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Extended Abstract

In multi-unit demand, uniform-price auctions with synergies there are two opposing economic
forces at work: Demand reduction resulting from the monopsony power that bidders with
multiple-unit demands have and synergies which promote more aggressive bidding. To capture
these synergies a bidder often needs to bid above the standalone value of units. This generates
losses when the desired packages do not materialize.  This exposure problem, and the possibility
that acquiring the desired package will cost more than anticipated, may introduce an additional
efficiency distorting force as bidders drop out without obtaining the desired packages. All three
forces are present in a highly simplified economic setting that we explore experimentally,
comparing sealed-bid with ascending-price (clock) private-value auctions.  The behavioral space
is very rich and demanding, with demand reduction forces winning out at lower valuations, the
competing forces being at peak tension at intermediate valuations, and the synergy effect
dominating at higher valuations. The clock auctions provide the opportunity for more refined
responses, at intermediate valuations, than the sealed-bid auctions as bidders can make use of
rivals drop-out prices to calculate whether or not it pays to try and capture the synergy bonus. If
bidders make proper use of this information, and are not affected by the exposure problem, this
can produce both higher revenue and economic efficiency than the sealed-bid auctions.

Bidding outcomes are closer to equilibrium in a clock compared to sealed-bid auctions. 
However, there are substantial deviations from equilibrium play in both cases, with patterns of
out-of-equilibrium play differing between the two auction institutions.  The most interesting and
dramatic differences occur at the intermediate valuations as the exposure effect is much more
pronounced in a clock compared to sealed-bid auctions. The net effect of these differences in out-
of-equilibrium play is that the efficiency is the same, or somewhat higher, in the sealed-bid
auctions (contrary to equilibrium predictions) and revenue is consistently, and significantly
higher in the sealed-bid auctions.  



1Particular attention has been given to the effects of uniform-price auction rules because they are relatively
easy to characterize and to implement, and are reasonably close in format to the one employed in the spectrum
auctions (see Cramton, 1995). 
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Introduction

The recent FCC spectrum auctions have reinvigorated theoretical and empirical research

on auctions in efforts to better understand the effects of different auction institutions when

individual bidders demand multiple units of a given commodity. One line of research has focused

on the performance of auctions with uniform-price rules, where all winning bids pay the same

highest rejected bid.1 It is well known by now that in such auctions, when the marginal value of

additional units is non-increasing, bidders have an incentive to reduce demand to exploit the

monopsony power they have when demanding multiple units. This strategy may result in winning

fewer units, but when it does, it also reduces the price on units earned. (See, for example,

Ausubel and Cramton, 1996 and Englebrecht-Wiggans and Kahn, 1995.)  Demand reduction

reduces economic efficiency and revenue relative to a full demand revelation. Experimental, and

quasi-experimental research confirms that the demand reduction incentives are reasonably

transparent and practiced even by relatively naive bidders (Kagel and Levin, in press; List and

Lucking-Reily, 2000).  Further, experiments comparing sealed-bid auctions with English-clock

auctions reveal that although both auctions have the same normal form game representation,

bidding is significantly closer to equilibrium in the clock auction, suggesting there are behavioral

elements not fully captured in the theory (Kagel and Levin, in press). 

Auctions which involve synergies, or increasing marginal values for additional units

earned, provide additional incentives and generate radically different bidding strategies under

uniform-price auction rules. Although the demand reduction incentive still exists, synergies



2Bykowsky et al. discuss two types of exposure problems that may exist in complex environments with
synergies.  In our simple environment only the first of these potential problems exists namely exposure to bidding
above the stand-alone value and not obtaining the desired package or obtaining it but at higher prices than
anticipated. Bidder responsiveness to the exposure problem in this case is akin to loss aversion (Kahneman and
Tversky, 1979).  Package bidding has its own problems.  These include the free rider/threshold problem and the
computational complexity problem (Charles River Associates and Market Design Inc., 1998). 
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create a powerful opposing force for aggressive bidding in order to acquire desired packages with

their super additive value. In sealed-bid uniform-price auctions, that do not permit package bids,

strong synergies may dictate submitting bids above the standalone values for individual units in

order to increase the probability of winning a multi-unit package. However, this strategy is risky

since if a bidder fails to acquire the whole package and wins only parts instead, she is likely to

earn negative profits. Thus, in addition to the competing equilibrium incentives, an important

“behavioral” force may affect bidding as well: Depending on the size of the potential loss, and

risk preferences, bidders may refrain from such aggressive bidding in order to avoid exposure to

such losses, despite the benefits of doing so (Bykowsky et al., 1995; Ausubel et al., 1997;

Rothkopf et al., 1998).  This avoidance has been referred to as the “exposure problem,” a serious

concern in some quarters at least, in designing auctions that do not permit package bids.2 

The present paper reports the results of an experiment in a highly simplified auction

environment designed to maintain the essential richness of the economic and behavioral forces

present in multi-unit demand auctions with synergies.  The simplicity of our design allows for

reasonable interpretations of the experimental data, and serves as a benchmark against which to

evaluate more complex studies. We compare outcomes of sealed-bid and ascending-bid (English-

clock) uniform-price auctions. Under our design, the net effect of the demand reduction force and

the synergy force is that in equilibrium: (1) at lower valuations, the demand reduction force

dominates so that bidders shave their bids on marginal units, (2) at the highest valuations the



3That is, we announce the fact that subjects are playing against computers and that the computers will
always bid their value, but do not discuss the basis for the computers’ bidding strategy.
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synergy force dominates so that bidders “go for it,” bidding high enough to insure winning the

items, and (3) at middle valuations the two forces are at peak tension and are counterbalancing

each other, with bidding above value (but short of “going for it”) in the sealed-bid auctions and

“going for it,” conditional on rivals’ observed drop-out prices, in the clock auctions.  The

exposure problem works against the synergy effect, being most prominent at middle valuations

when bidding above standalone values but short of going for it, and when valuations are such that

going for it does not insure earning a positive profit.

Under our experimental design a human subject demanding two units of a commodity

competes against different numbers of rivals demanding a single unit of the commodity in a

uniform-price auction. The role of single-unit buyers is played by computers whose bids are equal

to their private values (a dominant strategy for single-unit buyers in these auctions).3  The

standalone values for both items are the same for the human bidder, vh, but earning both units

generates three times the standalone value (3vh). With independent private values drawn from a

uniform distribution and with supply of two units, the equilibrium predictions for the “large”

bidder correspond to the three regions characterized above. Thus, the experimental design is

simple enough to yield equilibrium predictions while still maintaining the tension between the

demand reduction and synergy forces.  The design also abstracts away from the strategic

uncertainties inherent in interactions between human bidders (e.g., problems of learning best

responses given rivals’ out-of-equilibrium bids).  Finally, the experimental design allows us to

employ a limited number of values for the human bidders without distorting the equilibrium
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predictions. We exploit this by limiting the number of standalone values in each experimental

session to three, with a number of replications at each value, thereby providing bidders with more

systematic, and easier to process, feedback in this relatively complicated bidding environment.

The standalone values employed span the strategy space and induce maximum differences in

strategic behavior between the sealed-bid and clock auctions, while providing a number of

replications at each value against which to evaluate behavior.

We do not expect bidders to be able to calculate and respond precisely to the fine cut off

points associated with such a complex auction environment. Thus, we focus attention on the

following questions: Are bidders sensitive to the tradeoffs inherent in uniform-price auctions with

synergies?  Do they behave differently in cases where the demand reduction force dominates

compared to cases where the synergy bonus is strong enough to dominate?  What role, if any, does

the exposure problem play in bidding?  What are the nature of deviations from optimal bidding

strategies, and are there systematic differences in the patterns of deviations between the two types

of auctions studied? Are there public policy implications resulting from any systematic deviations

from optimal bidding?

There has been some recent experimental work on multi-unit demand auctions with

synergies.  The work falls roughly into two categories: First, “test bed” experiments designed to

explore the effects of different auction rules on outcomes in environments with strong synergies

(Banks, Ledyard, and Porter, 1989; Ledyard, Porter, and Rangle, 1997; Plott, 1997).  Most of

these experiments take place in environments that are substantially more complicated than ours,

for which a simple (i.e., non-combinatorial) auction can implement global efficiency (maximizing

the value of an assignment) with competitive equilibrium prices. (For details, see the references



4Krishna and Rosenthal extend their analysis to auctions in which there is more than one bidder with
increasing returns. The Krishna-Rosenthal model is (arguably) closer, in some respects, to the U. S. spectrum
auctions than our experimental design.  Their model does not, however, deal with possible synergies within a given
market as ours does. It is these underlying economic and behavioral forces that our experiment is designed to
investigate rather than any effort to faithfully replicate any particular spectrum sale design. 

