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Abstract

This article reports the results of an individual choice experiment designed to test the Nash equilibrium
predictions of the first-price sealed-bid auction. A subject faced in 100 auctions always the same resale
value and competed with computer-simulated bids. The design used between-subjects variation and in-
volved information feedback as the treatment variable. Earlier experimental work on first price auctions has
frequently reported an overbidding relative to the risk neutral Nash equilibrium. Our data provide evidence
that overbidding can be fostered by the standard information feedback in auction experiments, which, after
each auction, reveals the winning bid only. By means of learning direction theory we explain the indi-
vidual bidding dynamics in our experiment. Finally we apply impulse balance theory and make long run
predictions of individual bidding behavior.
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1. Introduction

This article reports the results of an individual choice experiment designed to test the Nash
equilibrium predictions of the first-price sealed-bid auction (hereafter FPA). The design of the
experiment involves a repeated setting with three different feedback information treatments. Our
experimental data reveal that subjects adjust their bids in response to the received feedback in-
formation, and these adjustments are more frequent when information feedback is clear in terms
of foregone payoff than when it is ambiguous. We observe that subjects submit relatively higher
bids when their feedback information is clear after losing and ambiguous after winning than
when they face either clear feedback information or ambiguous feedback information in both
experience conditions. In particular, we observe overbidding relative to the risk neutral Nash
equilibrium of FPA in the former treatment and underbidding in the latter treatments, respect-
ively. Since the commonly applied theories of Nash equilibrium bidding concern the one-shot
game they do not assume adjustment dynamics and fail to predict the treatment effect we ob-
serve. Therefore, we must reject them as descriptive bidding theories for the repeated game on
the basis of our experimental data. We propose impulse balance theory (Selten, 2004; Selten et
al., 2005; Ockenfels and Selten, 2005) as an alternative, boundedly rational equilibrium concept.

Impulse balance theory accounts for the feedback information conditions in the repeated
game, and thus yields different point predictions for different feedback conditions. In princi-
ple, impulse balance theory weighs the foregone payoff upon losing against the foregone payoff
upon winning. The impulse balance point in our experiment is the bid at which the probability
weighted foregone payoffs from losing and winning equalize. The theory is based on learning
direction theory (Selten and Stoecker, 1986; Selten and Buchta, 1994) which is a qualitative
learning theory. Learning direction theory has been supported by experimental data on auctions
(Selten and Buchta, 1994; Kagel and Levin, 1999; Selten et al., 2005; Ockenfels and Selten,
2005) and on many other repeated experimental settings (for a review, see Selten, 2004). In our
experiments, the bidding dynamics of 92 percent of all subjects agree with the behavioral patterns
proposed by learning direction theory.

In contrast to impulse balance theory, the standard approach to the FPA assumes that all bid-
ders maximize utility. Vickrey (1961) showed the existence of a symmetric risk neutral Nash
equilibrium (hereafter RNNE). The RNNE maximizes expected payoff if and only if all bidders
have identical subjective probabilities and identical stratebiEise RNNE was first challenged
by Coppinger et al. (1980) who conducted an experiment, in which subjects interacted repeat-
edly with each other in experimental auction markets. Their main result with respect to the FPA
was that winning bids exceeded significantly the RNNE predicti@verbidding relative to the
RNNE prediction has been reported thereafter from several FPA experiments (for a review, see
Kagel, 1995). In order to provide an explanation for the observed overbidding, Cox et al. (1982a,
1982b, 1983a, 1983b, 1984, 1985a, 1985hb, 1987, 1988) developed the constant relative risk aver-
sion model (hereafter CRRAM) that generalizes Vickrey’s model as it allows for heterogeneity
of bidders. In the CRRAM, bidders maximize expected utility subject to their subjective proba-
bilities about the competitors’ bids. The CRRAM did not only find supporters but rather divided

1 Unilateral application of the RNNE must not be profitable as revealed by a tournament of bidding strategies for the
sequential FPA (Neugebauer, 2004). In the tournament, the RNNE strategy underperforms a market that is composed of
strategies submitted by experimental subjects.

2 Subjects participated three times in ten auctions. In each auction they received a resale value drawn from a discrete
uniform distribution and at the end of every auction the winning bid was revealed.
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the experimental community. The most famous argument goes back to Harrison (1989) who
criticized the methodology of Cox et al. According to Harrison’s opinion, the foregone expected
payoffs of subjects were more important than the deviation of the bids from the equilibrium, and
in the data there were only very small incentives in terms of foregone expected payoff. This ar-
gument provoked a polemic discussion among experimental economists (Friedman, 1992; Kagel
and Roth, 1992; Cox et al., 1992; Merlo and Schotter, 1992; Harrison, $98i#)ough there

was some agreement that investigating individual behavior with respect to the ‘payoff space’ was
not more important than with respect to the ‘message space’ (Cox et al., 1992; Friedman, 1992;
Kagel and Roth, 1992; Harrison, 1992), doubts remained whether the CRRAM actually can offer
a reliable explanation for the observed overbidding.

The experimental results presented in this article suggest that the overbidding in FPA exper-
iments may be fostered by the commonly applied feedback information conditions that reveal
the winning bid only. This would be in line with other experimental results on FPA in which dif-
ferent feedback conditions are applied (Isaac and Walker, 1985; Dufwenberg and Gneezy, 2002;
Ockenfels and Selten, 2005; Neugebauer and Perote, 2005). In fact, our data do not warrant such
a general statement, as our experiment does not describe the auction market in all its facets.
We transform the original FPA-problem from a gameNthuman opponents and Nature to a
game of one human bidder against Nature. Subjects face a repeated setting with a constant re-
sale value and invariable objective probabilities about the bidding behavior of the others. As the
N — 1 computer-simulated competitors bid ‘as if’ risk neutral the Nash equilibrium predictions
in our environment are straight-forward. The CRRAM requests a degenerate bid that maximizes
expected utility in all repetitions, and the RNNE bid maximizes expected payééice, our
environment makes a meaningful test of bidding theories possible, but this control may come
with a loss of generality. The bidding dynamics can be different when subjects interact with each
other than when they interact with Nash robbts.

The article is organized as follows. The following, second section presents the theoretical
Nash equilibrium models, the RNNE and the CRRAM. Thereafter the details of the experimental
design are outlined and the equilibrium predictions are spelled out. These equilibrium predictions
include over- and underbidding relative to the RNNE, depending on the risk aversion parameter.
In the third section we report the experimental results. We observe both over- and underbidding
and estimate the individual risk preference parameters according to the CRRAM. We learn that
the CRRAM cannot accommodate the data. The fourth section examines the bidding dynam-

3 Other contributions relate to this discussion (Kagel et al., 1987; Harrison, 1990; Kagel and Levin, 1993; Smith and
Walker, 1993; Selten and Buchta, 1994; Chen and Plott, 1998; Van Boening et al., 1998; Goeree et al., 2002; Dorsey and
Razzolini, 2003; Neugebauer, 2004; Ockenfels and Selten, 2005; Neugebauer and Pezanis-Christou, in press; Neugebaue
and Perote, 2005).

4 For instance, Kagel and Roth (1992) argued that risk aversion might be one of the forces of the overbidding in
experimental auctions but not necessarily the most important one. As an example in which risk aversion could not
explain the data from auction experiments they referred to the observations of Kagel et al. (1987) and Kagel and Levin
(1993) that bidding above the dominant bid price occurred in second price auctions and to Cox et al. (1984) observation
of underbidding in four out of ten treatment conditions with multiple unit discriminative auctions.

