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Abstract

An allocation rule is called Bayes-Nash incentive compatible, if there exists a payment

rule, such that truthful reports of agents’ types form a Bayes-Nash equilibrium in the direct

revelation mechanism consisting of the allocation rule and the payment rule. This paper

provides characterizations of Bayes-Nash incentive compatible allocation rules in social

choice settings where agents have one-dimensional or multi-dimensional types, quasi-linear

utility functions and interdependent valuations. The characterizations are derived by

constructing complete directed graphs on agents’ type spaces with cost of manipulation

as lengths of edges. Weak monotonicity of the allocation rule corresponds to the condition

that all 2-cycles in these graphs have non-negative length.

For one-dimensional types and agents’ valuation functions satisfying non-decreasing

expected differences, we show that weak monotonicity of the allocation rule is a necessary

and sufficient condition for the rule to be Bayes-Nash incentive compatibile. In the case

where types are multi-dimensional and the valuation for each outcome is a linear function

in the agent’s type, we show that weak monotonicity of the allocation rule together with

an integrability condition is a necessary and sufficient condition for Bayes-Nash incentive

compatibility.
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1 Introduction

This paper is concerned with the characterization of Bayes-Nash incentive compatible al-

location rules in social choice settings where agents have independently distributed, one-

dimensional or multi-dimensional types and quasi-linear utility functions, that is, utility is

the valuation of an allocation minus a payment. We allow for interdependent valuations across

agents. The central task addressed in this paper is the following: given such type distributions

and valuations, characterize precisely those allocation rules for which there exists a payment

rule such that truthful reporting of agent’s types forms a Bayes-Nash equilibrium in the direct

revelation mechanism consisting of the allocation rule combined with the payment rule. In

addition, we aim for a framework that lets us construct a payment rule, if any, which makes a

particular allocation rule Bayes-Nash incentive compatible. For example, given an allocation

rule which decides in a combinatorial auction for each set of bids for each agent which set of

items he wins, we want to be able to decide whether there exists a pricing scheme for winning

bids that makes truthful bidding a Bayes-Nash equilibrium. If the answer is yes, we would

like to have means to construct such a pricing scheme.

1.1 Related Work

A recent stream of literature offers examples of characterizing dominant strategy incentive

compatible allocation rules in terms of a monotonicity condition on the allocation rule, see e.g.

Bikhchandani, Chatterji & Sen [2] and Lavi, Mu’alem & Nisan [8]. Gui, Müller & Vohra [3]

extend these results to larger classes of preference domains by making a link to network theory.

The most general results are by Saks & Yu [15], who show that previous results extend to

any convex multi-dimensional type space. An allocation rule is dominant strategy incentive

compatible, if there exists a payment rule such that for any report of the other agents an

agent maximizes his own utility by reporting truthfully his type.

The environment considered by Saks & Yu [15] features quasi-linear utilities and multi-

dimensional types. The allocation rule maps agents’ type reports into a finite set of m possible

outcomes. An agent’s type is a vector in R
m reflecting his valuation of the different possible

outcomes, that is, the agent’s valuation of some outcome a is given by the ath element of

his type vector. Agents’ type spaces are assumed to be convex. Saks & Yu [15] show that

dominant strategy incentive compatible allocation rules in this setting can be characterized
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in terms of weak monotonicity, a term introduced by Lavi, Mu’alem & Nisan [8]. In order to

derive this result they construct complete directed graphs in the following way: Take some

agent and fix a profile of type reports for the others. Now, a directed graph is constructed

by associating a node with each outcome and putting a directed edge between each ordered

pair of nodes. Take two outcomes a and b. Consider the difference of the valuation of a and

the valuation of b with respect to every type for which truthfully reporting this type yields

outcome a. The length of the network edge from a to b is defined as the infimum of all these

differences. In this fashion a graph is constructed for every agent and every possible report

profile of the other agents. Weak monotonicity states that for any two different outcomes a

and b, the sum of the two edge lengths from a to b and from b to a is non-negative.

Earlier, Rochet [12] characterized dominant strategy implementation in cases where the

set of outcomes is not necessarily finite; an assumption that is crucial to the work of Saks &

Yu [15]. For the case where agents have one-dimensional, convex type spaces and their valu-

ation functions satisfy the increasing differences property, Rochet [12] shows that dominant

strategy incentive compatibility can be characterized in terms of a monotonicity condition on

the allocation rule alone. Next, he considers a setting where agents have multi-dimensional,

convex type spaces and valuation functions which are linear w.r.t. their own true types. Tak-

ing some additional differentiability assumptions, Rochet [12] shows that in this case dominant

strategy incentive compatibility can be characterized in terms of a monotonicity condition on

the allocation rule plus an integrability condition.

Monotonicity has also been used to characterize Bayes-Nash incentive compatible alloca-

tion rules. Malakhov & Vohra [10] consider an auction setting where multiple units of an

indivisible good are auctioned off to several agents with constant marginal valuations. The

one-dimensional type of an agent is his marginal valuation. Each agent has a finite set of

possible types. Agents do not have interdependent valuations. Malakhov & Vohra [10] show

that Bayes-Nash incentive compatibility holds if and only if the allocation rule is monotone.

Myerson [11] gives such a characterization for a single-item auction setting where agents have

one-dimensional, convex type spaces and interdependent valuations.

Jehiel, Moldovanu & Stacchetti [5] and Jehiel & Moldovanu [4] develop characterizations

for social choice settings where agents have multi-dimensional, convex type spaces and valua-

tion functions which are linear w.r.t. their true types. Their characterizations of Bayes-Nash
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incentive compatibility include a monotonicity condition on the allocation rule as well as an

integrability condition comparable to the one presented by Rochet [12].

1.2 Our Contribution

Similar to the network approach of Gui, Müller & Vohra [3] and Saks & Yu [15] we construct

graphs. If an allocation rule is Bayes-Nash incentive compatible, then there exists a payment

rule such that an agent’s expected utility for truthfully reporting his type t is at least as high

as his expected utility for misreporting some type s. Similarly, an agent’s expected utility

for truthfully reporting type s is at least as high as his expected utility for misreporting

type t. From combining these two conditions we get a weak monotonicity condition on the

allocation rule. This condition is the expected utility equivalent of the monotonicity condition

mentioned in the context of dominant strategy incentive compatible allocation rules. Weak

monotonicity is a necessary condition for Bayes-Nash incentive compatibility. It expresses

that the expected gain in valuation for truthfully reporting t instead of misreporting s should

be at least as big as the expected gain in valuation for misreporting t instead of truthfully

reporting s.

Recognizing that the constraints inherent in the definition of Bayes-Nash incentive com-

patibility have a natural network interpretation we build complete directed graphs for agents’

type spaces. To do so we associate a node with each type and put a directed edge between

each ordered pair of nodes. The length of the edge going from the node associated with type

s to the node associated with the type t is defined as the cost of manipulation, that is, the

expected difference in an agent’s valuation for truthfully reporting t instead of misreporting

s. Note that unlike the network approach of Gui, Müller & Vohra [3] and Saks & Yu [15]

(see description above) we construct only one graph for each agent since we work in terms

of expectations and do not consider each possible type profile of the other agents separately.

Furthermore, each of these graphs contains (except for the case of finite type spaces) an infi-

nite number of nodes as we associate a node with each possible type of the agent. One could

also construct outcome based graphs (as done by Gui, Müller & Vohra [3] and Saks & Yu [15])

by associating a node with each possible probability distribution over outcomes. However,

these graphs possibly also contain an infinite number of nodes since we allow that the different

possible type reports of an agent induce an infinite number of probability distributions over
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outcomes. For example, in the single-item auction framework presented in Section 4 it is

quite natural to allow that every different type report of an agent yields a different expected

conditional probability for him to win the object.

