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Abstract

This article reports the results of an individual choice experiment designed to test the Nash equ
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1. Introduction

This article reports the results of an individual choice experiment designed to test the
equilibrium predictions of the first-price sealed-bid auction (hereafter FPA). The design
experiment involves a repeated setting with three different feedback information treatmen
experimental data reveal that subjects adjust their bids in response to the received feed
formation, and these adjustments are more frequent when information feedback is clear i
of foregone payoff than when it is ambiguous. We observe that subjects submit relatively
bids when their feedback information is clear after losing and ambiguous after winning
when they face either clear feedback information or ambiguous feedback information i
experience conditions. In particular, we observe overbidding relative to the risk neutra
equilibrium of FPA in the former treatment and underbidding in the latter treatments, re
ively. Since the commonly applied theories of Nash equilibrium bidding concern the on
game they do not assume adjustment dynamics and fail to predict the treatment effect
serve. Therefore, we must reject them as descriptive bidding theories for the repeated g
the basis of our experimental data. We propose impulse balance theory (Selten, 2004; S
al., 2005; Ockenfels and Selten, 2005) as an alternative, boundedly rational equilibrium c

Impulse balance theory accounts for the feedback information conditions in the re
game, and thus yields different point predictions for different feedback conditions. In p
ple, impulse balance theory weighs the foregone payoff upon losing against the foregone
upon winning. The impulse balance point in our experiment is the bid at which the proba
weighted foregone payoffs from losing and winning equalize. The theory is based on le
direction theory (Selten and Stoecker, 1986; Selten and Buchta, 1994) which is a qua
learning theory. Learning direction theory has been supported by experimental data on a
(Selten and Buchta, 1994; Kagel and Levin, 1999; Selten et al., 2005; Ockenfels and
2005) and on many other repeated experimental settings (for a review, see Selten, 2004
experiments, the bidding dynamics of 92 percent of all subjects agree with the behavioral p
proposed by learning direction theory.

In contrast to impulse balance theory, the standard approach to the FPA assumes tha
ders maximize utility. Vickrey (1961) showed the existence of a symmetric risk neutral
equilibrium (hereafter RNNE). The RNNE maximizes expected payoff if and only if all bid
have identical subjective probabilities and identical strategies.1 The RNNE was first challenge
by Coppinger et al. (1980) who conducted an experiment, in which subjects interacted
edly with each other in experimental auction markets. Their main result with respect to th
was that winning bids exceeded significantly the RNNE prediction.2 Overbidding relative to the
RNNE prediction has been reported thereafter from several FPA experiments (for a revie
Kagel, 1995). In order to provide an explanation for the observed overbidding, Cox et al. (1
1982b, 1983a, 1983b, 1984, 1985a, 1985b, 1987, 1988) developed the constant relative r
sion model (hereafter CRRAM) that generalizes Vickrey’s model as it allows for heteroge
of bidders. In the CRRAM, bidders maximize expected utility subject to their subjective p
bilities about the competitors’ bids. The CRRAM did not only find supporters but rather di

1 Unilateral application of the RNNE must not be profitable as revealed by a tournament of bidding strategies
sequential FPA (Neugebauer, 2004). In the tournament, the RNNE strategy underperforms a market that is com
strategies submitted by experimental subjects.

2 Subjects participated three times in ten auctions. In each auction they received a resale value drawn from
uniform distribution and at the end of every auction the winning bid was revealed.
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the experimental community. The most famous argument goes back to Harrison (1989
criticized the methodology of Cox et al. According to Harrison’s opinion, the foregone exp
payoffs of subjects were more important than the deviation of the bids from the equilibrium
in the data there were only very small incentives in terms of foregone expected payoff. T
gument provoked a polemic discussion among experimental economists (Friedman, 1992
and Roth, 1992; Cox et al., 1992; Merlo and Schotter, 1992; Harrison, 1992).3 Although there
was some agreement that investigating individual behavior with respect to the ‘payoff spac
not more important than with respect to the ‘message space’ (Cox et al., 1992; Friedman
Kagel and Roth, 1992; Harrison, 1992), doubts remained whether the CRRAM actually ca
a reliable explanation for the observed overbidding.4

The experimental results presented in this article suggest that the overbidding in FPA
iments may be fostered by the commonly applied feedback information conditions that
the winning bid only. This would be in line with other experimental results on FPA in which
ferent feedback conditions are applied (Isaac and Walker, 1985; Dufwenberg and Gneezy
Ockenfels and Selten, 2005; Neugebauer and Perote, 2005). In fact, our data do not warr
a general statement, as our experiment does not describe the auction market in all its
We transform the original FPA-problem from a game ofN human opponents and Nature to
game of one human bidder against Nature. Subjects face a repeated setting with a con
sale value and invariable objective probabilities about the bidding behavior of the others.
N − 1 computer-simulated competitors bid ‘as if’ risk neutral the Nash equilibrium predic
in our environment are straight-forward. The CRRAM requests a degenerate bid that max
expected utility in all repetitions, and the RNNE bid maximizes expected payoff.5 Hence, our
environment makes a meaningful test of bidding theories possible, but this control may
with a loss of generality. The bidding dynamics can be different when subjects interact wit
other than when they interact with Nash robots.6

The article is organized as follows. The following, second section presents the theo
Nash equilibrium models, the RNNE and the CRRAM. Thereafter the details of the experim
design are outlined and the equilibrium predictions are spelled out. These equilibrium pred
include over- and underbidding relative to the RNNE, depending on the risk aversion para
In the third section we report the experimental results. We observe both over- and underb
and estimate the individual risk preference parameters according to the CRRAM. We lea
the CRRAM cannot accommodate the data. The fourth section examines the bidding d

3 Other contributions relate to this discussion (Kagel et al., 1987; Harrison, 1990; Kagel and Levin, 1993; Sm
Walker, 1993; Selten and Buchta, 1994; Chen and Plott, 1998; Van Boening et al., 1998; Goeree et al., 2002; Do
Razzolini, 2003; Neugebauer, 2004; Ockenfels and Selten, 2005; Neugebauer and Pezanis-Christou, in press; N
and Perote, 2005).

4 For instance, Kagel and Roth (1992) argued that risk aversion might be one of the forces of the overbid
experimental auctions but not necessarily the most important one. As an example in which risk aversion co
explain the data from auction experiments they referred to the observations of Kagel et al. (1987) and Kagel a
(1993) that bidding above the dominant bid price occurred in second price auctions and to Cox et al. (1984) obs
of underbidding in four out of ten treatment conditions with multiple unit discriminative auctions.

5 This does not test all possible features of the CRRAM. In the CRRAM, the Nash equilibrium usually has two
one part linear and one non-linear. Our experiment concerns the linear part only.

6 While Cox et al. (1987) find no difference in bidding behavior between experimental market participants an
jects who competed with Nash automata in the FPA, Neugebauer (2004) observes an important interaction eff
strategies which subjects submitted for a sequential FPA tournament. Neugebauer reports that strategies are
of observed bids when subjects previously had experienced an interactive market experiment, but when sub
experienced a competition with Nash automata, strategies depend on values only.
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2. Equilibrium models and experimental design

2.1. Risk neutral Nash equilibrium—RNNE

In the FPA each of theN > 1 bidders who compete in a market submits a sealed bid.
bidder who submits the high bid wins the auction and pays a price equal to his bid. Consi
independent private value model, in which each bidder has private information only abo
own resale value and knows the distribution from which all resale values are independen
identically drawn. Vickrey (1961) showed the existence of a symmetric, unique Nash equili
in the FPA for the case of risk neutral bidders. Letbi denote bidderi ’s bid, i = 1, . . . ,N , and let
νi be his resale value, which is drawn from the continuous uniform distribution over the in
[0,1]; the RNNE bidding strategy can be written as

RNNE: b∗
i (νi) = N − 1

N
· νi . (1)

The RNNE strategy can be interpreted as the bid that equals a bidder’s expectation ab
greatest resale value of his competitors given this value is smaller than his own. Ther
dominant strategy in the FPA. The RNNE is only a best response, if all bidders adhere to
existence of the Nash equilibrium crucially hinges on the bidders’ identical beliefs and ide
strategies.