5 This does not test all possible features of the CRRAM. In the CRRAM, the Nash equilibrium usually has two parts,
one part linear and one non-linear. Our experiment concerns the linear part only.

6 While Cox et al. (1987) find no difference in bidding behavior between experimental market participants and sub-
jects who competed with Nash automata in the FPA, Neugebauer (2004) observes an important interaction effect in the
strategies which subjects submitted for a sequential FPA tournament. Neugebauer reports that strategies are functions
of observed bids when subjects previously had experienced an interactive market experiment, but when subjects had
experienced a competition with Nash automata, strategies depend on values only.
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ics and reviews learning direction theory and impulse balance theory. Finally, the fifth section
summarizes and concludes.

2. Equilibrium models and experimental design
2.1. Risk neutral Nash equilibrium—RNNE

In the FPA each of th&v > 1 bidders who compete in a market submits a sealed bid. The
bidder who submits the high bid wins the auction and pays a price equal to his bid. Consider the
independent private value model, in which each bidder has private information only about his
own resale value and knows the distribution from which all resale values are independently and
identically drawn. Vickrey (1961) showed the existence of a symmetric, unique Nash equilibrium
in the FPA for the case of risk neutral bidders. betlenote biddei’s bid,i =1, ..., N, and let
v; be his resale value, which is drawn from the continuous uniform distribution over the interval
[0, 1]; the RNNE bidding strategy can be written as

N-1
RNNE: b*(v) = :

Vi. (l)

The RNNE strategy can be interpreted as the bid that equals a bidder’s expectation about the
greatest resale value of his competitors given this value is smaller than his own. There is no
dominant strategy in the FPA. The RNNE is only a best response, if all bidders adhere to it. The
existence of the Nash equilibrium crucially hinges on the bidders’ identical beliefs and identical
strategies.

2.2. Constant relative risk aversion model—CRRAM

An overbidding relative to the RNNE has been observed in many FPA experiments. In or-
der to theoretically account for this regularity, Cox et al. (1982a, 1982b, 1983a, 1983b, 1984,
1985a, 1985h, 1987, 1988) developed the constant relative risk aversion bidding model (here-
after CRRAM) which generalizes Vickrey's model, as it allows for heterogeneity of bidders. In
the standard presentation of the CRRAM each biddsrdefined by an Arrow—Pratt constant
relative risk aversion of + r;, wherer; (the risk preference parameter) has any probability dis-
tribution on the unit-interval. Let the resale valugsi =1, ..., N, be independently drawn from
a continuous uniform distribution over the intery@l 1]. If no bid exceeds the maximum bid of
a risk neutral biddewi b; < (N — 1)/N, the Nash equilibrium bidding strategy in the CRRAM
writes as

N-1
N—l—l—}’i'vl. (2)

(Inthe presence of bids greater thah— 1) /N there is no closed-form solution.) Just as in the
risk neutral model, there is no dominant bidding strategy in the CRRAM, the Nash equilibrium
depends on the bidder’s belief that all other bidders bid constant fractions of their resale value.
The RNNE is a special case of the CRRAM if all bidders are risk neutralMie;, = 1. Risk-
averse bidders{( < 1) bid above the RNNE.

Note that the CRRAM is more flexible than the RNNE in accommodating data as it allows for
individually different risk preferences. Under the common knowledge assumption with respect
to the probability distribution of risk preferences every bidder maximizes against the equilibrium
of the one-shot game. From the rationality point of view it is questionable whether this concept

CRRAM: b*(v;.ri) =
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should be applied to repeated games, since an application to repeated games would demand fol
a Bayesian updating after each observation, and this is not done.

2.3. Experimental design

As in Cox et al. (1987) and in Harrison (1989), the experimental design involves computer-
ized competitors. Experimental subjects, who were mainly undergraduate economics students,
participated in 100 auctions in each of which they received a resale value of 100 experimental
currency units ECU, and were asked to place a bid against the bids-af computerized com-
petitors, whereV = {3, 4, 5,6,9}.7 In every auction, the bids of the computerized competitors
were randomly drawn from a uniform distribution ranging from 0 to 100. According to the FPA,
subjects won an auction if they submitted the high bid. If they won the auction they received
a payoff equal to the difference between the resale value (100 ECU) and their bid, otherwise
they received nothing. At the end of the experiment, subjects were paid their accumulated payoff
in Italian Lire at an exchange rate of 1 EGUSN ITL.8 Subjects were instructed accordingly,
including a detailed description of the computer softwhBubjects performed the task at their
own pace (between 30-60 minutes); when finished they were paid and left. In total, 174 subjects
who had no prior experience at auction experiments participated in one of the 15 experimental
sessions performed in May 2001 at the ESSE laboratory of the University of Bari, in Italy.

The design used between-subjects variation and involved information feedback as the treat-
ment variable. Three treatments (below referred td@s71 andT2) were considered which
differed with respect to the on-screen information displayed after every auction. Each subject
was exposed to one information feedback treatment and to one markat.dizéreatmentr 0,
subjects received no quantitative information about the highest bid of the computerized competi-
tors; they were just informed whether the highest bid of the competitors was above or below their
own bid. InT 1, the highest bid of the competitors was revealed only if it was higher than the own
bid, i.e., the winning bid was revealed always; this feedback condition corresponds to the FPA
experiments of Cox et al. Ifi2, the highest bid of the computerized competitors was revealed in
every auction.

2.4. Equilibrium predictions in the experiment

The bidding game of our experiment involves one bidder who faces the valug (in the
experiment represented by 100 ECU) which equals the upper bound of the uniform distribution
from which theN — 1 competitors’ bids are identically and independently drawn. The competi-
tors’ bids can be interpreted as RNNE bids drawn frg®; 1] corresponding to values drawn
from the intervalU[0; N/(N — 1)], since drawing RNNE bids fron/[0; 1] is equivalent to
drawing values fromJ[0; N/(N — 1)] and applying the RNNE strategy. Thus, the subjects’
value equals the maximum bid that would be submitted by a risk neutral competitor. This is
important, because the CRRAM of bidding has a non-linear segment above this point. In the

7 These market sizes correspond to the ones used in the research of Cox et al.

8 The average payoff was 16,000 I'R.8 EUR (US$8). Subjects were highly motivated by this amount since they had
no alternative job offers and less than $100 to spend per month.

9 please find the instructions in Appendix A. The computer software was prepared by means of Abbink and Sadrieh’s
(1995) Ratlmage. The accumulated payoff, all historical bids and all results were displayed in a table on a subject’s
screen.
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bidding game of our experiment, risk-averse bidders<«(1) and risk-preferring bidders;(> 1)
would bid according to (2), and a risk-neutral bidders=£ 1) would submit the RNNE bid as
described in (1). This is shown in Appendix A. In fact, the Nash equilibrium predictions do not
alter between treatmenf®-T2, as feedback information conditions do not affect the CRRAM.

