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Abstract: In the literature of psychology and economics it is frequently
observed that individuals tend to conform in their behavior to the behavior
of similar individuals. A fundamental question is whether the outcome of
such behavior can be consistent with self-interest. We propose that this con-
sistency requires the existence of a Nash or approximate Nash equilibrium
that induces a partition of the player set into relatively few societies, each
consisting of similar individuals playing the same or similar strategies. In
this paper we introduce a notion of a society and characterize a family of
games admitting the existence of such an equilibrium. We also introduce the
concept of ‘crowding types’ into our description of players and distinguish
between the crowding type of a player — those characteristics of a player that
have direct effects on others— and his tastes, taken to directly affect only that
player. With the assumptions of ‘within crowding type anonymity’ and ‘lin-
earity of taste-types’ we show that the number of groups can be uniformly
bounded.

1 Behavioral conformity

Individuals belonging to the same society typically have commonalities of
language, social and behavioral norms, and customs. A fundamental ques-
tion is whether behavioral conformity can be consistent with self-interested
behavior. From the perspective of game theory, we propose that this con-
sistency requires the existence of a Nash equilibrium or an approximate
Nash equilibrium that induces a partition of players into societies where all
individuals within the same society are similar and play the same or sim-
ilar strategies and where most or all societies are nontrivial in size. The
Nash equilibrium captures a notion of self-interested behavior while the ex-
istence of large societies facilitates conformity within societies. In this paper
we introduce a notion of a society consisting of similar individuals and de-
scribe a family of games where an equilibrium with the desired properties
exists. Two conformity results are established, one for approximate Nash
equilibrium and another, with stronger conditions on the model, for exact
equilibrium.

To address the question of whether conformity can be individually ra-
tional we introduce a structure generating games with the property that,
if there are many players, for most players there are many similar players.
It may seem intuitive that continuity properties, ensuring that players who
have similar attributes are similar, would lead to the existence of Nash equi-



librium where all players who are similar players choose similar or the same
strategies. In fact, in general this is false. (See also Example 1.) To obtain
behavioral conformity within societies, these must be carefully defined; in
particular, players on the ‘boundaries’ of a society need not conform to the
behavior of members of that society. Further, since it is difficult to motivate
the use of mixed strategies if players imitate or conform, we require that all
players belonging to a society to play the same pure strategy.

To obtain our results, we make two assumptions. The first ensures
that players with similar attributes are indeed similar as players in induced
games. The second ensures that the strategy choices of individual play-
ers have near-negligible impacts on other players. Our main result can be
summarized:

Conformity: Given any ¢ > 0 there are integers 7(c) and A(e) such that
any game with at least n(e) players has a Nash e-equilibrium in pure strate-
gies that induces a partition of the population into at most A(g) societies.

Note that the bound on the number of societies A is independent of the
size of the population. Thus, if there are ‘many’ players then most societies
must be large. Moreover, the smaller the number of societies, the greater
the possible difference between players in the same society and the stronger
the conformity. Generally, however, the bound A is not independent of ¢.
With an additional assumption, we also demonstrate:

Uniform boundedness of the number of societies: With ‘linearity in
taste types,” the bound on the number of societies A is independent of e.

We proceed as follows: Section 2 introduces notation and definitions. In
Section 3 we treat conformity beginning with some simple examples before
providing our two main results and a discussion on normative influence. In
Section 4 we conclude and an Appendix contains remaining proofs.

2 Notation and definitions

A game T is given by a triple (N, S, {u;}icn) consisting of a finite player
set N, a finite set of K pure strategies S = {s1,..., Sk}, and a set of payoff
functions {u;}ien. A pure strategy vector for game I' is given by m =
(ml, ...,m|N|) where m; € S denotes the pure strategy of player i. The set
of pure strategy vectors is given by SY. We note that for each i € N the
payoff function u; maps SY into the real line.



Let 2 be a compact metric space, called an attribute space, let S be a
finite set of strategies, and let W be the set of all mappings from ) x S into
R, with finite support, that is, w € W takes on nonzero values for at most
a finite number of points in its domain.! A member of W is called a weight
function. A non-cooperative pregame is a triple G = (€2, S, h) consisting of an
attribute space 2, a set of pure strategies S and a function h : QX SXW —
R, . As we formalize below, the function h determines a payoff function for
each player in any game induced by a pregame; the payoff to a player depends
on the attributes of that player, his strategy choice, and the weight function
induced by the strategy choices of the other players.