2.2. Constant relative risk aversion model—CRRAM

An overbidding relative to the RNNE has been observed in many FPA experiments.
der to theoretically account for this regularity, Cox et al. (1982a, 1982b, 1983a, 1983b,
1985a, 1985b, 1987, 1988) developed the constant relative risk aversion bidding mode
after CRRAM) which generalizes Vickrey’s model, as it allows for heterogeneity of bidde
the standard presentation of the CRRAM each bidderi is defined by an Arrow–Pratt consta
relative risk aversion of 1− ri , whereri (the risk preference parameter) has any probability
tribution on the unit-interval. Let the resale valuesνi , i = 1, . . . ,N , be independently drawn from
a continuous uniform distribution over the interval[0,1]. If no bid exceeds the maximum bid
a risk neutral bidder,∀i bi � (N − 1)/N , the Nash equilibrium bidding strategy in the CRRA
writes as

CRRAM: b∗
i (νi , ri) = N − 1

N − 1+ ri
· νi . (2)

(In the presence of bids greater than(N −1)/N there is no closed-form solution.) Just as in
risk neutral model, there is no dominant bidding strategy in the CRRAM, the Nash equili
depends on the bidder’s belief that all other bidders bid constant fractions of their resale
The RNNE is a special case of the CRRAM if all bidders are risk neutral, i.e.,∀i ri = 1. Risk-
averse bidders (ri < 1) bid above the RNNE.

Note that the CRRAM is more flexible than the RNNE in accommodating data as it allow
individually different risk preferences. Under the common knowledge assumption with re
to the probability distribution of risk preferences every bidder maximizes against the equili
of the one-shot game. From the rationality point of view it is questionable whether this co



T. Neugebauer, R. Selten / Games and Economic Behavior 54 (2006) 183–204 187

and for

puter-
udents,
mental
-
tors
FPA,
eived
erwise
payoff

ly,
eir
ubjects
mental

e treat-
h
ubject

mpeti-
w their
own

e FPA
ed in

ibution
peti-
n

cts’
his is
In the

had

adrieh’s
ubject’s
should be applied to repeated games, since an application to repeated games would dem
a Bayesian updating after each observation, and this is not done.

2.3. Experimental design

As in Cox et al. (1987) and in Harrison (1989), the experimental design involves com
ized competitors. Experimental subjects, who were mainly undergraduate economics st
participated in 100 auctions in each of which they received a resale value of 100 experi
currency units ECU, and were asked to place a bid against the bids ofN − 1 computerized com
petitors, whereN = {3,4,5,6,9}.7 In every auction, the bids of the computerized competi
were randomly drawn from a uniform distribution ranging from 0 to 100. According to the
subjects won an auction if they submitted the high bid. If they won the auction they rec
a payoff equal to the difference between the resale value (100 ECU) and their bid, oth
they received nothing. At the end of the experiment, subjects were paid their accumulated
in Italian Lire at an exchange rate of 1 ECU= 5N ITL.8 Subjects were instructed according
including a detailed description of the computer software.9 Subjects performed the task at th
own pace (between 30–60 minutes); when finished they were paid and left. In total, 174 s
who had no prior experience at auction experiments participated in one of the 15 experi
sessions performed in May 2001 at the ESSE laboratory of the University of Bari, in Italy.

The design used between-subjects variation and involved information feedback as th
ment variable. Three treatments (below referred to asT 0, T 1 andT 2) were considered whic
differed with respect to the on-screen information displayed after every auction. Each s
was exposed to one information feedback treatment and to one market sizeN . In treatmentT 0,
subjects received no quantitative information about the highest bid of the computerized co
tors; they were just informed whether the highest bid of the competitors was above or belo
own bid. InT 1, the highest bid of the competitors was revealed only if it was higher than the
bid, i.e., the winning bid was revealed always; this feedback condition corresponds to th
experiments of Cox et al. InT 2, the highest bid of the computerized competitors was reveal
every auction.

2.4. Equilibrium predictions in the experiment

The bidding game of our experiment involves one bidder who faces the valueν = 1 (in the
experiment represented by 100 ECU) which equals the upper bound of the uniform distr
from which theN − 1 competitors’ bids are identically and independently drawn. The com
tors’ bids can be interpreted as RNNE bids drawn fromU [0;1] corresponding to values draw
from the intervalU [0;N/(N − 1)], since drawing RNNE bids fromU [0;1] is equivalent to
drawing values fromU [0;N/(N − 1)] and applying the RNNE strategy. Thus, the subje
value equals the maximum bid that would be submitted by a risk neutral competitor. T
important, because the CRRAM of bidding has a non-linear segment above this point.

7 These market sizes correspond to the ones used in the research of Cox et al.
8 The average payoff was 16,000 ITL≈ 8 EUR (US$8). Subjects were highly motivated by this amount since they

no alternative job offers and less than $100 to spend per month.
9 Please find the instructions in Appendix A. The computer software was prepared by means of Abbink and S

(1995) RatImage. The accumulated payoff, all historical bids and all results were displayed in a table on a s
screen.
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bidding game of our experiment, risk-averse bidders (ri < 1) and risk-preferring bidders (ri > 1)
would bid according to (2), and a risk-neutral bidders (ri = 1) would submit the RNNE bid a
described in (1). This is shown in Appendix A. In fact, the Nash equilibrium predictions d
alter between treatmentsT 0–T 2, as feedback information conditions do not affect the CRRA

3. Do we observe over- or under-bidding?

3.1. First bids

We begin the analysis of the experimental data considering subjects’ first bids, whi
especially interesting because they were submitted before subjects gathered any experi
pointed out above, a commonly observed behavioral pattern in FPA experiments is that s
overbid the RNNE. Cox et al. (1982a, 1982b, 1983a, 1983b, 1984, 1985a, 1985b, 1987
explained the overbidding behavior by means of risk aversion. Table 1 records the num
subjects who bid above, at or below the RNNE10: 5 out of 174 subjects (3%) submitted bi
as predicted by the RNNE, and 39 subjects (22%) submitted bids which exceeded the
prediction in the first auction. Hence, 25 percent of the submitted bids of the first auctio
‘as if’ risk averse according to the CRRAM. Underbidding occurred in all treatments w
similar intensity. The bids submitted in the first auction did not change significantly bet
treatmentsT 0–T 2.11

Table 1
Frequenciesa of overbidders, underbidders and RNNE-bidders in auction 1: subjects classified according to th
submitted in the first auction

Treatment Nb Row
total

(%)c

3 4 5 6 9

T 0 #underbidder 4 7 9 8 10 38 (70)
#overbidder 6 5 3 2 − 16 (30)
#RNNE-bidder − − − − − −

T 1 #underbidder 10 11 6 6 12 45 (75)
#overbidder 2 − 5 6 − 13 (22)
#RNNE-bidder − 1 1 − − 2 (3)

T 2 #underbidder 10 9 9 10 9 47 (78)
#overbidder 1 3 3 1 2 10 (17)
#RNNE-bidder 1 − − 1 1 3 (5)

Column #underbidder 24 27 24 24 31 130 (75)
total #overbidder 9 8 11 9 2 39 (22)

#RNNE-bidder 1 1 2 1 1 5 (3)

a Number of subjects are recorded whose first bid was above (overbidder), below (underbidder) or at the
(RNNE-bidder).

b Market-sizes are indicated by the number of biddersN ; subjects competed withN − 1 computerized bids.
c Percentages relate to the ratio of the column total to the respective treatment total.