3. Do we abserve over- or under-bidding?
3.1. First bids

We begin the analysis of the experimental data considering subjects’ first bids, which are
especially interesting because they were submitted before subjects gathered any experience. As
pointed out above, a commonly observed behavioral pattern in FPA experiments is that subjects
overbid the RNNE. Cox et al. (1982a, 1982b, 1983a, 1983b, 1984, 1985a, 1985b, 1987, 1988)
explained the overbidding behavior by means of risk aversion. Table 1 records the number of
subjects who bid above, at or below the RNIRE5 out of 174 subjects (3%) submitted bids
as predicted by the RNNE, and 39 subjects (22%) submitted bids which exceeded the RNNE
prediction in the first auction. Hence, 25 percent of the submitted bids of the first auction bid
‘as if’ risk averse according to the CRRAM. Underbidding occurred in all treatments with a
similar intensity. The bids submitted in the first auction did not change significantly between
treatments 0-72.11

Table 1
Frequencie’ of overbidders, underbidders and RNNE-bidders in auction 1: subjects classified according to their bid
submitted in the first auction

Treatment NP Row (%)°
3 4 5 6 9 total

TO #underbidder 4 7 9 8 10 38 (70
#overbidder 6 5 3 2 — 16 (30
#RNNE-bidder — — - — — -

T1 #underbidder 10 11 6 6 12 45 (75
#overbidder 2 - 5 6 — 13 (22
#RNNE-bidder — 1 1 - - 2 3

T2 #underbidder 10 9 9 10 9 47 (78
#overbidder 1 3 3 1 2 10 ann
#RNNE-bidder 1 - - 1 1 3 5)

Column #underbidder 24 27 24 24 31 130 (75

total #overbidder 9 8 11 9 2 39 22
#RNNE-bidder 1 1 2 1 1 5 (©))

@ Number of subjects are recorded whose first bid was above (overbidder), below (underbidder) or at the RNNE
(RNNE-bidder).

b Market-sizes are indicated by the number of bidd€érsubjects competed with — 1 computerized bids.

¢ Percentages relate to the ratio of the column total to the respective treatment total.

10 |ndividual statistics, including first bids, are listed in Table A.1 in Appendix A.

11 Given N, the null-hypothesis of equal bids in the three treatments cannot be rejected by a Kruskal-Wallis test
at a significance level ofx = 0.05. The p-values for the samples witlv = {3; 4; 5; 6; 9} are respectivelyp =

{0.07; 0.19; 0.34; 0.06; 0.84}.
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Our experimental data suggest that most subjects’ bids cannot be explained by risk aversion
according to the CRRAM (the 95% confidence band extends from 68 to 81%). A binomial test
rejects p = 0.00) the null hypothesis that the submitted bid of the first auction is as likely above
or at the RNNE as below the RNNE. Other factors besides full rationality seem to guide subjects’
first bid choices. For instance, some of the observed bids can be explained by prominent number
considerations: 58 percent of observed numbers are multiples of five. The likelihood of drawing
randomly a number divisible by five is twenty percent. A binomial test accepts @.00) the
alternative hypothesis that the likelihood of observing bid choices which are multiples of five is
greater than 20 percent. However, an explanation of the bids submitted for the first auction lies
beyond the scope of this article.

3.2. Mean bids, bid spreads and individual risk preference parameters

Cox et al. (1988) estimated the bid functiétv, r) by ordinary least square regression. In
the present study, subjects’ values were fixed to 100 ECU, the upper bound of the interval, from
which competitors’ bids were drawn. As an estimate of the ‘bid function’ we use, hence, the
arithmetic mean of the individual’s bids. Table 2 records (in every first row) the average mean
bids and (in every second row) the average risk preference pararhtTérs.average mean bids
in T1 exceed not only the RNNE prediction for every given market-3izbut also the cor-
responding average mean bids of the other treatments. On average a risk preference paramete
rmeardT1) = 0.78 was estimated for treatmentl. Following Cox et al. (1982a, 1982b) a risk
preference parameter smaller than one indicates bidding above the RNNE. This overbidding pat-
tern is in accordance with the results reported from other FPA experiments, as has been pointed
out above. We observe overbiddingdii, although the expected payoff would have been maxi-
mized at the RNNE bid. Comparing the resultsTdf to the other treatments, nevertheless, we
find that overbidding is not a consistent characterization of the data. The average mean bids and
the risk preference parameters estimatedlfor rmear70) = 1.25, and7 2, rmead 72) = 1.17,
suggest underbidding rather than an overbidding pattern. Between treatments we observe signifi-
cant differences in the individual average bids: for> 4, Kruskal-Wallis tests reject the null
hypotheses of equal mean bids across treatn¥e®g 2 at a significance level ef = 0.05, with
no significant differences fav = 3 and 4%

Table 2 records (in each third row) the number of subjects whose average bids exceeded the
RNNE, designating them as overbidders, while the remaining number of subjects whose average
bid were below the RNNE, could be designated accordingly as underbidders. Cox et al referred
to subjects who bid above the RNNE as risk averse and to those who bid below the RNNE as
risk preferring.

In T1, the mean bids of 75 percent of subjects exceeded the RNNE (the 95% confidence
interval extends from 64 to 86%). A one-tailed Wilcoxon signed ranks test on the individual
preference parameters accepis=< 0.00) the alternative hypothesis tHEf is better character-
ized by overbidding than by underbidding. 71 and7 2, however, the number of underbidders
exceeded the number of overbidders. F@r or T2, the one-tailed Wilcoxon signed ranks test
cannot reject the null hypothesis that a subject is at least as likely an underbidder as an over-

12 gee Albers (2001) for a theory on prominent numbers and its applications.

13 (As in Fn. 10) Individual statistics, including risk aversion parameters, are listed in Table A.1 in Appendix A.
14 e tested the individual mean bids for given market-size between treatmentg-Vdlaes for the samples with
N = {3; 4;5; 6; 9} are respectively = {0.43; 0.90; 0.00; 0.00; 0.00}.
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Table 2
Average mean bids, average preference parameters of each market size and frequencies of o¥%erbidders
Treatment NP Row
3 4 5 6 9 total
T0 Average bi@ 70.2 76.3 76.9 80.3 81.2
Averager? 0.89 1.01 1.26 1.25 1.89 1.25
#overbidders 7 8 5 2 0 22
(%) (70) (67) (42) (17) (0) (41)
T1 Average bié 73.7 77.9 85.8 88.2 89.7
Averager? 0.78 0.87 0.67 0.68 0.92 0.78
#overbidderd 8 8 11 10 8 45
(%) (67) (67) (92) (83) (67) (75)
T2 Average bié 69.6 73.7 74.3 85 86.3
Averager? 0.94 1.23 1.46 0.9 1.3 1.17
#overbidders 7 9 2 7 4 29
(%) (58) (75) (17) (58) (33) (48)
Column RNNE 66.7 75 80 83.3 88.9
total Average-? 0.87 1.04 1.13 0.94 1.34 1.06
#overbidderd 22 25 18 19 12 96
(%) (65) (69) (50) (53) (35) (55)

@ The arithmetic mean of subjects’ average bids and the thus estimated individual risk preference parameter for given
market sizeV are recorded.

b N indicates the market size, subjects competed With 1 computerized bids.

