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Abstract. The volunteer’s dilemma is an asymmetric n-player binary-action game
in which a public good is provided if and only if at least one player volunteers,
and consequently bears some private cost. So long as the value generated for every
player exceeds this private cost there are n pure-strategy Nash equilibria in each
of which a single player volunteers. Quantal-response strategy revisions allow play
to move between the different equilibria. A complete characterisation of long-run
play as strategy revisions approximate best replies provides an equilibrium selection
device. The volunteer need not be the lowest-cost player: relatively high-cost, but
nonetheless “stable” players may instead provide the public good. The cost of
provision is (weakly) reduced when higher values are associated with lower costs.

1. The Volunteer’s Dilemma

The volunteer’s dilemma is a binary-action n-person game in which a public good of value

vi to each player i is generated if and only at least one player j volunteers and bears some

private cost cj > 0. So long as vi > ci for all i there are n pure-strategy Nash equilibria

involving the voluntary contribution of exactly one of the players. Therefore, an equilibrium

selection problem exists: who will volunteer and provide the public good?

Stemming from an interest in the symmetric version of this game with vi = v and ci = c for

all i, authors have often focused on the complete-information mixed equilibrium (Diekmann,

1985, for example), in which players volunteer with probability 1 − (c/v)1/(n−1), and its

Bayesian-Nash counterpart for incomplete-information games (Weesie, 1994).2 Of course,

mixed equilibria frequently have counter-intuitive and counter-evidential properties. The

mixed equilibrium in an (even slightly) asymmetric volunteer’s dilemma exemplifies: players

1Date Printed. Revised July 14, 2006 (Volyv2.tex). JEL Classification. C72, C73, and H41.
Keywords. Volunteer’s dilemma, public goods, evolution, equilibrium selection, concordance.
2Fuller comparative statics of the Bayesian-Nash equilibrium of an asymmetric volunteer’s dilemma were
explored by Johnson (2002) in an application to open-source software provision. See Section 3.
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with relatively low costs (or relatively high values) need to volunteer with relatively low

probability in order to maintain others’ indifference.3 This is somewhat absurd.4

In a general asymmetric volunteer’s dilemma, it might be expected that the player with

the lowest cost would volunteer. This would certainly be efficient from a social perspective.

However, this is but one of many pure-strategy Nash equilibria. Rather than simply focusing

upon equilibria, therefore, this paper admits the possibility that play may vary over time.

A strategy-revision process is considered in which each player periodically chooses a new

strategy (volunteer or not) in response to the current state of play. Of course, if strategy

revisions are myopic best replies, then the process will lock in to pure-strategy Nash equilib-

rium states, and the selection problem remains. One possibility, following Kandori, Mailath,

and Rob (1993) and Young (1993), would be to allow players to “mutate” against the flow of

play by choosing a non-best-reply with some small probability. If a revising player chooses to

volunteer even when another has already, the process experiences a low probability “birth”.

Similarly, if a revising player chooses not to volunteer when there is no other volunteer, then

the process experiences a “death”. Under a mutation specification, births and deaths share

equal probabilities, and could be interpreted as “mistakes” in the revision process.

Here, however, revisions are made via quantal response (McKelvey and Palfrey, 1995).5 Thus

the probability of a birth or a death may depend upon the underlying payoffs. For instance,

if a player’s private cost of volunteering is low then any idiosyncratic benefit from the act of

volunteering may overwhelm it; a birth is more likely. Similarly, a volunteer is less likely to

die when the public good is highly prized. An individual player is characterised by a “birth

cost” and a “death cost”. These two variables index the resistance to a birth and death

respectively. So, a player with a low birth cost chooses to volunteer against the flow of play

with relatively high probability. Birth and death costs are determined not only by the payoffs

of the game, but also by the relative “noise” in a player’s quantal response. Under the usual

random-utility interpretation of a quantal-response specification, a player with particularly

variable payoffs will tend to have low birth and death costs.

This paper characterises the long-run distribution over strategy profiles when quantal re-

sponses approximate myopic best replies (and the process therefore spends almost all time

local to the pure-strategy Nash equilibria of the underlying game). The player who volun-

teers (the “activist”) in the equilibrium thus selected need not be the player with the lowest

3This is a common feature of other, related, games. For example, the textbook game of chicken (n = 2
here) or the classic war of attrition (Bliss and Nalebuff, 1984; Gradstein, 1992, 1994), in which provision is
delayed until a player volunteers. Once again, the comparative statics in (even slightly) asymmetric games
are counter-intuitive. In a global-game (Carlsson and van Damme, 1993) version of the asymmetric chicken
game there is a unique equilibrium that approximates one of the (asymmetric) pure-strategy Nash equilibria.
Similarly, under a wide variety of equilibrium-selection devices, asymmetric wars of attrition instantly end
with the concession of one player (Kornhauser, Rubinstein, and Wilson, 1989; Riley, 1999; Myatt, 2005).
4Diekmann (1993) and Weesie (1993) both noted this “paradoxical” feature. Indeed, the former paper
presents experimental evidence supporting the thesis that lower cost players are more likely to volunteer.
5This modelling strategy has been exploited in a series of papers by Blume (1995, 1997, 2003) and Blume
and Durlauf (2001), who studied logit-driven quantal responses (one of the specifications considered here).
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cost. Rather, a combination of players’ enthusiasm (birth costs) and stability (death costs)

determines who will provide the public good. The more associated enthusiasm and stability

are across the set of players, the lower the cost paid in the equilibrium selected.6

The next section presents the model and the main results, which are discussed in Section 3.