10 Individual statistics, including first bids, are listed in Table A.1 in Appendix A.
11 Given N , the null-hypothesis of equal bids in the three treatments cannot be rejected by a Kruskal–Wa
at a significance level ofα = 0.05. The p-values for the samples withN = {3;4;5;6;9} are respectivelyp =
{0.07;0.19;0.34;0.06;0.84}.
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Our experimental data suggest that most subjects’ bids cannot be explained by risk a
according to the CRRAM (the 95% confidence band extends from 68 to 81%). A binomi
rejects (p = 0.00) the null hypothesis that the submitted bid of the first auction is as likely a
or at the RNNE as below the RNNE. Other factors besides full rationality seem to guide su
first bid choices. For instance, some of the observed bids can be explained by prominent
considerations12: 58 percent of observed numbers are multiples of five. The likelihood of dra
randomly a number divisible by five is twenty percent. A binomial test accepts (p = 0.00) the
alternative hypothesis that the likelihood of observing bid choices which are multiples of
greater than 20 percent. However, an explanation of the bids submitted for the first aucti
beyond the scope of this article.

3.2. Mean bids, bid spreads and individual risk preference parameters

Cox et al. (1988) estimated the bid functionb(ν, r) by ordinary least square regression.
the present study, subjects’ values were fixed to 100 ECU, the upper bound of the interva
which competitors’ bids were drawn. As an estimate of the ‘bid function’ we use, henc
arithmetic mean of the individual’s bids. Table 2 records (in every first row) the average
bids and (in every second row) the average risk preference parameters.13 The average mean bid
in T 1 exceed not only the RNNE prediction for every given market-sizeN but also the cor-
responding average mean bids of the other treatments. On average a risk preference p
rmean(T 1) = 0.78 was estimated for treatmentT 1. Following Cox et al. (1982a, 1982b) a ri
preference parameter smaller than one indicates bidding above the RNNE. This overbidd
tern is in accordance with the results reported from other FPA experiments, as has been
out above. We observe overbidding inT 1, although the expected payoff would have been m
mized at the RNNE bid. Comparing the results ofT 1 to the other treatments, nevertheless,
find that overbidding is not a consistent characterization of the data. The average mean b
the risk preference parameters estimated forT 0, rmean(T 0) = 1.25, andT 2, rmean(T 2) = 1.17,
suggest underbidding rather than an overbidding pattern. Between treatments we observe
cant differences in the individual average bids: forN > 4, Kruskal–Wallis tests reject the nu
hypotheses of equal mean bids across treatmentsT 0–T 2 at a significance level ofα = 0.05, with
no significant differences forN = 3 and 4.14

Table 2 records (in each third row) the number of subjects whose average bids excee
RNNE, designating them as overbidders, while the remaining number of subjects whose a
bid were below the RNNE, could be designated accordingly as underbidders. Cox et al r
to subjects who bid above the RNNE as risk averse and to those who bid below the RN
risk preferring.

In T 1, the mean bids of 75 percent of subjects exceeded the RNNE (the 95% confi
interval extends from 64 to 86%). A one-tailed Wilcoxon signed ranks test on the indiv
preference parameters accepts (p = 0.00) the alternative hypothesis thatT 1 is better character
ized by overbidding than by underbidding. InT 0 andT 2, however, the number of underbidde
exceeded the number of overbidders. ForT 0 or T 2, the one-tailed Wilcoxon signed ranks te
cannot reject the null hypothesis that a subject is at least as likely an underbidder as a

12 See Albers (2001) for a theory on prominent numbers and its applications.
13 (As in Fn. 10) Individual statistics, including risk aversion parameters, are listed in Table A.1 in Appendix A.
14 We tested the individual mean bids for given market-size between treatments. Thep-values for the samples wit
N = {3;4;5;6;9} are respectivelyp = {0.43;0.90;0.00;0.00;0.00}.
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Table 2
Average mean bids, average preference parameters of each market size and frequencies of overbiddersa

Treatment Nb Row
total3 4 5 6 9

T 0 Average bida 70.2 76.3 76.9 80.3 81.2
Averagera 0.89 1.01 1.26 1.25 1.89 1.25
#overbiddersc 7 8 5 2 0 22
(%) (70) (67) (42) (17) (0) (41)

T 1 Average bida 73.7 77.9 85.8 88.2 89.7
Averagera 0.78 0.87 0.67 0.68 0.92 0.78
#overbiddersb 8 8 11 10 8 45
(%) (67) (67) (92) (83) (67) (75)

T 2 Average bida 69.6 73.7 74.3 85 86.3
Averagera 0.94 1.23 1.46 0.9 1.3 1.17
#overbiddersc 7 9 2 7 4 29
(%) (58) (75) (17) (58) (33) (48)

Column RNNE 66.7 75 80 83.3 88.9
total Averagera 0.87 1.04 1.13 0.94 1.34 1.06

#overbiddersb 22 25 18 19 12 96
(%) (65) (69) (50) (53) (35) (55)

a The arithmetic mean of subjects’ average bids and the thus estimated individual risk preference parameter
market sizeN are recorded.

b N indicates the market size, subjects competed withN − 1 computerized bids.
c Subjects were classified according to their mean bid as overbidders or underbidders. The number of su

recorded whose average bid was above (overbidder) the RNNE; the average bids of the remaining subjects
market-size were below the RNNE (underbidders). Relative numbers are recorded in parenthesis below the
numbers for each session.

bidder against the alternative hypothesis that overbidders are more frequent (T 0: p = 0.99;
T 2: p = 0.84).15 The relative frequency of overbidders inT 0 was 41% (the 95% confidenc
band extends from 28 to 54%) and inT 2 48% (the 95% confidence band extends from 3
61%), respectively.16

CRRAM predicts that submitted bids should be constant, i.e., that they do not chang
one auction to the next if the resale value is the same. As reported below (see Table 4), s
changed their consecutive bids in 87 percent of all observations. Still we might believ
subjects bid according to CRRAM up to some error term. Taking a subject’s average bid
reference bid, we constructed a test on the individual’s bid sequence: a positive sign des
an above-average bid; a negative sign designated a below-average bid. Table 3 surveys th
of two-tailed one-sample runs tests of the null hypothesis that the sequence of a subjec
changed by chance from above to below the mean and vice versa. The first (second)
indicate the number of subjects whose consecutive bids changed less (more) frequen
expected from one side of the average bid to the other. The data of 153 subjects (88%)

15 The Wilcoxon signed ranks test conducted on the total of 174 individual risk preference parameters (retu
p-value ofp > 0.70) accepts the null hypothesis that the risk preference parameter is as likely greater as it is
than 1.
16 The numbers recorded in Table 2 might hint at a negative correlation betweenN and overbidding in treatmentsT 0
andT 2. The literature suggests that such a decline might occur in case of decreasing expected payoffs (Dyer et a
As we observe a positive correlation betweenN and the number of overbidders forT 1, we are confident that in our da
the issue is of minor relevance.
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Table 3
Number of subjects with less or more runs of overbidding or underbidding than randomly expected