¢ Subjects were classified according to their mean bid as overbidders or underbidders. The number of subjects is
recorded whose average bid was above (overbidder) the RNNE; the average bids of the remaining subjects for given
market-size were below the RNNE (underbidders). Relative numbers are recorded in parenthesis below the absolute
numbers for each session.

bidder against the alternative hypothesis that overbidders are more frequ®Enp & 0.99;
T2: p = 0.84)1% The relative frequency of overbidders 0 was 41% (the 95% confidence
band extends from 28 to 54%) and 12 48% (the 95% confidence band extends from 36 to
61%), respectively®

CRRAM predicts that submitted bids should be constant, i.e., that they do not change from
one auction to the next if the resale value is the same. As reported below (see Table 4), subjects
changed their consecutive bids in 87 percent of all observations. Still we might believe that
subjects bid according to CRRAM up to some error term. Taking a subject’s average bid as the
reference bid, we constructed a test on the individual's bid sequence: a positive sign designated
an above-average bid; a negative sign designated a below-average bid. Table 3 surveys the results
of two-tailed one-sample runs tests of the null hypothesis that the sequence of a subject’s bids
changed by chance from above to below the mean and vice versa. The first (second) column
indicate the number of subjects whose consecutive bids changed less (more) frequently than
expected from one side of the average bid to the other. The data of 153 subjects (88%) exhibit

15 The Wilcoxon signed ranks test conducted on the total of 174 individual risk preference parameters (returning a
p-value of p > 0.70) accepts the null hypothesis that the risk preference parameter is as likely greater as it is smaller
than 1.

16 The numbers recorded in Table 2 might hint at a negative correlation betWeer overbidding in treatmenfs0

andT2. The literature suggests that such a decline might occur in case of decreasing expected payoffs (Dyer et al., 1989).
As we observe a positive correlation betweérand the number of overbidders o, we are confident that in our data

the issue is of minor relevance.
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Table 3
Number of subjects with less or more runs of overbidding or underbidding than randomly expected
Treatment Less runs than expeé&ed More runs than expectéd Wilcoxon testz®
(significantly less) (significantly more)) (p-value)
TO 49 5 —5.77
(32 ¥3) (0.00)"
T1 55 5 —5.64
(41 @ (0.00)"
T2 49 11 —6.43
(30) (6] (0.00)"
Total 153 21 —10.38
(103 4% (0.00)"

& Qutcomes of a two-sided one-sample runs test of the null hypothesis that the consecutive bids spread randomly
around the average bid against the alternative that they do not. The number of subjects is recorded who changed their
bids from below the average bid to above the average bid less (respectively more) frequently than expected by chance.

b Runs were significantly less/more frequenty=t 0.05) than expected.

¢ Wwilcoxon signed ranks test results (approximately standard normally distributed) of the null hypothesis that the
outcomes of the runs test involve less runs than expected as likely as more runs than expected.

* Significant atx = 0.05.

less runs than expected, for 103 subjects (59%) significantly less than expected at thes

level of significance. The individual test results (not detailed here) were next used to test the null
hypothesis that more runs are equally likely than less runs. A two-tailed Wilcoxon signed ranks
test rejects f = 0.00) highly significantly the null hypothesis for each treatment; its results are
reported in the third column of Tablel3.

On the basis of our data we reject the CRRAM of bidding: First, subjects did not submit
always the same bid nor did they bid according to CRRAM up to an error-term. Secondly, the
reported risk preference parameters and results of under- and over-bidding do not support the
implicit hypothesis of CRRAM that information feedback do not affect the subjects’ bidding
behavior in FPA. The data provide evidence that the behavior is influenced significantly by the
information feedback conditions of the experiment: although treatments were identical up to the
on-screen information about the highest bid of the computerized competitors they yield signifi-
cantly different results. In what follows, we provide an explanation of the disparity of bidding
behavior in treatmentE0-T2 by means of a bidding dynamics analysis.

4. Bidding dynamics analysis

In the economic theory on FPA, in the RNNE as much as in the CRRAM, bids are linear
functions of resale values. From the FPA experiment of Selten and Buchta (1994) it was reported
that bid functions were usually non-linear and changing over the course of the experiment; quite
often non-monotonous bid functions were observed. In their experiment a subject’s task was
to submit a bid function instead of a bid in 50 auction markets. They found in 35 percent of
the observations that the bid functions were changed from one to the next auction. The bidding
dynamics in their data could be explained to a good extent by learning direction theory. In the
following subsection, learning direction theory will be reviewed and subsequently applied to the
experimental data.

17 we conducted the same test for the reference bid equakt®NNE (not detailed here). The null-hypothesis that
subjects bid according to RNNE up to some error-term was rejected, too.
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4.1. Learning direction theory and its implications

The basic idea of learning direction theory goes back to Selten and Stoecker (1986). They
applied it to data from the repeated prisoners’ dilemma supergame. Since, it has been supported
by the data of diverse experimenfsin the review of learning direction theory we follow Selten
and Buchta (1994): Learning direction theory is a qualitative behavioral theory based on bounded
rationality. As an illustration of the theory, Selten and Buchta (1994) proposed the example of
a marksman who shoots an arrow to hit a trunk. If the arrow misses the trunk to one side the
marksman shifts the bow in the direction of the other side when he gives it another try. The
marksman in the example draws qualitative conclusions from his information feedback and ad-
justs his behavior according to a causal relationship: if he misses, for instance, to the right he
concludes that he could have got closer to his target if he had directed the arrow more to the
left. This line of reasoning links to ex post rationality, it asks whether a different action might
have produced a better result. Learning direction theory does not bring on a full-fledged behav-
ioral model; it only makes predictions about tendencies of qualitative adjustment. It concerns the
direction of a change rather than its size. A possible quantification of learning direction theory
is provided in the next subsection. However, consider now the application of this theory to our
FPA experiment. Leb denote a subject’s bid angddenote the winning bid (i.e., the price) in the
auction. Subjects could be in one of the following two experience conditions with respect to the
preceding period:

(1) Successful bid conditiol = p.
(2) Lost opportunity conditionb < p.

In the experience condition of a successful bid, a subject won the preceding auction. Never-
theless, he might have received a greater payoff by submitting a lower bid. Similarly, in the lost
opportunity condition the subject did not win the auction, but he could have won the auction by
submitting a higher bid. Therefore, learning direction theory implies the bid change hypothesis
that after a successful bid a subject tends to decrease his bid, while after experiencing a lost
opportunity the subject tends to increase his bid.

Table 4 records the number of bid changes, i.e. increases or decreases of the bid from one
auction to the next. Changes are listed separately according to subjects’ experience condition of
a successful bid or a lost opportunity in the preceding auction. A first observation reveals that
in 87 percent of all observations subjects changed their bids from one auction to the following
one; this finding contradicts the predictions of both the CRRAM and the RNNE which suggest
constant bidding. In every treatment we observed that over 60 percent of bid changes go in the
direction predicted by the bid change hypothesis and about 25 percent in the opposite one. A bid-
change in the predicted direction, hence, occurred 2.4 times as often as an unpredicted one.