The outline of the paper is as follows: In Section 2 we state some basic assumptions and

definitions. Throughout the paper we assume that agents have quasi-linear utility functions

and independently distributed, privately known types. Furthermore, we allow for interdepen-

dent valuations. We do not put any restrictions on the number of possible outcomes.

In Section 3 we show that an allocation rule is Bayes-Nash incentive compatible if and

only if the graphs described above contain no finite, negative length cycles. Rochet [12] shows

that dominant strategy incentive compatibility can be characterized in terms of the absence of

finite, negative length cycles in similar graphs. Our result is the Bayes-Nash equivalent for his

finding. Furthermore, we show as a lemma that the costs of manipulation are decomposition

monotone if the allocation rule satisfies weak monotonicity and agents’ valuation functions

satisfy non-decreasing expected differences (definitions can be found in Section 2). Using

this result we can fold the aforementioned auction settings of Myerson [11] and Malakhov &

Vohra [10] into the framework presented in Section 4.

In Section 4 agents’ types are restricted to be one-dimensional. No further restrictions on

agents’ type spaces are made, that is, we allow for infinite type spaces as considered by My-

erson [11] as well as for finite type spaces as considered by Malakhov & Vohra [10]. Without

any additional restrictions this setting is too general in order for weak monotonicity to be a

sufficient condition for Bayes-Nash incentive compatibility. This is illustrated by an exam-

ple. However, for the case that the costs of manipulation are assumed to be decomposition

monotone we are able to show that weak monotonicity is a necessary and sufficient condition

for Bayes-Nash incentive compatibility. Using the lemma from the foregoing section it fol-

lows that weak monotonicity is a necessary and sufficient condition for Bayes-Nash incentive

compatibility for the case that agents’ valuation functions satisfy non-decreasing expected

differences. The auction settings considered by Myerson [11] and Malakhov & Vohra [10] are

special cases of this framework. Compared to their settings, our one-dimensional framework

allows not only for a broader class of type spaces but also for alternative forms of interde-

pendencies between agents valuations. This is illustrated at the end of Section 5. Using

the Myerson [11] setting we illustrate how payments can be constructed using the network
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approach.

In Section 5 the case of multi-dimensional types is considered. Agents’ type spaces are

assumed to be convex and their valuation functions are assumed to be linear w.r.t. to their

own true types. Even under these restrictions, weak monotonicity alone is not sufficient for

Bayes-Nash incentive compatibility, which is again illustrated by an example. However, we

show that weak monotonicity together with an integrability condition is both necessary and

sufficient for Bayes-Nash incentive compatibility. Using examples it is illustrated that weak

monotonicity and the integrability condition do not imply each other. The setting of a single-

item auction with externalities considered by Jehiel, Moldovanu & Stacchetti [5] and the

social choice setting considered by Jehiel & Moldovanu [4] are special cases of the framework

presented in this section. Compared to their settings, our multi-dimensional framework allows

for a broader class of possible interdependencies between agents valuations. This is illustrated

at the end of the section.

The main contribution of this paper is thus to derive for the settings described above

a complete characterization of Bayes-Nash incentive compatibility in terms of weak mono-

tonicity and, where necessary, additional properties. Thereby we achieve characterizations

that depend purely on the valuations and the allocation rule. The characterizations resemble

the ones derived by Rochet [12] for dominant strategy incentive compatibility. However, our

results do not follow from Rochet immediately, as we cover broader classes of type spaces and

interdependent valuations.

2 The Model & Basic Definitions

There is a set of agents N = {1, . . . , n}. Each agent i has a type ti ∈ T i with T i ⊆ R
k. T

denotes the set of all type profiles t =
(

t1, . . . , tn
)

, and T−i denotes the set of all type profiles

t−i =
(

t1, . . . , ti−1, ti+1, . . . , tn
)

. A payment rule is a function

P : T 7→ R
n,

so given a report profile r−i of the others, reporting a type ri results in a payment Pi

(

ri, r−i
)

for agent i. Denoting the set of outcomes by Γ, an allocation rule is a function

f : T 7→ Γ.
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We allow for interdependent valuations across agents, that is, agents’ valuations do not

only depend on their own types but on the types of all agents. As an example one can think

of an auction for a painting (see Klemperer [6]) where agents’ types reflect how much they like

the painting. An agent’s valuation for owning the painting depends on the types of the others

as they affect the possible resale value of the painting and the owner’s prestige. Take agent

i having true type ti and reporting ri while the others have true types t−i and report r−i.

The value that agent i assigns to the resulting allocation is denoted by vi
(

f
(

ri, r−i
)

| ti, t−i
)

.

Utilities are quasi-linear, that is, an agent’s utility is his valuation of an allocation minus his

payment.

Agents’ types are independently distributed. Let πi denote the density on T i. The joint

density π−i on T−i is then given by

π−i
(

t−i
)

=
∏

j∈N
j 6=i

πj
(

tj
)

.

Assume that agent i believes all other agents to report truthfully. If agent i has true type

ti, then his expected utility1 for making a report ri is given by

U i(ri | ti) =

∫

T−i

(

vi
(

f
(

ri, t−i
)

| ti, t−i
)

− Pi

(

ri, t−i
))

π−i
(

t−i
)

dt−i

= E−i

[

vi
(

f
(

ri, t−i
)

| ti, t−i
)

− Pi

(

ri, t−i
)]

. (1)

We assume E−i

[

vi
(

f
(

ri, t−i
)

| ti, t−i
)]

to be finite ∀ri, ti ∈ T i.

An allocation rule f is Bayes-Nash incentive compatible if there exists a payment rule P

such that ∀i ∈ N and ∀ri, r̃i ∈ T i:

E−i

[

vi
(

f
(

ri, t−i
)

| ri, t−i
)

− Pi

(

ri, t−i
)]

≥ E−i

[

vi
(

f
(

r̃i, t−i
)

| ri, t−i
)

− Pi

(

r̃i, t−i
)]

. (2)

Symmetrically, we have also

E−i

[

vi
(

f
(

r̃i, t−i
)

| r̃i, t−i
)

− Pi

(

r̃i, t−i
)]

≥ E−i

[

vi
(

f
(

ri, t−i
)

| r̃i, t−i
)

− Pi

(

ri, t−i
)]

. (3)

By adding (2) and (3) we get the following monotonicity condition:2

1The definition of expected utility is only given for the continuous case. However, in Section 4 we also allow

for discrete type spaces. In the discrete case the integral is replaced by a sum.
2Expected payments cancel since we work under the assumption of independently distributed types.
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Definition 1 (Weak Monotonicity) An allocation rule f satisfies weak monotonicity if

∀i ∈ N and ∀ri, r̃i ∈ T i:

E−i

[

vi
(

f
(

ri, t−i
)

| ri, t−i
)

− vi
(

f
(

r̃i, t−i
)

| ri, t−i
)]

≥ E−i

[

vi
(

f
(

ri, t−i
)

| r̃i, t−i
)

− vi
(

f
(

r̃i, t−i
)

| r̃i, t−i
)]

.

This condition is the expected utility equivalent to the weak monotonicity (W-MON) condi-

tion of Lavi, Mu’alem & Nisan [8], the non-decreasing in marginal utility condition (NDMU)

of Bikhchandani, Chatterji & Sen [2] and the 2-cycle inequality of Gui, Müller & Vohra [3].

