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SEQUENTIAL COALITION FORMATION AND THE CORE IN
THE PRESENCE OF EXTERNALITIES

LÁSZLÓ Á. KÓCZY

Abstract. Bloch (1996) presents a novel method to solve cooperative games
with externalities. When trying to relate this to classical approaches he could
only present negative results. We elaborate on these problems, define a modifi-
cation of Bloch’s model and show that its order-independent equilibria coincide
with the (pessimistic) recursive core (Kóczy, 2005).
Subject classification: C71, C72
Keywords and phrases: Core, externalities, sequential coalition formation,
order-independent equilibria

1. Introduction

Solving cooperative games with externalities remains an interesting, important
but difficult problem in game theory. While for games without externalities, a
plethora of concepts have been proposed it proved to be difficult to generalise these
solutions, and often the games were simplified to fit old models instead.

The sequential model of coalition formation (Bloch, 1996) is certainly one of
the first models that is attractive due to its simplicity, but also, since this is a
noncooperative model, as it does not only give the equilibrium coalition structures,
but also some insight why precisely these form. (For an application see Bloch, 1995)

One of the few drawbacks of the model was that despite the apparent logical
relation to standard cooperative concepts, in particular, the core, a clear relation
could not be established. In fact, (Bloch, 1996) presents an example proving the
concept to be unrelated to the α-core, the closest suspected relative.

In this paper we reconsider this issue and explain the reasons for this negative
result. We also show that Bloch’s model would for some games result in Pareto-
dominated equilibrium coalition structures. We present a modification that is free
from these deficiencies. We show not only a well-defined relation to the α-core,
but show that, when all residual cores are nonempty, the pessimistic recursive
core (Kóczy, 2005) coincides with set of order-independent equilibrium coalition
structures as defined by the modified model.

In recursive cores a deviation by a set of players is responded by an equilibrium
partition of the residual players. The equilibrium is nothing but the solution of the
restricted game induced by the deviation. While optimism or pessimism of these
players plays a role here, too, as this model takes the behaviour of the residual
players explicitly into account, it gives a better prediction of the possible responses,
of the profitability of deviations and ultimately of the stability of a particular
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partition. Huang and Sjöström (2003) have independently formulated a similar
model, the r-theory for normal form games.

Our paper is a contiunation of the literature studying the relation of the core and
noncooperative coalition formation (Chatterjee et al., 1993; Lagunoff, 1994; Perry
and Reny, 1994), but while these papers deal with characteristic function form
games we allow for externalities. It extends the results of Moldovanu and Winter
(1995) to discrete partition function form games (Lucas and Macelli, 1978). Our
work is most related to Huang and Sjöström (2006) who independently established
a similar result modifying the model of Perry and Reny (1994). As in this model
the order of players is not fixed, order independence is not an issue, their focus is on
stationary subgame perfect equilibria and show equivalence to the r-core (Huang
and Sjöström, 2003) for totally r-balanced games (a condition that resembles our
assumption of non-empty residual cores).

The structure of the paper is as follows. After the introduction of Bloch’s model,
we explain the two aforementioned objections. The third section contains our mod-
ified model. Then we present the recursive core and finally our main results.

2. Preliminaries

Let N be a finite set of players. Subsets of N are called coalitions. A partition π
of N is a breaking up of N into disjoint coalitions. ΠS is the set of partitions of any
set S of the players with πS denoting a typical element. The game is also featured
by a discrete partition function (Lucas and Macelli, 1978) v : Π(N) 7−→ RN . The
component vi(π) denotes the payoff for player i in case partition π formed. For
vectors x, y ∈ RN we write x >S y if xi ≥ yi for all i ∈ S ⊂ N and there exists
j ∈ S such that xj > yj .

A rule of order ρ is an ordering of the players that determines the order in which
players make their moves in the sequential game of coalition formation. Let ρ(S)
denote the player ranked first among the members of S. For instance, ρ(N) is the
player starting the game. A game of sequential coalition formation or simply a
game will be fully described by the discrete partition function and the rule of order
and hence is denoted as Γ(v, ρ).