5This result comes about for different reasons in the two models: In our case, bidding the same on both
items follows from a dominance argument (see Appendix A).  In Krishna and Rosenthal it follows from the
assumption of equal numbers of single-unit  bidders in each market in conjunction with their focusing on symmetric
Nash bidding strategies. 
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cited above.) Second, are experiments designed to explore the feasibility of Vickrey style auctions

with package bids (Isaac and James, 2000; Brenner and Morgan, 1997).  We do not address the

question of Vickrey style auctions here.  Finally, Ausubel et al. (1997) and Morten and Spiller

(1996) examine license interdependencies in some of the early FCC spectrum auctions.

The auction model underlying our experiment is similar to one developed in Krishna and

Rosenthal (1996) to explore simultaneous sealed-bid auctions with synergies.  In both cases there

is a single bidder demanding two units competing against a number of rivals demanding a single

unit. The primary difference between the two models is that in Krishna and Rosenthal the bidder

demanding multiple units competes in two separate second-price auctions against n single-unit 

demand bidders in each market.4 In other words, in our model the two goods are perfect

substitutes and sold together in a single uniform-price auction.  In Krishna and Rosenthal the two

goods are imperfect substitutes and sold in two separate second price auctions. The net effect is

that there is no demand reduction force present in their model as there is in ours.  However, in

regions of our experimental design where the synergy force dominates the demand reduction

force, the two models make remarkably similar predictions: Single-unit  bidders always bid their

value. When bidding above value, the bidder with increasing returns always bids the same on both

units with bids increasing in the valuation drawn.5 Once the valuation is high enough, there is a
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discontinuous jump in the bid function, so that the bidder with increasing demand “goes for it.” 

Finally, bids of the multi-unit demand bidder are weakly decreasing with more competition. 

Krishna and Rosenthal do not extend their analysis to ascending-bid clock auctions as we do here. 

Our experiment yields a number of basic insights: Bidders are always closer to optimal

bidding strategies in a clock compared to sealed-bid auctions. Bidders are responsive to the

underlying economic forces present in the auction even though there is considerable out-of-

equilibrium play. Further, out-of-equilibrium play differs substantially between the two

institutions. In the sealed-bid auctions there is a clear tendency for bidders to overbid at low

values and underbid at high values. In contrast, in the clock auctions, absent secure, positive

expected profits, there is a general reluctance to bid above value when optimality requires it,

consistent with the “exposure problem.”  At least part of this differential sensitivity to the

exposure problem in clock compared to sealed-bid auctions results from the obvious ability to

stop the bidding and assure a positive profit in the clock auctions. This is indicative of a clear

presentation format effect, an outcome observed in other auction settings as well (Kagel, Harstad,

and Levin, 1987; Levin, Kagel, and Richard, 1996; Kagel and Levin, in press).  As a result, the

clock auction fails to improve efficiency relative to the sealed-bid auctions where the theory

predicts it should, and the sealed-bid auctions generate uniformly higher revenue.

The plan of the paper is as follows: Section I develops the theoretical predictions for both

ascending-bid and sealed-bid auctions. The experimental design is outlined in Section II.  Results

of the experiment are reported in Section III.  We close with a brief summary and discussion of

our major results.



6Setting α = 1 and m = 2 greatly simplifies bidders’ calculations while still yielding the rich behavioral
space characterized in Figure 1 below.
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I. Theoretical Predictions:

We investigate bidding in IPV auctions with (n+1) bidders and m indivisible, identical

objects for sale, where n $ m.  Each bidder i (i = 1, ... , n) demands a single unit of the good,

placing a value vi on the good.  These bidders are indexed by their values so that v1$v2$, ...,$vn. 

Bidder h, the (n+1)th bidder, demands two units of the good, with the value of each unit by itself

equal to vh.  However, earning two units generates synergies so that the value of winning both

units = 2vh + αvh.  Bidders’ values were independent and identical draws (iid) from a uniform

distribution on the interval [0,V].  In what follows we work with m = 2,  α =1, as these are the

values employed in the experiment, and analyze behavior within the unit interval (V=1).6

For both sealed-bid and clock auctions there are three bidding regions, with distinctly

different bidding strategies for the human bidder in each region. These are summarized in Figure

1.  Note, that for regions 1 and 3 outcomes are essentially the same between sealed-bid and clock

auctions: demand reduction in region 1 and “go for it” in region 3. However, for the clock

auctions, there is more flexibility in executing the optimal strategy in region 1, and the interval for

region 3 is smaller.  In contrast, outcomes are distinctly different between the two auction formats

in region 2.  In the sealed-bid auction, optimal bidding requires submitting two equal bids set

higher than the value of a single unit, which may result in winning one unit and earning negative

profits.  In the clock auctions, the multi-unit demand bidder conditions her drop-out price on

whether the second highest rival’s value, v2, is lower or higher than a predetermined cut off value,

P*.  If P* > v2,  she should “go for it” in an all out effort to win both units.  Otherwise, she should



7 Appendix A provides derivations of the equilibrium bidding strategies for the sealed-bid auctions. 
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drop out on both units at P*.  As a result, and in contrast to the sealed-bid auctions, bidders should

never earn a single unit. Detailed analysis of the auction procedures and outcomes follow.

Sealed-bid auctions: In the sealed-bid auction, each bidder simultaneously submits sealed bids for

each of the units demanded.  These are ranked from highest to lowest, with the m highest bids

each winning an item and paying a price equal to the m+1 highest bid.  

For bidders i = 1, ... , n, demanding a single unit of the commodity, there is a dominant

strategy (the same as in the familiar single-unit Vickrey auction) to bid their value, vi .  Bidder h

demands two units of the commodity and submits two bids, b1 and b2 for unit one and two

respectively. Without loss of generality assume that b1 $ b2.  The optimal bidding strategy varies

dramatically with vh, since this directly affects the tradeoffs between incentives promoting demand

reduction and those promoting bidding above vh in order to benefit from the synergy bonus. There

are three regions of interest: 

1.  For vh < ½,  b1 = vh and b2 = 0.  (For vh = ½,  b1 = b2 = ½. )7.

2.  For ½ < vh < v(n),  vh < b1 = b2 < 1. That is, the optimal bidding strategy calls for submitting

two equal bids above vh, but not high enough to assure winning both units.  Both the size of this

interval and how much to bid above vh varies with n, with a wider interval and more aggressive

bidding the smaller n is (see, for example, Table 1 below). As our proof in the appendix uses only

dominance arguments to yield b1 = b2 for this region, these criteria hold for risk aversion as well,

although the precise level of the bids would be affected by risk preferences. 

3. For vh $ v(n), b1 = b2 $ 1.  That is, the optimal bidding strategy is to “go for it,” bidding high

enough to insure wining both units. 



8Given that the computers follow the dominant strategy, h has no incentive to drop out and re-enter the
auction. However, we plan to conduct additional experiments where the irrevocable exit rule may become relevant. 

9The auction is formally modeled as a continuous-time game.  However, we want to take into account the
possibility that bidder i’s strategy may be to reduce her quantity at a given time, while bidder j’s strategy may be to
reduce his quantity at the soonest possible instant after bidder i does. This requires allowing “moves that occur
consecutively at the same moment in time” (Simon and Stinchcombe, 1989; also see Ausubel, 1997).  

9

Ascending-bid (Clock) Auctions: The ascending-bid version of the uniform-price auction (also

referred to as a clock auction or an English-clock auction) starts with the price being zero and

increasing continuously thereafter. Bidders start out actively bidding on all units demanded,

choosing the price to drop out of the bidding.  Dropping out is irrevocable so that a bidder can no

longer bid on a unit she has dropped out on.8 The drop-out price which equates the number of

remaining active bids to the number of items for sale sets the market price.  Winning bidders earn

a profit equal to the value of their winning unit less the market price. All other units earn zero

profit.  Posted on each bidder's screen at all times is the current price of the item, the number of

items for sale, and the number of units actively bid on, so that h can tell at exactly what price a

rival has dropped out.  Further, there is a brief pause in the progress of the price clock following a

drop out during which h can drop out as well. Dropouts during the pause are recorded as having

dropped out at the same price, but are indexed as having dropped later than the dropout that

initiated the pause.9

Bidders i = 1, ..., n demanding a single unit have a dominant strategy to remain active until

the clock price reaches their value, vi. As in the sealed-bid version of the auction there are three

regions of interest:

1. For vh < ½, the optimal bidding strategy for h is comparable to the sealed-bid auction strategy in

the sense that h earns greater expected profit by winning a single unit and reducing the price paid



10The underlying support for valuations, along with the number of computer rivals, were chosen with an
eye towards comparing behavior here with earlier multi-unit demand auctions with flat demands (no synergies)
which call for demand reduction at  all values (Kagel and Levin, in press).
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by not winning a second unit.  However, there is considerably more flexibility in carrying out the

optimal policy:

If v2 # vh, d1 = vh and  0 # d2 # v2, and 

If v2 > vh, then d1 0 [vh, max (vh, v3)] and d2 0 [0, max (vh, v3)]

where di is h’s dropout price on unit i.

