, it must be true that in the non-cooperate phase, players

prefer to play D rather than deviate to C

vmin ≥ p1[1+ δvmin] + (1− p1)δvmin − c

but this is satisfied trivially because (p1 − c) < p0. As well, it must be true that in the

cooperate phase, players prefer to play C rather than deviate to D:

vmax ≥ p1(1+ δvmax) + (1− p1)δ[πvmax + (1− π)vmin](3)
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Moreover, for vmax to be the maximal element of Γ∞, the latter inequality must be an

equality. Otherwise, we can increase π and thereby increase the value of vmax implied by the

flow equation (2), without violating the equilibrium requirement (3).

In the strategy supporting vmax, the punishment for realizing a y = 0, which we denote

by vpun, is given by

vpun = πvmax + (1− π)vmin.

From the above discussion, it follows that, given (p2, p1, c), (vmax, vpun) are the solutions to

the two equations:

vmax = p2(1+ δvmax) + (1− p2)δvpun − c

vmax = p1(1+ δvmax) + (1− p1)δvpun

Since p2−c < p1, vpun < vmax. Hence, Γ∞ = [vmin, vmax] if and only if vpun ≥ vmin. It is tedious

but simple to show that this is equivalent to assuming that p2−p1−c+δp1c−δp0p2+δp1p0 > 0.

When we switch to finite memory equilibria, we will find that the key to generating

vmax is being able to credibly threaten to punish low output levels with vpun while respecting

the memory constraint on the equilibrium strategies.

4. Equilibrium Payoffs with Finite Memory

With finite memory, the structure of analysis is substantially different. Let v̄K and vK

denote the upper and lower bounds of the set of payoffs when the equilibrium strategies only

depend upon at most memory K. Clearly since playing D was an equilibrium of the stage

game, playing D forever is an equilibrium with memory K. Hence the lower bound of the

6



payoff set is unchanged and vK = p0/(1− δ).

However, we can no longer enforce the playing of C during the cooperative phase by

threatening to punish low output levels with the possibility of switching to playing D forever.

The reason is that switching to playing D forever after some event would involve us keeping

track of the fact that the event had occurred for all of the subsequent periods. Instead,

with memory K, if some event triggers switching from playing C to playing D, then if that

event does not recur within the next K periods, the players switch back to C. Therefore, the

restriction to memory K strategies has two effects: First, it ties together the probability of

switching from the cooperative phase to the noncooperative phase, and vice versa. Second, it

makes the incentive constraints during the noncooperative phase more difficult to satisfy since

players might have an incentive to deviate in order to make the switch to the cooperative

phase more likely. These two restrictions make it harder to support vmax with a memory K

strategy because of the difficulties associated with being able to credibly threaten a payoff of

vpun when y = 0 while respecting the memory constraint.

To illustrate these points, consider the following strategy:

σ(ht) = D if for some t−K + 1 ≤ s ≤ t, ys(ht) = 0 and θs(ht) ≥ π̃,(4)

σ(ht) = C otherwise.

Again, verbally, we can think of two possible phases in this equilibrium: a “cooperate” phase

and a “non-cooperate” phase. Players start in the cooperate phase, and stay there until

they observe y = 0 and a sufficiently high realization of θ. Then they start playing a “non-
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cooperate” phase in which they both play D which lasts until they have not observed both

y = 0 and a sufficiently low realization of θ in any of the last K periods.

This strategy is similar to the infinite memory strategy used to support the best

equilibrium payoff: (i) high output realizations cause the cooperate phase to be extended for

sure, and (ii) low output realizations can cause the players to switch to the noncooperate

phase. It differs in that the noncooperative phase is not permanent. This aspect is an

inevitable consequence of (i). But a property like (i) is necessary if high payoff levels are

to be achieved. Despite property (i), this strategy has the potential to induce cooperative

behavior in the same circumstances as the infinite memory strategy since, asK gets large and

π̃ approaches zero, the continuation payoff from y = 0 in the cooperative phase approaches

vmin. Hence it would seem to offer the prospect of delivering the appropriate level of vpun by

the appropriate choice of π̃.