Treatment Less runs than expecteda

(significantly less)b
More runs than expecteda

(significantly more)b
Wilcoxon testZc

(p-value)

T 0 49 5 −5.77
(32) (2) (0.00)*

T 1 55 5 −5.64
(41) (1) (0.00)*

T 2 49 11 −6.43
(30) (1) (0.00)*

Total 153 21 −10.38
(103) (4) (0.00)*

a Outcomes of a two-sided one-sample runs test of the null hypothesis that the consecutive bids spread r
around the average bid against the alternative that they do not. The number of subjects is recorded who chan
bids from below the average bid to above the average bid less (respectively more) frequently than expected by

b Runs were significantly less/more frequently (α = 0.05) than expected.
c Wilcoxon signed ranks test results (approximately standard normally distributed) of the null hypothesis t

outcomes of the runs test involve less runs than expected as likely as more runs than expected.
* Significant atα = 0.05.

less runs than expected, for 103 subjects (59%) significantly less than expected at theα = 0.05
level of significance. The individual test results (not detailed here) were next used to test t
hypothesis that more runs are equally likely than less runs. A two-tailed Wilcoxon signed
test rejects (p = 0.00) highly significantly the null hypothesis for each treatment; its results
reported in the third column of Table 3.17

On the basis of our data we reject the CRRAM of bidding: First, subjects did not su
always the same bid nor did they bid according to CRRAM up to an error-term. Second
reported risk preference parameters and results of under- and over-bidding do not sup
implicit hypothesis of CRRAM that information feedback do not affect the subjects’ bid
behavior in FPA. The data provide evidence that the behavior is influenced significantly
information feedback conditions of the experiment: although treatments were identical up
on-screen information about the highest bid of the computerized competitors they yield s
cantly different results. In what follows, we provide an explanation of the disparity of bid
behavior in treatmentsT 0–T 2 by means of a bidding dynamics analysis.

4. Bidding dynamics analysis

In the economic theory on FPA, in the RNNE as much as in the CRRAM, bids are
functions of resale values. From the FPA experiment of Selten and Buchta (1994) it was re
that bid functions were usually non-linear and changing over the course of the experimen
often non-monotonous bid functions were observed. In their experiment a subject’s tas
to submit a bid function instead of a bid in 50 auction markets. They found in 35 perce
the observations that the bid functions were changed from one to the next auction. The b
dynamics in their data could be explained to a good extent by learning direction theory.
following subsection, learning direction theory will be reviewed and subsequently applied
experimental data.

17 We conducted the same test for the reference bid equal to the RNNE (not detailed here). The null-hypothesis t
subjects bid according to RNNE up to some error-term was rejected, too.
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4.1. Learning direction theory and its implications

The basic idea of learning direction theory goes back to Selten and Stoecker (1986
applied it to data from the repeated prisoners’ dilemma supergame. Since, it has been su
by the data of diverse experiments.18 In the review of learning direction theory we follow Selt
and Buchta (1994): Learning direction theory is a qualitative behavioral theory based on bo
rationality. As an illustration of the theory, Selten and Buchta (1994) proposed the exam
a marksman who shoots an arrow to hit a trunk. If the arrow misses the trunk to one s
marksman shifts the bow in the direction of the other side when he gives it another tr
marksman in the example draws qualitative conclusions from his information feedback a
justs his behavior according to a causal relationship: if he misses, for instance, to the r
concludes that he could have got closer to his target if he had directed the arrow more
left. This line of reasoning links to ex post rationality, it asks whether a different action m
have produced a better result. Learning direction theory does not bring on a full-fledged
ioral model; it only makes predictions about tendencies of qualitative adjustment. It conce
direction of a change rather than its size. A possible quantification of learning direction
is provided in the next subsection. However, consider now the application of this theory
FPA experiment. Letb denote a subject’s bid andp denote the winning bid (i.e., the price) in th
auction. Subjects could be in one of the following two experience conditions with respect
preceding period:

(1) Successful bid condition: b = p.
(2) Lost opportunity condition: b < p.

In the experience condition of a successful bid, a subject won the preceding auction.
theless, he might have received a greater payoff by submitting a lower bid. Similarly, in th
opportunity condition the subject did not win the auction, but he could have won the auct
submitting a higher bid. Therefore, learning direction theory implies the bid change hypo
that after a successful bid a subject tends to decrease his bid, while after experiencin
opportunity the subject tends to increase his bid.

Table 4 records the number of bid changes, i.e. increases or decreases of the bid fr
auction to the next. Changes are listed separately according to subjects’ experience con
a successful bid or a lost opportunity in the preceding auction. A first observation revea
in 87 percent of all observations subjects changed their bids from one auction to the fol
one; this finding contradicts the predictions of both the CRRAM and the RNNE which su
constant bidding. In every treatment we observed that over 60 percent of bid changes g
direction predicted by the bid change hypothesis and about 25 percent in the opposite one
change in the predicted direction, hence, occurred 2.4 times as often as an unpredicted o

It appears to be interesting how many subjects behaved according to the bid change
esis: In determining the share of these subjects we proceeded similarly to Selten et al.
A simple comparison of the relative frequencies of bid changes in the direction indicat
learning direction theory and in the opposite direction may be misleading. Random bidd
sults as well as learning direction theory in a preponderance of lower bids after high bid
higher bids after low bids. In order to generate an appropriate null hypothesis we ran 1000

18 See Selten (2004) for a survey of this literature.
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Table 4
Absolute (relative)a frequencies of bid changes in auctions 2–100

Treatment Experience condition Bid decrease # (%) Bid increase # (%) Unchanged bid # (%) Row

T 0 Successful bid 1447 599 311 2357
(61) (25) (13) (44)

Lost opportunity 842 1785 362 2989
(28) (60) (12) (56)

T 1 Successful bid 1932 882 450 3264
(59) (27) (14) (55)

Lost opportunity 571 1753 352 2676
(21) (66) (13) (45)

T 2 Successful bid 1771 746 321 2838
(62) (26) (11) (48)

Lost opportunity 739 1953 410 3102
(24) (63) (13) (52)

Column total 7302 7718 2206 17226
(42) (45) (13) (100)

a In the first three columns relative frequencies relate to the row total, in the last column relative frequencies
the total of observations in the respective treatment.

lations in which the sequence of the competitors’ highest bids was randomly permuted,
subject’s submitted bid sequence was kept fixed. For each of these 1000 simulations we
lated the relative frequency of bid changes under the counterfactual assumption that the p
sequence of the competitors’ highest bids was observed. LetM be the average of these relati
frequencies and letR be the relative frequency of bid changes conforming to learning d
tion theory actually observed in the experiment. The surplusS = R − M measures the exten
to which the observations support learning direction theory after the exclusion of mere ra
effects. We made the following observation: for 160 subjects (92%) we found a positiveS > 0;
as maximum surplus we observed 0.48 and the average of positive surpluses was 0.18.19 In other
words, ninety-two percent of experimental subjects behaved more frequently than could
pected by chance in accordance with learning direction theory. The Wilcoxon signed ran
of the null hypothesis that the mean surplus in the population of subjects is equal to ze
S̄ = 0, is rejected (p = 0.00) in favor of the alternative hypothesis ofS̄ > 0.