2. For v 0 [½, 2/3) the optimal bidding strategy uses the information revealed by rivals’ drop-out

prices.  In particular there is a cutoff point, P* = [3vh -1] such that:

If v2 # P*, d1 = d2 $ 1 and 

If v2 > P*, d1 = d2 0 [P*, max {P*, v3}]. 

This yields distinctly different outcomes than the sealed-bid auctions in this interval. Note that, in

contrast to the sealed-bid auction, the bidding rule in this region does not depend on the number

of rivals as the information revealed in the second highest computer’s dropout price is sufficient

to determine the optimal bidding strategy.  

3. For vh $2/3, d2 $1, so that h has to “go for it,” winning both for sure. Note that “going for it” in

this interval assures positive profits, as h earns at least 2 and pays at most 2, so that the exposure

problem is not an issue here. This strategy yields higher expected profits for any realization of v2

compared to stopping the auction and earning a single unit.  Further, the size of this interval is

smaller than the interval in which bidders “go for it” in the sealed-bid auctions.

II. Experimental Design:

Valuations were i.i.d. from a uniform distribution with support [0, $7.50].10  Bidders with



11Students were recruited through fliers posted throughout both campuses, advertisements in student
newspapers, electronic bulletin board postings, and classroom visits.
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single-unit  demands were represented by computers programmed to submit bids equal to their

value in the sealed-bid auctions or to stay active until the price reached their value in the clock

auctions.  Bidder h was played by subjects drawn from a wide cross-section of undergraduate and

graduate students at the University of Pittsburgh and Carnegie-Mellon University.11  Each h

operated in her own market with her own set of computer rivals, knew they were bidding against

computer rivals and the number of  computer rivals, as well as the computers’ bidding strategy. 

The use of computer rivals has a number of advantages in a first foray into this area: hs

face all of the essential strategic tradeoffs involved in auctions of this sort but in a very “clean”

environment. The latter include no strategic uncertainty regarding other bidders’ behavior and no

issues of whether or not “common knowledge” assumptions are satisfied.

Since single-unit  bidders have a dominant strategy independent of h’s valuation, which

permits us to employ a limited number of values for h without distorting the equilibrium

predictions. Given the complexity of the environment, we limited ourselves to four values

designed to fully represent/span the strategy space, and to induce maximum differences in

strategic behavior between the sealed-bid and clock auctions. By repeating the use of the same

valuations within an experimental session we provide bidders with considerable experience at

each value, which might be expected to ease decision making in such a complex environment,

while providing us with multiple observations against which to evaluate behavior.

Sessions employed either three or five computer rivals (n = 3 or 5), with the number of

computer rivals remaining constant within each session.  In each session vh varied randomly over



12All three values occurred in each consecutive series of three auctions, but in random sequence.

13In the clock auctions with n = 3, v1 is often below $5.10, so there is very little information to be gained
about whether or not h’s recognize that “going for it” is the optimal strategy in these cases. This problem is reduced
substantially with n = 5.  Further, rather substantial deviations from the optimal bidding strategy of b1 = b2 $$7.50
(for example, bidding above $5.10 but below $7.50) frequently incur no penalty in sealed-bid auctions with n = 3,
but such deviations are much more likely to be punished with n = 5.
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three of the four values employed using a block random design.12  Values employed with each set

of computer rivals, along with equilibrium predictions for h’s bids are reported in Table 1. The

lowest vh, $3.00, calls for complete demand reduction in both auctions, and is employed

exclusively with n = 3. (The expected cost of deviating from the optimal strategy with vh = $3.00

and n = 5 is quite small, and involves a rather large opportunity cost in terms of foregone

observations at more salient values.) The highest vh, $5.10, requires “going for it,” and insures a

secure (minimum) profit of 30¢ per auction. It is employed exclusively with n =5 out of cost

considerations and the fact that there is little ‘bang for the buck’ at this value in auctions with n =

3.13 

The middle values make different predictions between sealed-bid and clock auctions and

were employed with both n = 3 and 5.  

vh = $4.00: In the sealed-bid auctions b1 = b2 = $4.34 with n = 3 and b1 = b2 = $4.16 with n

= 5.  The clock auction also requires bidding above value on both units: If v2 # P* = $4.50, h goes

for it as the expected value of winning two units is positive and greater than the value of stopping

the auction at p = v2 and winning a single unit.  If v2 > P*, h drops on both units at the cutoff point

P*. 

vh = $4.40: It pays to “go for it” in the sealed-bid auctions (b1 = b2 $$7.50), regardless of

whether n = 3 or 5. The clock auction also calls for bidding above value, with the cutoff point P*



14Earlier multi-unit demand auctions without synergies demonstrate that this restriction has no effect on
bidding strategies (Kagel and Levin, in press).
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= $5.70.  

Finally, for both intermediate values, if h mistakenly stays beyond max {P*, v3}when v2 >

P* the certain loss associated with stopping the auction and winning one unit is greater than the

expected loss associated with remaining active and winning both units. Thus in equilibrium or

outside equilibrium, h should never win only one unit in the clock auction.

All clock auctions employ a “digital” clock with price increments of $0.01 per second. 

Following each computer drop out there was a brief pause of 3 seconds.  h’s dropping out during a

pause counted as dropping at the same price, but later than, the computer’s dropout.  h could drop

out on a single unit by hitting any key other than the number 2 key. The first stroke of the key pad

dropped out unit 2. Hitting the number 2 key, or a second key during the pause, permitted h to

drop out on both units at the same price.  

In the sealed-bid auctions the sequencing required subjects to submit bids on unit 1

followed by unit 2. Any nonnegative bid was accepted for unit 1, with the bid for unit 2 required

to be the same or lower than the bid on unit 1.14  There was no opportunity to submit a single bid

for both units combined or a bid contingent on winning only one or winning both units.

In all sessions, instructions were read out loud, with copies for subjects to read as well.

The instructions included examples of how the auctions worked as well as indicating some of the

basic strategic considerations inherent in the auctions.  For example, the instructions pointed out

that the higher h’s value, the more valuable the synergy bonus was, hence the greater value of

earning two rather than one unit, and that when bidding above vh winning a single unit would



15In those few cases where end-of-experiment earnings were below $2.00, a token $2.00 payment was
provided.
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necessarily involve losses (see the instructions for full details).  Finally, it was emphasized to

subjects that “...in thinking about bidding, earning an item is of no intrinsic value.  Your sole

objective should be to maximize your earnings.”

Subjects were told that in each auction period the computers would (and did) receive fresh

values.  At the conclusion of each auction, bids were ranked from highest to lowest and posted

along with the corresponding values.  Winning bids were identified, prices were posted, profits

were calculated, and cash balances were updated. Bidders only observed the outcomes for their

own market. Sessions began with three dry runs to familiarize subjects with the auction

procedures, followed by thirty-three auctions played for cash.

Bidders were given starting capital balances of $5.  Positive profits were added to this and

negative profits subtracted from it.  End-of-experiment balances were paid in cash. Expected

profits were sufficiently high that we did not provide any participation fee.15  Sessions lasted

between 1.5 and 2 hours.

III. Experimental Results:

This is a relatively complicated experiment both for the subjects and for providing a

concise, yet comprehensive, analysis of the results.  To help guide the reader, the result’s section

consists of a series of conclusions along with support for those conclusions. Our focus will be on

bidding behavior, with some attention to revenue and efficiency as well. Throughout the analysis

we will concentrate on bidding in the last 6 auctions under each vh, when bidders would have

become reasonably familiar with the environment (recall, that there were 11 auctions played for



16The choice of the last 6 auctions is somewhat arbitrary, but it does distinguish more from less
experienced play, and the results are robust to adding or dropping an auction or two to either side of 6.  We will
occasionally make reference to obvious learning/adjustment patterns in bids, but forgo any kind of detailed analysis
as the paper is already quite long.

17We provide 5¢ “allowances” for “trembles” throughout.  For example, with vh = $3.00, in the clock
auctions we count as equilibrium d2 # v2 + 0.05 when v2 # vh.  Our results are robust to either eliminating these
allowances or increasing them a bit.

18For reviews of these results see Kagel (1995) and Kagel and Levin (2000).

19Kagel and Levin (in press) show that in a multi-unit demand, uniform-price auction, with flat demand, a
clock auction with no feedback on rivals’ drop-out prices looks no different from the sealed-bid version of the
auction.  Further, a sealed-bid auction with the crucial dropout information employed in the clock auction provided
by the experimenter, improves performance, but still comes up short compared to a clock auction with rivals’ drop-
out prices announced.