Take as given a pregame G = (€, S,h). Let N = {1,...,|N|} be a finite
set and let o be a mapping from N to §2, called an attribute function. The
pair (V,a) is a population. In interpretation, N will be a set of players
and « provides a description of the players in terms of their attributes. A
pure strategy vector for the population (N,«) is given by a vector m =
(ml, vy m|N|) where m; € S ascribes a pure strategy to ¢ € N.

Given a population (N, ) and a pure strategy vector m € SV we say
that weight function wq ., € W is relative to m if,

Wa,m(w, sk) = [{t € N : (i) = w and m; = s }|

for all s € S and all w € Q. Thus, wam(w,si) denotes the number of
players with attribute w who play strategy sx. An induced game T'(N,«)
can now be defined:

F(N,Oé) = (Na Sa {uza : SN - R+}i€N)

where

def
u?(m) = h(wamiawa,m)

for all w € a(N) and m. We note that players who are ascribed the same
attribute have the same payoff function.

Other than finiteness of the strategy set, a pregame need not imply any
assumptions on the induced games. A pregame, however, provides a useful
framework in which (a) to treat a family of games all induced from a common
strategic situation as given by the attribute space {2 and pure strategy set .S,
and (b) to be able, relatively simply, to impose assumptions on that family
of games through the function h. We demonstrate this later point in Section
3.

"Where Ry denotes the non-negative real numbers.




We will assume throughout that players play pure strategies. We invoke,
however, the standard von Neumann Morgenstern assumptions with regard
to expected utility of (mixed) strategies. The standard definition of a Nash
equilibrium applies. Given € > 0, a strategy vector m is a Nash e-equilibrium
in pure strategies or, informally, an approzimate Nash equilibrium in pure
strategies, only if

i (mi, m—;) 2 ugt(sg,m—;) — € (1)

for all i € N and s; € S.

2.1 Societies

Throughout we assume, for convenience, a particular form of attribute space.
Let C = {1,2,...,C} be a finite set of crowding types.>. We assume that Q
is given by C x [0,1]F" for some finite integer FF > 1.3 We will typically
denote an attribute by w = (c,t) where ¢ € C and t € [0,1]F. We use
the metric on  whereby the distance between two attributes w = (c,t)
and w’ = (¢,t') is 2 if ¢ # ¢ and equals the maxy ‘tf - t}‘ otherwise. In
interpretation, therefore, two players ¢ and j with the same crowding type
are always seen as ‘more similar’ than two players with different crowding
types. The attribute space will be treated in more detail in Section 3.3 and
3.4.

Given an attribute function o we define function 7 : N — [0,1]F by
7(7) =t if and only if a(i) = (¢, t) for some c. Thus, 7 is the projection of
a onto [0,1]F. Given a set A we denote by con(A) the convex hull of A and
by int(A) the interior of A.

A society: Given population (N, «) and strategy vector m a set of players
D C N is a society (relative to a and m) if, for some crowding type ¢ the
following three conditions are satisfied:

1. for all players ¢, € D, m; = m; (all players in D choose the same
pure strategy),

2. for every player i € D, a(i) = (c,t) for some ¢ (all players in D have
crowding type c),

*The term ‘crowding type’ is taken from Conley and Wooders (2001) and their ear-
lier papers. Crowding types are described further in the next section, where they play a
significant role.

3This appears more than general enough to cover many potential applications. Results
for a more general form of attribute space are obtained by Wooders, Cartwright and Selten
(2001).



3. for any player i € N, if a(i) = (c,t) and t € int(con(r(D)) then ¢ € D.

We say that a pure strategy vector m induces a partition of the population
(N, ) into a set of societies S = { N1, ..., Ng} if each player ¢ € N belongs
to a unique society N, € S and if each society N, € S is relative to o and m.
Note that if m induces a partition of the population (N, «) into @ societies
then there exists a partition of [0,1]F into Q convex subsets {Tq}fz1 such
that, for any two players ¢,j € N and any Ty, if (i) = (¢, 1), a(j) = (¢, t)
and 7(i), 7(j) € int(T;) then m; = m;.