However, with this strategy, players can influence the probability of switching from

the noncooperative to the cooperative phase. If the current period’s outcome was y = 0 and

θ ≤ π̃, then the likelihood that they will switch back to being in the cooperative phase K+ 1

periods from now is [p0+(1−p0)(1− π̃)]K . However, if one of the players deviated and played

C instead of D in the next period, the likelihood of switching back to the cooperative phase

in K + 1 periods rises to [p1 + (1 − p1)(1 − π̃)][p0 + (1 − p0)(1 − π̃)]K−1. The possibility of

influencing the possibility of switching back to cooperation may induce a deviation at some

point during the noncooperative phase and hence undercut the possibility of this strategy

credibly threatening vmin.We turn next to showing that this can lead to the set of equilibrium

payoffs under finite memory being much more restricted than under infinite memory.
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5. Finite Memory: A Non-Convergence Result

Our first result is to show that there exists an open set of parameters such that

limK→∞ ΓK 6= Γ∞. In fact, as the following proposition shows, if p1 is sufficiently close to p2,

always playing D is the only equilibrium with memory K, for any finite K.

Proposition 1. If:

p1 > 0.5(p2 + p0)(5)

then ΓK = {p0/(1− δ)} for all K.

To understand the logic of this proposition, consider two different histories of length

K of the public signal y:

(yt−1, ..., yt−K) = (1, 1, ..., 1, 1)

(y0t−1, ..., y
0
t−K) = (1, 1.., 1, 0)

Trying to support an equilibrium other than always playing D with K memory strategies

means that we must be able to generate different outcomes from two histories such as these.

For example, in the strategy in (4), it must be a continuation equilibrium for players to

play D after the first type of history, and play C after the second type of history. But the

difference between these histories vanishes after this period. Hence, the players’ continuation

payoffs are the same function of yt after both these histories. In order to generate these two

different continuation equilibria, we need to be able to choose continuation values v1 and v0

so as to make it an equilibrium to choose C or choose D. The essence of the proposition is

that if p1 > (p2 + p0)/2, this cannot be done.
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Proof. The first part is that to show that the only equilibrium with memory 1 is to always

choose D for all public histories. The second part is to assume inductively that the only

equilibrium with memory (K − 1) is to always choose D. Then, we show that, given an

equilibrium with memory K, the equilibrium strategies must be independent of the Kth lag

of the public signal. Hence, an equilibrium with memory K must be an equilibrium with

memory (K − 1), and so, by induction, the only equilibrium with memory K, for any K, is

to always choose D.

Part 1: If always playing D is not the only equilibrium with memory 1, then there

exists some period t such that σ(ht−2, yt−1, θt−1) = C and σ(ht−20, y0t−1, θ
0
t−1) = D. Define

v1,t+1 to be the expected continuation payoff in period (t+ 1) if yt = 1, and v0,t+1 to be the

expected continuation payoff if yt = 0 (where the expectations are over θt).

Then:

p2[1+ δv1t] + (1− p2)δv0t − c ≥ p1[1+ δv1t] + (1− p1)δv0t

(1− p0)δv0t + p0[1+ δv1t] ≥ p1[1+ δv1t] + (1− p1)δv0t − c

The first inequality guarantees that C is an equilibrium. The second inequality guarantees

that D is an equilibrium. Together, these inequalities imply that:

(p2 − c− p1)/(p2 − p1) ≥ δ(v0t − v1t) ≥ (p1 − p0 − c)/(p1 − p0)

But this implies that:

1− c/(p2 − p1) ≥ 1− c/(p1 − p0)
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or:

(p2 − p1) ≥ (p1 − p0)

which violates p1 > (p2 + p0)/2.