15

cash at each vh,  and 1 dry run).16 

A. Bid Patterns

1. Frequency of Optimal Play in Sealed-bid Versus Clock Auctions: Table 2 compares the

frequency of optimal play between the two auction institutions.  This table employs rather strict

definitions for optimal play.17 Conclusion 1 is based on these results. 

Conclusion 1: Bids are consistently closer to optimal outcomes in the clock auction, with
differences between auction institutions most pronounced at the two extreme values - $3.00 and
$5.10.

Bids being closer to equilibrium/optimal play in clock versus sealed-bid auctions are

consistent with results from a large number of auction experiments: single-unit private value

auctions (Kagel, Harstad, and Levin, 1987), single-unit common value auctions (Levin, Kagel,

and Richard, 1996), and multi-unit demand, uniform-price auctions without synergies (Kagel and

Levin, in press).18  Further, it is clear from the experimental manipulations reported in Kagel and

Levin (in press) that it is the clock auction format, in conjunction with the information revealed to

h by dropout prices, that is responsible for its superior performance.19

What’s missing from Table 2, and will provide the focus of the detailed analysis that



20In our experimental design, bids above $7.50 have essentially the same impact of bids of $7.50 and are
treated as such.

21δi -(0, σδ) and ζit -(0, σζ) where δi and ζit are independent among each other and among themselves. Note,
in our experimental design, the use of computer rivals, clearly supports the assumption that the δi are independent
among each other.
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follows, is the pattern of deviations from equilibrium, which is quite different between the two

auction institutions. 

2. Bidding in Sealed-bid auctions: 

Conclusion 2: In the sealed-bid auctions the data show a clear pattern of increasing bids
at higher values as the theory predicts.  However, bidders are imperfectly calibrated, as bids are
substantially higher than they should be at lower values, and are lower than they should be at
higher values, with the possible exception of vh = $5.10, where bids are close to optimal. 

Support for this conclusion is reported in Table 3, where we have fit random effect Tobits

to the bid data.  We employ Tobits as there is a mass point at $7.50, and we truncate all bids

greater than $7.50.20  An error components specification is employed with the error term εit = δi +

ζit, where δi is a subject-specific error term assumed to be constant between auctions within an

experimental session, and ζit is an auction period error term.  Standard assumptions regarding the

error terms are employed.21  With n = 3 we use vh = $3.00 as the intercept of the bid function and

create a dummy variable (DV4) for vh = $4.00 (DV4 = 1 if vh $ $4.00, 0 otherwise), and a second

dummy, (DV440) for vh = $4.40 (DV440 = 1 if vh = $4.40, 0 otherwise).  For n = 5 we use vh =

$4.00 for the intercept of the bid function and create separate dummy variables vh = $4.40 (DV440

= 1 if vh $ $4.40, 0 otherwise) and for vh = $5.10 (DV510 = 1 if vh = $5.10, 0 otherwise). Also

reported, for the reader’s convenience, are the 95% confidence intervals for bids predicted by the

regression equations. 

For the n = 3 both dummy variables are significant at the 5% level or better, indicating that



22The raw data on this score is as follows: Conditional on b1 > vh + 0.05, the frequency of b1 - b2 > .25 or b2 
# vh is 51.0% with vh = $3.00, 35.6% with vh = $4.00 and 31.9% with vh = $4.40. (Note, our calculations provide
small allowances for deviations from optimal play to leave some room for “trembles.”)

23For n = 5, conditional on b1 > vh + 0.05, the frequency of b1 - b2 > .25 or b2  # vh is 17.2% with vh = $4.00,
17.7% with vh = $4.40 and 12.0% with vh = $5.10.  

24For example, with vh = $4.00, numerical evaluation of outcomes for the rule of thumb, b1 = 1.5vh and b2 =
vh, yields positive profits, but profits that are lower by approximately 33¢ per auction, than the optimal strategy with 
n = 3.  With n = 5, this rule yields negative profits which are lower by approximately 53¢ per auction than profits
generated by the optimal strategy.      
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bids were increasing in vh, as they should be, for both b1 and b2.  Further, the lower bound of the

95% confidence interval for unit 1 bids is well above the optimal bid when vh = $3.00 and $4.00

(optimal bids of $3.00 and $4.34, respectively), with unit 2 bids showing a similar pattern.  While

the upper bound of the 95% confidence interval for unit 1 bids is $7.50 for vh = $4.40, the upper

bound for unit 2 bids falls well short of the optimal bid of $7.50. Finally, for vh = $4.00 the upper

bound for unit 2 bids falls short of the lower bound for unit 1 bids. This is indicative of a general

failure to follow the requirement that b1 = b2 when bidding above value.22

Similar results are reported for the n = 5 case. Both dummy variables are significant at the

5% level or better, indicating that bids were increasing in vh, as they should be, for both b1 and b2. 

 The lower bound of the 95% confidence interval for unit 1 bids is well above the optimal bid of

$4.16 with vh = $4.00, as is the lower bound for unit 2 bids.  For vh = $4.40, the upper bound of

the 95% confidence interval for unit 1 bids includes $7.50, but is short of the optimal bid of $7.50

for unit 2 bids.  What is different from the n = 3 case is that there is overlap between unit 1 and

unit 2 bids in all cases.  This is clear from the raw data as well, which shows that conditional on b1

$ vh, the relative frequency of b1 > b2 has been cut by 50% compared to n =3.23 No doubt these

differences result from the fact that bidding less on unit 2 compared to unit 1 (conditional on b1 >

vh) is more costly with n = 5 than n = 3.24 Finally, the regression shows that for vh = $5.10, the



25Other deviations from optimality include winning 0 units and winning 1 unit with negative profits (“going
for it” but then reconsidering) with deviations slightly favoring the latter case. 
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lower bound of the 95% confidence interval for unit 1 bids is $7.50, and the 95% confidence

interval for unit 2 bids includes the optimal bid of $7.50 as well.  As such, even though the

equilibrium requirement of b1 $ b2 $$7.50 is only satisfied 40.6% of the time, bidders win both

units 71.9% of the time.  The net result is that deviations from optimality in payoff space are

substantially smaller than deviations from optimality in the choice space. 

3. Bidding in Clock Auctions: 

Conclusion 3: There is directional consistency in the clock auctions in the sense that two
units are won more often at higher valuations (when they should be won), and at vh = $5.10
bidders “go for it” most of the time, as they should.  However, at the intermediate valuations of
region 2, there are large deviations from optimal bid patterns that are best explained by the
exposure problem.  

Support for Conclusion 3 can be found in Table 4.  First note that for v2 # vh the frequency

of winning two units is increasing in vh.  Further, consistent with optimal bidding, two units are

won close to 100% of the time (in 83.3% of all auctions) with vh = $5.10. However, substantial

deviations from optimal bid patterns are reported in region 2, at the intermediate values of $4.00

and $4.40, where bidders face an exposure problem. This exposure problem expresses itself in

three distinct ways for these valuations: 

(1) For v2 # vh the primary deviation from equilibrium bidding involves demand reduction

(winning 1 unit with positive profits).25 Further, in most cases this involves complete demand

reduction; i.e., dropping out at the same time (or prior to) v2, thereby not affecting the market price

(87.5% of all cases with vh = $4.00, 74.7% of all cases with vh = $4.40) and never having to bid

above vh. 



26Support for the statistical significance of these differences is provided buy random effect probits, with
subject as the random component.

27And dropping too soon is within a whisker of the modal response in the fourth case (n = 3 and vh =
$4.40).
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(2) In cases where vh < v2 # P*, where optimality requires “going for it,” and necessarily

involves bidding above vh, there is a high frequency of winning zero units.  The combined

frequency of winning zero units and winning 1 unit (which involves “going for it” but then

reconsidering when bidding above vh) is consistently higher than the frequency of winning two

units. Further, bidders win two units consistently less often when v2 # vh.26 And the exposure

problem is necessarily more extreme when vh < v2 # P* than when v2 # vh.  In contrast, the theory

predicts no difference in the frequency of winning two units between these two cases.

(3) In cases where v2 > max(P*, vh) equilibrium play calls for bidding up to P* and

dropping on both units at this point. This necessarily involves bidding above vh, but rarely

happens.  Rather the modal response in three out of four of these cases is to drop out prior to P*,

typically dropping out very close to vh.27

In contrast to bidding at these intermediate valuations ($4.00 and $4.40), bidders have

little problem bidding above their valuation for vh = $5.10, when they are assured of a minimum

profit of 30¢ by going for it.  This response to the exposure problem in the clock auction is in

marked contrast to the sealed-bid auction where bidders show no reluctance to bid above vh on

both units.  This suggests that it is both the fear of losses, in conjunction with the auction format,

that is responsible for the greater response to the exposure problem in the clock auction. What is it

about the clock auction that accounts for this heightened exposure effect?  The clock auction

format (with feedback on bidders’ drop-out prices) makes it much more transparent to bidders,



28We should add that in cases where v2 # vh, the saliency of the demand reduction option (“stop the clock
and win 1 unit assuring positive profits”) is much more pronounced in clock compared to sealed-bid auctions when
demand reduction is consistent with optimal bidding (Kagel and Levin, in press). 