The game shall be played as follows.
(1) We start the game at the first player.
(2) The current player makes a proposal. A proposal is a coalition of players.
(3) The following player in this coalition gets the word. He can either reject

the proposal, become the next proposer and the game continues at step 2.
Alternatively he can accept the proposal and the step is repeated.

When a proposal is made the following player is the highest ranked player who has
not spoken yet: in case the last player made a proposal, then this is the highest
ranked player in the coalition (apart from the proposer), otherwise it is the player
who follows in rank.

A history ht = (K̂(ht), πK̂(ht), T̂ (ht), S, i) at date t is a list of offers, acceptances
and rejections up to period t. The history therefore determines

• a set K̂(ht) of players who have already formed coalitions and left the game,
• the coalition structure πK̂(ht) of players in K̂(ht),

• a –possibly empty– ongoing proposal T̂ (ht),
• a set of players S who have already accepted the proposal,



3

• a player i who moves at time t.
A player i is active at history ht if it is his turn to move. The collection of

histories at which i is active is denoted Hi. A strategy σi for player i is a mapping
from Hi to his set of actions:

(2.1) σi(ht) ∈
{
{Yes,No} if T̂ (ht) 6= ∅
T (i, K̂(ht)) if T̂ (ht) = ∅

where T (i, K̂(ht)) =
{

T ⊆ N \ K̂(ht), i ∈ T
}

, the set of coalitions that i can form
with the remaining set of players. See also Bloch (1996).

A strategy profile uniquely determines an outcome (π(σ), t(σ)) of the game. In
case t(σ) is finite, π(σ) is a partition of the set N , otherwise of a strict subset of N .
In the latter case players who could not agree on the coalition to form are offered a
payoff that is less than the payoff they would receive in any partition. In this case
the payoff of the players who have already left the game is not clear: Bloch (1996)
chose to take the most favourable case for the players: vi(π(σ)) = maxπK⊂π vi(π).

We are interested in stationary strategies:

Definition 1. A strategy is stationary if it does not depend on the history, but
only on the current state s = (K,πK , T ).

Definition 2. A subgame-perfect equilibrium σ∗ is a strategy profile such that for
all players i ∈ N , for all histories ht ∈ Hi and for all strategies σi of player i we
have

vi(π(σ∗i (ht), σ∗−i)) ≥ vi(π(σi(ht), σ∗−i))

Definition 3. A stationary perfect equilibrium is an subgame-perfect equilibrium
profile that is also stationary.

2.1. Two negative results. Bloch (1996) shows that for each game Γ(v, ρ) there
exists a subgame-perfect equilibrium, however stationary perfect equilibria may
fail to exist. He then focuses on outcomes of stationary perfect equilibria (in finite
time) and attempts to establish a link to existing cooperative solution concepts.
After some encouraging results Bloch (1996, pp 105-106) presents an example that
produces a non-empty set of stationary equilibrium coalition structures (SECS), a
nonempty α-core, but the intersection of the two solutions is empty suggesting that
there is no relation between the two concepts.

In the following section we make a small modification to the sequential coalition
formation game that makes a stronger relation possible.

Consider also the following example. It is an example based on the Cournot
oligopoly game studied by Bloch (1996, Section 5.1) with a slight difference: No
majority coalitions are permitted to form. Such a game can easily emerge as a
result of antitrust regulations. We model this by assigning very low payoffs for
players in majority coalitions.