Obviously, weak monotonicity is a necessary condition for Bayes-Nash incentive compatibil-

ity. In the following sections we present settings where weak monotonicity is also a sufficient

condition or where it is sufficient together with an integrability condition.

Furthermore, let us introduce the following condition for agents’ valuation functions:

Definition 2 (Non-decreasing Expected Differences) Take ri, r̃i, ti, t̃i ∈ T i such that

E−i

[

vi
(

f
(

ri, t−i
)

| ti, t−i
)

− vi
(

f
(

r̃i, t−i
)

| ti, t−i
)]

≥ E−i

[

vi
(

f
(

ri, t−i
)

| t̃i, t−i
)

− vi
(

f
(

r̃i, t−i
)

| t̃i, t−i
)]

.

The valuation function satisfies non-decreasing expected differences if ∀t̄i ∈ T i s.t.

t̄i = (1 − α)t̃i + αti, α > 1 we have

E−i

[

vi
(

f
(

ri, t−i
)

| t̄i, t−i
)

− vi
(

f
(

r̃i, t−i
)

| t̄i, t−i
)]

≥ E−i

[

vi
(

f
(

ri, t−i
)

| ti, t−i
)

− vi
(

f
(

r̃i, t−i
)

| ti, t−i
)]

.

This condition deals with the marginal change in expected valuation with respect to the

report. Consider the change in expected valuation for making a report ri instead of r̃i.

Assume that there exist types ti and t̃i such that this change is larger or at least as large if

the agent has true type ti instead of t̃i. Now consider the agent having a true type which is

even further away from t̃i than ti (in the direction of ti). The condition then requires that

the change in expected valuation is at least as large as in the case where the agent has true

type ti. This requirement is comparable to the condition known as increasing (or isotone)

differences which asserts that the marginal change in valuation with respect to the allocation

is increasing in the type.
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3 A Network Interpretation

We begin this section by briefly reviewing a well-known result from the field of network flow

theory.3 Let X = {x1, . . . , xk} be a finite set of variables. Consider the following system of

constraints:

xi − xj ≤ wij ∀i, j ∈ {1, . . . , k}, (4)

where wij is some constant specific to the ordered pair (i, j). The system can be associated

with a network by constructing a directed, weighted graph whose nodes correspond to the

variables. A directed edge is put between each ordered pair of nodes. The length of the edge

from the node corresponding to xi to the node corresponding to xj is given by wij .

It is a well-known result (see e.g. Shostak [16]) that the system of linear inequalities in

(4) is feasible, that is, there exists an assignment of real values to the variables such that the

constraints in (4) are satisfied, if and only if there is no negative length cycle in the associated

network. Furthermore, if the system is feasible then one feasible solution is to assign to each

xi the length of a shortest path from some arbitrary source node to the node associated with

xi.

In order to see that the constraints in (2) have a natural network interpretation it is useful

to rewrite (2) as follows:

E−i

[

Pi

(

ri, t−i
)

− Pi

(

r̃i, t−i
)]

≤ E−i

[

vi
(

f
(

ri, t−i
)

| ri, t−i
)

− vi
(

f
(

r̃i, t−i
)

| ri, t−i
)]

. (5)

Considering a specific allocation rule, the right-hand side of (5) is a constant. Thus, we have

a system of difference constraints as described in (4) (except that we are now dealing with a

potentially infinite number of variables).

Given this observation, we associate the system of inequalities with a network in the same

way as is described above. For each agent we build a complete directed graph T i
f . A node is

associated with each type and a directed edge is put between each ordered pair of nodes. For

agent i the length of an edge directed from ri to r̃i is denoted li(ri, r̃i) and is defined as the

cost of manipulation:

li
(

ri, r̃i
)

= E−i

[

vi
(

f
(

ri, t−i
)

| ri, t−i
)

− vi
(

f
(

r̃i, t−i
)

| ri, t−i
)]

. (6)

3A comprehensive introduction to network flows can be found in Ahuja, Magnanti & Orlin [1].

9



For technical reasons we allow for loops. However, note that an edge directed from ri to ri

has length li(ri, ri) = 0.

Using this definition of the edge lengths, the weak monotonicity condition can be written

as

li
(

ri, r̃i
)

+ li
(

r̃i, ri
)

≥ 0 ∀i ∈ N, ∀ri, r̃i ∈ T i.

So weak monotonicity corresponds to the absence of negative length 2-cycles in the graphs

described above.

Rochet [12] observed that dominant strategy incentive compatibility can be characterized

in terms of the absence of finite, negative length cycles in similar graphs. Using the same

proof technique, we can derive such a characterization for Bayes-Nash incentive compatibility

as well.

Theorem 1 An allocation rule f is Bayes-Nash incentive compatible if and only if there is

no finite, negative length cycle in T i
f , ∀i ∈ N .

Proof (Adapted from Rochet [12].)

Take some agent i and let C =
{

ri
1, . . . , r

i
m, r

i
m+1 = ri

1

}

denote a finite cycle in T i
f . Let us

assume that f is Bayes-Nash incentive compatible. This implies, using (5) and the edge length

definition (6), that for every j ∈ {1, . . . ,m},

E−i

[

Pi

(

ri
j , t

−i
)

− Pi

(

ri
j+1, t

−i
)]

≤ li
(

ri
j , r

i
j+1

)

.

Adding up these inequalities yields

0 ≤
m

∑

j=1

li
(

ri
j , r

i
j+1

)

,

so C has non-negative length.

Conversely, let us assume that there exists no finite, negative length cycle in T i
f , ∀i ∈ N .

For each agent i we pick an arbitrary source node ri
0 ∈ T i and define ∀ri ∈ T i

pi
(

ri
)

= inf

m
∑

j=1

li
(

ri
j , r

i
j+1

)

,

where the infimum is taken over all finite paths A = {ri
1 = ri, . . . , ri

m+1 = ri
0} in T i

f , that is,

all finite paths that start at ri and end at ri
0. Absence of finite, negative length cycles implies

that pi
(

ri
0

)

= 0. Furthermore, ∀ri ∈ T i we have

pi
(

ri
0

)

≤ pi
(

ri
)

+ li
(

ri
0, r

i
)
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which implies that pi
(

ri
)

is finite. For every pair ri, r̃i ∈ T i we also have

pi
(

ri
)

≤ pi
(

r̃i
)

+ li
(

ri, r̃i
)

.

Thus, by setting4 Pi

(

ri, t−i
)

= pi
(

ri
)

, ∀t−i ∈ T−i, and using (6) we get

E−i

[

Pi

(

ri, t−i
)

− Pi

(

r̃i, t−i
)]

≤ E−i

[

vi
(

f
(

ri, t−i
)

| ri, t−i
)

− vi
(

f
(

r̃i, t−i
)

| ri, t−i
)]

.

Hence, the constraints in (5) are satisfied and f is Bayes-Nash incentive compatible.

2

Let us conclude this section with a condition for the costs of manipulation that is used in

the derivation of the characterization theorems presented in the following sections.

Definition 3 (Decomposition Monotonicity) The costs of manipulation are decomposi-

tion monotone if ∀ri, r̄i ∈ T i and ∀ri ∈ T i s.t. ri = (1 − α)ri + αr̄i, α ∈ (0, 1) we have

li
(

ri, r̄i
)

≥ li
(

ri, ri
)

+ li
(

ri, r̄i
)

.