29These differences are statistically significant at conventional levels. Tests for statistical significance
consisted of the following: Take all cases where v2 # vh. Run a random effects probit (with subject as the random
component) and dependent variable = 1 when a bidder wins 1 unit with positive profits), 0 otherwise.  Let vh = $3.00
serve as the baseline and define dummy variables DV4 = 1 if vh $ $4.00, 0 otherwise; DV440 = 1 if vh $ $4.40, 0
otherwise; and DV510 = 1 if vh = $5.10, 0 otherwise; and DN5 = 1 if n = 5, 0 otherwise.  This yields:
Win1 = 0.502 - 0.601DV4 - 0.187DV440 - 0.630DV510 - 0.932DN5
           (0.292)+  (0.222)**     (0.159)            (0.258)**          (0.358)**

with standard errors in parentheses and + and ** indicating statistical significance at the 10% and 1% levels
respectively.  The DN5 dummy is negative and significant at the 1% level. 
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compared to sealed-bid auctions, that they are liable to lose money as a consequence of bidding

above value (Kagel, Harstad and Levin, 1986; Kagel, 1995; Kagel and Levin, in press). In single-

unit private value auctions, and in multi-unit demand auctions without synergies, this heightened

awareness of the perils of bidding above one’s valuation helps to improve bidder profits and to

move play closer to the equilibrium outcome. Here it holds bidders back from achieving

maximum profit and generates deviations from the equilibrium outcome.28

One final thing to note in Table 4 is the sharp (and consistent) difference between the

frequency of winning two units for n = 3 versus n = 5 when v2 # vn, and when v2  # P* for the

region 2 valuations of $4.00 and $4.40.29  We suspect that this has little to do with the different

number of rivals in the two treatments, but is a hysteresis effect brought on by the different

behavior patterns rewarded under the remaining valuation in each case: the $3.00 value which

calls for complete demand reduction with n = 3 and the $5.10 value which calls for “going for it”

with n = 5.  This result is summarized in Conclusion 4.

Conclusion 4: There appears to be a strong hysteresis effect in the data, as with resale
values of $4.00 and $4.40, the exposure problem is much more severe with n = 3 than with n = 5. 



30Focusing on outcomes (win 2 units) in comparing between auction formats controls for the censoring
problem associated with bids in the clock auctions in comparing between auction formats.  

31 A third specification introducing an interaction effect between the Dearly and Dclock dummies fails to
reduce the log likelihood function by a significant amount. 
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4. Learning and Adjustments Over Time: The next conclusion takes a closer look at

bidding with vh = $5.10.  In almost all respects this should be (and is) the valuation for which play

is closest to optimal in both auction formats as it only takes a little arithmetic to realize that

“going for it” yield a secure, minimum profit of 30¢ per auction. As a result, with repeated

exposure to the problem one would expect more subjects to “get it.” And they do as the data show

a clear learning effect, converging toward optimal play.

Conclusion 5: With vh = $5.10, we observe clear adjustments over time toward optimal
play in both sealed-bid and clock auctions.  However, winning two units is still more pronounced
in the clock auctions.

Support is provided by the random effect probits reported in Table 5, where we have

pooled the data for both clock and sealed-bid auctions for vh = $5.10.  The dependent variable

takes on a value of 1 in cases where two units were won (as optimal bidding requires) and 0

otherwise.30  We use the data for all auctions, excluding the dry runs.  Model 1 includes a single

dummy variable, Dclock = 1 if a clock auction, 0 if sealed bid.  The coefficient for the dummy is

positive and significant at the 10% level, indicating that play is closer to the optimal outcome in

the clock auctions. Model 2 introduces a second dummy variable, Dearly = 1 for the first 5

auctions, 0 for the last 6, in an effort to identify possible learning/adjustment effects. These are

clearly present as indicated by the relatively large, statistically significant negative coefficient

value for the Dearly dummy.  Further, the introduction of the Dearly dummy has virtually no

effect on the magnitude of the Dclock dummy or on its standard error.31  
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This is the one case where we observe clear learning/adjustments toward optimal play in

the data.  Specifications searching for learning/adjustment effects for other valuations reveal

considerably more noise in early play (higher variances and less stable coefficient values), as

opposed to any clear adjustments toward optimal play. 

B. Profits, Efficiency and Revenue

This section examines profits, revenue and efficiency. Bidders’ profits provide a measure

of success in terms of payoffs, and provide a convenient way of characterizing performance in

terms of a single outcome measure.  Efficiency is defined as the sum of the values of two units

sold in each auction period (including the synergy bonus, if relevant) as a percentage of the

highest total value that would have been obtained in a full information Nash equilibrium. Revenue

is what the seller would have earned in each period.  Note, in computing revenue and efficiency

we are keenly aware that the same results might not emerge in auctions where all bidders are

human.  As noted, computer rivals were employed to minimize possible complications associated

with learning against human rivals who may be playing out-of-equilibrium strategies.  Out-of-

equilibrium play may affect different institutions differently.  On the other hand, there is very

limited experimental data on efficiency and revenue, measures of central importance to

economists, in environments such as this, and we believe that the present data are at least

suggestive of what will be observed in interactive settings.  Finally, in reporting revenue and

efficiency we provide a benchmark against which future experiments with all human bidders can

compare results on these important issues.  

1. Profits:

Conclusion 6: Profits are consistently and significantly less than would have been
achieved with optimal bidding in all but one case (vh = $4.00, n = 3, sealed-bid auction). Profits



32Average profits per subject are the unit of observation in these calculations.
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are consistently higher in clock compared to sealed-bid auctions, but fail to be significantly
higher in several cases where the theory predicts that profits will be higher.

Table 6 reports profits -- actual, predicted and the difference between the two -- for both 

auctions, along with the difference between actual profits in the two auction formats (sealed-bid

less clock). At vh = $3.00, bidders earned negative profits averaging -60¢ and -15¢ in the sealed-

bid and clock auctions respectively.  Profits in the sealed-bid auctions were significantly below

zero (t = 2.80, p < .01, 2-tailed test), and significantly less than those realized in the clock auctions

(t = -1.93, p < .10, 2-tailed test), reflective of the large differences in equilibrium play between the

two auctions.32  Recall that under optimal bidding profits are predicted to be the same in both

auctions for vh = $3.00.  

For n = 3, with vh = $4.00 and $4.40 optimal bidding predicts 20–24% higher profits in

clock compared to sealed-bid auctions. These higher predicted profits result from the greater

flexibility afforded by the information revelation in the clock auctions.  These higher profits do

not materialize, however, as (i) the exposure problem serves to promote the strong demand

reduction found in the clock auctions, which wipes out most of the advantages resulting from

information revelation in this case, and (ii) the deviations from equilibrium in the sealed-bid

auctions are not so severe as to have disastrous effects on earnings. Even larger percentage

differences between profits are predicted with optimal bidding at vh = $4.00 and $4.40 with n = 5. 

In contrast to the n = 3 case, these differences are largely realized (at least directionally) as the

clock auctions raise an average of 43¢ and 21¢ more per auction at $4.00 and $4.40 respectively (t

= -2.80, p < .01, two-tailed test with vh = $4.00; t = -0.89 with vh = $4.40).  The higher profits



33The differences we do find are aided by the higher predicted profits in the clock auctions.  The latter
results from sampling variability in terms of the computer values drawn, as optimal bidding yields the same
equilibrium outcome in both cases.
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realized in this case result from (i) the weaker demand reduction effect in the clock auctions with

n = 5 (recall Conclusion 4) and (ii) the harsher effects of deviating from optimal bidding in the

sealed-bid auctions with n = 5. Finally, the relatively modest differences in bidding with vh =

$5.10 do not translate into significant differences in actual earnings between the two auction

formats (t = -1.29).33

2. Efficiency:

Conclusion 7: Optimal bidding predicts either the same or higher efficiency in clock
compared to sealed-bid auctions. In contrast to these predictions, actual efficiency differences are
quite mixed, with the only significant difference recorded in favor of the sealed-bid auction.