Part 2: Now, we show that in any equilibrium with memory K, the strategies must

be independent of the Kth lag of the public signals. Suppose not, and:

σ(yt−1t−K, θ
t−1
t−K) = C

σ(yt−10t−K, θ
t−10
t−K) = D

(yt−1t−K−1, θ
t−1
t−K−1) = (yt−10t−K−1, θ

t−10
t−K−1)

where (yrs , θ
r
s) = (yi, θi)

r
i=s. Define:

v1 = Eθtvt(y
t−1
t−K, θ

t−1
t−K, yt = 1, θt)

v0 = Eθtvt(y
t−10
t−K, θ

t−10
t−K, yt = 0, θt)

It follows that if playing C is weakly preferred to D at history (yt−1t−K, θ
t−1
t−K), then:

p2(1+ δv1) + (1− p2)δv0 − c ≥ p1[1+ δv1] + (1− p1)δv0.

Similarly, if playing D is weakly preferred to C at history (yt−10t−K , θ
t−10
t−K), then:

(1− p0)δv0 + p0δv1 ≥ p1[1+ δv1] + (1− p1)δv0 − c.

Together, these inequalities imply that p2 − p1 ≤ p1 − p0, which is a contradiction.

The proposition then follows inductively. 2

It is worth emphasizing that this proposition holds regardless of the size of δ.
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6. Finite Memory: Convergence

We now show that if p1 ≤ (p2 + p0)/2 and vpun > vmin, then there exists K∗ such that

if K ≥ K∗, then ΓK = Γ∞.

A. A Convergence Result for Maximal Payoffs

To show this, we first show that for K sufficiently large, we can construct an equilib-

rium with memory K that has payoff vmax.

To do so, consider the following strategy with memory K. The strategy is of the form:

σmaxK (ht) = D if θt−k∗+1(ht) ≥ πK , where(6)

k∗ = min
©
k ∈ {1, ..., K} : yt−k+1(ht) = 0

ª
σmaxK (ht) = C otherwise.

Verbally, we can think of two possible phases in this equilibrium: a “cooperate” phase and a

“non-cooperate” phase. Players start in the cooperate phase, and stay there until they observe

y = 0 and a sufficiently high realization of θ. Then they start playing a “non-cooperate”

phase in which they both play D which lasts until either they have not observed y = 0, or in

the most recent period in which y = 0 the realization of θ is sufficiently low.

Remark: This strategy is similar to that in (4), though the punishment phase is

somewhat less severe for a given level of memory K. This could potentially reduce the set of

equilibrium payoffs for a given K relative to that which could be supported by (4). However,

since we are interested in the set of equilibrium payoffs as K gets large, and since the payoff

in the punishment phase also converges to vmin as K → ∞ and πK → 0, this aspect is

inessential. We use (6) rather than (4) because of its analytic tractability.
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When can we find an equilibrium of this type that delivers payoff vmax? It must be

true that:

vmax = p2(1+ δvmax) + (1− p2)δv0pun − c

where v0pun is given by

v0pun = πKvmax + (1− πK)XK(7)

XK = (p0 + (1− p0)δv0pun)
K−1X
i=1

(p0δ)
i + δKpK0 vmax(8)

For this strategy to be a viable equilibrium, we need to verify three things. First, we

need to make sure that the players find it weakly optimal to play C in the cooperate phase

of the equilibrium. Note, though, from the definition of vpun, that vpun = v0pun and also that:

vmax = p1(1+ δvmax) + (1− p1)δvpun

and so in the cooperate phase, players are indifferent between playing C or not.

Second, we need to verify that players are willing to playD in the non-cooperate phase

of the equilibrium. Consider a history ht−1 = (yt−1, ..., yt−K) in which yt−k∗ = 0, θt−k∗ > π,

and yt−k = 1 for all k < k∗. The equilibrium payoff in this history is determined by the value

of k∗, and is equal to XK−k∗+1, where Xj is as defined in (8). Thus, for each k∗ if playing D

is weakly preferred to C it must be the case that

XK−k∗+1 ≥ p1(1+ δXK−k∗) + (1− p1)vpun − c,

where X0 ≡ vmax. Note that XK−k∗+1 satisfies the recursive equation:

XK−k∗+1 = p0(1+ δXK−k∗) + (1− p0)vpun,
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Subtracting the recursion from the incentive condition yields

(p1 − p0)(1+ δXK−k∗ − δvpun) ≤ c.