The definition of a society captures two key features. First, players in
the same society play the same strategy; this is clearly motivated by the
observation that ‘social conformity’ may lead to common behavior. Second,
players in the same society have similar attributes; this is motivated by
the observation that a player may only conform to those with whom he
identifies. The second feature is captured by the requirement that all players
in a society have the same crowding type and that all members of a society
have attributes in the same convex subset of attribute space. Note also
that there may well be ‘marginal players’, individuals with taste attributes
on the boundary of those for some society and who play the same or a
different strategy than the society members. Allowing such marginal players
is essential for our conformity results,

We note that any strategy vector induces a partition of a population
(N, a) into | N| societies where each society consists of one player.* A crucial
aspect of our main results will thus be to bound the number of societies
independently of the size of the player set. In games with many players,
this will ensure that some societies contain many players. We treat other
implications of the definition of a society after stating our main result in
Section 3.3.

3 Conformity

Before introducing our results we provide two simple examples to show why
an equilibrium with the desired properties may not exist.

Example 1: Players have to choose between two locations A and B. The
attribute space is given by {X, P} where a player with crowding type X is
a celebrity and a player with crowding type P an ‘ordinary’ member of the

YThat a society could have just one member is not unreasonable as this may represent
a player who chooses not to conform to the actions of similar players (Bernheim 1994).



public. We suppose that there is only one celebrity. Members of the public
like living in the same location as the celebrity. Thus, the payoff of a player
with attribute P is equal to 1 if he matches the choice of the celebrity and
0 otherwise. The celebrity, in contrast, prefers to avoid the public and thus
his payoff is equal to the proportion of members of the public whose choice
of location he mismatches. In any Nash equilibrium the celebrity must have
probability 1/2 of living in both locations. Thus, arbitrarily large games
induced from this pregame need not have an approximate Nash equilibrium
in pure strategies consistent with conformity since there may not exist an
approximate Nash equilibrium in pure strategies.¢

Example 1 illustrates that some conditions will be required to guarantee
the existence of an approximate Nash equilibrium in pure strategies. Our
second example demonstrates that even if there exists an approximate Nash
equilibrium in pure strategies there need not exist one that is consistent
with conformity.

Example 2: Players choose between locations A and B. The attribute
space is [0, 1]. A player’s attribute determines whether he prefers location A
or B. Whether a player prefers A or B can, however, be seen as essentially
a random event. More formally, assume that if a player has attribute w
where w is a rational number then he is assigned a payoff of 1 for choosing
A and 0 for choosing B. If a player has attribute w where w is an irrational
number then he is assigned a payoff of 1 for choosing B and 0 for choosing A.
Games induced from this pregame clearly have a Nash equilibrium in pure
strategies. For arbitrarily large games, however, it is clear that no bound
can be put on the number of societies that a Nash equilibrium would induce.
For example, in a game where alternate players (in terms of the size of their
attribute) have rational and irrational attributes the number of societies is
as large as the player set.¢

Example 2 illustrates that some continuity assumption on attributes is
necessary. In particular, we require that players with close attributes are
similar. It would appear that a simple redefinition of an attribute would
solve the observed problem with conformity in Example 2; for example, we
could state that there are two attributes to represent those who like location
A and those who like location B. Note, however, that the attribute w may
signify an observable characteristic of a player that is irrelevant in terms of
his payoff but does influence whether or not other players will identify with
him; for example, w may represent age and a player conforms to those with



a similar age to himself. This suggests that conformity on the basis of w may
be observed, implying that [0, 1] is a relevant attribute space to consider.
3.1 Large games

To derive our main result we make two assumptions on pregames - continuity
wn attributes and global interaction. We introduce each in turn.

Continuity in Attributes: The pregame G = (12, .5, h) satisfies continuity
in attributes if for any € > 0 there exists a real number d.(¢) > 0 such that,
for any two games I'(V, ) and I'(N, @), if for all 4 € N it holds that

dist(a(i),@(i)) < 0.(¢)
then for any j € N and for any pure strategy vector m,

!uja(m)— Ja( )|<6

Continuity in attributes dictates that, given strategy choices, if the at-
tribute function changes only slightly, then payoffs change only slightly. Note
that Example 2 does not satisfy continuity in attributes.