Table 4 provides a key understanding of the driving forces behind the overbidding we ob
in treatmentT 1 of the experiment. Note first that in 59 percent of observations the bid decr
after a successful bid. Secondly, in 66 percent of observations the bid increased afte
opportunity. Selten and Buchta (1994, p. 13), who made a similar observation under comp
feedback conditions, remarked that the impulse that a subject received was ‘. . . much clearer in
the lost opportunity condition.’20 We constructed a test-statistic (to be used in all tests of
paragraph) by calculating for each subject (and each experience condition) the relative fre
of bid changes he or she realized in accordance with the bid change hypothesis. With

19 On the other hand, we observed a negative surplusS < 0 for 14 subjects (8%). The minimum surplus we obser
was−0.09 and the average of the negative surpluses was−0.03. Less than 5% (i.e., 8 out of 174) of all subjects viola
the bid change hypothesis at least in one direction. One subject decreased his bids more frequently than he
them after not winning the auction, six other subjects increased their bids more frequently than they decreased t
winning the auction, and one subject’s behavior was at odds with the bid change hypothesis in both directions.
20 Comparable results were reported by Cason and Friedman (1997, 1999) who use both qualitative and qu
directional learning to explain overbidding in two-sided auctions.
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to T 1 a two-tailed Wilcoxon signed ranks test rejected (p = 0.00) the null hypothesis that it i
equally likely to observe a higher relative frequency of bid increases after a lost opportunit
of bid decreases after a successful bid. Thirdly, notice further that inT 0 the relative frequency o
a bid increase after a lost opportunity was equally high (p = 0.37) as the relative frequency of
bid decrease after a successful bid.21 Moreover, inT 2 a bid decrease after a successful bid w
not significantly more likely (p > 0.25) than an increase after a lost opportunity. Fourthly, n
that a bid increase after a lost opportunity inT 1 was more likely than inT 0 (and the impulse
was clearer inT 1).22 Fifthly and finally, the bid decrease after a successful bid was more l
(although not at theα = 0.05-level of significance) inT 2 than inT 1 (and the impulse was clear
in T 2).23 On the basis of these observations we conclude that subjects react more frequ
an impulse when it implies clear feedback information in terms of foregone payoff. The fee
condition inT 1 was asymmetrical since the highest bid of the competitors was revealed o
the subject submitted a lower bid. In the experience condition of a successful bid, convers
impulse was ambiguous: the subject did not know whether he also could have won the
by submitting a lower bid; in hindsight, he did not receive clear information. Since we d
observe a similar pattern in the symmetrical information treatmentsT 0 andT 2,24 we conclude
that the asymmetrical information with respect to impulse clarity implied a drift towards h
bids in the treatmentT 1.

4.2. Impulse balance theory

In a recent paper, Selten et al. (2005) proposed impulse balance theory, which make
ble quantitative predictions of the long-run effects of learning direction theory. Impulse ba
theory is mainly applicable in economic situations in which clear impulses are provided s
in hindsight, the ex post-rational choice can be exactly determined. It assumes that impul
involve greater gains are relatively more important. Ex post rationality results in an upw
downward impulse in accordance with learning direction theory. Impulse balance theor
poses the impulse balance point at which upward and downward impulses cancel out in t
run. Note that impulse balance theory builds on the payoff space of a bidder rather than
message space.25

Consider the FPA situation implied by treatmentT 2. Let x denote the highest bid of th
competitors; and as before, letb denote the agent’s bid andp the winning bid. A successful bi
implies that the agent won the preceding auction. Winning the auction produced a profit, b
an opportunity cost. The agent could have also won the auction by submitting a bid equa
highest bid of the competitors. In accordance with impulse balance theory, in the succes
condition the agent receives a downward impulse equal to the difference between the bid
highest bid of the competitors. Conversely, a lost opportunity implies that the agent did n

21 This result is not generally confirmed for all considered market sizesN . ForN = 9, bid decreases after a success
bid are significantly more likely than bid increases after a lost opportunity.
22 A two-tailed Mann–Whitney test rejects (p = 0.01) the null hypothesis that bid increases in the lost opportu
condition occur with equal likelihood inT 1 and inT 0.
23 A two-tailed Mann–Whitney test accepts (p = 0.18) the null hypothesis that inT 1 andT 2 bid decreases in th
successful bid condition occur with equal likelihood.
24 In T 0, ambiguity about the winning bid existed in both experience conditions; inT 2 there was a clear impulse
both experience conditions.
25 Recall Harrison’s (1989) critique, here.
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the preceding auction. Not winning the auction produced no payoff. However, if the age
submitted a bid equal to the highest bid of his competitors he would have won the auct
the lost opportunity condition, impulse balance theory implies an upward impulse equal
difference between the agent’s resale valueν and the highest bid of the competitors. Followi
Selten et al. (2005), the downward impulsea−(·) and the upward impulsea+(·) can be describe
as follows:

a−(b, x) = max(0, b − x), (3)

a+(b, x) =
{

ν − x if x > b,

0 otherwise.
(4)

Define

A−(b) = E
[
a−(b, x)

]
, (5)

A+(b) = E
[
a+(b, x)

]
,

then the impulse balance pointb∗ is defined by the impulse balance equation:

IBE: A−(b∗) = A+(b∗). (6)

The impulse balance point (hereafter IBE) is uniquely determined. This is easily se
noting that the left hand side of the impulse balance equation increases inb∗, whereas the righ
hand side decreases inb∗; and forb∗ = ν the left hand side is greater than the right hand s
while for b∗ = 0 the left hand side is smaller than the right hand side.

4.3. Impulse balance points

Let the number of competitors’ bids be denoted byn, such thatn = N − 1, and let the resal
valueν be normalized to one, i.e.,ν = 1, such that the competitors’ bids are uniformly, identica
and independently distributed over the interval from 0 to 1. LetF(X < x) = xn denote the
cumulative probability that alln competitors’ bids are smaller than some real numberx, and
let f (x) = nxn−1 denote its density, we can write the impulse balance equation for treatmeT 2
as follows:

A−(b∗) = A+(b∗),
+∞∫

−∞
f (x)a−(b∗, x)dx =

+∞∫
−∞

f (x)a+(b∗, x)dx,

b∗∫
0

nxn−1(b∗ − x)dx =
1∫

b∗
nxn−1(1− x)dx,

b∗n+1 − n

n + 1
b∗n+1 = 1− n

n + 1
− b∗n + n

n + 1
b∗n+1.