Appendix A contains all the technical material, and formally states and proves the theorems

upon which the propositions in the main text are based.

2. The Evolution of Voluntary Action

In a simultaneous-move n-player game, player i selects zi ∈ {0, 1}, where zi = 1 represents

“volunteering”. A pure-strategy profile z ∈ Z ≡ {0, 1}n generates a payoff ui(z) for player i.

In the process described below, z is a “state of play” in the state space Z. Write |z| ≡
∑

i zi

for the number of volunteers, and Zk ≡ {z : |z| = k} for the kth “layer” of the state space.

Further notation proves helpful. Of interest will be the comparison of states that differ by

the action of player i. Starting from z, write zi+ for the state obtained by setting zi = 1

and zi− for the state obtained by setting zi = 0; hence z ∈ {zi−, zi+}. The “volunteer’s

incentive” for player i is ∆ui(z) ≡ ui(z
i+)− ui(z

i−). With very little loss of generality, and

to simplify the exposition, the volunteer’s incentive is assumed to be non-zero for any z. The

set of pure-strategy Nash equilibria is simply Z∗ = {z : zi = 1 ⇔ ∆ui(z) > 0}.

In a volunteer’s dilemma, a public good is provided if and only if at least one player takes a

costly action. Therefore, a player has an incentive to volunteer if and only if no other player

does so. Using the volunteer’s-incentive terminology, this means that

∆ui(z) > 0 ⇔ |zi+| = 1.

For such games, there are n pure-strategy Nash equilibria: the n elements of the 1st layer Z1.

Each equilibrium involves the successful provision of the public good where just one player

volunteers, bearing some private cost. Defining zi ≡ {z ∈ Z1 : zi = 1}, zi is the equilibrium

in which player i volunteers. Setting vi > ci > 0, a payoff specification might be

ui(z) = vi × I[|z| ≥ 1]− zici,

where I[·] is the indicator function. Thus player i’s private valuation for the public good is

vi, and the private cost of volunteering is ci.
7 Of course, the analysis is amenable to any other

payoff specification that generates the same best-response structure and Nash equilibria.

Rather than study equilibria, attention turns to evolving play. At each time t the state of play

zt ∈ Z is updated via a one-step-at-a-time strategy-revision process: a player i is randomly

6More precisely, the less concordant (in the copula-theoretic sense) are birth and death costs, the (weakly)
lower are the volunteers’ birth costs in the equilibria played as quantal responses approximate best replies.
7This is an example of the threshold (or step-level) public-good provision games studied by Palfrey and
Rosenthal (1984) in which m out of n players must volunteer to successfully provide a public good. For a
complementary evolutionary analysis of the case when m > 1, see Myatt and Wallace (2006).
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selected and chooses an action based solely on the current state, which is then updated

to zt+1 ∈ {zi−
t , zi+

t }. This generates a Markov chain on Z, with transition probabilities

Pr[z → z′] ≡ Pr[zt+1 = z′ | zt = z]. The transitions involve steps up and down between the

layers of the state space. A step up is the “birth” of a new volunteer, and involves a (myopic)

best reply by the revising player whenever zt+1 ∈ Z1; that is, whenever there are no other

current volunteers. Otherwise, a birth is a revision against the flow of play. Similarly, a step

down is the “death” of an existing volunteer (against the flow of play when zt ∈ Z1).

Allowing a revising player to choose the strict best reply to the current state yields path-

dependence; the process will lock in to one of the pure-strategy Nash equilibria. Here, players

are assumed to choose against the flow of play with some probability. Formally,

Pr[zi− → zi+] =
1

n
×

1− di zi+ ∈ Z1,

bi otherwise,
and Pr[zi+ → zi−] =

1

n
×

di zi+ ∈ Z1,

1− bi otherwise.

Normally, player i will volunteer only if no other player is doing so. Player i volunteers only

with some (possibly small) birth probability bi when other volunteers already exist. Similarly,

player i ceases to be the lone volunteer (or equivalently fails to volunteer when no-one else

is doing so) with some (again, perhaps small) death probability di. These “mutations” allow

the strategy-revision process to escape from Nash equilibria and move around the state space.