To define global interaction we introduce a metric p, on pure strategy
vectors for a given game I'(V,«). Consider two arbitrary pure strategy
vectors m, s € SV and denote by w,, and ws the respective induced weight
functions. Define p, by

pa(m, s) < |N| Z Z | Wi (w, sg) — ws(w, sg)| -
spES wea(N)

Thus, pure strategy vectors m and s are seen as ‘close’ if the proportion of
players with each attribute playing each strategy is approximately the same.

Global Interaction: The pregame G = (€2, S, h) satisfies global interaction
when for any € > 0 there exists a real number d4(¢) > 0 such that, for any
game I'(NV, ) and any two pure strategy vectors m and s, if

pa(m7 8) < 59(5)
then for any j € N where m; = s;

|ug (m) —uf(s)| <e. (2)

8



The assumption of global interaction states that a player is nearly indif-
ferent to small changes in the proportion, relative to the total population, of
players of each attribute playing each strategy. ° Thus, the actions of any
one player have little influence on the payoffs of others. We note that the
pregame of Example 1 does not satisfy global interaction; when the number
of ordinary people becomes large a change in the strategy of the celebrity
has almost no effect on the metric p,(m, s) but may have a large effect on
the utility of ordinary people.

The pregame G = (2,5, h) is said to satisfy the large game property if
it satisfies both continuity in attributes and global interaction. The large
game property implies a form of continuity of h with respect to changes
in the weight function and attribute. Indeed, to summarize: continuity in
attributes is a bound on the payoff difference when the attributes of players
change but their strategies do not. By contrast, global interaction is a
bound on the payoff difference when the strategies of players change but
their attributes do not. The pregame of Example 1, for instance, satisfies
continuity in attributes but not global interaction. The pregame of Example
2, by contrast, satisfies global interaction but not continuity in attributes.

3.2 Purification

The following result demonstrates that in sufficiently large games induced
from a pregame satisfying the large game property there exists an approxi-
mate Nash equilibrium in pure strategies. This result is most easily obtained
using a purification theorem due to Kalai (2000).°

Theorem 1: Consider a pregame G = (€2, S, h) that satisfies the large game
property. Given any real number £ > 0 there exists a real number 7(e) such
that for any population (N, «) where |[N| > n(e) the induced game I'(N, «)
has a Nash e-equilibrium in pure strategies.”

®With somewhat more restrictions on the model, the conditions of global interaction
and continuity in attributes could be merged into one continuity condition. We prefer not
to do this since we see global interaction as an important feature of the model. Also, the
assumption of global interaction was motivated by assumptions on cooperative pregames
that small groups of players have negligible impacts on large populations (cf., Wooders
1994a,b).

8The purification result of Kalai (2000) is sufficient for the purposes of the current
paper. A general purification theorem, with countable action and type sets is presented
in Cartwright and Wooders (2003b). Seminal results on purification by large numbers of
players (an atomless continuum) appear in Schmeidler (1973) and Mas-Colell (1984). See
Khan and Sun (2002) for a recent survey.

Tt can easily be verified that 5(¢) is a function of &, K, d4(¢) and 6.(g). Further, 5(e)



Proof: Suppose not. Then there exists an € > 0 and, for every integer
v, a game ['(NY, ") such that |[N”| > v and game I'(N”, ") has no Nash
g-equilibrium. Let § = d, (%) be the real number implied by continuity in
attributes for a payoff bound of 5. Partition (2 into a finite number of subsets
4, ...,Qq each of diameter less than §. For each €, pick a point w, € ).
For each v consider a population (N, a") satisfying, for all ¢ € N”, the
property that @ (i) = w, if and only if o(i) € ;. We note that, by the
well known Nash existence theorem, each I'(N”, @) has a Nash equilibrium.
Consider the set of games G = {I'(N”, @) },. Given that the set of attributes
for G is finite, G is a subset of a family of semi-anonymous Bayesian games
as defined by Kalai (2000). From this, global interaction and the existence
of Nash equilibrium, Theorem 1 of Kalai (2000) implies there exists v* such
that any game I'(N”,@”) where v > v* has a Nash £-equilibrium in pure
strategies m”. By continuity in attributes and the choice of ¢

s (s, ) — (s, m¥)| < o
for all s;; € S. Thus, for v > v*, m” is a Nash e-equilibrium in pure strategies
of game I'(N”,o”).1