Table 7 reports efficiency outcomes.  At the $3.00 value actual efficiency is very close to

predicted levels in both sealed-bid and clock auctions.  This is not surprising in the clock auctions

where bidding is relatively close to equilibrium, but is somewhat unexpected in the sealed-bid

auctions with its large deviations from equilibrium outcomes. These deviations apparently have

minimal impact on efficiency since the overbidding occasionally produces large efficiency gains

(relative to the predicted outcome) as a result of the synergy bonus.  At the $4.00 value, where the

tension between the synergy bonus and the demand reduction effect is strongest, the clock auction

is predicted to yield large efficiency gains compared to the sealed-bid auction.  However, these

gains go almost entirely unrealized as (i) the exposure problem serves to promote demand

reduction in the clock auctions, which wipes out most of the efficiency gains predicted, and (ii)

deviations from equilibrium bidding in the sealed-bid auctions have essentially no effect relative

to predicted efficiency. No doubt this last result is due to the fact that with the synergy bonus



34Actual efficiency is greater than predicted efficiency in the sealed-bid auctions in these two cases.  There
is no inconsistency here since predicted efficiency is less than 100%; i.e., predicted efficiency is the value of the
two highest units sold (including the synergy bonus) under the Nash equilibrium with incomplete information
divided by the value of the two units sold under the full information Nash equilibrium.
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overbidding occasionally produces large efficiency gains relative to the predicted outcome.34 

Finally, actual efficiency is well below predicted efficiency at higher values in both auction

institutions as bidders do not “go for it” often enough to take full advantage of the synergy bonus.

3. Revenue:

Conclusion 8: Revenue is consistently higher in the sealed-bid auctions, and is
significantly higher in four out of six cases.  These higher revenues in the sealed-bid auctions do
not come at the expense of any significant efficiency losses relative to the clock auctions.

Revenues are reported in Table 8.  Note that revenues are predicted to be substantially

higher in the clock auctions with vh = 4.00 as the information revelation in the clock auction at

this valuation promotes more aggressive bidding compared to a sealed-bid auction. In contrast, at

the $4.40 value the sealed-bid auction is predicted to raise more revenue as bidders should “go for

it” all the time, but still condition their actions on rivals’ dropout prices in the clock auction.  The

actual data, however, show uniformly higher revenues in the sealed-bid auction: 4.0% to 18.8%

higher revenue with n = 3, 3.0% to 12.7% higher revenue with n = 5 (calculated as a percentage of

realized revenue in the clock auctions).  Note that these increased revenues do not come at the

expense of reduced efficiencies, as Table 7 reports no significant decreases in efficiency in sealed-

bid compared to clock auctions, and one case with significantly higher efficiency in the sealed-bid

auction.  
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C. Experienced Bidders

This section briefly discusses results from two additional sealed-bid auction sessions using

bidders who had participated in one of the sealed-bid or clock auctions reported above.  Both of

the experienced subject sessions employed n = 3,  with valuations of $3.00, $4.00 and $4.40. 

Conclusion 9: Experienced subjects in sealed-bid auctions do not perform materially
better than inexperienced ones. There are, however, significant differences depending on bidders’
past experience: Those with clock experience bid less aggressively at lower valuations compared
to those with sealed-bid experience. These differences constitute a direct carryover of the
differences observed between auction institutions for inexperienced bidders. 

Support for this conclusion is provided in Table 9, where separate bid functions have been

estimated as a function of subjects prior experience - sealed-bid or clock.  Random effect Tobits,

similar to the ones reported in Table 3 have been estimated in both cases. As in Table 3, vh =

$3.00 serves as the intercept of the bid function, with dummy variables DV4 = 1 if vh $ $4.00 (0

otherwise) and DV440 = 1 if vh = $4.40 (0 otherwise).  

Results for those with sealed-bid auction experience are quite similar to those reported for

inexperienced bidders in Table 3.  Qualitatively, bids are well above what they should be to

maximize profits for vh = $3.00 and $4.00, and bids are too conservative (not “going for it” often

enough) with vh = $4.40.  Quantitatively, the 95% confidence intervals for unit 1 and unit 2 bids

overlap for all three values with those reported for inexperienced bidders in Table 3. (However,

there is some tendency for experienced bidders to bid more aggressively at vh = $4.00 and $4.40.) 

In contrast, those with clock experience bid far less aggressively, with the 95% confidence

intervals for unit 1 and unit 2 bids (i) uniformly lower, with no overlap, compared to subjects with

sealed-bid experience (Table 9), and (ii) uniformly lower, but with some overlap, compared to

inexperienced bidders (recall Table 3).  



35t = -3.96, p < .01, 2-tailed test. Average profit per subject serves as the unit of observation. All profit
calculations here are based on simulations using actual bids for human bidders in each auction and 500 simulated
draws for the computers for each auction. This helps to smooth out the variability inherent in using actual draws for
the computer from the auctions, and are employed here because of the relatively small number of subjects involved.  

36In these two sessions we also varied the order of vh values to see if this had any impact on behavior. In
one session valuations were rotated in a block random design, as in the inexperienced subject sessions, for 24
auctions, with the session terminating with 8 auctions with vh = $3.00.  In the other session valuations were
presented in blocks of 8 auctions: 8 auctions with vh = $3.00, followed by 8 auctions with vh = $4.40, followed by 8
auctions with vh = $4.00, and ending with 8 auctions with vh = $3.00.  There were no statistically significant, or
economically significant, differences between the block random design and the session with values fixed for 8
auctions, indicating the absence of any kind of hysteresis effect on this dimension. It will be interesting to see if this
result holds for inexperienced bidders.
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These bid differences result in large differences in profits at the lowest and highest vh

values: Substantially higher profits were earned for those with clock experience at vh = $3.00

(0.01¢ per auction) versus those with sealed-bid experience (-0.65¢ per auction).35 Earnings were

essentially the same at vh = $4.00 (0.83¢ per auction for those with clock experience versus 0.74¢

per auction for those with sealed-bid experience).  Finally, for vh = $4.40 profits were 39¢ higher

per auction for those with sealed-bid experience ($1.72 per auction versus $1.33; t = 4.26, p < .01,

2-tailed test).36

C. Comparison to Multi-Unit Demand Auctions Without Synergies

We have conducted an experiment similar to this one with one major difference -- the

synergy bonus was set to zero (Kagel and Levin, in press).  In this case demand reduction

dominates at all valuations, as it does in region 1 here.  This section briefly compares the

outcomes observed in this earlier experiment with the outcomes in region 1 here (vh = $3.00). 

Conclusion 10: It is clearly much harder for bidders to exercise demand reduction, when
it is called for, in auctions with synergies than in auctions without synergies.  This holds true for
both sealed-bid and clock auctions. 

For the clock auctions, with v2 # vh demand reduction (partial and complete) is practiced in

85.7% of all auctions without synergies compared to 63.2% of auctions with synergies and vh =



37These measures include a 5¢ allowance for trembles in both cases: b1 > vh + 0.05.
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$3.00.  Further, there is a substantially higher frequency of winning two units in the auctions with

synergies (21.3%) versus those without (5.6%). Recall, that at most, a single unit should be won

in both cases.

For sealed-bid auctions there is a much higher frequency of bidding above value on unit 1

in auctions with synergies (77.8%) than in those without (37.9%).37 Similar differences in the

frequency of bidding above value are found with respect to unit 2: 54.5% of all auctions with

synergies versus 24.7% without. And there is substantially less demand reduction (defined as

bidding more than 5¢ below value) in auctions with synergies (30.1%) versus those without

(58.6%). 

Of course, neither of these differences is terribly surprising.  The introduction of relatively

large synergies creates a potent force acting in opposition to the demand reduction forces inherent

in uniform-price auctions.  As such it is not terribly surprising to find increased deviations from

optimal bidding even when the demand reduction forces should dominate.

IV. Summary and Conclusions:

We report results from an experiment comparing sealed-bid and ascending-bid uniform-

price auctions where individual bidders demand multiple units and there are synergies between

units.  We use a simple demand structure: Several single-unit demand bidders and one bidder

demanding up to two units. We further simplify the structure by having computers play the

dominant strategy that single-unit  bidders have of always bidding their value.  In spite of its

simplicity, the key economic incentives present in uniform-price auctions with synergies are all 

captured: the synergy effect, which promotes bidding above standalone values; the exposure
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problem which may deter bidders from pursing this aggressive biding strategy, thereby reducing

economic efficiency; and the monopsony power that multi-unit demand bidders can exploit to

reduce prices in a uniform-price auction.

The experiment shows that bidding is closer to optimal play in the clock auctions,

consistent with evidence from a number of other auction environments (Kagel, Harstad, and

Levin, 1987; Levin, Kagel, and Richard, 1996; Kagel and Levin, in press). Further, in most cases

bidders behave sensibly, though not optimally: Bidding under the highest valuation, where the

optimal play is quite transparent, generates by far the highest levels of optimal play, levels that are

comparable to the highest levels reported for subjects in any experimental auction environment.