It appears to be interesting how many subjects behaved according to the bid change hypoth-
esis: In determining the share of these subjects we proceeded similarly to Selten et al. (2005).
A simple comparison of the relative frequencies of bid changes in the direction indicated by
learning direction theory and in the opposite direction may be misleading. Random bidding re-
sults as well as learning direction theory in a preponderance of lower bids after high bids and
higher bids after low bids. In order to generate an appropriate null hypothesis we ran 1000 simu-

18 see Selten (2004) for a survey of this literature.
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Table 4
Absolute (relative} frequencies of bid changes in auctions 2—100

Treatment  Experience condition  Bid decrease # (%) Bidincrease # (%) Unchanged bid # (%) Row total

70 Successful bid 1447 599 311 2357
(61 (25 13 44

Lost opportunity 842 1785 362 2989
(28 (60 12 (56)

T1 Successful bid 1932 882 450 3264
(59 27 (14 (55

Lost opportunity 571 1753 352 2676
(21 (66) 13 45

T2 Successful bid 1771 746 321 2838
(62 (26) 1y (49

Lost opportunity 739 1953 410 3102
(29 (63 13 (52

Column total 7302 7718 2206 17226
42 (45 (13 (100

@ In the first three columns relative frequencies relate to the row total, in the last column relative frequencies relate to
the total of observations in the respective treatment.

lations in which the sequence of the competitors’ highest bids was randomly permuted, but the
subject’s submitted bid sequence was kept fixed. For each of these 1000 simulations we calcu-
lated the relative frequency of bid changes under the counterfactual assumption that the permuted
sequence of the competitors’ highest bids was observedviLié the average of these relative
frequencies and leR be the relative frequency of bid changes conforming to learning direc-
tion theory actually observed in the experiment. The surgles R — M measures the extent

to which the observations support learning direction theory after the exclusion of mere random
effects. We made the following observation: for 160 subjects (92%) we found a pasitive;

as maximum surplus we observed 0.48 and the average of positive surpluses WasrddtBer

words, ninety-two percent of experimental subjects behaved more frequently than could be ex-
pected by chance in accordance with learning direction theory. The Wilcoxon signed ranks test
of the null hypothesis that the mean surplus in the population of subjects is equal to zero, i.e.,
§ =0, is rejected f = 0.00) in favor of the alternative hypothesis 0.

Table 4 provides a key understanding of the driving forces behind the overbidding we observed
in treatment?" 1 of the experiment. Note first that in 59 percent of observations the bid decreased
after a successful bid. Secondly, in 66 percent of observations the bid increased after a lost
opportunity. Selten and Buchta (1994, p. 13), who made a similar observation under comparable
feedback conditions, remarked that the impulse that a subject received.warich clearer in
the lost opportunity conditiorf® We constructed a test-statistic (to be used in all tests of this
paragraph) by calculating for each subject (and each experience condition) the relative frequency
of bid changes he or she realized in accordance with the bid change hypothesis. With respect

19 On the other hand, we observed a negative surflasO for 14 subjects (8%). The minimum surplus we observed
was—0.09 and the average of the negative surpluses-wa83. Less than 5% (i.e., 8 out of 174) of all subjects violated

the bid change hypothesis at least in one direction. One subject decreased his bids more frequently than he increased
them after not winning the auction, six other subjects increased their bids more frequently than they decreased them after
winning the auction, and one subject’s behavior was at odds with the bid change hypothesis in both directions.

20 Comparable results were reported by Cason and Friedman (1997, 1999) who use both qualitative and quantitative
directional learning to explain overbidding in two-sided auctions.
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to T1 a two-tailed Wilcoxon signed ranks test rejectpd= 0.00) the null hypothesis that it is
equally likely to observe a higher relative frequency of bid increases after a lost opportunity than
of bid decreases after a successful bid. Thirdly, notice further tHédithe relative frequency of

a bid increase after a lost opportunity was equally high=(0.37) as the relative frequency of a

bid decrease after a successful BidVloreover, in72 a bid decrease after a successful bid was
not significantly more likely > 0.25) than an increase after a lost opportunity. Fourthly, note
that a bid increase after a lost opportunityZii was more likely than irf O (and the impulse

was clearer irf'1).22 Fifthly and finally, the bid decrease after a successful bid was more likely
(although not at the = 0.05-level of significance) iff 2 than inT 1 (and the impulse was clearer

in 72).23 On the basis of these observations we conclude that subjects react more frequently to
an impulse when it implies clear feedback information in terms of foregone payoff. The feedback
condition in7T'1 was asymmetrical since the highest bid of the competitors was revealed only if
the subject submitted a lower bid. In the experience condition of a successful bid, conversely, the
impulse was ambiguous: the subject did not know whether he also could have won the auction
by submitting a lower bid; in hindsight, he did not receive clear information. Since we do not
observe a similar pattern in the symmetrical information treatmBftand7 2,24 we conclude

that the asymmetrical information with respect to impulse clarity implied a drift towards higher
bids in the treatmerif'1.

4.2. Impulse balance theory

In a recent paper, Selten et al. (2005) proposed impulse balance theory, which makes possi-
ble quantitative predictions of the long-run effects of learning direction theory. Impulse balance
theory is mainly applicable in economic situations in which clear impulses are provided so that,
in hindsight, the ex post-rational choice can be exactly determined. It assumes that impulses that
involve greater gains are relatively more important. Ex post rationality results in an upward or
downward impulse in accordance with learning direction theory. Impulse balance theory pro-
poses the impulse balance point at which upward and downward impulses cancel out in the long
run. Note that impulse balance theory builds on the payoff space of a bidder rather than on his
message space.

Consider the FPA situation implied by treatmef2. Let x denote the highest bid of the
competitors; and as before, letlenote the agent’s bid andthe winning bid. A successful bid
implies that the agent won the preceding auction. Winning the auction produced a profit, but also
an opportunity cost. The agent could have also won the auction by submitting a bid equal to the
highest bid of the competitors. In accordance with impulse balance theory, in the successful bid
condition the agent receives a downward impulse equal to the difference between the bid and the
highest bid of the competitors. Conversely, a lost opportunity implies that the agent did not win

21 This result is not generally confirmed for all considered market sizesor N = 9, bid decreases after a successful
bid are significantly more likely than bid increases after a lost opportunity.

22 A two-tailed Mann-Whitney test reject® (= 0.01) the null hypothesis that bid increases in the lost opportunity
condition occur with equal likelihood i1 and inT0.

23 A two-tailed Mann-Whitney test acceptg & 0.18) the null hypothesis that ilf1 and 72 bid decreases in the
successful bid condition occur with equal likelihood.

24 1n T0, ambiguity about the winning bid existed in both experience conditiong2ithere was a clear impulse in
both experience conditions.

25 Recall Harrison’s (1989) critique, here.
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the preceding auction. Not winning the auction produced no payoff. However, if the agent had
submitted a bid equal to the highest bid of his competitors he would have won the auction. In
the lost opportunity condition, impulse balance theory implies an upward impulse equal to the
difference between the agent’s resale valuend the highest bid of the competitors. Following
Selten et al. (2005), the downward impuise(-) and the upward impulse, (-) can be described

as follows:

a_(b,x) =max0, b — x), ()
_fv—x ifx>b,
a+(b,x) = HO otherwise “)
Define
A_(b) = E[a_(b,x)], (5)

Ay (b) = E[ay(b,x)],
then the impulse balance poibit is defined by the impulse balance equation:
IBE: A_(b*) = A4 (b"). (6)

The impulse balance point (hereafter IBE) is uniquely determined. This is easily seen by
noting that the left hand side of the impulse balance equation increas&svitnereas the right
hand side decreasesii; and forb* = v the left hand side is greater than the right hand side,
while for 5* = 0 the left hand side is smaller than the right hand side.