3.3 Main Result

Theorem 2 demonstrates that in sufficiently large games there exists an ap-
proximate Nash equilibrium in pure strategies that partitions the population
into a bounded number of societies. A fundamental aspect of Theorem 2 is
that the bound is independent of population size. Note that the smaller is
the bound the more dissimilar players in the same society may be. Theorem
2 is proved in an appendix.

Theorem 2: Let G = (2, 5, h) be a pregame satisfying the large game prop-
erty. Given any real number ¢ > 0 there exists real number 7n(¢) and integer
A(e) such that for any population (N, @) where |N| > 7(e) the induced game
I'(V, &) has a Nash e-equilibrium in pure strategies that induces a partition
of the population (IV, ) into Q < A(e)K societies.®

is non-increasing in €, d4(e) and d.(g). This is also the case for the population bound in
Theorems 2 and 3.

8In fact a somewhat stronger result can be obtained: for any population (N, ) where
IN| > n(e) and for any Nash equilibrium o of the induced game I'(N, ), there exists
a Nash e-equilibrium in pure strategies m where o and m ‘are close’ and m induces a
partition of the population (N, «) into @ < A(e)K societies.

10



Theorem 2 suggests that in sufficiently large games conformity can be indi-
vidually rational. We highlight that the result applies to games in which all
players have different attributes.

Note how the definitions of a society and of a partition of the population
into societies leaves open the possibility that two players ¢, € N with
the same attributes could belong to different societies and play different
strategies. A result such as Theorem 2 cannot be obtained unless this is
permitted.” To see this, consider a game I'(IV, &) where all players have the
same attribute and any Nash equilibrium has the property that a positive
fraction of the players choose one strategy and a positive fraction choose
another strategy.

Another important feature of Theorem 2 is the convexity aspect of so-
cieties. For some attribute spaces, for example, Q@ = C x [0, 1], Theorem 2
implies the existence of an approximate Nash equilibria in pure strategies
with the property that most players are playing the same strategy as their
nearest neighbors in attribute space. This, however, is a special case; see
Wooders, Cartwright and Selten (2001) for further discussion.

3.4 Bounding the number of societies independently of ¢

In some cases it is possible to bound the number of societies independently
of e. We provide one such example.

For simplicity we shall assume that F' = 1 and the attribute space is
thus © = C x [0, 1]. Further, we shall assume that if a player has attribute
(¢, t) the value ¢ characterizes his external influence on others - his crowding
type - while t characterizes his payoff function - his taste type. We think of
the crowding type of a player as such characteristics as gender, educational
level, height, ability to salsa, and so on, that are observable to other players
and may have direct effects on them. In contrast, we think of a player’s
taste type as of direct relevance only to himself, for example, whether he
enjoys school or whether he likes to dance.

Two assumptions on crowding and taste types encapsulate these ideas.
The first assumption, within type anonymity, implies that two players of the
same crowding type, playing the same strategy, have the same influence on

9Wooders, Cartwright and Selten (2001) obtain a complementary result to Theorem 1
in which players with the same attribute do belong to the same society. This is possible
by treating populations in which the number of players of any one attribute is bounded.
Similarly the literature on non-atomic games demonstrates the existence of a symmetric
Nash equilibrium in pure strategies in games with a continuum of players if the distribution
of players over attributes is atomless (see Pascoa 1993).
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the payoffs of others.

Within (crowding) type anonymity: Pregame G = (Q,S,h) satisfies
within type anonymity when for any induced game I'(V, &) and for any two
pure strategy vectors m and s if

Z Wi (w, sk) = Z ws(w, sk)

w:w=(c,") w:w=(c,")
for all ¢ € C then for any i € N where m; = s;
s (mi,m—;) = ui' (8, 5—i).

That is, if any two strategy vectors have the property that, from the per-
spective of player i, the weight functions induced by these strategy vectors
assign the same weight to each strategy chosen by players of each crowding
type, then player i is indifferent between the two situations.