So looking at a pair of nodes, if decomposition monotonicity holds then the direct edge between

those nodes is at least as long as any path connecting the same two nodes via nodes lying

on the line segment between them. Figure 1 gives an illustrative example. Decomposition

monotonicity implies that the edge from ri to r̄i is at least as long as the path A = {ri, ri
∗∗, r̄

i}}

and that A is at least as long as the path Ã = {ri, ri
∗, r

i
∗∗, r

i
∗∗∗, r̄

i}}.

ri r̄iri
∗ ri

∗∗ ri
∗∗∗

Figure 1: Decomposition monotonicity.

Weak monotonicity and non-decreasing expected differences together imply that the costs

of manipulation are decomposition monotone:

4Note that it is sufficient to set E−i

[

Pi

(

ri, t−i
)]

= pi
(

ri
)

+ c. This allows for a variety of payment rules

yielding the same expected payments up to an additive constant.

11



Lemma 1 If f satisfies weak monotonicity and the valuation function satisfies non-decreasing

expected differences then the costs of manipulation are decomposition monotone.

Proof

Take some agent i and let ri, r̄i ∈ T i. Let ri ∈ T i such that ri = (1 − α)ri + αr̄i for some

α ∈ (0, 1). Weak monotonicity implies that

E−i

[

vi
(

f
(

ri, t−i
)

| ri, t−i
)

− vi
(

f
(

r̄i, t−i
)

| ri, t−i
)]

≥ E−i

[

vi
(

f
(

ri, t−i
)

| r̄i, t−i
)

− vi
(

f
(

r̄i, t−i
)

| r̄i, t−i
)]

.

Since the valuation function satisfies non-decreasing expected differences we have

E−i

[

vi
(

f
(

ri, t−i
)

| ri, t−i
)

− vi
(

f
(

r̄i, t−i
)

| ri, t−i
)]

≥ E−i

[

vi
(

f
(

ri, t−i
)

| ri, t−i
)

− vi
(

f
(

r̄i, t−i
)

| ri, t−i
)]

.

Adding E−i

[

vi
(

f
(

ri, t−i
)

| ri, t−i
)

− vi
(

f
(

ri, t−i
)

| ri, t−i
)]

on both sides of the later in-

equality yields

E−i

[

vi
(

f
(

ri, t−i
)

| ri, t−i
)

− vi
(

f
(

r̄i, t−i
)

| ri, t−i
)]

+E−i

[

vi
(

f
(

ri, t−i
)

| ri, t−i
)

− vi
(

f
(

ri, t−i
)

| ri, t−i
)]

≥ E−i

[

vi
(

f
(

ri, t−i
)

| ri, t−i
)

− vi
(

f
(

r̄i, t−i
)

| ri, t−i
)]

+E−i

[

vi
(

f
(

ri, t−i
)

| ri, t−i
)

− vi
(

f
(

ri, t−i
)

| ri, t−i
)]

.

Notice that the first and the last term on the left-hand side of the inequality cancel, hence

E−i

[

vi
(

f
(

ri, t−i
)

| ri, t−i
)

− vi
(

f
(

r̄i, t−i
)

| ri, t−i
)]

≥ E−i

[

vi
(

f
(

ri, t−i
)

| ri, t−i
)

− vi
(

f
(

ri, t−i
)

| ri, t−i
)]

+E−i

[

vi
(

f
(

ri, t−i
)

| ri, t−i
)

− vi
(

f
(

r̄i, t−i
)

| ri, t−i
)]

.

Using (6) this can be written as

li
(

ri, r̄i
)

≥ li
(

ri, ri
)

+ li
(

ri, r̄i
)

,

so the costs of manipulation are decomposition monotone.

2
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4 One-Dimensional Types

In this section we consider the one-dimensional case where T i ⊆ R. For this setting we

can show that weak monotonicity is not only a necessary but also a sufficient condition for

Bayes-Nash incentive compatibility if decomposition monotonicity is satisfied.

Theorem 2 Suppose that the allocation rule f and agents’ valuation functions are such that

the costs of manipulation satisfy decomposition monotonicity. Then, f is Bayes-Nash incen-

tive compatible if and only if f satisfies weak monotonicity.

Proof

As mentioned in Section 2, the necessity of weak monotonicity follows trivially. For the other

direction note that weak monotonicity corresponds to the absence of negative length 2-cycles

in T i
f , ∀i ∈ N (see Section 3). In order to establish sufficiency, we show that this implies that

there does not exist any finite cycle with negative length. Bayes-Nash incentive compatibility

then follows from Theorem 1.

Take some agent i and let C =
{

ri
1, . . . , r

i
m, r

i
m+1 = ri

1

}

denote a finite cycle in T i
f . When-

ever an edge of C connects two non-neighboring nodes, we substitute this edge with a path

connecting the same two nodes via edges that have the same direction and only connect

neighboring nodes. By doing this we generate a new cycle C̃ that has the same nodes as C

but consists only of edges between neighboring nodes, see for example Figure 2.

Decomposition monotonicity implies that the length of C is larger than or equal to the

length of C̃. Since C̃ is a cycle, we know that at each node the number of edges entering

equals the number of edges leaving. This implies that the length of C̃ can be written as the

sum of 2-cycle lengths. Since there are no negative length 2-cycles, it follows that C has

non-negative length.

2

C C̃

Figure 2: The original cycle C and the newly generated cycle C̃.
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If agents’ valuation functions satisfy non-decreasing expected differences we can state

directly the following:

Theorem 3 Suppose that agents’ valuation functions satisfy non-decreasing expected differ-

ences. Then, the allocation rule f is Bayes-Nash incentive compatible if and only if f satisfies

weak monotonicity.

Proof

Again, the necessity of weak monotonicity follows trivially (see Section 2). In order to establish

sufficiency, note that weak monotonicity together with non-decreasing expected differences

implies that the costs of manipulation are decomposition monotone, see Lemma 1. Finally

apply Theorem 2.

2

Note that weak monotonicity might not be sufficient for Bayes-Nash incentive compati-

bility if the cost of manipulation are not decomposition monotone, as we illustrate with the

following example:

Example 1 For simplicity we assume that there exists only a single agent. His type space

T = {x, y, z} consists of three types x, y, z ∈ R, for which we assume x < y < z. There are

three possible outcomes, specifically Γ = {a, b, c}. The agent values the different outcomes,

depending on his type, according to the following valuation matrix V :

x y z

a 2 0 3

b 3 2 0

c 0 3 2

The allocation rule f is defined as follows: f(x) = a, f(y) = b, f(z) = c. So if the agent

reports truthfully his type, the allocation rule assigns his second most preferred outcome. The

corresponding network Tf is depicted in Figure 3.

Decomposition monotonicity is not satisfied since l(z, x) < l(z, y) + l(y, x). As easily can

be checked, all 2-cycles have length 1, so weak monotonicity is satisfied. However, the 3-cycle

C = {x, y, z, x} has length l(x,y)+l(y,z)+l(z,x)=-3. The existence of such a negative length

cycle implies that f is not Bayes-Nash incentive compatible (see Theorem 1).

14



x y z

-1

-1 -1

2

2 2

Figure 3: The network Tf in Example 1.