Example 1. In a Cournot oligopoly game with a linear inverse demand function
D = α −Q and uniform marginal cost λ a player belonging to a cartel of size t(i)
active in a market of K cartels gets a payoff of (α−λ)2

t(i)(K+1)2 . Consider a game with
4 players. The game is symmetric, and therefore any choice of ρ is suitable. The
payoffs (up to the constant multiplier (α− λ)2) are as follows:
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π vi vj vk vl

{i, j, k, l} 1
25

1
25

1
25

1
25

{ij, k, l} 1
32

1
32

1
16

1
16

{ij, kl} 1
18

1
18

1
18

1
18

any other 0 0 0 0
where e.g. ij stands for a coalition consisting of players i and j and i, j, k, l are
permutations of 1, 2, 3, 4.

Lemma 1. The partition {i, j, k, l} = {1, 2, 3, 4} is the unique stationary equilib-
rium coalition structure of this game.

Proof. The proof is a straightforward solution of the game.
When a single player is left over, it forms a singleton coalition.
Now assume that K = {i, j} have left the game. W.l.o.g. k is the active player.

Two cases are considered:
πK = {i, j}: Proposing a singleton pays 1

25 , becoming a pair pays 1
32 : such a

proposal would not be made nor accepted.
πK = {ij}: Proposing a singleton pays 1

16 , becoming a pair pays 1
18 : again,

such a proposal would not be made nor accepted.
When only a single player has left the game, proposing a triple is always dom-

inated: e.g. going single would play at least 1
16 > 0. For the other proposals

we already know the coalition structure that the remaining players will form and
proposing a singleton is the dominant strategy.

Finally we consider the case when all 4 players are still in the game. Proposing a 3
or 4-player coalition is dominated as before. Since the remaining players will become
singletons, proposing or accepting a pair will result in a payoff of 1

32 , proposing a
singleton yields 1

25 , hence proposing a singleton is yet again the equilibrium strategy.
Therefore, in equilibrium, the all-singletons coalition structure will form. ¤

It is clear that the coalition structure {ij, kl} is preferred to {i, j, k, l} by all
players.

Corollary 2. Stationary equilibrium coalition structures can be Pareto-dominated
by coalition structures that cannot be produced by stationary equilibria.

Note that since here the α-core consists of the coalition structure {ij, kl}, our
example is also an example of a game where SECS(v, ρ) 6= ∅ and Cα(v) 6= ∅, but
SECS(v, ρ) ∩ Cα(v) = ∅.

3. Modified sequential coalition formation game

When introducing the α-core Bloch (1996) writes: “In the α definition, a group
K of players deviates if there exists a coalition structure πK such that, whatever the
reaction of the external players, members of K are better off forming the coalition
structure πK .” That is: in the definition of the α-core a contract among players
cannot only specify the coalition, but also a partition of this coalition that the
players form. Slightly abusing the terminology we can say that players have a
larger action set in the cooperative game.
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There are two possibilities to correct for this. Either by restricting possibili-
ties for deviation in the cooperative game or by expanding the action set in the
sequential coalition formation game.

The first suggestion means that we rephrase the sentence above as: ‘In the α′

definition, a group K of players deviates if the members of K are better off forming
the coalition K.’ In Example 1 this results Cα′(v) = Cα(v)∪{{i, j, k, l}} so clearly
SECS(v, ρ) ∩ Cα′(v) 6= ∅, in fact, SECS(v, ρ) ⊆ Cα′(v) can be shown generally.
There are two problems with this approach. Firstly, it does not answer our second
criticism, rather, it now also applies to the modified α-core: it admits Pareto-
dominated coalition structures. Dominance becomes so restricted, that even Pareto-
dominance does not imply dominance. At the same time this restriction brings no
benefits, so, for example, non-emptiness is still not guaranteed and therefore we
reject this approach.

The second possibility is to modify the sequential coalition formation game: a
proposal is now not only the coalition, but also the specification how this coalition
is to be partitioned. So

(3.1) σi(ht) ∈
{
{Yes, No} if τ̂(ht) 6= ∅
T(i, K̂(ht)) if τ̂(ht) = ∅

where T(i, K̂(ht)) =
{

τ ∈ Π(T ), T ⊆ N \ K̂(ht), i ∈ T
}

, the set of partitions that

i can form with the remaining set of players.1

As before, we are interested in the coalition structures that emerge as subgame-
perfect equilibria in stationary strategies, denoted by SECS′(v, ρ).