IBE—T2: 0= 1

n + 1
− b∗n + n − 1

n + 1
b∗n+1, (7)

0= b∗n+1 − n + 1
b∗n + 1

.

n − 1 n − 1
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Since the impulse balance ofT 2, as per (7), involves no parameter, we can easily calc
the impulse balance points for each market size of our experiment.26 In treatmentsT 0 andT 1,
however, the impulses are not clear in at least one experience condition such that the sub
only count the impulses in each direction. If the bidder chooses the bidb then the probability of a
downward impulse isbn and the probability of an upward impulse is 1−bn. However, the subjec
may attach a different importance to downward and upward impulses. Therefore, we int
a parameterλ > 0, the downward impulse multiplier, and write the impulse balance equati
follows27:

λb∗n = 1− b∗n. (8)

The downward impulse multiplier can be interpreted as an indicator of the importanc
downward impulse relatively to an upward one. If more importance is put on downward imp
then fewer downward impulses can counterweigh more upward impulses. For example
haveλ = 2 the expected upward impulse must be double the expected downward impulse
impulse balance. In other words, one unit of downward impulse would have the same we
two units of upward impulse. In this senseλ is the relative importance of downward impuls
Rearranging Eq. (8), we get an explicit formulation for the impulse balance bids ofT 0 andT 1:

IBE—T 0, T 128: b∗ = n

√
1

1+ λ
. (9)

To determine the impulse balance points ofT 0 andT 1, as per (9), we have to proceed
estimating the downward impulse multiplier from the data. For each subjecti we determined the
multiplier λi according to the average bid of the subject and took the median of these indi
multipliers as an estimation ofλ. Thus, the estimator of the downward impulse multiplier inT 0
wasλmedian(T 0) = 1.74; and inT 1 correspondinglyλmedian= 1.01.29 For T 1 the estimate o
the downward impulse multiplier indicates that subjects weigh downward and upward im
equally. It suggests that subjects use a count heuristic, i.e., they count upward and downw
pulses. At least at first glance there seems to be a discrepancy between this result for treatT 1
and earlier findings summarized by Table 4. There, the relative frequencies of upward and
ward impulses forT 1 are 0.55 and 0.45 respectively. However, the estimateλmedian(T 1) = 1.01
is the median of all estimates for individual subjects and does not necessarily reflect ag
behavior. Therefore our conclusions about differences between the successful bid and
opportunity conditions with respect to the conformance to learning direction theory do no
essarily hold for the median subject. ForT 0 the estimate of the downward impulse multipl
indicates that one unit downward impulse weighs 1.74 units of upward impulse. This
imply that subjects were more strongly motivated by a downward impulse than by an u
impulse. In fact, we lack an intuition why subjects should weigh downward impulses so
Therefore, it is unclear to us whether impulse balance theory should be applied to this tre
In principle, we would expect subjects ofT 0 to use a count heuristic, too. The theory does

26 It should be noted that the impulse balance point calculated here is not the impulse balance. It is only the p
of a subject’s action if all other agents behave according to the RNNE.
27 Ockenfels and Selten (2005) use a similar approach with one parameter, the estimate of which averagesλ = 0.34. In
their design, subjects receive a value which they maintain for five FPA. Subjects are matched subsequently in m
sizeN = 2 facing a different opponent in every round.
28 Note from the equation that at the impulse balance the bid is the lower the higher the downward impulse mult
29 (As in Fn. 10 and Fn. 13) Individual statistics, including downward impulse multiplier, are listed in Table A
Appendix A.
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allow us to draw any conclusion why we observe this disparity between the two treatmen
only difference is that inT 0 subjects receive no quantitative information feedback about
far the bid has been from the right decision while inT 1 they receive clear impulses at least
one direction. Apparently this lack of impulse clarity produces a more uncertain and more
behavior; the variations of bids between two consecutive auctions are greater inT 0 than inT 1.30

To sum up, although the qualitative behavior is in harmony with learning direction theor
cannot rationalize the quantitative behavior ofT 0. We hope to unravel this issue in the future

Table 5 gives an overview over the determined impulse balance points for the differen
ments. In contrast to the RNNE and the CRRAM, impulse balance theory predicts dif
impulse balance points for each feedback condition. Note that only the impulse balance
for T 1 exceed the RNNE. Table 5 surveys, also, the predictions of CRRAM which were c
lated by the overall median of the individual risk preference parameters,rmedian= 0.93.31

In order to compare the fit provided by these competing theories we measured the d
of each subject’s average bid to the impulse balance point, the RNNE and the CRRAM. T
records separately for each treatment the number of subjects whose average bid was c
either predictor. Subjects’ average bids are best described in 54 percent of all observation
impulse balance points, in 15 percent and 31 percent by RNNE and by CRRAM, respecti32

However, we should concede that impulse balance theory is not yet a fully satisfactory th33

It might not be better than RNNE or CRRAM in all circumstances; we cannot tell becaus
statistical evidence is missing. Nevertheless, it must be seen as a reasonable benchmark

Table 5
Impulse balance points and the RNNE for each market size and treatment

Treatment Na

3 4 5 6 9

IBP for T 0 60.5 71.5 77.8 81.8 88.
IBP for T 1 70.5 79.2 84 86.9 91.
IBP for T 2 65.3 73.4 78.4 81.8 87.
RNNE 66.7 75 80 83.3 88.9
CRRAMb 68.3 76.3 81.1 84.3 89.

a N indicates the market size, subjects competed withN − 1 computerized bids.
b CRRAM predictions corresponding to the median risk preference parameter.

30 We compared the sum of individual squared changes between rounds inT 0 with those ofT 1. The deviations in
T 0 were greater than inT 1 for each market sizeN . The Mann–Whitney test yields the following outcomes ofp =
{0.02,0.44,0.20,0.59,0.01} for N = {3,4,5,6,9}, respectively.
31 In order to make a general point prediction we need to fix anr . As pointed out above, the risk preference param
is individually different in the CRRAM. Taking the median observation neglects these differences.
32 The CRRAM and the RNNE jointly provide a better fit than the IBP in 46 percent of observations. If we ad
individual preference parameters as we should according to the assumptions of the CRRAM and not the media
ence parameter as we do, the fit of the CRRAM would be 100 percent in this exercise. As a matter of fact, the
CRRAM is not 100%. It fails to explain the treatment effect betweenT 1 on one side andT 0 andT 2 on the other, and
it ignores the learning behavior in the data. Hence, assuming individual risk preference parameters obviously im
the CRRAM against criticism.
33 A referee has drawn our attention to the apparent effect between information feedback and market sizeN ; there are
no significant treatment effects in overbidding between treatments withN = 3 and 4 (see footnote 18 and Table 2).
contrast to this evidence, the impulse balance points do suggest differences between treatments. Where the d
between the data and the theoretical prediction comes from, we do not know. In fact, we cannot exclude that the
too much noise in the data as we account only for a small number of independent observations perN (i.e., #12).
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Table 6
Number of subjects whose average bids were closest to the respective predictor (RNNE, CRRAM, Impulse balan

Treatment RNNE (r = 1)a # (%) CRRAM (r = 0.93)a # (%) Impulse balance pointa # (%)

T 0 6 20 28
(11) (37) (51)

T 1 15 8 37
(25) (13) (61)

T 2 5 26 29
(8) (43) (48)

Total 26 54 94
(15) (31) (54)

a Absolute numbers recorded in every first row refer to the subjects for whom the distance of the individual
bid from the Impulse balance point, RNNE or CRRAM was smallest, respectively. Relative numbers in every sec
are recorded in parenthesis.

based on learning direction theory, which has been soundly supported by the data. The C
and the RNNE, on the other hand, are not linked to any learning theory and lack an expla
of how subjects approach the equilibrium.34

5. Summary

We designed a first-price sealed-bid auction experiment to test the predictions of the C
and the RNNE in an environment in which subjects faced objective probabilities with resp
the behavior of their competitors. Competitors’ bids were randomly drawn by the compute
that agents who exhibit constant relative risk aversion would maximize their utility by biddi
predicted in the CRRAM (2). Cox et al. (1982a, 1982b, 1983a, 1983b, 1984, 1985a, 1985b
1988) developed the CRRAM to explain the observed overbidding regularity in FPA experi
in which the winning bid was revealed after each auction. Overbidding above the RNNE w
a consistent pattern of our experimental data. In two out of three treatments subjects’ a
bids were below rather than above the RNNE. Only under standard information feedback
experiments, i.e., price revelation, we observed overbidding. Thus, the data provide evide
the feedback conditions can significantly influence behavior in experiments with comput
bidders.35 Subjects’ qualitative bidding behavior did not support the CRRAM, either, sin
predicts degenerate behavior. Subjects did neither bid constantly nor did they vary the bi
an error-term around their average bid. The CRRAM must therefore be rejected.