4.3. Impulse balance points

Let the number of competitors’ bids be denotedihguch thaie = N — 1, and let the resale
valuev be normalized to one, i.eu,= 1, such that the competitors’ bids are uniformly, identically
and independently distributed over the interval from 0 to 1. E€¢X < x) = x" denote the
cumulative probability that alk competitors’ bids are smaller than some real numheand
let f(x) = nx"~1 denote its density, we can write the impulse balance equation for treafiient
as follows:

A_(D") = AL (bY),

+00 +00
/f(X)a—(b*,x)dX= / f@)ay(b*, x)dx,

b* 1
/nx"_l(b* —x)dx = /nx”_l(l—x)dx,
0 b*

b*n+1_ n b*n+1:1_ n _ppn n b*n+1‘
n+1 n+1 +n+1
n—1
IBE—T2: 0= S Rp— L 7
n+1 + n+1 ()
O:b*n+l_ n+1b*n+ 1

n—1 n—1



196 T. Neugebauer, R. Selten / Games and Economic Behavior 54 (2006) 183-204

Since the impulse balance &2, as per (7), involves no parameter, we can easily calculate
the impulse balance points for each market size of our experifAénttreatments’0 and7'1,
however, the impulses are not clear in at least one experience condition such that the subject can
only count the impulses in each direction. If the bidder chooses thethiein the probability of a
downward impulse i$" and the probability of an upward impulse is-b". However, the subject
may attach a different importance to downward and upward impulses. Therefore, we introduce
a parar;wetex > 0, the downward impulse multiplier, and write the impulse balance equation as
follows?”:

A =1 — b, 8)

The downward impulse multiplier can be interpreted as an indicator of the importance of a
downward impulse relatively to an upward one. If more importance is put on downward impulses
then fewer downward impulses can counterweigh more upward impulses. For example, if we
havei = 2 the expected upward impulse must be double the expected downward impulse at the
impulse balance. In other words, one unit of downward impulse would have the same weight as
two units of upward impulse. In this sensds the relative importance of downward impulses.
Rearranging Eq. (8), we get an explicit formulation for the impulse balance bifi® ahd7'1:

28 g« _ o 1
IBE—T0,T1°. b*= Tn 9)

To determine the impulse balance points7Tdd andT'1, as per (9), we have to proceed by
estimating the downward impulse multiplier from the data. For each subjeetdetermined the
multiplier A; according to the average bid of the subject and took the median of these individual
multipliers as an estimation af Thus, the estimator of the downward impulse multipliefd
was Amediaf 70) = 1.74; and inT'1 correspondingly.median= 1.012° For T'1 the estimate of
the downward impulse multiplier indicates that subjects weigh downward and upward impulses
equally. It suggests that subjects use a count heuristic, i.e., they count upward and downward im-
pulses. Atleast at first glance there seems to be a discrepancy between this result for tiBatment
and earlier findings summarized by Table 4. There, the relative frequencies of upward and down-
ward impulses fof'1 are 0.55 and 0.45 respectively. However, the estimatgia{71) = 1.01
is the median of all estimates for individual subjects and does not necessarily reflect aggregate
behavior. Therefore our conclusions about differences between the successful bid and the lost
opportunity conditions with respect to the conformance to learning direction theory do not nec-
essarily hold for the median subject. FBo the estimate of the downward impulse multiplier
indicates that one unit downward impulse weighs 1.74 units of upward impulse. This would
imply that subjects were more strongly motivated by a downward impulse than by an upward
impulse. In fact, we lack an intuition why subjects should weigh downward impulses so much.
Therefore, it is unclear to us whether impulse balance theory should be applied to this treatment.
In principle, we would expect subjects 0 to use a count heuristic, too. The theory does not

26 |t should be noted that the impulse balance point calculated here is not the impulse balance. It is only the prediction
of a subject’s action if all other agents behave according to the RNNE.

27 Ockenfels and Selten (2005) use a similar approach with one parameter, the estimate of which averl@gdsIn

their design, subjects receive a value which they maintain for five FPA. Subjects are matched subsequently in markets of
size N = 2 facing a different opponent in every round.

28 Note from the equation that at the impulse balance the bid is the lower the higher the downward impulse multiplier is.
29 (As in Fn. 10 and Fn. 13) Individual statistics, including downward impulse multiplier, are listed in Table A.1 in
Appendix A.
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allow us to draw any conclusion why we observe this disparity between the two treatments. The
only difference is that irf'O subjects receive no quantitative information feedback about how
far the bid has been from the right decision whileTith they receive clear impulses at least in
one direction. Apparently this lack of impulse clarity produces a more uncertain and more erratic
behavior; the variations of bids between two consecutive auctions are gre#tethian in7'1.3°

To sum up, although the qualitative behavior is in harmony with learning direction theory, we
cannot rationalize the quantitative behaviofTdf. We hope to unravel this issue in the future.

Table 5 gives an overview over the determined impulse balance points for the different treat-
ments. In contrast to the RNNE and the CRRAM, impulse balance theory predicts different
impulse balance points for each feedback condition. Note that only the impulse balance points
for T1 exceed the RNNE. Table 5 surveys, also, the predictions of CRRAM which were calcu-
lated by the overall median of the individual risk preference parametgsgan= 0.9331

In order to compare the fit provided by these competing theories we measured the distance
of each subject’s average bid to the impulse balance point, the RNNE and the CRRAM. Table 6
records separately for each treatment the number of subjects whose average bid was closest tc
either predictor. Subjects’ average bids are best described in 54 percent of all observations by the
impulse balance points, in 15 percent and 31 percent by RNNE and by CRRAM, respettively.
However, we should concede that impulse balance theory is not yet a fully satisfactory3heory.

It might not be better than RNNE or CRRAM in all circumstances; we cannot tell because the
statistical evidence is missing. Nevertheless, it must be seen as a reasonable benchmark since it i

Table 5
Impulse balance points and the RNNE for each market size and treatment
Treatment N2

3 4 5 6 9
IBP for 70 60.5 71.5 77.8 81.8 88.2
IBP forT1 70.5 79.2 84 86.9 91.6
IBP for T2 65.3 73.4 78.4 81.8 87.7
RNNE 66.7 75 80 83.3 88.9
CRRAMP 68.3 76.3 81.1 84.3 89.6

@ N indicates the market size, subjects competed With 1 computerized bids.
b CRRAM predictions corresponding to the median risk preference parameter.

30 we compared the sum of individual squared changes between rourfd3 with those of7'1. The deviations in

T0 were greater than i1 for each market siz&/. The Mann-Whitney test yields the following outcomespof&
{0.02,0.44,0.20, 0.59,0.01} for N = {3,4, 5, 6, 9}, respectively.

31 |n order to make a general point prediction we need to fix.aks pointed out above, the risk preference parameter

is individually different in the CRRAM. Taking the median observation neglects these differences.

32 The CRRAM and the RNNE jointly provide a better fit than the IBP in 46 percent of observations. If we adopted
individual preference parameters as we should according to the assumptions of the CRRAM and not the median prefer-
ence parameter as we do, the fit of the CRRAM would be 100 percent in this exercise. As a matter of fact, the fit of the
CRRAM is not 100%. It fails to explain the treatment effect betw&dnon one side an@0 and72 on the other, and
itignores the learning behavior in the data. Hence, assuming individual risk preference parameters obviously immunizes
the CRRAM against criticism.