Firstly, we return to Example 1 and compute the SECS′(v, ρ) for that game.
For the two-player subgames the extended strategy set does not alter our arguments
a great deal: proposing a singleton or proposing a partition into two singletons will
lead to the same coalition structure, so either will be an equilibrium strategy. In
the three-player subgames proposing a coalition of size three is still a dominated
strategy. For other proposals we can say in general, that members of any proposed
pair prefer to reject and propose a singleton: this will result in three singleton
coalitions. This brings us to the root of the game tree. The first player will not
propose coalitions of size 3 or 4. By proposing a singleton it can get a payoff of
1
18 and any player can get the same payoff by rejecting a proposal and proposing a
singleton herself. Then a proposal will only be accepted if it offers at least this much
to all players involved. This leaves two types of proposals on the table: proposing
a partition of singletons (partitions of 1, 2, 3, or 4 singletons) or a partition into
two pairs. The latter is accepted by all, and it is also preferred by all, therefore
were proposing singletons the strategy players would prefer to deviate and propose
two pairs. Hence SECS′(v, ρ) = {{ij, kl}} = Cα(v).

In general we have the following result:

Lemma 3. For any modified sequential coalition formation game Γ′(v, ρ) we have
SECS′(v, ρ) ⊆ Cα(v).

Proof. In case SECS′(v, ρ) = ∅ the result is trivial.
Otherwise consider π ∈ SECS′(v, ρ). We show, by contradiction, that π ∈ Cα(v).

1The proposal is really a coalition and one of its partitions, however from the latter the coalition
can be derived and using only one of them simplifies our notation.
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Assume that π /∈ Cα(v). Then there exists a coalition S such that for some
partition πS ∈ Π(S) we have

(3.2) vi(πS ∪ πN\S) > vi(π) for all i ∈ S and all partitions πN\S ∈ Π(N \ S).

Now consider the corresponding deviation for the stationary perfect strategy profile
σ∗ for which we have π = π(σ∗). Consider a deviation by the member i of S who
has the first chance to speak: if the set of players who have already left the game
is K, then K ∩ S = ∅. Suppose that this player rejects any ongoing proposal
and suggests πS to form. As before, π(πS) denotes the coalition structure formed
in case the proposal πS is accepted. We write π(πS) = πS ∪ π∗N\S , where π∗N\S
denotes the partition that remaining players form following σ∗ together with the
partition πK that has already formed. Then the payoff of player i ∈ S would be
vi(πS ∪ π∗N\S) > vi(π) by Equation 3.2. Therefore the deviation is accepted by
other players in S and hence π /∈ SECS′(v, ρ). Contradiction.

Hence π ∈ Cα(v). ¤

It is easy to verify that the definition of core stability introduced by Shenoy
(1979) is equivalent to the following: The coalition structure π is not core stable if
there exists a coalition S and partitions πS ∈ Π(S) and πN\S ∈ Π(N \S) such that

(3.3) vi(πS ∪ πN\S) > vi(π) for all i ∈ S.

Therefore allowing players to propose partitions of coalitions does not alter core
stability and CC(v) = CC ′(v).

Proposition 4. Let v be a valuation such that CC(v) 6= ∅ and for all restrictions
v′ of v we also have CC(v′) 6= ∅. Then for any rule of order ρ we have CC(v) ⊆
SECS′(v, ρ).

The proof of this proposition is analogous to the proof of Bloch (1996, Cor. 3.5).
The following corollary gives a similar sufficiency condition to the one expressed by
Bloch (1996, Lemma 3.4) on the nonemptiness of the set of stationary equilibrium
coalition structures.