4.1 Application to Single-item Auctions

As a special case let us consider a single-item auction. Specifically, we look at a setting

introduced by Myerson [11]. In this setting a single, indivisible object is auctioned off to one

of several agents. An agent’s type reflects his initial value estimate for the object. We assume

that T i =
[

ai, bi
]

with −∞ < ai < bi <∞. Given reports from all agents, the allocation rule

f : T 7→ [0, 1]n assigns to each agent a probability for winning the object. So the outcome

set Γ is the set of all possible winning probability profiles. Agent i’s probability to win, given

a report profile t ∈ T , is denoted f i(t). The allocation rule must satisfy the probability

conditions
∑n

i=1
f i(t) ≤ 1 and 0 ≤ f i(t) ≤ 1, ∀i ∈ N, ∀t ∈ T .

Agents’ valuations are assumed to be interdependent. If an agent would get to know the

value estimate of some other agent, he would want to revise his own initial value estimate

for the object. For instance, the object is a painting (see also example in Section 2) and the

agent is uncertain about whether he is dealing with an original or a forgery. Learning that

another agent has a low value estimate, suggesting a tendency towards forgery, would incline

him to revise his own value estimate downwards. We assume that agents make these revisions

additively according to n revision effect functions ej : T j 7→ R, j ∈ N : if agent i learns that

agent j has type tj , he revises his initial value estimate by adding ej
(

tj
)

to it.5 In order

5Modelling the valuation interdependencies in this way implies that actually all agents i 6= j would revise

their initial estimates by the same amount ej
(

tj
)

. Without affecting any of the results, one could also allow

for agent specific adjustments by assuming that each agent i has n − 1 revision effect functions e
j
i : T j 7→ R,

j ∈ N , j 6= i.
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to justify that an agent’s type reflects his initial value estimate for the object, we assume in

addition that
∫

T j

ej
(

tj
)

πj
(

tj
)

dtj = 0,

that is, revision effects have an expected value of zero.6

Take agent i having true type ti and reporting ri while the others have true types t−i and

reports r−i. The value that this agent assigns to the resulting allocation is

vi
(

f
(

ri, r−i
)

| ti, t−i
)

=

(

ti +
∑

j∈N
j 6=i

ej
(

tj
)

)

f i
(

ri, r−i
)

.

Assuming that agent i believes that the others report truthfully, his expected conditional

probability to win the object if reporting ri is

qi
(

ri
)

=

∫

T−i

f i
(

ri, t−i
)

π−i
(

t−i
)

dt−i (7)

and his expected valuation is

E−i

[

vi
(

f
(

ri, t−i
)

| ti, t−i
)]

= tiqi
(

ri
)

+

∫

T−i

(

∑

j∈N
j 6=i

ej
(

tj
)

)

f i
(

ri, t−i
)

π−i
(

t−i
)

dt−i. (8)

Using (8), the weak monotonicity condition becomes

(

ri − r̃i
) (

qi
(

ri
)

− qi
(

r̃i
))

≥ 0 ∀i ∈ N, ∀ri, r̃i ∈ T i. (9)

Myerson [11] shows that a mechanism (f, P ) is Bayes-Nash incentive compatible if and

only if (9) is satisfied and

U i
(

ri | ri
)

= U i
(

ai | ai
)

+

∫ ri

ai

qi(s)ds ∀i ∈ N, ∀ri ∈ T i,

where U i
(

ri | ri
)

denotes agent i’s expected utility (see (1) for definition) for truthfully re-

porting ri.

As one can easily verify, agents’ valuation functions in this single-item auction setting

satisfy non-decreasing expected differences. Thus, we can directly apply the results derived

earlier in this section. From Theorem 3 it follows that f is Bayes-Nash incentive compatible

if and only if the weak monotonicity condition in (9) is satisfied.

6The stated results do not depend on this assumption. However, without it, the interpretation of agents’

types would change.
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As described in the proof of Theorem 1, corresponding payments can be constructed by

using shortest path lengths. For each i ∈ N , let us pick ai as the source node in T i
f . Thus, if

agent i reports ri, he has to make a payment

Pi

(

ri
)

= inf
m

∑

j=1

li
(

ri
j , r

i
j+1

)

, (10)

where the infimum is taken over all finite paths A =
{

ri
1 = ri, . . . , ri

m+1 = ai
}

in T i
f , that is,

all finite paths from ri to ai. Considering the length of such a finite path, rewriting yields

m
∑

j=1

li
(

ri
j , r

i
j+1

)

=
m

∑

j=1

E−i

[

vi
(

f
(

ri
j , t

−i
)

| ri
j , t

−i
)

− vi
(

f
(

ri
j+1, t

−i
)

| ri
j , t

−i
)]

= E−i

[

vi
(

f
(

ri
1, t

−i
)

| ri
1, t

−i
)

− vi
(

f
(

ri
m+1, t

−i
)

| ri
m, t

−i
)]

−
m−1
∑

j=1

E−i

[

vi
(

f
(

ri
j+1, t

−i
)

| ri
j , t

−i
)

− vi
(

f
(

ri
j+1, t

−i
)

| ri
j+1, t

−i
)]

= E−i

[

vi
(

f
(

ri
1, t

−i
)

| ri
1, t

−i
)

− vi
(

f
(

ri
m+1, t

−i
)

| ri
m+1, t

−i
)]

−
m

∑

j=1

E−i

[

vi
(

f
(

ri
j+1, t

−i
)

| ri
j , t

−i
)

− vi
(

f
(

ri
j+1, t

−i
)

| ri
j+1, t

−i
)]

= E−i

[

vi
(

f
(

ri, t−i
)

| ri, t−i
)

− vi
(

f i
(

ai, t−i
)

| ai, t−i
)]

−
m

∑

j=1

(

ri
j − ri

j+1

)

qi
(

ri
j+1

)

.

The first equality follows from the definition of the edge length given in (6). The second

equality follows from rearranging the terms of the summation. The third equality is derived

by adding and subtracting E−i

[

vi
(

f
(

ri
m+1, t

−i
)

| ri
m+1, t

−i
)]

. To derive the last equality we

use (8) and that ri
1 = ri, ri

m+1 = ai.

Weak monotonicity implies that qi(ri) is Riemann integrable.7 Furthermore, since the

valuation function satisfies non-decreasing expected differences, decomposition monotonicity

is satisfied (see Lemma 1). So considering any finite path A in T i
f connecting ri and ai, we

can construct paths that are shorter (or as long) by letting them visit the same nodes as A

and also additional nodes inbetween (see also example in Figure 1). In the limit, as m→ ∞,

the distance between neighboring nodes goes to zero and

m
∑

j=1

(

ri
j − ri

j+1

)

qi
(

ri
j+1

)

→

∫ ri

ai

qi(s)ds.