If bi > 0 and di > 0 for each i, the strategy-revision process is an ergodic Markov chain on

Z, and there exists a unique ergodic distribution over Z satisfying, for any initial conditions,

pz = limt→∞ Pr[zt = z], where pz reveals how often z is played in the long run.

One possible specification would be bi = di = ε > 0 for an “error” probability ε > 0. The

mistakes are “state independent” mutations, since the probability of a non-best-reply does

not depend upon z. A standard approach (Foster and Young, 1990; Kandori, Mailath, and

Rob, 1993; Young, 1993) would be to examine pz as ε → 0. In the limit, the distribution will

place all weight on a “stochastically stable” subset of states; when the stochastically stable

set is a single pure-strategy Nash equilibrium then that equilibrium is “selected”.

Here, however a more general “state dependent” model is considered. Birth and death

probabilities differ from each other and across players. As “noise vanishes” (that is, as

ε → 0) these probabilities decline at different rates. Formally,

ε× log

[
1− bi

bi

]
= βi and ε× log

[
1− di

di

]
= δi. (1)

An inspection of (1) reveals that βi is the (exponential) rate at which bi vanishes as ε → 0;

it is the “birth cost” of a transition made against the flow of play by a new volunteer.

Similarly, δi is the “death cost” of a step down from Z1.
8 The specification arises naturally

from a model of myopic quantal response. Suppose that a revising player i chooses a quantal

8If birth and death costs differ, then birth and death probabilities vanish to zero at different rates as ε → 0.
This generates state-dependent mutations in the sense of Bergin and Lipman (1996).
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response in the sense popularised by McKelvey and Palfrey (1995), so that

Pr[zi,t+1 = 1]

Pr[zi,t+1 = 0]
= exp

(
∆ui(zt)

ε

)
. (2)

Hence the log odds of participating versus not are linear in the volunteer’s incentive. This

carries a random-utility interpretation: if the volunteer’s incentive of a revising player is

perturbed by a logistic error, then the logit is obtained. Birth and death probabilities

respond to the payoffs at stake. For instance, if player i’s private cost of volunteering is

small, then the birth cost βi might also be small. Similarly, if the benefit from the provision

of the public good is large, then the death cost of a volunteer might be correspondingly large.

To see the logit quantal-response model in action, let ui(z) = viI[|z| ≥ 1]− zici. Then

∆ui(z) =

vi − ci |zi+| = 1,

−ci otherwise.
(3)

This specification yields βi = ci and δi = vi − ci, which satisfy (1). The results also

apply to a wider class of specifications. For example, strategy revisions are made by

probit quantal-response if player i chooses to volunteer if and only if ∆ũi(z) > 0 where

∆ũi(z) ∼ N(∆ui(z), ε× σ2
i (z)). For the volunteer’s dilemma, set ∆ui(z) as above and

σ2
i (z) =

γ2
i |zi+| = 1,

ξ2
i otherwise.

(4)

Then the probability that player i chooses to volunteer against the flow of play is given by

bi = 1 − Φ[ci/(ξi ×
√

ε)], where Φ(·) is the cumulative distribution of the standard normal.

This birth probability vanishes as the variance in the probit specification, indexed by ε, falls

to zero. For small ε, the birth probability can be approximated by a density. Going into the

tails, the log of the density of the normal falls with the square of its argument. So, as ε → 0,

ε log

[
1− bi

bi

]
→ βi and ε log

[
1− di

di

]
→ δi where βi =

c2
i

2ξ2
i

and δi =
(vi − ci)

2

2γ2
i

. (5)

Other specifications also fit into the “birth and death cost” framework.9 The results require

only that (1) holds as ε → 0 (as for the probit); (1) holds for all ε > 0 under the logit.

Recall that long-run play is characterised by the ergodic distribution pz ≡ limt→∞ Pr[zt = z].

The remainder of this section uses the above notation to analyse the properties of this

distribution as ε → 0; the case of “vanishing noise”. When ε is small, the flow of play almost

always follows the direction of best reply, and hence play tends to “lock in” to the Nash

equilibrium states contained in Z1. Which members of Z1 get played as ε vanishes?

Definition. As noise vanishes (ε → 0), player i is an activist if and only if limε→0 pzi > 0.

9For instance, when ∆ũi(z) follows a generalised error distribution then the associated birth and death costs
satisfy βi ∝ cν

i and δi ∝ (vi − ci)ν , where ν ≥ 1 is a tail-thickness parameter (see Appendix A for details).
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Players differ in their birth and death costs. Without loss of generality, players are labelled

in birth-cost order: β1 < β2 < · · · < βn. Thus a player with a lower label i is one who finds

easier to volunteer against the flow of play. Generically, assume that δi 6= δj for all i 6= j.