Corollary 5. Stationary equilibrium coalition structures exist if CC(v) 6= ∅ and
for all restrictions v′ of v we also have CC(v′) 6= ∅.
Corollary 6. Let v be a valuation such that CC(v) 6= ∅ and for all restrictions v′

of v we also have CC(v′) 6= ∅. Then for any rule of order ρ we have

CC(v) ⊆ SECS′(v, ρ) ⊆ Cα(v).

4. Recursive core

Kóczy (2005) defines a pair of concepts that generalises the core to partition
function games under the assumption that players are pessimistic/optimistic. Here
we only use the pessimistic version (and hence drop the adjective in the sequel) and
adapt it to the discrete partition function case.

First we introduce the notion of residual game:

Definition 4 (Residual Game). Let (N, v) be a game. Let S be a coalition and
R be its complement in N . Let πS be a multi-coalition deviation, a partition of S.
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Given the deviation πS the residual game (R, vπS ) is the discrete partition function
form game over the player set R and with the discrete partition function

vπS
: Π(R) −→ RR

πR 7−→ vπS
(πR) = v(πR ∪ πS)

The residual game is a discrete partition function form game on its own and it can
be solved independently of this deviation, or the initial game: The residual game
is solved with the deviation taken as fixed, in fact independently of this deviation,
or the initial game. We use this property to define the core:

Definition 5 (Recursive core). The definition consists of four steps.
(1) Trivial game. Let (N, v) be a game. The core of a game with N = {1}

consists of the trivial partition: C({1} , v) = {{1}} .
(2) Inductive assumption. Given the definition of the core C(R, v) for every

game with at most k − 1 players we can define dominance for a game of
k players. Let A(R, v) denote the assumption about the game (R, v). If
C(R, v) 6= ∅ then A(R, v) = C(R, v), otherwise A(R, v) = Π(R), the set of
partitions.

(3) Dominance. The partition π is dominated via the coalition S forming parti-
tion πS if for all assumptions πR ∈ A(N\S, vπs) we have v(πS∪πR) >S v(π).
The partition π is dominated if it is dominated via a coalition.

(4) Core. The core of a game of k players is the set of undominated partitions
and we denote it by C(N, v).

For a discussion about the various properties see Kóczy (2005).

5. Sequential Coalition Formation and the Recursive Core

The core is a static concept: once a core partition is attained, it is never aban-
doned. It does not, however, offer a recipe, or even a proof of the possibility to
attain such a partition. In this section we establish the relationship between the core
and the modified version of Bloch’s noncooperative game of coalition formation.

5.1. Stationary equilibrium coalition structures. First we relax the suffi-
ciency condition for the nonemptiness of the SECS’.

Proposition 7. Let (N, v) be a discrete partition function form game such that
C(N \S, vπS ) 6= ∅ for all residual games (N \S, vπS ). Then C(N, v) ⊆ SECS′(v, ρ)
for all ρ.

Proof. The proof is inspired by that of Bloch (1996, Proposition 3.2) in part, and
is by construction. We show that for a given π̃ ∈ C(N, v) there exists a stationary
strategy profile σ̃ such that π(σ̃) = π̃.

The strategy σ̃ is a function of the set K of players who, at a certain point, have
already left the game, their partition πK and the current proposal τ for a (sub)-
partition. Let also π(τ) denote the partition that the acceptance of a proposal τ
ultimately produces. In the discrete partition function form game πK , as a deviation
defines a residual game (N \K, vπK ). The “harsh response” to πK is an element
π̃N\K of the (by assumption non-empty) residual core C(N \K, vπK ) ensuring that
the deviation πK is not profitable. That is, π̃N\K satisfies

∃i ∈ S : vi(πK , π̃N\K) < vi(π̃), or(5.1)
∀i ∈ S : vi(πK , π̃N\K) = vi(π̃).(5.2)
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As π̃ ∈ C(N, v) such a π̃N\K exists for all deviations πK .
The stationary strategy σ̃i for player i is the constructed as follows:

If πK = ∅, σ̃i(K,πK ,∅) = π̃(5.3)
σ̃i(K,πK , π̃) = Yes

σ̃i(K, πK , τ) =

{
Yes if vi(π(τ)) ≥ vi(π̃)
No otherwise.