7This result can be found in any advanced analysis textbook, e.g. Maak [9].
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Applying the above to (10) yields

Pi

(

ri
)

= E−i

[

vi
(

f
(

ri, t−i
)

| ri, t−i
)

− vi
(

f i
(

ai, t−i
)

| ai, t−i
)]

−

∫ ri

ai

qi(s)ds, (11)

implying that the expected utility for truthfully reporting ri is8

U i
(

ri | ri
)

= U i
(

ai | ai
)

+

∫ ri

ai

qi(s)ds. (12)

5 Multi-Dimensional Types

In this section we consider the multi-dimensional case where T i ⊆ R
k.9 We assume that T i

is convex for each agent i. Furthermore, we now assume that an agent’s valuation function

is linear in his own true type. So if agent i has true type ti and reports ri while the others

have true types t−i and reports r−i, his valuation for the resulting allocation is

vi
(

f
(

ri, r−i
)

| ti, t−i
)

= αi
(

f
(

ri, r−i
)

| t−i
)

+ βi
(

f
(

ri, r−i
)

| t−i
)

ti. (13)

Note that αi : Γ×T−i 7→ R and βi : Γ×T−i 7→ R
k, i.e. αi assigns to every

(

γ, t−i
)

∈ Γ×T−i

a value in R, whereas βi assigns to every
(

γ, t−i
)

∈ Γ×T−i a value in R
k. Similarly, assuming

he believes all other agents to report truthfully, agent i’s expected valuation for reporting ri

while having true type ti is

E−i

[

vi
(

f
(

ri, t−i
)

| ti, t−i
)]

= E−i

[

αi
(

f
(

ri, t−i
)

| t−i
)]

+ E−i

[

βi
(

f
(

ri, t−i
)

| t−i
)]

ti. (14)

Using (14), the weak monotonicity condition becomes

E−i

[

βi
(

f
(

ri, t−i
)

| t−i
)

− βi
(

f
(

r̃i, t−i
)

| t−i
)] (

ri − r̃i
)

≥ 0 ∀i ∈ N, ∀ri, r̃i ∈ T i.

One can easily verify that the linear valuation function described above satisfies non-

decreasing expected differences. For this case we showed in Section 4 that weak monotonicity

is a sufficient condition for Bayes-Nash incentive compatibility if agents’ type spaces are one-

dimensional (see Theorem 3). Unfortunately, if type spaces are multi-dimensional then weak

monotonicity alone is not sufficient anymore, as is illustrated in Example 2.

8In order to derive (12) one can use that by construction Pi

(

ai
)

= 0 and thus add this term to the

right-hand side of (11).
9In the special case where agents’ type spaces are subsets of lines in R

k, the results of the foregoing section

go through unchanged.
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This example is constructed based on the following insight: Suppose that the allocation

function f and the mapping βi are such that we can write

E−i

[

βi
(

f
(

ri, t−i
)

| t−i
)]

= riBi,

where Bi is some agent specific k × k matrix. Weak monotonicity requires

(

ri − r̃i
)

Bi

(

ri − r̃i
)′
≥ 0 ∀ri, r̃i ∈ T i,

where ′ denotes “transposed”. Note that

Bi =
1

2

(

Bi +B′
i

)

+
1

2

(

Bi −B′
i

)

,

that is, Bi can be decomposed into a symmetric part 1

2
(Bi +B′

i) and an anti-symmetric part

1

2
(Bi −B′

i). Weak monotonicity is already satisfied if the symmetric part of Bi is positive

semi-definite. However, there are no finite, negative length cycles in T i
f (and thus f is Bayes-

Nash incentive compatible) if and only if Bi is symmetric and positive semi-definite (follows

from Rockafellar [14], p.240).

Example 2 For simplicity we assume that there exists only a single agent. His type space

T = conv{x, y, z} with generic element t = (tx, ty, tz) is the convex hull of the three unit

vectors in R
3, i.e. a simplex with vertices x = (1, 0, 0), y = (0, 1, 0) and z = (0, 0, 1).

There are three elementary outcomes, denoted a, b and c. The allocation function f maps

every report into a probability distribution over these three outcomes. Thus, the outcome

space Γ is the set of all possible probability distributions on {a, b, c}. The generic element γ =

(γa, γb, γc) indicates that outcome a is achieved with probability γa, b with probability γb and c

with probability γc. The elementary outcomes can be associated with the three unit vectors in

R
3, i.e. a = (1, 0, 0), b = (0, 1, 0) and c = (0, 0, 1). Specifically, we take f to be simply a linear

mapping corresponding to the 3 × 3 identity matrix I. Hence, f(t) = tI = (tx, ty, tz) and

Γ = conv{a, b, c}. So reporting t results in outcome a being realized with probability tx, b with

probability ty and c with probability tz. Since there is only one agent, the general valuation

function in (14) becomes v(f(r) | t) = α(f(r)) + β(f(r))t. Specifically, we set α(γ) equal to

zero for all γ ∈ Γ, and we let β be a linear mapping corresponding to the matrix V given in

Example 1. Thus, v(f(r) | t) = f(r)V t′ = rV t′.
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As easily can be checked (by verifying that the symmetric part 1

2
(V + V ′) of V is positive

definite), weak monotonicity is satisfied, that is, (r − r̃)V (r − r̃)′ ≥ 0, ∀r, r̃ ∈ T . Neverthe-

less, the 3-cycle C = {x, y, z, x} has length l(x,y)+l(y,z)+l(z,x)=-3 (see also Figure 4). The

existence of such a negative length cycle implies that f is not Bayes-Nash incentive compatible

(see Theorem 1).

y

z

x

T

-1

-1

-1

Figure 4: The negative cycle C in Example 2.

From the above example it is evident that weak monotonicity alone is not enough to

ensure Bayes-Nash incentive compatibility. However, in the following we are going to show

that weak monotonicity together with an integrability condition is sufficient.

Definition 4 (Path Independence) Let ψ: T i 7→ R
k be a vector field. ψ is called path

independent if for any two ri, r̄i ∈ T i the integral of ψ from ri to r̄i

∫ r̄i

ri,S

ψ

is independent of the path of integration S.

Note that E−i

[

βi
(

f
(

ri, t−i
)

| t−i
)]

is a vector field T i 7→ R
k.

Theorem 4 Suppose that every agent i has a convex type space and a valuation function

which is linear in his true type. Then the following statements are equivalent:

1) f is Bayes-Nash incentive compatible.
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2) f satisfies weak monotonicity and for every agent i, E−i

[

βi
(

f
(

ri, t−i
)

| t−i
)]

is path in-

dependent.

Proof

(1)⇒(2): Let us assume that f is Bayes-Nash incentive compatible. As mentioned in Sec-

tion 2, the necessity of weak monotonicity follows trivially. Furthermore, from Theorem

1 it follows that for every agent i the graph T i
f has no finite, negative length cycles. Let

C =
{

ri
1, . . . , r

i
m, r

i
m+1 = ri

1

}

denote a finite cycle in T i
f . Absence of finite, negative length

cycles implies that
m

∑

j=1

li
(

ri
j , r

i
j+1

)

≥ 0

which can be rewritten using (6) and (14) as

m
∑

j=1

E−i

[

βi
(

f
(

ri
j , t

−i
)

| t−i
)

− βi
(

f
(

ri
j+1, t

−i
)

| t−i
)]

ri
j ≥ 0.

This implies that
m

∑

j=1

E−i

[

βi
(

f
(

ri
j+1, t

−i
)

| t−i
)] (

ri
j+1 − ri

j

)

≥ 0.

Thus, E−i

[

βi
(

f
(

ri, t−i
)

| t−i
)]

is cyclically monotone.10 From Rockafellar [14], Theorem

24.8, it follows that there exists a convex function ϕ: T i 7→ R such that E−i

[

βi
(

f
(

ri, t−i
)

| t−i
)]

is a selection from its subdifferential mapping, that is,

E−i

[

βi
(

f
(

ri, t−i
)

| t−i
)]

∈ ∂ϕ
(

ri
)

,∀ri ∈ T i.

This implies (see Krishna & Maenner [7], Theorem 1) that for any smooth path S in T i

joining ri and r̄i the following holds:

∫ r̄i

ri,S

E−i

[

βi
(

f
(

ri, t−i
)

| t−i
)]

= ϕ
(

r̄i
)

− ϕ
(

ri
)

,

so E−i

[

βi
(

f
(

ri, t−i
)

| t−i
)]

is path independent.