Our second assumption is in the nature of Grandmont’s (1978) ‘inter-
mediate preferences.” An explanation follows the definition.

Linearity in taste types: Pregame G = (0,5, h) satisfies linearity in
taste types if there exists a function y : C x S x W — R and a function
xz:C xS xW — R such that for any induced game I'(N, «) and any pure
strategy vector m the payoff of player i € N where (i) = (c,t) is given by

ud (mg, m—;) = y(c,mi, wi) +t - z(c, M, W,).

We recall that a player’s taste type is determined by ¢ € [0,1]. All else
equal, if a player’s taste type is a convex combination of the taste types of
two other players (and all three players have the same crowding type), then
his payoff is the same convex combination of the payoffs of the other two
players. Intuitively, we could think of there being a ‘representative player’
for each crowding type with, say, taste type 0.5. The payoff of a player with
taste type t can then be thought of as a linear function of how much his
taste type differs from that of the representative for his crowding type.

In Section 3.5 we consider a pregame that satisfies within type anonymity
and linearity in taste types. Our second main result, Theorem 3, places a
bound that is independent of € on the number of societies. For simplicity
we state and prove Theorem 3 for K = 2 and F' = 1; in two footnotes in the
proof we indicate how these two restrictions can be relaxed.

12



Theorem 3: Let G = (2, 5,h) be a pregame satisfying the large game
property, within type anonymity and linearity in taste types. Let K = 2
and F' = 1. Given any real number € > 0 there exists real number 7(¢) such
that for any population (N, «) where |[N| > n(e) the induced game I'(N, «)
has a Nash e-equilibrium in pure strategies that induces a partition of the
population (N, «a) into @ < 2C societies.

Proof: By Theorem 1 for any sufficiently large population (N, «) the in-
duced game I'(N, «) has a Nash e-equilibrium in pure strategies m*. Let M
denote the set of pure strategy vectors such that m € M if and only if m is
a Nash e-equilibrium and

Z Wi (W, 8) = Z Wi (W, S)

wiw=(c,") ww=(c,")

for all ¢ and s;. We note that m* € M and so M is non-empty.

Consider a pure strategy vector m € M. For each ¢ and s, let T, C [0, 1]
be such that ¢t € T, if and only if there exists a player ¢ € N satisfying
a(i) = (¢, t) and m; = si. Let X C N be such that j € X if and only
if a(j) = (c,t) where t € int(con(T.x)) and m; # sp.1Y Let X = U Xk
If | X| = 0 then m induces a partition of the population into 2C' societies.
Suppose | X| > 0. We will construct from m a pure strategy vector m’ € M
that diminishes | X| by one. Iterating this argument one obtains an m € M
giving | X| = 0 thus proving the result.

Given that | X| > 0, we can select a nonempty set X for some ¢ and
s and a player j € Xo. Thus, a(j) = (¢,t) and t € int(con(T)) yet
mj # Si. Assume that m; = sp. Let Ay C N be such that i € Ay
where (i) = (¢,t) if and only if m; = s; and ¢ belongs to the boundary
of con(T. ).11 For each i € A let m! be the pure strategy vector with
the properties that m! = ST, mg = s and m{ = my for all other [ € N;
thus players ¢ and j have ‘exchanged’ pure strategies. We conjecture (¥*)
that for some i* € A, the pure strategy vector m! is a Nash e-equilibrium.
Provided this conjecture holds, given that ¢* belongs to the boundary of
con(T,;,) and K = 2 the value of | X| is one less for m®" then for m.'?

Note that X., may be the empty set. For example, if every player of crowding type
c has the same taste type t then X.; will be empty for all sg.

"' There must be some such player since the convex hull int(con(T.)) is determined by
players in Acx and int(con(Tex)) # .

12If K = 2 and F > 1 then this argument no longer suffices. Further ‘exchanges’ of
strategies may be necessary to reduce |X| by one.
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To prove the conjecture (*) observe that within type anonymity and
linearity in taste types implies that for some 31, Bg; ..., 84, [where 1 >

Bi =z 0and 3 f5; =1]

u

G(z,m_j) = Zﬁu (z,m";)

1€EA

for all z € S. Given that m is a Nash e-equilibrium
ug (s, m—j) > ug(sg,m—j) — €.