If πK 6= ∅, σ̃i(K,πK ,∅) = π̃N\K(5.4)
σ̃i(K, πK , π̃N\K) = Yes

σ̃i(K, πK , τ) =

{
Yes if vi(π(τ)) ≥ vi(πK , π̃N\K)
No otherwise.

In equilibrium π(σ̃) = π̃ and the strategy is stationary by construction so we
only need to verify that it is subgame perfect.

We show this by induction. As subgame-perfectness holds for a trivial game we
may assume that it holds for all games of size less than |N |.

Now consider game (N, v) and observe the following. If a set of players K have
left the game to form πK the subgame is simply a coalition formation game with
less players. Moreover, the proposed strategy exhibits the same similarity property:
in equilibrium the core partition is proposed and accepted, while off-equilibrium
residual cores are formed. The minimality condition then ensures that the off-
equilibrium path is subgame perfect so we can focus on Equation 5.3. We only
need to check whether a deviation τ is ever accepted. This deviation corresponds
to a deviation in the discrete partition function game. Since π̃ ∈ C(N, v) and by
the construction of π̃N\K we know that there exists a player i in S for whom the
deviation τ is not profitable. Finally note that our strategy does not use a particular
rule of order ρ. ¤

This result, in combination with Lemma 3, enables us to provide both an upper
and lower bound (in terms of set inclusion) on the modified stationary equilibrium
coalition structures.

Corollary 8. Let (N, v) be a discrete partition function form game such that C(N \
S, vπS ) 6= ∅ for all residual games (N \ S, vπS ). Then

(5.5) C(N, v) ⊆ SECS′(v, ρ) ⊆ Cα(v) for all ρ.

This result has the following consequence:

Corollary 9. Let (N, v) be a discrete partition function form game such that
C(N, v) 6= ∅ and C(N \ S, vπS ) 6= ∅ for all residual games (N \ S, vπS ). Then
for any rule of order ρ, SECS′(v, ρ) 6= ∅.

As C+(N, v) ⊆ C(N, v) this corollary weakens the condition in Corollary 5.

5.2. Order-independent equilibria. Following Moldovanu and Winter (1995,
p.27) we define order-independent equilibria (OIE) and show that the order in-
dependent equilibria coincide with the recursive core.

Definition 6. A strategy profile σ is an order-independent equilibrium for the
sequential coalition formation game (v, ρ) if it satisfies for any rule of order ρ that
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(1) σ is a stationary, subgame perfect equilibrium in (v, ρ)
(2) If σ is played in (v, ρ), the payoff vector v(π(σ)) is independent of ρ.

We denote the set of order-independent equilibria by OIE(N, v) and coalition
structures (or partitions) resulting from playing such equilibrium strategies by
OIP (N, v).

Theorem 10. Let (N, v) be a discrete partition function form game such that
C(N \S, vπS

) 6= ∅ for all residual games (N \S, vπS
). Then C(N, v) = OIP (N, v).

Before proving this theorem we prove two auxiliary results.

Lemma 11. If Theorem 10 holds for all games with up to k−1 players, OIP (N, v) ⊆
C(N, v) for all k-player games with nonempty residual cores.

Proof. The proof is based on the proof of Proposition A by Moldovanu and Winter
(1995) and is by contradiction.