(2)⇒(1): Let us assume that f satisfies weak monotonicity and that for every agent i,

E−i

[

βi
(

f
(

ri, t−i
)

| t−i
)]

is path independent. Take any edge from T i
f and denote its starting

node ri and its ending node r̄i. Let L denote the line segment between ri and r̄i, i.e. L =
{

ri ∈ T i | ri = (1 − α)ri + αr̄i, α ∈ [0, 1]
}

. Now we pick any ri ∈ L and substitute the original

10The notion of cyclical monotonicity was introduced by Rockafellar [13].
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edge with the path A =
{

ri, ri, r̄i
}

which has length li
(

ri, ri
)

+ li
(

ri, r̄i
)

. As mentioned

above, the valuation function satisfies non-decreasing expected differences. Together with

weak monotonicity this implies (see Lemma 1):

li
(

ri, r̄i
)

≥ li
(

ri, ri
)

+ li
(

ri, r̄i
)

, (15)

that is, the original edge is at least as long as the path A. By repeated substitution we can

generate a new path Ã =
{

ri
1 = ri, . . . , ri

m, r
i
m+1 = r̄i

}

where ri
j ∈ L, ∀j ∈ {1, . . . ,m + 1}.

Then (1) implies that the original edge is at least as long as Ã, that is,

li
(

ri, r̄i
)

≥
m

∑

j=1

li
(

ri
j , r

i
j+1

)

,

(see also the example given in Figure 1). Note that11

m
∑

j=1

li
(

ri
j , r

i
j+1

)

= E−i

[

vi
(

f
(

ri, t−i
)

| ri, t−i
)

− vi
(

f
(

r̄i, t−i
)

| r̄i, t−i
)]

+
m

∑

j=1

E−i

[

βi
(

f
(

ri
j+1, t

−i
)

| t−i
)] (

ri
j − ri

j+1

)

.

By repeated substitution we can generate paths with more and more edges. In the limit the

distance between neighboring nodes goes to zero and

m
∑

j=1

E−i

[

βi
(

f
(

ri
j+1, t

−i
)

| t−i
)] (

ri
j − ri

j+1

)

→

∫ r̄i

ri,L

E−i

[

βi
(

f
(

ri, t−i
)

| t−i
)]

.

Thus, the length of Ã goes to

E−i

[

vi
(

f
(

ri, t−i
)

| ri, t−i
)

− vi
(

f
(

r̄i, t−i
)

| r̄i, t−i
)]

+

∫ r̄i

ri,L

E−i

[

βi
(

f
(

ri, t−i
)

| t−i
)]

, (16)

asm→ ∞. Now, let C =
{

ri
1, . . . , r

i
m, r

i
m+1 = ri

1

}

denote a finite cycle in T i
f . Furthermore, let

Lj denote the line segment between ri
j and ri

j+1. The result in (16) and the path independence

11For a more detailed description of the transformation steps involved, the reader is referred to the single-item

auction application in Section 4.
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of E−i

[

βi
(

f
(

ri, t−i
)

| t−i
)]

imply for the length of C that

m
∑

j=1

li
(

ri
j , r

i
j+1

)

≥
m

∑

j=1

E−i

[

vi
(

f
(

ri
j , t

−i
)

| ri
j , t

−i
)

− vi
(

f
(

ri
j+1, t

−i
)

| ri
j+1, t

−i
)]

+
m

∑

j=1

∫ ri
j+1

ri
j ,Lj

E−i

[

βi
(

f
(

ri, t−i
)

| t−i
)]

= 0,

that is, C has non-negative length. In order to see the equality relation, note the following:

the terms of the first summation cancel each other out. Furthermore, the second summation

describes an integral over a closed path in T i which, due to path independence, equals zero.

2

Weak monotonicity of f and path independence of E−i

[

βi
(

f
(

ri, t−i
)

| t−i
)]

do not imply

one another. That weak monotonicity does not imply path independence follows directly from

Example 2 and Theorem 4. It can also be derived directly from Example 2. If we consider

for example path A consisting of the line segment between x and y and path Ã consists of

the line segment between x and z and the line segment between z and y, we find that

∫ y

x,A

β(f(r)) = −
3

2
and

∫ y

x,Ã

β(f(r)) = 3.

So the integral of β(f(r)) from x to y is not independent of the path of integration. That

weak monotonicity of f does not imply path independence of E−i

[

βi
(

f
(

ri, t−i
)

| t−i
)]

de-

pends crucially upon the assumption of multi-dimensional type spaces. If we would consider

one-dimensional type spaces instead, then weak monotonicity would indeed imply path inde-

pendence. This can be seen for example in the single-item auction application presented in

Section 4.

That path independence does not imply weak monotonicity is illustrated by the following

example.

Example 3 Let us consider the allocation of a single, indivisible object. For simplicity we

assume that there exists only a single agent to possibly allocate to. He has a type t ∈ T = [0, 1]

which reflects the value of the object for him. Given a report r of the agent, the allocation

rule f : T 7→ [0, 1] assigns to him a probability for getting the object. The agent’s valuation
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for the resulting allocation is v(f(r) | t) = f(r)t. Specifically, we set f(r) = −(2r − 1)2 + 1

(see Figure 5). Clearly, f is path independent but not weakly monotone.

r

1

0 1

f(r)

Figure 5: The allocation function in Example 3.

If f is Bayes-Nash incentive compatible, the corresponding payments can be constructed

by using shortest path lengths (as described in the proof of Theorem 1). For each i ∈ N ,

let us pick some ai as the source node in T i
f . Thus, if agent i reports ti, he has to make a

payment

Pi

(

ti
)

= inf
m

∑

j=1

li
(

ri
j , r

i
j+1

)

, (17)

where the infimum is taken over all finite paths from ti to ai. Take any finite path A =
{

ri
1 = ti, . . . , ri

m+1 = ai
}

in T i
f . Let Lj denote the line segment between ri

j and ri
j+1, whereas

Lt denotes the line segment between the source and ti. Following the repeated substitution

approach presented in the second part of the proof of Theorem 4, we can construct paths that

are shorter (or as long) by letting them visit the same nodes as A and also additional nodes

along the line segments inbetween. In the limit, as the number of nodes goes to infinity, the

distance between neighboring nodes goes to zero and the length of the paths goes to

m
∑

j=1

(

E−i

[

vi
(

f
(

ri
j , t

−i
)

| ri
j , t

−i
)

− vi
(

f i
(

ri
j+1, t

−i
)

| ri
j+1, t

−i
)]

+

∫ ri
j+1

ri
j ,Lj

E−i

[

βi
(

f
(

ri, t−i
)

| t−i
)]

)

. (18)

24



Using path independence (18) we have that12

m
∑

j=1

∫ ri
j+1

ri
j ,Lj

E−i

[

βi
(

f
(

ri, t−i
)

| t−i
)]

=

∫ ai

ti,Lt

E−i

[

βi
(

f
(

ri, t−i
)

| t−i
)]

.