33 A referee has drawn our attention to the apparent effect between information feedback and manketrsize are

no significant treatment effects in overbidding between treatmentsAith3 and 4 (see footnote 18 and Table 2). In
contrast to this evidence, the impulse balance points do suggest differences between treatments. Where the discrepancy
between the data and the theoretical prediction comes from, we do not know. In fact, we cannot exclude that there is still
too much noise in the data as we account only for a small number of independent observatigr{s @e#12).
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Table 6
Number of subjects whose average bids were closest to the respective predictor (RNNE, CRRAM, Impulse balance point)
Treatment RNNEA(= 1)2 # (%) CRRAM ( = 0.93)2 # (%) Impulse balance pofh# (%)
TO 6 20 28

1y 37 (51
T1 15 8 37

(25 13 (62
T2 5 26 29

®) 43 48

Total 26 54 94

(15 (31 (54

@ Absolute numbers recorded in every first row refer to the subjects for whom the distance of the individual average
bid from the Impulse balance point, RNNE or CRRAM was smallest, respectively. Relative numbers in every second row
are recorded in parenthesis.

based on learning direction theory, which has been soundly supported by the data. The CRRAM
and the RNNE, on the other hand, are not linked to any learning theory and lack an explanation
of how subjects approach the equilibrich.

5. Summary

We designed a first-price sealed-bid auction experiment to test the predictions of the CRRAM
and the RNNE in an environment in which subjects faced objective probabilities with respect to
the behavior of their competitors. Competitors’ bids were randomly drawn by the computer, such
that agents who exhibit constant relative risk aversion would maximize their utility by bidding as
predicted in the CRRAM (2). Cox et al. (1982a, 1982b, 1983a, 1983b, 1984, 1985a, 1985b, 1987,
1988) developed the CRRAM to explain the observed overbidding regularity in FPA experiments
in which the winning bid was revealed after each auction. Overbidding above the RNNE was not
a consistent pattern of our experimental data. In two out of three treatments subjects’ average
bids were below rather than above the RNNE. Only under standard information feedback of FPA
experiments, i.e., price revelation, we observed overbidding. Thus, the data provide evidence that
the feedback conditions can significantly influence behavior in experiments with computerized
bidders3® Subjects’ qualitative bidding behavior did not support the CRRAM, either, since it
predicts degenerate behavior. Subjects did neither bid constantly nor did they vary the bid up to
an error-term around their average bid. The CRRAM must therefore be rejected.

34 Actually, such learning stories were proposed for the FPA already in the discussion to Harrison’s critique by Friedman
(1992, p. 1377): ‘An alternative direction to CSW's generalized preferences arises from a learning and adjustment story.
Suppose typical bidders in the CSW auctions begin with the rule of thumbx“pétcent of value,” where is exogenous,

and learn by trial and error to adaptoward its Vickrey valuec* (... or perhaps toward some risk-averse analoy’

There are numerous papers on learning in games that made the general point that learning explains behavior better than
simple equilibrium point predictions. Camerer (2003) provides a broad survey of such literature. It would be an interesting
research task to contrast these learning models with respect to their convergence properties in the experimental FPA.
35 |n a follow up study to the present work, which used within subject variation, Neugebauer and Perote (2005) found
similar evidence in an interactive FPA experiment of market a8ize 7. They report that subjects did not overbid the
RNNE as long as they did not receive any information feedback, but the very same subjects did overbid when price
information feedback was introduced. An impact of feedback conditions on behavior in FPA was already observed in the
classic paper by Isaac and Walker (1985).
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The data could be explained qualitatively by learning direction theory (Selten and Buchta,
1994) which goes back to Selten and Stoecker (1986). The bidding dynamics of 92 percent of
the subjects were in line with the bid change hypothesis derived from learning direction theory.
Comparing the individual behavior in the three feedback conditions of the experiment, we found
that subjects reacted significantly more frequently to an impulse (according to the predictions
of learning direction theory) if it was quantitatively clear in terms of foregone payoff. Thus, the
asymmetry of information feedback with regard to the greatest competitors’ bid in the stand-
ard feedback condition of FPA apparently produced an upward drift that led to overbidding in
treatment7’1.

In order to provide a quantitative explanation of the data we applied impulse balance theory
of Selten et al. (2005). Impulse balance theory is a static equilibrium concept that builds on
the payoff space of agents and makes point predictions of the long-run behavior on the basis
of learning direction theory. Differing from the RNNE, we determined distinct impulse balance
points under each of the three feedback conditions of the experiment; the impulse balance points
take the information differences into account. Subjects’ average bids were closest to the impulse
balance points in more than 50 percent of observations compared to the RNNE and the CRRAM.
Impulse balance theory seems to provide good alternative predictors to the Nash equilibria for
behavioral studies.
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Appendix A
A.1. Proposition

Assume that a bidder has a resale value equaktdl for the object to be auctioned, and let
the bids ofN — 1 competitors be identically and independently drawn from a continuous uniform
distribution ranging from 0 to 1. Assume the bidder’s utility function is giveruly) = (y)",
wherey is the bidder’s income and > 0 denotes the bidder’s risk preference parameter. The
following statements hold:

(i) The bidder’s bid equals the Nash equilibrium bid of the CRRAM.
(i) For r =1 (risk-neutrality), the bidder’s bid is equal to the RNNE bid.

Proof. The probability that the bidder’s bitl exceeds the bid of every competitor4§ 1.
Therefore the bidder’s expected utiliy(v, b) for biddingb is as follows:

UWw,b)=uw —b)b"N t=@w-—b'p"N 1
Differentiating with respect té yields the first order condition.

WU, b)
ab

—rw=b"" 1 -1V 2(N -1 =0. (%)
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This yields—r (v — b)" b 4 (v — b)" (N — 1) =0.
It follows that the bidder who faces an Arrow—Pratt constant relative risk aversion parameter
1 — r submits a bid equal to the Nash equilibrium bid in the CRRAM, (2):

N-1
b*(v,r)y=——— .
(v, 1) N_itr v
If the bidder is risk-neutral the bid is equal to the one in the RNNE, (1):
-1
b*(v,1) = NN V.

It remains to show that (2) is sufficient for utility maximization, i.e. the second derivative of the
utility function is negative ab* (v, r). We differentiate(x) to obtain
3%U
0b2
where f (v, b) = r(r — 1)b% — 2r(N — 1)(v — b)b + (N — 1)(N — 2)(v — b)2. Note, we have
v=1, suchthat — b* =r/(N — 1+r) > 0. It remains to show thaf (1, b*) < 0.

=@w—=5b""2""3f,b)

N-1
fLb*) = Noiie [(r = r)(N —1) —2r%(N — 1) + (N — 2)r?]
N-1
= m[—r(N -1 - r2] <0.

This completes the proof. Hendg;(1, r) maximizes expected utility for aH > 0.

A.2. Instructions

In the experiment you will participate in 100 auctions.

At the beginning of each round¥(— 1) numbers between 0 and 100 are drawn randomly and independently (i.e., in
each draw every number between 0 and 100 is equally lid8ly).

These numbers represent thé { 1) bids of your competitors in the auction. Without knowledge of the others’
bids you will be asked to submit your bid, which can be any number between 0 and 100. In each round, the highest bid
(including your own) determines the market price.