Demand functions estimated for the sealed-bid auctions are monotonically increasing in bidders’

valuations. In the clock auctions, there is a higher frequency of “going for it” at higher valuations,

when multi-unit demand bidders should strive to obtain both units.

Nevertheless, there is much out-of-equilibrium play under both institutions, with the most

interesting and dramatic differences occurring at intermediate valuations where the theory requires

balancing demand reduction incentives against the synergy bonus, while exposing bidders to

possible losses. At these values the exposure problem promotes relatively strong demand

reduction in the clock auctions in contrast to optimal bidding which requires that bidders “go for

it.”  In contrast, the exposure problem is barely present in the sealed-bid auctions, with bidders

consistently bidding above value on both units. This suggests that it is both the fear of losses, in

conjunction with the auction format, that is responsible for the greater response to the exposure

problem in the clock auction. The clock auction format (with feedback on bidders drop-out prices)

makes it much more transparent to bidders that they are liable to lose money as a consequence of



38See, for example Naik (1996) who discusses problems small firms had in PCS auctions and Mills (1997)
who discusses problems a number of bidders had in the Interactive Video and Data Services (IVDS) auction. 

39 The recent Wye River conference sponsored by the FCC/NSF/Stanford was called, and devoted to,
“Combinatorial Bidding.” Combinatorial, or package, bidding  is one possible solution to the exposure problem as
bidders can bid aggressively to acquire a package with supper additive value, without the risk of getting just parts of
the package at cost that exceeds the value. This demonstrates that the exposure avoidance problem is presumed
“alive and well” among more sophisticated bidders.
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bidding above value (Kagel, Harstad and Levin, 1986; Kagel, 1995; Kagel and Levin, in press). 

This heightened awareness of the perils of bidding above ones’ valuation helps to improve bidder

profits and to move play closer to the equilibrium outcome in single-unit  private value auctions

and in multi-unit demand auctions without synergies.  With synergies it holds bidders back from

achieving maximum profit and generates deviations from the equilibrium outcome.

How relevant are these findings of out-of-equilibrium play to “real world” auctions?  We

argue that for low stakes field settings, or those that for one reason or another, bidders do not

employ high-powered consultants (as occurred in at least one U. S. spectrum auction), our

observations are directly relevant.38

But what about high-stakes settings with high-powered consultants on all sides, as is

typically the case in auctions involving many millions or even billions of dollars? Extrapolating

laboratory results in such cases is clearly more problematic and one must be much more careful in

assessing the applicability of the results. However, we do know that the exposure problem is a

major concern in auctions with synergies.39  Our experiment demonstrates that it is more prevalent

in an ascending price format where the consequences of stopping the auction and winning a

limited number of items with positive gains are accentuated by the auction format. It is also clear

from “war stories” of colleagues and consultants involved in advising companies that not all

advice is good advice, and not all good advice is acted on. Further, “real” auctions are



31

substantially more complicated than the one implemented here, so much so, that it is usually

impossible to identify optimal bidding strategies.  Thus, the answer to questions of applicability of

laboratory results to field settings remains the same here as it does elsewhere: Laboratory

economic systems are real economic systems. Thus, behavioral processes identified in the lab are

presumed to hold beyond the lab.  This, shifts the burden of proof to those who argue that such

findings will not generalize to provide a factual basis for their argument in field data.

There are a number of obvious and interesting extensions to the experimental results

reported here.  One would be to conduct these auctions with all human bidders to see what

differences possible out-of-equilibrium play by single-unit bidders would have on multi-unit

demand bidders. Another would be to permit the use of package bidding, either under the present

set-up or with all human bidders, to see how well this serves to overcome the exposure problem

and to identify what, if any, “complexity problems”issues this might pose for bidders. Finally, a

natural next step would be to extend the analysis to environments with several multi-unit demand

bidders and/or to environments in which items are imperfect substitutes and sold in separate

auction markets. 
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TABLE 1 
 

 
Bidders Values and Equilibrium Predictions 

 

Bidder value ( ) 
 
Sealed Bid Auctions 

 
Clock Auctions 

 
$3.00  
(with 3 computer rivals only) 

 

 

 

If , d1 = $3.00 and d2 ≤ v2.  

If , d1 ∈ [$3.00, max ($3.00, v3)] and  
                   d2 ∈ [0, max ($3.00, v3)]. 

 
$4.00  
(with 3 and 5 computer rivals) 

 
with 3 computers: b1 = b2 = $4.34 
with 5 computers: b1 = b2 = $4.16 

 

If = $4.50, d1 = d2 = $7.50. 

If = $4.50,  d1 = d2 ∈ [$4.50, max ($4.50, v3)]. 

 
$4.40 
(with 3 and 5 computer rivals) 

 
b1 = b2 ≥ $7.50 
(earn two units) 

 

If  $5.70,  d1 = d2 = $7.50. 

If >  $5.70,  d1 = d2 ∈ [$5.70, max ($5.70, v3)] 
 
$5.10 
(with 5 computer rivals only) 

 
b1 = b2 ≥$7.50 
(earn two units) 

 
d1 = d2 = $7.50. 
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Table 2 
Comparing Frequency of Equilibrium Play Under Different Auction Institutions 

(raw data in parentheses) 
 

vh 
 

No. Computers Clock Sealed Bid 

$3.00 3 46.3% 
(111/240) 

2.6% 
(5/189) 

3 23.7% 
(57/240) 

1.6% 
(3/188) 

 
$4.00 

5 22.3% 
(54/240) 

3.1% 
(6/192) 

3 38.8% 
(93/240) 

27.7% 
(52/188) 

 
$4.40 

5 35.8% 
(86/240) 

27.1% 
(52/192) 

$5.10 5 79.2% 
(190/240) 

40.6% 
(78/192) 

 
a.  One subject left before her session ended resulting in fewer than 6 auctions at each vh value for that 
subject. 
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Table 3 
Sealed Bid Auctions:  Random Effect Tobit Estimates of Bid Function 

 
No. of 

Computers 
 95% confidence interval for bids 

vh=$3.00          vh=$4.00      vh=$4.40       
Vh=$5.10 

No. 
Subjects 

No. 
Observations 

b1= 6.19 V3 + 2.08 DV4   + 1.62 
DV440 
      (0.782)**  (0.948)*     (0.989) 

4.65-7.50 6.68-
7.50 

7.50 NA  
 
3 

b2 = 4.19V3 + 1.33 DV4 + 0.67 
DV440 
       (0.491)**  (0.513)**   (0.524) 

3.23-5.16 4.54-
6.50 

5.20-7.18 NA 

 
 

32 

 
 

565 

b1 = 6.99 V4 + 1.04 DV440 + 1.69 
DV510 
       (0.515)**  (0.452)*        
(0.482)** 

NA 5.98-
7.50 

6.99-7.50 7.50  
5 

b2 = 6.09 V4  + 0.70 DV440 + 0.88 
DV510 
      (0.155)**   (0.154)**         
(0.160)** 

NA 5.78-
6.39 

6.48-7.10 7.34-
7.50 

 
32 

 
576 

 
 
 
*   significantly different from 0 at the .05 level, 2-tailed test 
** significantly different from 0 at the .01 level, 2-tailed test 
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TABLE   4 
 
 

    Bid Patterns in Clock Auctions 
   (raw data in parentheses) 

            ν ν2 ≤ h  P* ≥ >ν ν2 h  v2>Max{vh,P+} 

No. 
Computers 

Value Win 2 
Units 

Demand 
Reduction 

Other Win 2 
Units 

Win 0 
Units 

Win 1 
Unit 

Equilibrium Drop Too Soon 
& Win 0 

Drop Too 
Late & Win 0 

Win 1 Win 2 

$3.00 
 

23.7% 
(18/76) 

63.2% 
(48/76) 

13.2% 
(10/76) 

NA NA NA 44.5% 
(73/164) 

13.4% 
(22/164) 

14.6% 
(24/164) 

20.1% 
(33/164) 

7.3% 
(12/164) 

$4.00 
 

33.8% 
(44/130) 

49.2% 
(64/130) 

16.9% 
(22/130) 

25.0% 
(6/24) 

50.0% 
(12/24) 

25.0% 
(6/24) 

8.1% 
(7/86) 

53.5% 
(46/86) 

8.1% 
(7/86) 

17.4% 
(15/86) 

12.2% 
(11/86) 

 
 
 
3 

$4.40 
 

47.0% 
(70/149) 

43.0% 
(64/149) 

10.1% 
(15/149) 

38.0% 
(19/50) 

38.0% 
(19/50) 

24.0% 
(12/50) 

9.8% 
(4/41) 

39.0% 
(16/41) 

4.9% 
(2/41) 

2.4% 
(1/41) 

43.9% 
(18/41) 

             
$4.00 

 
45.2% 
(28/62) 