In order to identify the activists, the “tree surgery” technique introduced by Foster and

Young (1990) and popularised by Kandori, Mailath, and Rob (1993) and Young (1993)

is employed. The analysis begins by characterising the limit sets of a noiseless strategy-

revision process; here, this is when revisions are myopic best replies. Such a limit set is a

subset of communicating states from which the (noiseless) Markov chain cannot escape. In

the volunteer’s dilemma, the limit sets are the n singleton states contained in Z1.

Directed graphs are constructed on the space of limit sets that form “trees” leading to a

single “root” limit set. A branch of a tree corresponds to the least-resistant path between

two limit sets, and its “resistance” (for the purposes of the present paper) is the sum of

any birth and death costs encountered along the way. The resistance of a tree is the sum of

the resistances of its component branches. If a tree rooted at a limit set has strictly lower

resistance than any other tree rooted at any other limit set, then it attracts all probability in

the ergodic distribution as noise vanishes.10 (Appendix A makes these statements precise.)

The only costly transitions in the volunteer’s dilemma are moves up from layer Zk (for

n > k ≥ 1) and moves down from Z1. If the current state is z ∈ Zk, then a move up to Zk+1

involves the birth of a player i with zi = 0 at cost βi; a move down from zi to Z0 involves

player i’s death at cost δi. All other transitions are high probability events, and have zero

cost. Comparing the costs of trees rooted at states z ∈ Z1 yields the first result.11

Proposition 1. Define µ = arg maxi6=1[δi] and M = {i : δi ≥ β1}. Then the activist is:

player 1 if δ1 ≥ min[δµ, β1]; player µ if δ1 < δµ < β1; all players i ∈ M if δ1 < β1 ≤ δµ.

The intuition behind this result is straightforward. The lowest birth-cost player is the activist

if either they also have the highest death cost (in which case, they are the easiest to birth

and the hardest to kill), or if their death cost exceeds their own birth cost. In this latter

case, they are harder to kill than they are to birth. Although it is therefore easier for them

to volunteer than to stop volunteering, this is not the real issue. The point is that in any

other equilibrium state where some player i 6= 1 volunteers, if the cheapest way out is a

birth, it always involves the birth of player 1. Therefore, it is easier to exit from any other

equilibrium than it is to exit from z1, and the tree rooted at zi has a higher cost.

If the largest death cost (excluding δ1) is smaller than the smallest birth cost (β1) then player

µ is the activist.12 In this instance it is cheaper to exit any equilibrium state (other than

z1) by killing the player, rather than birthing player 1. For this reason, the state with the

10The limit set in question is “stochastically stable” and its corresponding Nash equilibrium is “selected”.
11Proposition 1 is a restatement of Theorem 1 which can be found, along with its proof, in Appendix A.
12It is here that the technical genericity assumption has impact: were some death costs to coincide so that
δi = δj for some i 6= j, the results would change in a minor but uninteresting way.
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highest death cost is the most stable, and is the equilibrium selected by the process. On

the other hand, if there are some states from which it is cheaper to exit with a birth, then

these will all involve the same exponential cost (since it is always cheapest to birth player

1). Thus all states whose minimum-cost exit is a birth will have positive weight in the limit.

The above proposition provides a complete characterisation of the ergodic distribution for

ε → 0. The equilibrium selected depends critically upon the relationship between various

birth and death costs. One natural configuration of such costs would be for the player with

the lowest birth cost (player 1) also to be the player with the highest death cost (for example,

under the logit specification of (3) this might arise if every player received the same valuation

vi = v). In such a case, δ1 > δµ and player 1 is always the activist.

Therefore the ordering of death costs across players (or their “association” with birth costs)

clearly will matter for selection. Some language assists a more formal discussion of this

relationship: denote an ordering of death costs δ = (δi)
n
i=1. Fix the (ordered) values of the

birth costs. A new ordering (or “shuffle”) of the same death costs δ̂ “favours low birth cost

activists” if whenever a player i was an activist under δ the number of activists such that

j > i (or equivalently βj > βi) is weakly reduced under δ̂.13 Different orderings of death costs

retain the marginal distributions of birth and death costs, but change the joint distribution

of their ranks. The joint distribution of these ranks is the empirical copula:14

C(x, y) ≡
∑n

i=1
I[βi ≤ β(x)]× I[δi ≤ δ(y)] =

∑x

i=1
I[δi ≤ δ(y)],

where β(i)(= βi) is the ith lowest birth cost, and similarly for δ(i). Different orderings of

death costs correspond to different copulae. It remains to define a measure of association.

Definition. C is more concordant than Ĉ if and only if C(x, y) ≥ Ĉ(x, y) for all x and y.

Concordance provides a (partial) ordering over copulae. Equivalently, since birth costs are

arranged in size order by assumption, it is a partial ordering over death-cost shuffles. In

fact, the set of such orderings forms a lattice with maximal and minimal members, C(x, y) =

min[x, y] and C(x, y) = max[0, x + y − n] respectively.15 The former corresponds to δ(i) =

δi for all i (perfect concordance) and the latter to the case when birth and death costs

are perfectly discordant. An increase in concordance implies an increase in the standard

empirical measures of association, such as Spearman’s ρ and Kendall’s τ .16 Intuitively a

more concordant ordering shifts low death costs towards the players with low birth costs.