. . . S5k
Thus, there exists some i* € A, and corresponding m® where'?

sk o*

(mz—z 7m ) > u;?i (Sk,

sk

m ) — €. (3a)

(0%
Uy

It is clear, by within type anonymity, that
uf(mj,mZ}) > uft(z,m5) — ¢

for all z € S and [l € N, [ # i*,j. It thus remains to consider player j.
Let I € Ay and | # ¢*. Within type anonymity and linearity of taste types
implies that

i€ Ay \i*

for all z € S. Thus,

3

uj(mj,m ) > uf(sp,ml;) —¢

y* . e .
and m® is a Nash e-equilibrium.H

4 Conclusions

If individuals tend to conform and to be influenced by the actions of others
then this poses a challenge to the individual rationality assumption of game
theory. This challenge leads us to question the possible existence of an
approximate Nash equilibrium consistent with conformity. In this paper we

131f K > 2, while this inequality holds, it would no longer be sufficient to demonstrate
that playing miji* is an e-best response for player ¢*. In particular, if z is a third strategy
then we may have, uf (m’jl* , miji*) < uk(z, miji*) — ¢. For the case of K = 3 this can
be overcome by commencing with a Nash £-equilibrium.
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introduce a notion of societies that allows us to demonstrate the existence
of such an equilibrium in games with many players.

Issues that still remain include: (i). We only demonstrate the existence
of an approximate Nash equilibrium with conformity; we do not address
directly, the question of whether players actually learn to play that equilib-
rium. This is discussed by Cartwright (2003) where sufficient conditions are
provided under which play will indeed converge to the desired equilibrium.
(ii). Conformity in mixed strategy equilibrium is not treated. To treat con-
formity in mixed strategies may seem unmotivated given our insistence on
pure strategy equilibria. Note, however, that while it may seem unnatural
that a player would use a mixed strategy it need not be unnatural that a
society would ‘play a mixed strategy’. In Cartwright and Wooders (2003a)
we consider this possibility by formulating conformity in terms of mixed
strategies and incomplete information.

5 Appendix

Lemma 1: Let G = (2,5, h) be a pregame satisfying the large game prop-
erty. For any induced game I'(V, «), for any partition of  into a finite
number of subsets €1y, ..., 24, each of diameter less than J. (%) , and for any
two pure strategy vectors m and m where

Z Wa,m (W, Sg) = Z Wam (W, k), (4)

wGQa wEQa

if m is a Nash £-equilibrium in pure strategies then m is a Nash e-equilibrium
in pure strategies.'*

Proof: Given an induced game (N, «) and two pure strategy vectors m
and m satisfying (4), it is immediate that there exists a one-to-one mapping
R(7) : N — N such that,

m; = MR() (5)

for all i € N and,

dist(a(i), a(R(i))) < Je (%) . (6)

Informally, we can treat equivalently: (a) player ¢ having attribute w = /(%)
and playing strategy mp(;) and (b) player R(i) playing strategy mp(;) and

MWhere 6. (%) is the real number implied by continuity in attributes for a payoff bound
of £.
3
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having attribute w = (). Thus, consider the population (N, @) where,

a(R(i)) = a(i) (7)

for all ¢ € N. Our method of proof is to (i) demonstrate that m is a Nash
e-equilibrium in pure strategies of game I'(IV, @) before (ii) demonstrating
how this implies that 72 is a Nash e-equilibrium in pure strategies of game
I'(N, ).

The assumption of continuity in attributes and (6) implies,

o (s ms) = o (s )| < ®)

for all s, € S and all ¢ € N. Given that m is a Nash g-equilibrium in pure
strategies for I'(NV, a) it follows that

ust (mi,m—;) > ui(sk, m—;) —

Wl M

The above two inequalities yield

F(sk,m—i) = F (9)

for all i € N and s; € S. Thus, m is a Nash e-equilibrium in pure strategies
of game I'( N, @).
By (5) and (7)

(@(R(i)), mpgy) = (i), mp@) = (i), ;) (10)
for all 7 € N. It follows that
Wiy (Sks M_p(y) = U (sk, M) (11)

for all i € N and all s € S. It is immediate from (9) and (11) that 7 is a
Nash e-equilibrium in pure strategies of game I'(NV, o).l

We recall that Q = {1,2,...,C} x [0, 1] for some finite integers C' and F.
We make use of a lexicographic ordering on elements of [0,1]". Formally,
we define the binary relations <j and =p, as follows: Take any two points
t = (t1,..ytp), 7 = (71,...,7r) € [0,1]F. We say that t =, 7 if and only if
tr =7y forall f=1,...F. Wesay that t <;, 7 if either:
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2. j;ft; = > ;7 and for some f* we have ty« < 7y« and ty = 7 for all
< f*.