Applying the above to (17) yields

Pi

(

ti
)

= E−i

[

vi
(

f
(

ti, t−i
)

| ti, t−i
)

− vi
(

f i
(

ai, t−i
)

| ai, t−i
)]

−

∫ ti

ai,Lt

E−i

[

βi
(

f
(

ri, t−i
)

| t−i
)]

, (19)

implying that the expected utility (see (1) for definition) for truthfully reporting ti is13

U i
(

ti | ti
)

= U i
(

ai | ai
)

+

∫ ti

ai,Lt

E−i

[

βi
(

f
(

ri, t−i
)

| t−i
)]

. (20)

5.1 Application to the Social Choice Model of Jehiel & Moldovanu [4]

As a special case let us consider the social choice model introduced by Jehiel & Moldovanu [4]

which allows for allocative externalities and interdependent valuations.14 In this setting there

exists a set of social alternativesM = {1, . . . ,m}. Given reports from all agents, the allocation

rule f : T 7→ [0, 1]m assigns to each social alternative a probability to be chosen. So the

outcome set Γ is the set of all possible probability profiles. Alternative k’s probability to be

chosen, given a report profile r ∈ T , is denoted fk(r). The allocation rule must satisfy the

probability conditions
∑m

k=1
fk(t) = 1 and 0 ≤ fk(t) ≤ 1, ∀k ∈M,∀t ∈ T .

For every agent i, the type space T i ⊆ R
m×n is assumed to be convex and bounded. Ele-

ment tikj of agent i’s type ti ∈ T i affects agent j’s valuation for social alternative k ∈M . Agent

i’s valuation for some alternative k ∈M , given a type profile t ∈ T , is vi(k | t) =
∑n

j=1
a

j
kit

j
ki,

where the scalars aj
ki are common knowledge and ai

ki ≥ 0, ∀i ∈ N , ∀k ∈M . Let agent i have

true type ti and report ri while the others have true types t−i and reports r−i. His valuation

12The line segment Lt for the path of integration is picked for convenience. Due to path independence, it

can be replaced with any other path connecting the source and ti.
13Again, in order to derive (20) one can use that by construction Pi

(

ai
)

= 0 and thus add this term to the

right-hand side of (19).
14Jehiel, Moldovanu & Stacchetti [5] present a special case of this model without interdependent valuations.

They consider single-item auctions with externalities where agent i has a type ti ∈ T i ⊆ R
n. Type element

ti
i reflects his valuation for the object, whereas ti

j reflects the (commonly negative) value of the externalities

agent i incurs if agent j gets the object.
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for the resulting outcome is

vi
(

f
(

ri, r−i
)

| ti, t−i
)

=

m
∑

k=1

(

fk

(

ri, r−i
)

n
∑

j=1

a
j
kit

j
ki

)

.

Assuming that he reports ri and believes that the others report truthfully, his expected

conditional probability for social alternative k ∈M to be chosen is

qi
k

(

ri
)

=

∫

T−i

fk

(

ri, t−i
)

π−i
(

t−i
)

dt−i.

Define Qi
(

ri
)

: T i 7→ R
m×n as the vector field, where, for each k ∈ M , the kith element is

given by ai
kiq

i
k

(

ri
)

and the kjth element is zero ∀j 6= i. Agent i’s expected valuation, given

report ri and true type ti, is

E−i

[

vi
(

f
(

ri, t−i
)

| ti, t−i
)]

=

∫

T−i

( m
∑

k=1

(

fk

(

ri, t−i
)

n
∑

j=1

a
j
kit

j
ki

)

)

π−i
(

t−i
)

dt−i

= Qi
(

ri
)

ti +
m

∑

k=1

∫

T−i

(

fk

(

ri, t−i
)

∑

j∈N
j 6=i

a
j
kit

j
ki

)

π−i
(

t−i
)

dt−i.

(21)

Using (21), the weak monotonicity condition becomes

(

ri − r̃i
) (

Qi
(

ri
)

−Qi
(

r̃i
))

≥ 0 ∀i ∈ N, ∀ri, r̃i ∈ T i. (22)

Jehiel & Moldovanu [4] show that a mechanism (f, P ) is Bayes-Nash incentive compatible

if and only if (22) holds, Qi is path independent ∀i ∈ N and

U i
(

ri | ri
)

= U i
(

r̃i | r̃i
)

+

∫ ri

r̃i,S

Qi(s) ∀i ∈ N, ∀ri, r̃i ∈ T i, (23)

where S denotes a path in T i connecting r̃i and ri. Due to path independence, it does not

matter which path of integration is chosen.

Note that in this social choice model an agent’s valuation function is linear in his own

type. Thus, we can directly apply the results derived earlier in this section. From Theorem

4 it follows that f is Bayes-Nash incentive compatible if and only if the weak monotonicity

condition in (22) holds and Qi is path independent ∀i ∈ N . The corresponding payments are

given by (19). Thus, if we let ai denote the source node in T i
f ,

Pi

(

ri
)

= E−i

[

vi
(

f
(

ri, t−i
)

| ri, t−i
)

− vi
(

f i
(

ai, t−i
)

| ai, t−i
)]

−

∫ ri

ai,S

Qi(s),
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where S denotes a path in T i connecting ai and ri. Due to path independence, it does not

matter which path of integration is chosen. This implies (see also (20)) that the expected

utility for truthfully reporting ri is

U i
(

ri | ri
)

= U i
(

ai | ai
)

+

∫ ri

ai,S

Qi(s),

thus (23) holds.

In this application, as in the single-item auction application presented in Section 4, the

interdependencies with other agents’ types enter an agent’s valuation function only additively

via the α-term in (13). However, note that the class of valuation functions presented in (13)

also allows for interesting settings where the interdependencies with other agents’ types enter

multiplicatively via the β-term. Consider for example the following simple communication

network setting:

Example 4 There exist three agents, N = {1, 2, 3}, each owning a link in the communication

network presented in Figure 6, that is, agent i owns the link li. Furthermore, there exists a

social planner who wants to send data from the point of origin to the destination point. In

order to do so, he can rent different combinations of links. The outcome set Γ contains the

possible link combinations he can choose from, Γ = {∅, {l3}, {l1, l2}, {l1, l2, l3}}. The planner

assigns a value δ to the successful data transfer. Data can only be sent once. If the planner

chooses the link combination {l1, l2, l3}, we assume that the following simple rooting policy is

employed: with probability ρ the upper connection {l1, l2} is used, and with probability 1 − ρ

the lower connection is used.

Each agent has a type ti ∈ [0, 1] reflecting the probability that his link actually works if

the planner tries to send data through it (e.g. it might be busy putting through other data).

Furthermore, agent i incurs fixed, publicly known costs ci for putting data through his link.

His valuation for γ ∈ Γ is vi
(

γ | ti
)

= −ciAi(γ)ti where Ai(γ) denotes the probability that the

data reaches the link li if outcome γ is chosen. The allocation rule of the planner is to pick a

γ ∈ Γ such that [δT (γ)−C(γ)] is maximized. T (γ) denotes the expected throughput, that is, the

probability that the data reaches the destination given the link combination γ. C(γ) denotes the

expected throughput costs, that is,
∑

i c
iAi(γ)ti. The valuations of the agents for the different

outcomes are summarized in Table 1. Note that agent 1’s type enters agent 2’s valuation of

the outcomes {l1, l2} and {l1, l2, l3} in the aforementioned multiplicative fashion. Employing
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different routing policies and data sending strategies, one can construct also examples where

each agent exhibits such interdependent valuations.

origin destination

ρ

(1 − ρ)

l1 l2

l3

Figure 6: The communication network considered in Example 4.

γ v1
(

γ | t1
)

v2
(

γ | t2
)

v3
(

γ | t3
)

∅ 0 0 0

{l3} 0 0 −c3t3

{l1, l2} −c1t1 −c2t1t2 0

{l1, l2, l3}} −c1ρt1 −c2ρt1t2 −c3(1 − ρ)t3

Table 1: Agents’ valuations in Example 4.
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