Proposition 2. A decrease in concordance favours low birth cost activists.

13A shuffle of δ is an ordering δ̂ such that for each i, δ̂i = δj for some j, (and vice versa).
14Copulae usually capture the dependence of continuous variables; see Nelsen (2006) and Cherubini, Luciano,
and Vecchiato (2004) for an introduction and applications to finance, respectively. In some recent studies
(Mayor, Suñer, and Torrens, 2005, for example) the empirical copula was described as a discrete copula.
15These are known in the literature as the minimum and  Lukasiewicz discrete copulae respectively. They
correspond to the Fréchet-Hoeffding lower and upper bounds for continuously distributed variables.
16For instance, Kendall’s τ measures the incidence of concordant pairs (Nelsen, 2006).
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If low birth costs arise from relatively low values of ci, this result can be interpreted in terms

of efficiency: discordancy between birth and death costs (weakly) lowers the cost paid in the

selected equilibrium.17 The next section explores the implications of these propositions.

3. Equilibrium Selection and Efficiency

Who volunteers? Proposition 1 shows that it need not be the lowest birth-cost (the most

“enthusiastic”) player, nor need it be the highest death-cost (the most “stable”) player. If

the most enthusiastic player is also the most stable, however, then that player is indeed

the activist. When this is not the case, other players may volunteer. Recall the probit

specification of (4) and (5). Suppose that a player’s cost (ci) and value (vi) have particularly

high variances. In particular, assume that ξi is high enough so that i = 1 (the high variances

result in low values of βi and δi). If γi is high enough, then δ1 may be less than min[δµ, β1], and

player 1 is not the activist. Even though player 1 has the lowest birth cost (and potentially

the lowest cost ci), someone else does the work. Who is this someone else? It will be the

player(s) with a relatively high value of δi. That is, the player(s) with a stable (low-variance)

valuation. Their cost parameters need not be particularly low: it is the possibly high-cost

“plodders” who contribute to the public good, and solve the volunteers’ dilemma; not the

relatively low-cost “star”, who is too unreliable to consistently contribute to the project.

It would appear then, that the correlation between enthusiasm and stability across players

has a critical role in determining the volunteer.18 Proposition 2 confirms that this is so. If

birth costs are ordered identically to cost parameters ci, then the lower the number of the

activist, the lower the costs borne in equilibrium, and the more efficiently the public good is

provided. Under the logit specification of (3) this logic certainly applies:19 βi = ci for all i.

Maintaining this specification, consider hypothetically “shifting value” from one player to

another. In particular, suppose that players i and j have costs and valuations such that

ci < cj and vi − ci < vj − cj. Let ∆v ≡ [vj − vi] − [cj − ci] > 0, and note that ∆v < vj.

Now consider transferring ∆v utility (shifting value) from j to i so that new values for each

player are given by v̂i ≡ vi + ∆v and v̂j ≡ vj −∆v. This is a discordant shuffle of the death

costs: δ̂i = δj, δ̂j = δi and δ̂k = δk for all k 6= i, j with Ĉ(x, y) ≤ C(x, y) for all x and y.

By Proposition 2, the activist must have a (weakly) lower birth cost, and hence a (weakly)

lower cost parameter ci. Loosely speaking, if utility is transferable in this way, it is efficiency

enhancing to shift value from high-cost players to low-cost players.

17Proposition 2 follows from Theorem 2, which appears, along with its proof, in Appendix A.
18Correlation was also an important feature for Johnson (2002). He modelled voluntary software development
as an incomplete-information volunteer’s dilemma. Rather than address the equilibrium-selection problem,
he instead provided a careful characterisation of a Bayesian-Nash equilibrium in which the probability that
the players volunteer is decreasing in the correlation between their cost and value parameters.
19As, for example, it would under the probit specification setting ξi = γi = 1 for all i, so that βi = c2

i .
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Appendix A. Omitted Proofs

Long-run play depends upon the rates at which transition probabilities vanish as ε → 0. Such a
rate is the “exponential cost” E of a probability (Myatt and Wallace, 2003). E ∈ R+ ∪ {∞} is
defined for a continuous function p(ε) if either p(ε) = 0 for all ε > 0, in which case E = ∞, or if the
limit E = − limε↓0 ε log g(ε) exists. This property is denoted p(ε) = õ (E) or E(p(·)) = E , and means
that p(ε) behaves as exp(−E/ε) does as ε → 0. For a set {pl(ε)} with exponential costs {El},∏

õ(El) = õ
(∑

El

)
,

∑
õ(E) = õ (min El) , a× õ(E) = õ(E), and El > El′ ⇒ lim

ε→0

õ(El)
õ(El′)

= 0. (6)

Given the exponential-cost definition, the birth cost of volunteering against the flow of play is
βi ≡ E(bi). Similarly, the death cost is δi ≡ E(di), and moreover E(1 − bi) = E(1 − di) = 0. The
specification of βi and δi in the text yields well-defined birth and death costs, and when play of
a volunteer’s dilemma evolves via logit quantal-response, these satisfy βi = ci and δi = vi − ci.
Lemma 1 confirms that birth and death costs also exist for probit quantal responses.