We say that t <j, 7 if either t <y 7 or t =, 7.

Lemma 2: Given any two finite sets of points Q; = {t!,...,t/} and Qg =
{71, .., 79} (where t',....t7, 71, ..., 79 € [0,1)F) if t/ <y 7 for all j and ¢
then the interior of the convex hulls of 27 and Qg are either distinct or both
empty.

Proof: Suppose the claim is false. Then there exists a point w € € such
that w € I(Co(€2y)) and w € I(Co(f2g)). Thus, for non-negative numbers

Y159V J and Bl"“?/BQ
264227121 (12)
q J
and, for each f=1,..., F,
wp =D ity = > BaTh (13)
J q

This implies that

Dot =20 B2 (14)
7 7

J q

By assumption, for each ¢/ € Q; and t¢ € (lg it holds that th?c <
Zf t‘]{. Suppose, for some t € Qy and 77 € Qq, that zftgc < ZfT?
Given (14) it must be that either y7 =0 or Sz = 0. Let Q7 denote the set
of tJ € Q1 given positive weight 7; > 0 and Qa the‘ set of all 79 € Qg given
positive weight 8, > 0. It is immediate that 3¢} = >°, 7% for each ¢/ €
QJJr and 77 € ng

If QJJr = Qg then we easily obtain the desired contradiction. When QJJr =

ng and for each element ¢/ in QJJr it holds that #/ <; t? then the sets must
each contain only one element and, in this case, the interiors of the convex
hulls are both empty.

Let QF+ = Qj\Qa and Q5+ = Q(:S\Q}’ Eitherl Qi or QC'S+ is non-
empty. Suppose that Q}LJF is non-empty. For every tJ € Qj+ and 77 € Q(S
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there is some f* € {1,...,F — 1} for which #. < 7. and tjc = 75 for all
f < f*. Take the minimum of these f* over all points t/ € Q}* and 77 €
Qa By choice of f* it holds that t/,, < T‘]Zu for all j € Qj and q € Qa and

. < T?* for some j € Q7 and § € Qf. This must contradict either (12)

or (13). The case where QC'S+ is non-empty can be treated in an analogous
manner.Hll

Proof of Theorem 2: Consider some € > 0 and set § = . (5431) > 0, where
Oc (‘%) is the real number implied by continuity in attributes for a payoff
bound of £. Use compactness of {2 to write {2 as the disjoint union of a finite
number A of conver non-empty subsets €11, ..., Q4, each of diameter less than
5.1 We claim that A satisfies the conditions required by the Theorem. By
Theorem 1 there exists real number 7 (§) such that every game I'(N,a)
satisfying |N| > n (%) has a Nash £ equilibrium in pure strategies.

Let I'(N, @) be any game where |[N| > 7 (%) and let m denote a Nash
< equilibrium in pure strategies. Consider a change of pure strategy vector

from m to m where m satisfies:

1. for all ©, and s; € S,

Z wa,m(w73k> = Z wa,m(wysk)a

wEQa wEQa

2. for any 4,j € N where a(i),a(j) € Q, for some a, if m; = s and
m; = sz where k < k then a(i) < a(j).

Given that the finite set of points a(N) is well ordered, it is always possible
to construct such a pure strategy vector m by a simple ‘reassignment’ of pure
strategies. Given the choice of J and that m is a Nash £-equilibrium in pure
strategies it is immediate from Lemma 1 that 7 is a Nash e-equilibrium in
pure strategies. By applying Lemma 2 and recalling that each €, is convex
it is clear that m is a Nash e-equilibrium in pure strategies that induces a

partition of the population into at most AK societies.ll
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