25.8% 
(16/62) 

29.0% 
(18/62) 

39.1% 
(9/23) 

39.1% 
(9/23) 

21.7% 
(5/23) 

11.0% 
(17/155) 

47.7% 
(74/155) 

14.8% 
(23/155) 

12.9% 
(20/155) 

13.5% 
(21/155) 

$4.40 
 

60.8% 
(45/74) 

25.7% 
(19/74) 

13.5% 
(10/74) 

47.2% 
(34/72) 

31.9% 
(23/72) 

20.8% 
(15/72) 

7.4% 
(7/94) 

38.3% 
(36/94) 

12.8% 
(12/94) 

19.1% 
(18/94) 

22.3% 
(21/94) 

 
 
5 

$5.10 
 

83.3% 
(95/114) 

11.4% 
(13/114) 

5.3% 
(6/114) 

75.4% 
(95/126) 

14.3% 
(18/126) 

10.3% 
(13/126) 

NA NA NA NA NA 

 
NA:  Not applicable 
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Table 5 
Probits Comparing Winning 2 Units in Clock vs Sealed Bid Auctions: vh = $5.10 

 
Variable Model 1 Model 2 
Constant 0.706 

(0.211)** 
0.981 
(0.222)** 

DClock 0.439 
(0.252)+ 

0.458 
(0.255)+ 

DEarly ----- -0.540 
(0.122)** 

Log Likelihood -362.9 -352.8 
No. Observations 792 798 
No. Subjects 72 72 
 
 
+ Significantly different from 0 at the 10% level, 2-tailed test 
 
** Significantly different from 0 at the 1% level, 2-tailed test
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Table 6 
Profits (in dollars) 

(standard errors of mean in parentheses) 
No. 

Computers 
vh value Sealed Bid Auctions 

Actual       Predicted   
Difference 

Clock Auctions 
Actual    Predicted    
Difference 

Difference (actual): 
 Sealed Bid less Clock 

(t-statistics) 
$3.00 -0.60 

(0.214) 
0.35 
(0.056) 

-
0.959** 
(0.187) 

-0.15 
(0.127
) 

0.36 
(0.032) 

-
0.495** 
(0.124) 

-0.45 
(-1.93)+ 

$4.00 0.72 
(0.176) 

0.88 
(0.176) 

-0.168 
(0.111) 

0.73 
(0.120
) 

1.09 
(0.144) 

-
0.365** 
(0.104) 

-0.01 
(-0.02) 3 

$4.40 1.24 
(0.207) 

1.74 
(0.240) 

-
0.497** 
(1.33) 

1.29 
(0.150
) 

2.10 
(0.183) 

-
0.805** 
(0.146) 

-0.05 
(-0.20) 

$4.00 -0.25 
(0.123) 

0.21 
(0.073) 

-
0.459** 
 (0.092) 
   

0.18 
(0.093
) 

0.44 
(0.104) 

-
0.260** 
(0.074) 

-0.43 
(-2.80)** 

$4.40 0.25 
(0.144) 

0.54 
(0.260) 

-
0.286** 
(0.077) 

0.46 
(0.145
) 

0.84 
(0.140) 

-
0.385** 
(0.074) 

-0.21 
(-0.89) 

5 

$5.10 2.03 
(0.263) 

2.69 
(0.149) 

-
0.661** 
(0162) 

2.45 
(0.202
) 

2.93 
(0.138) 

-
0.490** 
(0.129) 

-0.42 
(-1.29) 

 
+ Significantly different from 0 at the 10% level, 2 tailed t-test 
** Significantly different from 0 at the 1% level, 2 tailed t-test 
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TABLE 7 
 

EFFICIENCY 
(standard errors in parentheses) 

 
 

No. 
Computers 

 
vh 

Value 

 
Sealed Bid Auctions 

 
Clock Auctions 

Difference 
(actual): 

Sealed Bid less 
Clock 

(t-statistic) 
  Actual Predicted Difference Actual Predicted Difference  

$3.00 91.9% 
(0.83) 

92.7% 
(0.96) 

-0.8% 
(1.18) 

92.9% 
(0.72) 

93.5% 
(0.56) 

-0.6% 
(0.81) 

-1.00 
(-0.93) 

$4.00 91.9% 
(1.04) 

90.8% 
(0.78) 

1.2% 
(1.17) 

89.0% 
(1.05) 

98.9% 
(0.19) 

-9.8%** 
(1.08) 

2.90 
(1.93)+ 

 
 
3 

$4.40 90.6% 
(1.29) 

99.8% 
(0.08) 

-9.2%** 
(1.29) 

88.4% 
(1.34) 

99.7% 
(0.07) 

-11.4%** 
(1.35) 

2.20 
(1.17) 

         
$4.00 93.8% 

(0.63) 
92.6% 
(0.70) 

1.2% 
(1.00) 

94.0% 
(0.62) 

97.9% 
(0.28) 

-3.9%** 
(0.70) 

-0.20 
(-0.15) 

$4.40 94.0% 
(0.78) 

99.0% 
(0.17) 

-5.0%** 
(0.84) 

93.6% 
(0.80) 

99.2% 
(0.15) 

-5.7%** 
(0.86) 

0.40 
(0.39) 

 
 
5 

$5.10 94.4% 
(1.39) 

100% 
(0.00) 

-5.6%** 
(1.39) 

95.4% 
(1.20) 

100% 
(0.00) 

-6.1%** 
(1.20) 

-1.00 
(-0.52) 

 
** Significantly different from 0 at the 1% level, 2 tailed t-test 
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TABLE 8 
 

Revenue (in dollars) 
(standard error in parentheses) 

 
 

No. 
Computers 

 
vh 

Value 

 
Sealed Bid Auctions 

 
Clock Auctions 

Difference 
(actual):  Sealed 
Bid  less Clock 

(t-statistic) 
  Actual Predicted  Difference Actual Predicted Difference  

$3.00 8.48 
(0.33) 

5.80 
(0.12) 

2.68** 
(0.29) 

7.14 
(0.24) 

5.84 
(0.12) 

1.30** 
(0.24) 

1.34 
(3.38)** 

$4.00 9.33 
(0.24) 

8.42 
(0.09) 

0.91** 
(0.23) 

8.31 
(0.23) 

9.93 
(0.13) 

-1.62** 
(0.24) 

1.02 
(3.01)** 

 
 
3 

$4.40 9.60 
(0.26) 

11.45 
(0.24) 

-1.85** 
(0.30) 

9.23 
(0.31) 

10.81 
(0.18) 

-1.58** 
(0.26) 

0.37 
(0.88) 

         
$4.00 11.10 

(0.17) 
9.01 

(0.12) 
2.08** 
(0.19) 

9.85 
(0.16) 

10.16 
(0.13) 

-0.31 
(0.16) 

1.25 
(5.24)** 

$4.40 11.66 
(0.17) 

12.64 
(0.14) 

-1.00** 
(0.16) 

10.88 
(0.21) 

11.72 
(0.13) 

-0.84** 
(0.19) 

0.78 
(2.78)** 

 
 
5 

$5.10 12.13 
(0.16) 

12.60 
(0.15) 

-0.47** 
(0.15) 

11.78 
(1.27) 

12.37 
(0.14) 

-0.59 
(0.16) 

0.35 
(1.43) 

 
** Significantly different from 0 at the 1% level, 2 tailed t-test. 
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Table 9 
Experienced Bidders: Estimated Bid Functions for Sealed Bid Auctions 

 
Prior Experience  95% confidence interval for bids 

   vh = $3.00     vh = $4.00       vh = 

$4.40      

No. 
Subject

s 

No. 
Observations 

b1= 5.45 V3 + 2.72 DV4   + 1.10 
DV440 
     (0.561)**   (0.696)**   (0.740) 
 

4.35-6.55 7.00-
7.50 

7.50  
 

Sealed  
Bid 

b2 = 4.59 V3 + 1.83 DV4 + 0.72 
DV440 
      (0.374)**   (0.291)**   (0.304)* 

3.85-5.32 5.67-
7.16 

6.38-7.50 

 
 

15 

 
 

270 

b1 = 4.20 V3 + 1.12 DV4 + 0.3.2 
DV440 
      (0.071)**   (0.097)**    (0.097)** 

4.05-4.33 5.17-
5.45 

5.49-5.77  
Clock 

b2 = 3.19 V3  + 1.33 DV4 + 0.33 
DV440 
     (0.092)**    (0.127)**     (0.127)** 

3.01-3.37 4.34-
4.70 

4.67-5.03 

 
18 

 
324 

 
 
 +  significantly different from 0 at the .05 level, 2-tailed test 
*   significantly different from 0 at the .05 level, 2-tailed test 
** significantly different from 0 at the .01 level, 2-tailed test 
 
 
 