Assume that π = π(σ) ∈ OIP (N, v), but π /∈ C(N, v). Then there exists a
coalition S such that a deviation πS ∈ Π(S) is profitable in the cooperative game
for all assumptions about the residual game (N \S, vπS

). In this game of nonempty
residual cores this implies v(πS ∪ πN\S) >S v(π) for all πN\S ∈ C(N \ S, vπS

).
In particular let i ∈ S be such that vi(πS ∪ πN\S) > vi(π). As |N \ S| < k, by
Theorem 10, C(N \ S, vπS

) = OIP (N \ S, vπS
). The restriction of an OIE to a

subgame is also an OIE, which, by our assumption belongs to the recursive core
of the corresponding cooperative game. Therefore if deviation πS forms in the
noncooperative game, the resulting coalition structure is π(πS) = πS ∪πN\S , where
πN\S belongs to C(N \ S, vπS ) = OIP (N \ S, vπS ). By our arguments for the
cooperative game

(5.6) v(π(πS)) >S v(π).

Without loss of generality let ρ be such that ρ(N) = i. Consider strategy σ′i for
i: “when no players have left the game, and it is i’s turn to propose a partition,
propose πS otherwise play σi.” We show that this deviation from σi is profitable
for i and hence π(σ) /∈ OIP (N, v), which is a contradiction.

To show this, consider another j ∈ S and assume that after j’s approval of πS

the partition forms and S leaves the game (either j is the last player to accept or
the rest is known to approve). We show that it is optimal for j to approve. A
rejection by j makes her a proposer and the strategy profile (σ′i, σ−i) is played.

If, from here, no coalition ever forms, but the game goes on forever, the payoff
for j is 0, which is clearly inferior as 0 < vj(π(πS)). Then assume that coalition
T leaves the game first, forming partition πT . Consider the part of the game from
j’s proposal until T ’s departure. If i becomes the proposer once, as j rejects his
proposal he will be the proposer again and again: the game goes on forever without
a coalition forming, contradicting our assumption that πT forms. Therefore i is
never a proposer. But then i’s deviation is never played and playing (σ′i, σ−i) in
(v, ρ) is identical to playing (σ) in (v, ρ′) with ρ′(N) = j. By the assumption that
σ is an OIE playing it in (v, ρ) or (v, ρ′) results in the same payoffs, which, by
Inequality 5.6 are inferior to accepting proposal πS .

Finally note that i′s deviation is limited to the game while all players participate.
The game after the departure of a coalition is unaffected; in particular if j /∈ T , j’s
payoff is unaffected by i’s deviation giving the same conclusion.
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We have discussed all cases and found that j’s refusal is never optimal. By
backward induction the proposal is accepted by all players in S and then, by In-
equality 5.6 i benefits from the deviation. ¤

Lemma 12. If Theorem 10 holds for all games with up to k−1 players, OIP (N, v) ⊇
C(N, v) for all k-player games with nonempty residual cores.

Proof. The stationary-perfect equilibrium constructed in the proof of Proposition 7
is unconditional on any rule of order ρ. On the other hand, it produces the same
coalition structure, π̃ for each rule of order ρ. It is therefore also an OIE. Such an
OIE is constructed for each π̃ and therefore the result follows. ¤

Proof of Theorem 10. The proof is by induction.
The result holds for trivial, single-player games.
Assuming that the result holds for all k− 1 player games, the result for k-player

games is a corollary of Lemmata 11 & 12. ¤

6. Conclusion

Theorem 10 states that the core coincides with the order-independent equilib-
ria of the sequential coalition formation game. This result is not so surprising
considering that a similar relation has already been established for characteristic
function form games without transferable utility (Moldovanu and Winter, 1995,
Corollary 2.). Finally Huang and Sjöström (2006) show a similar result for their
very similar r-core concept (Huang and Sjöström, 2003) with a modification of the
continuous-time coalition formation process of Perry and Reny (1994). While order-
independence is part of the process by definition, establishing stationary subgame-
perfect equilibrium coalition structures is no easy task.

While these results bridge the gap between the cooperative and noncooperative
approaches, one question remains, which is the relation of equilibrium strategies
and equilibrium coalition structures. Here we have shown that coalition structures
produced by order-independent equilibria coincide with the recursive core. Whether
the same would hold for partitions that can be produced by equilibria for any rule
of order, remains an open question we leave for future research.
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