Lemma 1. If play of the volunteer’s dilemma evolves by probit quantal response, so that player i

chooses to volunteer if and only if ∆ũi(z) > 0 where ∆ũi(z) ∼ N(∆ui(z), ε× σ2
i (z)), then

E (Pr[∆ũi(z) > 0]) ≡ − lim
ε→0

ε log Pr[∆ũi(z) > 0] =
[∆ui(z)]2

2× σ2
i (z)

. (7)

When play of a volunteer’s dilemma evolves via probit quantal-response where (3) and (4) hold,
then E(bi) = βi and E(di) = δi where βi = c2

i /(2ξ2
i ) and δi = (vi − ci)2/(2γ2

i ).

Proof. If ∆ui(z) > 0 then Pr[∆ũi(z) > 0] → 1 as ε → 0, and so E(Pr[∆ũi(z) > 0]) = 0. If
∆ui(z) > 0 then write E for the right-hand side of (7). Pr[∆ũi(z) > 0] = 1−Φ(x) where x =

√
2E/ε

and Φ(·) is the distribution of the standard normal. From a change of variable from ε to x,

− lim
ε→0

[ε× log Pr[∆ũi(z) > 0]] = E × lim
x→∞

[
−2 log[1− Φ(x)]

x2

]
= E × lim

x→∞

[
φ(x)/[1− Φ(x)]

x

]
= E ,

where φ(·) is the density of the standard normal. The penultimate equality follows from an appli-
cation of l’Hôpital’s rule as x → ∞, and the final equality follows from the asymptotic linearity
of the hazard rate of the normal distribution. The remaining claims of the lemma follow from
substitution of the expressions for ∆ui(z) and σ2

i (z) from (3) and (4) in the main text. �

Lemma 1 verifies (5) in the text, so that birth and death costs are defined for the probit specification.
They are also defined for a wider class of models. Suppose that the noise in ∆ũi(z) is drawn from
the generalised error distribution or equivalently the exponential power distribution (Harvey, 1981).
This has a density f(x) ∝ exp(−|x|ν), where ν is a tail thickness parameter; the normal is obtained
for ν = 2. Exponential costs then take the form E ∝ [∆ui(z)]ν .

If birth and death costs are defined, (6) ensures that the exponential costs of transition probabilities
are defined. Writing Ezz′ ≡ E(Pr[z → z′]), an application of (6) yields the following lemma.

Lemma 2. Suppose z′ 6= z. If there is no i s.t. z′ = zi+ or z′ = zi− then Ezz′ = ∞. Else,

z′ = zi+ ⇒ Ezz′ =

{
βi z /∈ Z0,

0 z ∈ Z0
and z′ = zi− ⇒ Ezz′ =

{
δi z ∈ Z1,

0 z /∈ Z1.
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For ε > 0, there is a unique ergodic distribution p = {pz}z∈Z . A graph-theoretic technique will be
used to characterise p as ε → 0. A “tree rooted at z” is a directed graph (a subset h ⊆ Z × Z)
such that each node z′ 6= z has a unique successor. All sequences of edges lead to z, which has no
successor. The set of trees rooted at z is Hz. From Freidlin and Wentzell (1998):

Lemma 3. p satisfies pz = qz/
∑

z′∈Z qz′, where qz =
∑

h∈Hz

∏
(s,s′)∈h Pr[s → s′].

The relative likelihood of z and z′ may be assessed via qz/qz′ . Unfortunately the expression in
Lemma 3 may be complicated in general. However, as ε → 0 only certain trees matter, greatly
simplifying calculations. Abusing notation, write Eh ≡

∑
(z,z′)∈h Ezz′ for the exponential cost of the

product of the transition probabilities taken from the branches of the tree. Applying (6),

E(qz) = E
(∑

h∈Hz

∏
(s,s′)∈h

Pr[s → s′]
)

= min
h∈Hz

E
(∏

(s,s′)∈h
Pr[s → s′]

)
= min

h∈Hz

Eh.

From (6), E(qz) < E(qz′) ⇒ limε→0[qz′/qz] = 0, so a tree with a root at z that has a lower
exponential cost than any tree rooted at z′ has infinitely more weight in the limit. Thus the states
with minimum-exponential-cost rooted trees are “selected” as ε → 0; they are stochastically stable.