Your bid determines your round payoff as follows:

If your bid is equal to the price, you will receive the difference between 100 and your bid (i.e., pagof —
price) expressed in ECU (experimental currency units), otherwise you will receive nothing. The exchange rate will be
1 ECU=5(N) ITL. At the end of the experiment you will be paid your accumulated payoff privately.

At the end of a round, you will be informed about

(1) (70:) the auction price only if it is equal to your bid'{, 72:) the auction price;

(2) (T2:) the highest bid submitted by your competitors; (Note: if you submit a bid equal to the highest bid of your
competitors you win the auction without further notice.)

(3) your resulting round payoff;

(4) your accumulated payoff.

Furthermore, throughout the experiment you will receive on-screen information about all corresponding historical
records.

36 For the instructional sessiond (— 1) was substituted accordingly to the session’s number of computerized competi-
torsN —1={2,3,4,5, 8}. Instructions were read aloud. Subjects were encouraged to ask questions in case of doubts.



Table A.1
Subjects’ first bids and individual statistics over 100 auctions

N2 RNNE TQP T1 T2
ID I1stbid Mean Median A; ri ID 1stbid Mean Median A; ri ID 1stbid Mean Median r;

3 667 1 85 768 80 a7 0.61 5 21 8 85 055 049 115 62 716 72 Q79
3 66.7 2 68 689 77 111 09 56 58 627 59 154 119 116 40 58 61 14
3 667 3 78 639 655 145 113 57 78 70 80 061 054 117 21 513 555 19
3 66.7 4 63 854 91 Q37 034 58 40 8 80 044 04 118 5 773 88 Q059
3 667 5 50 72 80 ®m3 078 59 55 70 80 061 054 119 56 78 815 0.56
3 667 6 75 669 73 123 099 60 30 81 80 B2 047 120 55 % 84 052
3 667 7 100 762 80 Q72 063 61 48 863 88 034 032 121 90 86l 90 Q032
3 667 8 70 663 70 127 102 62 50 546 56 235 166 122 65 64 665 112
3 667 9 60 697 705 106 087 63 60 645 63 14 11 123 50 760 79 Qa6
3 667 10 50 557 55 222 159 64 98 8% 85 043 039 124 65 674 725 0.97
3 667 b 65 51 737 75 084 071 125 66 5@ 50 138
3 667 b 66 58 568 56 21 152 126 55 646 65 11
4 75 11 45 8% 865 092 073 67 66 7% 745 161 113 127 76 62 645 182
4 75 12 50 69l 76 203 134 68 68 76 78 P8 095 128 85 85 845 0.64
4 75 13 99 83l 85 Q74 061 69 62 9 90 035 032 129 62 7% 79 Q97
4 75 14 70 8% 82 Q77 063 70 48 700 745 19 128 130 69 54 55 B5
4 75 15 58 67 69 224 144 71 25 79 82 102 079 131 30 815 82 068
4 75 16 66 81 825 083 067 72 65 7% 72 161 114 132 27 7 835 0.98
4 75 17 81 531 545 568 265 73 75 849 86 063 054 133 10 44 465 38
4 75 18 72 678 71 221 143 74 70 7871 78 105 081 134 65 81 85 a
4 75 19 87 8% 88 059 051 75 59 718 795 17 118 135 20 8% 855 043
4 75 20 58 75 83 136 099 76 65 821 81 081 066 136 11 B 80 085
4 75 21 95 857 87 059 05 77 52 7R 82 101 079 137 74 83 84 Q065
4 75 22 88 8P 87 069 058 78 65 774 795 116 088 138 90 8% 815 0.73
5 80 23 75 72 79 268 154 79 86 921 92 039 034 139 82 8% 825 0.84
5 80 24 87 812 87 13 0.92 80 85 80 86 102 077 140 88 68 67 181
5 80 25 78 73 77 241 144 81 68 866 87 Q79 063 141 56 77 79 19
5 80 26 70 757 75 205 129 82 90 915 92 043 037 142 50 7a 80 106
5 80 27 76 662 74 421 204 83 55 78 80 159 108 143 70 78 84 a3
5 80 28 78 8% 85 Q95 073 84 55 854 89 088 068 144 90 ® 80 111
5 80 29 55 82 86 12 0.87 85 98 84 88 Q97 Q074 145 25 5% 665 295
5 80 30 54 63 65 B85 235 86 85 8% 88 064 053 146 10 8 85 139

(continued on next page
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Table A.1 ¢€ontinued

N2 RNNE TQP T1 T2
ID 1stbid Mean Median 2; ri ID 1stbid Mean Median 2; ri ID 1stbid Mean Median r;

5 80 31 48 78 755 298 165 87 80 82 86 112 083 147 79 716 77 158
5 80 32 89 82 89 Q73 059 88 60 8% 91 Q56 047 148 50 538 585 274
5 80 33 88 872 875 073 059 89 75 8 84 117 085 149 78 7N 80 104
5 80 34 56 79 85 57 106 90 60 84 85 101 076 150 45 833 95 Q69
6 833 35 78 749 83 324 168 91 70 8® 90 Q77 06 151 47 817 805 112
6 833 36 65 801 905 203 124 92 80 843 85 135 093 152 11 8% 83 105
6 833 37 69 813 835 182 115 93 89 88 90 08 062 153 5 781 80 14
6 833 38 56 765 80 282 153 94 90 803 855 2 122 154 83 78 80 14
6 833 39 88 823 88 165 108 95 90 9 95 Q42 036 155 75 T4 78 146
6 833 40 80 848 86 128 09 96 88 935 97 Q4 035 156 57 904 935 0.53
6 833 41 65 71 76 &4 204 97 50 88 89 B9 068 157 65 916 93 Q046
6 833 42 87 831 87 152 102 98 65 814 85 18 114 158 75 92 93 a3
6 833 43 65 812 85 183 116 99 90 884 90 085 066 159 85 838 91 Q6
6 833 44 80 874 88 Q96 072 100 85 897 92 Q72 058 160 75 88 91 Q66
6 833 b 101 80 891 89 Q78 061 161 60 8& 88 Q8
6 833 b 102 60 922 95 Q5 042 162 75 8L 86 Q94
9 889 45 80 682 71 2037 374 103 82 913 95 107 076 163 79 75 77 266
9 889 46 85 826 90 361 168 104 80 8% 90 166 104 164 95 U 94 Q66
9 889 47 80 821 885 384 174 105 79 our 91 118 082 165 80 8% 90 Q94
9 889 48 70 859 885 237 132 106 75 9% 95 Q71 056 166 58 8 94 136
9 889 49 60 779 80 637 227 107 80 8% 90 141 093 167 78 838 88 167
9 889 50 70 822 89 38 173 108 81 8% 88 247 135 168 89 87 88 115
9 889 51 85 836 88 319 157 109 80 873 89 196 117 169 90 8& 90 128
9 889 52 55 84 85 P»3 152 110 83 8% 90 139 092 170 87 oA 95 066
9 889 53 75 862 89 228 128 111 83 904 92 124 085 171 15 833 91 138
9 889 54 85 7% 81 527 206 112 80 8% 90 141 093 172 56 85 87 17
9 889 b 113 85 923 95 Q9 067 173 70 8@ 88 121
9 889 b 114 80 881 90 176 108 174 85 838 91 Q96

& N —1 is the number of computerized competitors in the experiment.

b Due to network problems only 10 computers could be used in three sessions. Thus, only 54 subjects partidifated in
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