34 Actually, such learning stories were proposed for the FPA already in the discussion to Harrison’s critique by F
(1992, p. 1377): ‘An alternative direction to CSW’s generalized preferences arises from a learning and adjustme
Suppose typical bidders in the CSW auctions begin with the rule of thumb “bidx percent of value,” wherex is exogenous
and learn by trial and error to adaptx toward its Vickrey valuex∗ (. . . or perhaps toward some risk-averse analog. . .).’
There are numerous papers on learning in games that made the general point that learning explains behavior b
simple equilibrium point predictions. Camerer (2003) provides a broad survey of such literature. It would be an int
research task to contrast these learning models with respect to their convergence properties in the experimenta
35 In a follow up study to the present work, which used within subject variation, Neugebauer and Perote (2005
similar evidence in an interactive FPA experiment of market sizeN = 7. They report that subjects did not overbid t
RNNE as long as they did not receive any information feedback, but the very same subjects did overbid wh
information feedback was introduced. An impact of feedback conditions on behavior in FPA was already observ
classic paper by Isaac and Walker (1985).
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The data could be explained qualitatively by learning direction theory (Selten and B
1994) which goes back to Selten and Stoecker (1986). The bidding dynamics of 92 per
the subjects were in line with the bid change hypothesis derived from learning direction t
Comparing the individual behavior in the three feedback conditions of the experiment, we
that subjects reacted significantly more frequently to an impulse (according to the pred
of learning direction theory) if it was quantitatively clear in terms of foregone payoff. Thus
asymmetry of information feedback with regard to the greatest competitors’ bid in the s
ard feedback condition of FPA apparently produced an upward drift that led to overbidd
treatmentT 1.

In order to provide a quantitative explanation of the data we applied impulse balance
of Selten et al. (2005). Impulse balance theory is a static equilibrium concept that bui
the payoff space of agents and makes point predictions of the long-run behavior on th
of learning direction theory. Differing from the RNNE, we determined distinct impulse bal
points under each of the three feedback conditions of the experiment; the impulse balanc
take the information differences into account. Subjects’ average bids were closest to the i
balance points in more than 50 percent of observations compared to the RNNE and the C
Impulse balance theory seems to provide good alternative predictors to the Nash equilib
behavioral studies.
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Appendix A

A.1. Proposition

Assume that a bidder has a resale value equal toν = 1 for the object to be auctioned, and
the bids ofN −1 competitors be identically and independently drawn from a continuous un
distribution ranging from 0 to 1. Assume the bidder’s utility function is given byu(y) = (y)r ,
wherey is the bidder’s income andr > 0 denotes the bidder’s risk preference parameter.
following statements hold:

(i) The bidder’s bid equals the Nash equilibrium bid of the CRRAM.
(ii) For r = 1 (risk-neutrality), the bidder’s bid is equal to the RNNE bid.

Proof. The probability that the bidder’s bidb exceeds the bid of every competitor isbN−1.
Therefore the bidder’s expected utilityU(v, b) for biddingb is as follows:

U(ν, b) = u(ν − b)bN−1 = (ν − b)rbN−1.

Differentiating with respect tob yields the first order condition.

∂U(ν, b) = −r(ν − b)r−1bN−1 + (ν − b)rbN−2(N − 1) = 0. (∗)

∂b
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This yields−r(ν − b)r−1b + (ν − b)r (N − 1) = 0.
It follows that the bidder who faces an Arrow–Pratt constant relative risk aversion para

1− r submits a bid equal to the Nash equilibrium bid in the CRRAM, (2):

b∗(ν, r) = N − 1

N − 1+ r
· ν.

If the bidder is risk-neutral the bid is equal to the one in the RNNE, (1):

b∗(ν,1) = N − 1

N
· ν.

It remains to show that (2) is sufficient for utility maximization, i.e. the second derivative o
utility function is negative atb∗(ν, r). We differentiate(∗) to obtain

∂2U

∂b2
= (ν − b)r−2bN−3f (ν, b)

wheref (ν, b) = r(r − 1)b2 − 2r(N − 1)(ν − b)b + (N − 1)(N − 2)(ν − b)2. Note, we have
ν = 1, such thatν − b∗ = r/(N − 1+ r) > 0. It remains to show thatf (1, b∗) < 0.

f (1, b∗) = N − 1

(N − 1+ r)2

[(
r2 − r

)
(N − 1) − 2r2(N − 1) + (N − 2)r2]

= N − 1

(N − 1+ r)2

[−r(N − 1) − r2] < 0.

This completes the proof. Hence,b∗(1, r) maximizes expected utility for allr > 0.

A.2. Instructions

In the experiment you will participate in 100 auctions.
At the beginning of each round, (N − 1) numbers between 0 and 100 are drawn randomly and independently (

each draw every number between 0 and 100 is equally likely).36

These numbers represent the (N − 1) bids of your competitors in the auction. Without knowledge of the oth
bids you will be asked to submit your bid, which can be any number between 0 and 100. In each round, the hig
(including your own) determines the market price.

Your bid determines your round payoff as follows:
If your bid is equal to the price, you will receive the difference between 100 and your bid (i.e., payoff= 100−

price) expressed in ECU (experimental currency units), otherwise you will receive nothing. The exchange rate
1 ECU= 5(N) ITL. At the end of the experiment you will be paid your accumulated payoff privately.

At the end of a round, you will be informed about

(1) (T 0:) the auction price only if it is equal to your bid, (T 1, T 2:) the auction price;
(2) (T 2:) the highest bid submitted by your competitors; (Note: if you submit a bid equal to the highest bid o

competitors you win the auction without further notice.)
(3) your resulting round payoff;
(4) your accumulated payoff.

Furthermore, throughout the experiment you will receive on-screen information about all corresponding h
records.

36 For the instructional sessions (N − 1) was substituted accordingly to the session’s number of computerized com
torsN − 1= {2,3,4,5,8}. Instructions were read aloud. Subjects were encouraged to ask questions in case of d
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Table A.1

T 2

ri ID 1st bid Mean Median ri

0.49 115 62 71.6 72 0.79
1.19 116 40 58.8 61 1.4
0.54 117 21 51.3 55.5 1.9
0.4 118 5 77.3 88 0.59
0.54 119 56 78.1 81.5 0.56
0.47 120 55 79.4 84 0.52
0.32 121 90 86.1 90 0.32
1.66 122 65 64.2 66.5 1.12
1.1 123 50 76.9 79 0.6
0.39 124 65 67.4 72.5 0.97
0.71 125 66 59.2 50 1.38
1.52 126 55 64.5 65 1.1
1.13 127 76 62.2 64.5 1.82
0.95 128 85 82.5 84.5 0.64
0.32 129 62 75.5 79 0.97
1.28 130 69 54 55 2.55
0.79 131 30 81.5 82 0.68
1.14 132 27 75.3 83.5 0.98
0.54 133 10 44.1 46.5 3.8
0.81 134 65 81 85 0.7
1.18 135 20 87.4 85.5 0.43
0.66 136 11 77.8 80 0.85
0.79 137 74 82.3 84 0.65
0.88 138 90 80.4 81.5 0.73
0.34 139 82 82.7 82.5 0.84
0.77 140 88 68.8 67 1.81
0.63 141 56 77 79 1.19
0.37 142 50 79.1 80 1.06
1.08 143 70 78 84 1.13
0.68 144 90 78.2 80 1.11
0.74 145 25 57.6 66.5 2.95
0.53 146 10 74.3 85 1.39