Lemma 4. States in Z† attract all probability in the limit: limε→0
∑

z∈Z† pz = 1, where

Z† =
{

z ∈ Z : min
h∈Hz

{Eh} ≤ min
z′∈Z

min
h′∈Hz′

{Eh′}
}

.

A further abuse of notation is this: E(z) is the exponential cost of the least-cost tree rooted at
z. So, if E(z) < E(z′) for all z′ 6= z, then z is selected. Recall that, without loss, birth costs are
ordered β1 < . . . < βn. Define zi = {z ∈ Z1 : zi = 1}. Recall an “activist” is a player i such that
limε→0 pzi 6= 0. Let µ ≡ arg maxi6=1[δi], the player other than 1 who has the largest death cost.

Theorem 1. Z† 6= ZA ⇔ δ1 ≥ min[δµ, β1] ⇔ E(z1) < E(z) for all z ∈ Z, where

ZA ≡ {zj | δj ≥ β1} ∪ {zµ} ⊂ Z1.

Proof of Theorem 1. The exponential cost of a tree rooted at z1 is E(z1) = A−min[β2, δ1], where

A =
∑

z∈Z1

mini [ziδi + (1− zi)βi] = min[β2, δ1] +
∑n

i=2
min[β1, δi].

To see this, first notice that the expression on the right gives a lower bound for the exponential
cost of such a tree. The tree must have exits from each state in Z1 (the minimums of which add
to A by definition) except z1, hence subtract the element from A corresponding to this minimum.
Second construct paths from all z /∈ Z1 to Z1 at zero cost. The state in Z0 can be linked to z1 at
zero cost by birthing player 1, other states can be linked into Z1 by repeatedly killing players at
zero cost until only one remains. Third, at zero additional exponential cost, construct paths from
all states zi ∈ Z1, i 6= 1, to z1 in the following way. Fix a state zi. If the cheapest exit is a birth,
it will involve the birth of player 1 (since β1 < βj for all j), and z1 can be reached following the
zero-cost death of player j. If the cheapest exit is a death, the process will move to Z0, in which
case, following the birth of player 1, the process is in z1 at zero additional exponential cost. It is
straightforward to see that states not in Z1 do not have weight in the limit.

The proof proceeds in three key steps. First suppose that there is some i 6= 1 such that E(zi) ≤
E(z1). Now E(zi) ≥ A − min[β1, δi] (from reasoning as in the first paragraph above). Therefore
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A − min[β2, δ1] = E(z1) ≥ E(zi) ≥ A − min[β1, δi], for this i, which implies that min[β1, δi] ≥
min[β2, δ1]. But β1 < β2 by construction, so β1 ≥ min[β1, δi] ≥ min[β2, δ1] ⇒ δ1 < β2. Turning this
statement around, if δ1 ≥ β2 then E(zi) > E(z1), and hence z1 is selected.

Second, consider β2 > δ1 ≥ min[δµ, β1]. Since β2 > δ1, the cheapest way out of z1 is a death.
Thus a rooted tree at any zi 6= z1 can be constructed at a cost equal to the lower bound above.
That is, E(zi) = A − min[β1, δi]. To see this, consider a path from any other state zj in Z1. If
the cheapest exit is a death, the process moves to z0, and hence a zero-cost birth of player i leads
the process to zi. If the cheapest exit is a birth, it is the birth of player 1. Birthing and then
killing player 1 occurs at zero additional exponential cost (since β2 > δ1), again leaving the process
in Z0. All other states may be routed in at zero cost. The condition for selection of z1 becomes
A − δ1 = E(z1) < E(zi) = A −min[β1, δi]. That is, min[β1, δi] < δ1. Since δ1 ≥ min[δµ, β1], this is
true ∀i, and z1 is selected.

Third, consider the (last) case: min[δµ, β1] > δ1. Since this implies that β2 > δ1, the same logic
applies. This time however, there is at least one δi > δ1, and β1 > δ1. Thus there is at least one
state zi such that E(z1) > E(zi) and z1 is not selected. Comparing zi and zj , where i 6= j 6= 1 gives
E(zi) < E(zj) ⇔ min[δi, β1] > min[δj , β1]. That is, the state selected is the one with the largest δi if
this lies below β1, or the (potentially many) states whose death costs exceed β1. So Z† = ZA. �

Call δ̂ = (δ̂i)n
i=1 a discordant shuffle of δ = (δi)n

i=1 whenever C is more concordant than Ĉ and
for each i, δ̂i = δj for some j (and vice-versa). Write µ̂ ≡ arg maxi6=1[δ̂i]. Let the number of
activists present in the last n − j + 1 players (that is, the n − j + 1 highest birth-cost players)
be |Z†|j ≡

∑n
i=j I[zi ∈ Z†]. Finally, in a natural notation, let Ẑ† be the states that attract all

probability in the limit under the new configuration of death costs δ̂.

Lemma 5. If δ̂ is a discordant shuffle of δ then δ̂1 ≥ δ1 and maxi>m[δ̂i] ≤ maxi>m[δi] for all m.