Thus, to make sure that players want to play D in the non-cooperate phase, we must verify

the above inequality for all k∗ ∈ {1, ..., K}.

We verify this inequality as follows. We know that:

p2(1+ δvmax) + (1− p2)δvpun − c = p1(1+ δvmax) + (1− p1)δvpun,

or, equivalently:

δ(vmax − vpun) = c/(p2 − p1)− 1

It is trivial to see that Xk is decreasing in k. Hence, it follows that for any k∗:

(1+ δXK−k∗ − δvpun)

≤ (1+ δX0 − δvpun)

= (1+ δvmax − δvpun) (by definition of X0)

= c/(p2 − p1)

≤ c/(p1 − p0)

Thus, because (p2−p1) ≥ (p1−p0), players are willing to play D throughout the punishment

phase.

Finally, we need to find K so that 0 ≤ πK. Again, XK is decreasing in K and hence

we can conclude that

πK =
vpun −XK
vmax −XK
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is increasing in K. Furthermore, note that

limK→∞XK = [p0 + (1− p0)δvpun] /(1− p0δ)

=
(1− δ)
(1− p0δ)

µ
p0
1− δ

¶
+
(1− p0)δ
(1− p0δ)vpun,

and so limK→∞XK is a convex combination of p0/(1 − δ) and vpun. This implies that if

vpun > p0/(1− δ), then there exists K∗, such that for all K ≥ K∗, XK < vpun.

This analysis verifies the following proposition.

Proposition 2. If (p2 + p0)/2 ≥ p1, and vpun > vmin, then there exists K∗ such that for all

K ≥ K∗, the maximal element of ΓK is vmax.

The crux of this proposition is that a K-period non-cooperate phase, if K ≥ K∗, is

sufficiently harsh to induce cooperation. Crucially, as long as (p2 + p0)/2 ≥ p1, players are

willing to play non-cooperate.

B. A Convergence Result for the Equilibrium Payoff Set

We have seen that under the conditions of Proposition 2, the maximal element of

ΓK is vmax for sufficiently large K. The minimal element of ΓK is vmin for any K. But is

ΓK connected or are there holes in ΓK? When K = ∞, we can use the initial draw of the

public randomization device to create any payoff between the endpoints of Γ∞. But with

finite memory, this permanent randomization between equilibria is no longer possible. In this

subsection, we show that when the conditions of proposition 2 are satisfied, ΓK = Γ∞ for K

sufficiently large.

Suppose that the conditions of proposition 2 are satisfied, and K > K∗. Let γ ∈ Γ∞,
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and consider the following specification of strategies. Let τ ∈ {0, 1, 2, ...,∞} be such that

p0(1− δτ )
1− δ + δτvmax ≤ γ < p0(1− δτ+1)

1− δ + δτ+1vmax.

Let πτ such that

πτ

·
p0(1− δτ )
1− δ + δavmax

¸
+ (1− πτ )

·
p0(1− δτ+1)
1− δ + δτ+1vmax

¸
= γ.

Denote the strategy that supports payoff vmax by σmaxK∗ . Then we can define the strategy σγ

that supports payoff γ as follows.

σγ(y
t−1, θt−1) = D for all t < τ .

σγ(y
τ−1, θτ−1) = C if θτ−1 ≤ πτ

σγ(y
τ−1, θτ−1) = D if θτ−1 > πτ

For t ≥ τ ,

σγ(y
t, θt) = σmaxK∗ (ytτ , θ

t
τ ) if θa−1 ≤ πτ

σγ(y
t, θt) = σmaxK∗ (ytτ+1, θ

t
τ+1) if θa−1 > πτ

The basic idea of this strategy is that the players play D through period (τ − 1). Then, in

period t, they switch to playing σmax if θτ−1 is low. Otherwise, they play D in period t, and

switch to playing σmax in period (t+ 1).