(continued on next page)
Subjects’ first bids and individual statistics over 100 auctions

Na RNNE T 0b T 1

ID 1st bid Mean Median λi ri ID 1st bid Mean Median λi

3 66.7 1 85 76.8 80 0.7 0.61 55 21 80.4 85 0.55
3 66.7 2 68 68.9 77 1.11 0.9 56 58 62.7 59 1.54
3 66.7 3 78 63.9 65.5 1.45 1.13 57 78 78.9 80 0.61
3 66.7 4 63 85.4 91 0.37 0.34 58 40 83.3 80 0.44
3 66.7 5 50 72 80 0.93 0.78 59 55 78.9 80 0.61
3 66.7 6 75 66.9 73 1.23 0.99 60 30 81 80 0.52
3 66.7 7 100 76.2 80 0.72 0.63 61 48 86.3 88 0.34
3 66.7 8 70 66.3 70 1.27 1.02 62 50 54.6 56 2.35
3 66.7 9 60 69.7 70.5 1.06 0.87 63 60 64.5 63 1.4
3 66.7 10 50 55.7 55 2.22 1.59 64 98 83.6 85 0.43
3 66.7 b 65 51 73.7 75 0.84
3 66.7 b 66 58 56.8 56 2.1
4 75 11 45 80.4 86.5 0.92 0.73 67 66 72.6 74.5 1.61
4 75 12 50 69.1 76 2.03 1.34 68 68 76 78 1.28
4 75 13 99 83.1 85 0.74 0.61 69 62 90.4 90 0.35
4 75 14 70 82.6 82 0.77 0.63 70 48 70.1 74.5 1.9
4 75 15 58 67.6 69 2.24 1.44 71 25 79.1 82 1.02
4 75 16 66 81.7 82.5 0.83 0.67 72 65 72.6 72 1.61
4 75 17 81 53.1 54.5 5.68 2.65 73 75 84.9 86 0.63
4 75 18 72 67.8 71 2.21 1.43 74 70 78.7 78 1.05
4 75 19 87 85.6 88 0.59 0.51 75 59 71.8 79.5 1.7
4 75 20 58 75.1 83 1.36 0.99 76 65 82.1 81 0.81
4 75 21 95 85.7 87 0.59 0.5 77 52 79.2 82 1.01
4 75 22 88 83.9 87 0.69 0.58 78 65 77.4 79.5 1.16
5 80 23 75 72.2 79 2.68 1.54 79 86 92.1 92 0.39
5 80 24 87 81.2 87 1.3 0.92 80 85 83.9 86 1.02
5 80 25 78 73.6 77 2.41 1.44 81 68 86.5 87 0.79
5 80 26 70 75.7 75 2.05 1.29 82 90 91.5 92 0.43
5 80 27 76 66.2 74 4.21 2.04 83 55 78.8 80 1.59
5 80 28 78 84.6 85 0.95 0.73 84 55 85.4 89 0.88
5 80 29 55 82.1 86 1.2 0.87 85 98 84.4 88 0.97
5 80 30 54 63 65 5.35 2.35 86 85 88.3 88 0.64
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T 2

ri ID 1st bid Mean Median ri

2 0.83 147 79 71.6 77 1.58
6 0.47 148 50 59.3 58.5 2.74
7 0.85 149 78 79.4 80 1.04
1 0.76 150 45 85.3 95 0.69
7 0.6 151 47 81.7 80.5 1.12
5 0.93 152 11 82.7 83 1.05

0.62 153 5 78.1 80 1.4
1.22 154 83 78.1 80 1.4

2 0.36 155 75 77.4 78 1.46
0.35 156 57 90.4 93.5 0.53

9 0.68 157 65 91.6 93 0.46
1.14 158 75 92 93 0.43

5 0.66 159 85 89.3 91 0.6
2 0.58 160 75 88.3 91 0.66
8 0.61 161 60 86.2 88 0.8

0.42 162 75 84.2 86 0.94
7 0.76 163 79 75.1 77 2.66
6 1.04 164 95 92.4 94 0.66
8 0.82 165 80 89.5 90 0.94
1 0.56 166 58 85.4 94 1.36
1 0.93 167 78 82.8 88 1.67
7 1.35 168 89 87.4 88 1.15
6 1.17 169 90 86.2 90 1.28
9 0.92 170 87 92.4 95 0.66
4 0.85 171 15 85.3 91 1.38
1 0.93 172 56 82.5 87 1.7

0.67 173 70 86.9 88 1.21
6 1.08 174 85 89.3 91 0.96

ticipated inT 0.
Table A.1 (continued)

Na RNNE T 0b T 1

ID 1st bid Mean Median λi ri ID 1st bid Mean Median λi

5 80 31 48 70.8 75.5 2.98 1.65 87 80 82.9 86 1.1
5 80 32 89 87.2 89 0.73 0.59 88 60 89.5 91 0.5
5 80 33 88 87.2 87.5 0.73 0.59 89 75 82.4 84 1.1
5 80 34 56 79 85 1.57 1.06 90 60 84 87.5 1.0
6 83.3 35 78 74.9 83 3.24 1.68 91 70 89.2 90 0.7
6 83.3 36 65 80.1 90.5 2.03 1.24 92 80 84.3 85 1.3
6 83.3 37 69 81.3 83.5 1.82 1.15 93 89 88.9 90 0.8
6 83.3 38 56 76.5 80 2.82 1.53 94 90 80.3 85.5 2
6 83.3 39 88 82.3 88 1.65 1.08 95 90 93.2 95 0.4
6 83.3 40 80 84.8 86 1.28 0.9 96 88 93.5 97 0.4
6 83.3 41 65 71 76 4.54 2.04 97 50 88 89 0.8
6 83.3 42 87 83.1 87 1.52 1.02 98 65 81.4 85 1.8
6 83.3 43 65 81.2 85 1.83 1.16 99 90 88.4 90 0.8
6 83.3 44 80 87.4 88 0.96 0.72 100 85 89.7 92 0.7
6 83.3 b 101 80 89.1 89 0.7
6 83.3 b 102 60 92.2 95 0.5
9 88.9 45 80 68.2 71 20.37 3.74 103 82 91.3 95 1.0
9 88.9 46 85 82.6 90 3.61 1.68 104 80 88.5 90 1.6
9 88.9 47 80 82.1 88.5 3.84 1.74 105 79 90.7 91 1.1
9 88.9 48 70 85.9 88.5 2.37 1.32 106 75 93.5 95 0.7
9 88.9 49 60 77.9 80 6.37 2.27 107 80 89.6 90 1.4
9 88.9 50 70 82.2 89 3.8 1.73 108 81 85.6 88 2.4
9 88.9 51 85 83.6 88 3.19 1.57 109 80 87.3 89 1.9
9 88.9 52 55 84 85 3.03 1.52 110 83 89.7 90 1.3
9 88.9 53 75 86.2 89 2.28 1.28 111 83 90.4 92 1.2
9 88.9 54 85 79.5 81 5.27 2.06 112 80 89.6 90 1.4
9 88.9 b 113 85 92.3 95 0.9
9 88.9 b 114 80 88.1 90 1.7

a N − 1 is the number of computerized competitors in the experiment.
b Due to network problems only 10 computers could be used in three sessions. Thus, only 54 subjects par
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