Proof. Let r(i) be the rank of δi in δ and r̂(i) be the rank of δ̂i in δ̂. If δ̂1 < δ1, then

C(1, r̂(1)) = I[δ1 ≤ δ̂1] = 0 and Ĉ(1, r̂(1)) = I[δ̂1 ≤ δ̂1] = 1,

but C is more concordant than Ĉ, yielding a contradiction. Now suppose, again to the contrary,
that maxi>m[δ̂i] > maxi>m[δi] for some m. This means that maxi>m[δ̂i] = δi for some i ≤ m. Let
µm = arg maxi>m[δi]. Suppose C(m, r(µm)) = k (with k ∈ {0,m − 1}, since maxi>m[δ̂i] = δi >

maxi>m[δi] for some i ≤ m). Given a death cost configuration δ, there are k death costs within the
first m players lower than maxi>m[δi]. Every player j > m has a death cost lower than maxi>m[δi].
Therefore, given that (at least) one of the death costs above maxi>m[δi] no longer belongs to j ≤ m

under the configuration δ̂, Ĉ(m, r(µm)) =
∑m

i=1 I[δ̂i ≤ maxi>m[δi]] > k, contradicting the fact that
C is more concordant than Ĉ. Note, in particular, that setting m = 1 yields δ̂µ̂ ≤ δµ. �

Theorem 2. If δ̂ is a discordant shuffle of δ then |Ẑ†|j ≤ |Z†|j for all j = {1, . . . , n}.

Proof. First, suppose that δ1 ≥ min[δµ, β1]. Then, by Lemma 5, δ̂1 ≥ min[δ̂µ̂, β1]. Now (by
Theorem 1) |Ẑ†|j = |Z†|j = 0 for all j > 1 and |Ẑ†|1 = |Z†|1 = 1. Second, suppose that
δ1 < min[δµ, β1], but that δ̂1 ≥ min[δ̂µ̂, β1]. Then |Ẑ†|j = 0 for all j > 1 and |Ẑ†|1 = 1. By
definition |Z†|1 ≥ 1. Finally, suppose δ1 < min[δµ, β1] and δ̂1 < min[δ̂µ̂, β1]. There are two cases.
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The first case is when δµ < β1, so that Z† = ZA = {zµ} by Theorem 1. Then, by Lemma 5,
δ̂µ̂ < β1, and hence Ẑ† = {zµ̂}. It is sufficient to show that µ̂ ≤ µ. (When this is the case |Z†|j = 0
for j > µ and 1 otherwise, whilst |Ẑ†|j = 0 for j > µ̂ and 1 otherwise so that |Ẑ†|j ≤ |Z†|j for all
j.) Suppose, to the contrary that µ̂ > µ. Recall, in this case, that δµ > δ1 and δ̂µ̂ > δ̂1. Thus
δµ > δi and δ̂µ̂ > δ̂i for all i. Therefore δ̂µ̂ = δµ. Since µ̂ > µ, and generically δi 6= δj for all i 6= j,

maxi≥µ̂δi < δµ = δ̂µ̂ = maxi≥µ̂δ̂i.

Applying the second statement of Lemma 5 and setting m = µ̂− 1 provides a contradiction.

The second case is when δµ ≥ β1. Again, note that δµ = δ̂µ̂. By definition and by Theorem 1,

|Z†|j ≡
∑n

i=j
I[zi ∈ Z†] =

∑n

i=j
I[δi ≥ β1].

Let |Z†|1 = |Z†| = |ZA| = a. Since δ̂ is simply a re-ordering of δ and δµ = δ̂µ̂ ≥ β1, |Ẑ†|1 = a.
Suppose, to the contrary, that there exists some j for which |Ẑ†|j > |Z†|j . Then

a− |Z†|j = a−
∑n

i=j
I[δi ≥ β1] > a−

∑n

i=j
I[δ̂i ≥ β1] = a− |Ẑ†|j .

Now a−
∑n

i=jI[δi ≥ β1] =
∑j−1

i=1I[δi ≥ β1] and similarly for δ̂. Therefore, the inequality becomes∑j−1

i=1
I[δi ≥ β1] >

∑j−1

i=1
I[δ̂i ≥ β1] (8)

Choose δm such that δm < β1 but there is no i such that δm < δi < β1 (there is always such an m

since δ1 < β1 in this case). Set k = j − 1 and note that

C(k, r(m)) =
∑k

i=1
I[δi ≤ δm] =

∑k

i=1
(1− I[δi > δm]) = k −

∑j−1

i=1
I[δi ≥ β1],

and similarly Ĉ(k, r(m)) = k −
∑j−1

i=1I[δ̂i ≥ β1]. Thus, by (8), Ĉ(j − 1, r(m)) > C(j − 1, r(m)): a
contradiction since δ̂ is a discordant shuffle of δ. This completes the proof. �
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