By construction, σγ delivers payoff γ. We need to verify that σγ is indeed an equi-

librium with memory K. Note that in the histories in which the strategy specifies that the

players choose D, their actions have no effects on future payoffs. Hence, playing D is weakly

optimal. Also, we know that σmaxK∗ is an equilibrium, so that playing according to σmaxK∗ is

weakly optimal whenever the strategy makes this specification.
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We still need to verify that σγ is a strategy with memory K. Since σmaxK∗ is a strategy

with memory K∗ < K, it follows that σmax(ytτ , θ
t
τ ) = σmax(y

t
τ+1, θ

t
τ+1) for t ≥ (τ +K∗). Thus,

the realization of θτ does not affect play after period (τ + K∗), and σγ is a strategy with

memory K > K∗.

7. Discussion

In this section, we discuss the robustness of our results to two different perturbations

of the setup. First, we consider what happens if players have bounded recall. Second, we

consider whether our results for perfect public equilibrium extend to sequential equilibrium.

A. Bounded Recall

Throughout, we have assumed that players have perfect recall. This means that,

while equilibrium strategies are required to be functions of K lags of past history, players can

contemplate deviations from equilibrium play that are arbitrary functions of past history. In

contrast, if players’ recall is limited, then they can only contemplate using strategies that are

functions of the last K periods of history.

Let ΓbrK be the set of perfect public equilibrium payoffs when players have recall limit

K. Then, we can demonstrate a result analogous to Proposition 1: if (p2 + p0)/2 < p1, then

ΓbrK = {p0/(1 − δ)} for all K. The proof is identical to that of Proposition 1. Intuitively, in

the proof of Proposition 1, we eliminate the possibility of other equilibria by contemplating

the possibility of players’ deviating to strategies consistent with bounded recall.

We do not have a direct analogy to Proposition 2. However, it is simple to see that

ΓbrK ⊇ ΓK (because there are fewer possible deviations with recall K). Hence, we know that,

17



under the assumptions of Proposition 2:

lim
K→∞

ΓbrK ⊇ Γ∞

B. Sequential Equilibrium

Following much of the literature on repeated games with imperfect public monitoring,

in this paper we use perfect public equilibrium as the equilibrium concept. In such an equi-

librium, players’ strategies are a function only of public history. In contrast, in a sequential

equilibrium, players’ strategies can be arbitrary functions of both public and private history.

Define a sequential equilibrium with memory K to be a sequential equilibrium in which a

player’s equilibrium strategy is a function of K lags of private and public history. Let ΓseK

denote the set of payoffs of strongly symmetric sequential equilibria with memory K. It is

straightforward to see that ΓseK ⊇ ΓK ; we know from APS (1990) that Γse∞ = Γ∞.

Proposition 1 does not extend to sequential equilibria: rather remarkably, Γse1 = Γ∞

for any parameter settings.2 Consider any element of Γ∞. From results in APS(1990), we

know that it can be supported as an equilibrium payoff by a public strategy of the form:

σ(yt, θt, (ai)
t) = D if θ0 ≥ π OR

if θt ≥ π and yt = 0

= C otherwise

Then, consider the following strategy:

σ∗(yt, θt, (ai)t) = D if ait = D OR yt = 0 and θt ≥ π
2We thank Stephen Morris for pointing this out to us.
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= C otherwise

Note that σ∗ is a strategy with memory 1. Our goal is to show that σ∗ is a strongly symmetric

sequential equilibrium with the same payoff as σ.

To see this, define the following function:

Φ(yt, θt; σ) = σ(yt, θt, σ(yt−1, θt−1))

to be a player’s actions as a function of the public history, given he uses σ. The definition of

σ∗ guarantees that:

Φ(yt, θt; σ) = Φ(yt, θt; σ∗)

This means that whether player i plays according to σ or σ∗, his actions are the same function

of public history. But this means that if player i uses σ∗ or σ, player j is indifferent between

using σ and σ∗. Since σ is a best response to σ at any history, σ∗ is a best response to σ∗ at

any history, and σ∗ is a sequential equilibrium.

The trick here is that a player’s past action serves as a summary statistic that encodes

whether game play is in a “cooperate” or “non-cooperate” phase. Implicitly, one lag of private

actions encodes the relevant portion of the full public history.
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