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also show that an alternative game form where capacities and prices are chosen simultaneously always
fails to have a pure strategy equilibrium. These results suggest that the timing of capacity and price
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1 Introduction

This paper studies oligopoly competition in the presence of capacity investments. Our motivation

comes from large-scale communication networks, particularly the Internet, which has undergone

major decentralization since the mid 1990s. These changes have spurred interest in new decentral-

ized network protocols and architectures that take into account the noncooperative interactions

between users and service providers. A key question in the analysis of these new network structures

is the extent of efficiency losses in the decentralized equilibrium relative to the efficient allocation

of resources. Most of the work in this literature investigates the efficiency losses resulting from

the allocation of users and information flows across different paths or administrative domains in

an already established network (see, for example, [13], [2], [3], [1], [7]). Arguably, the more im-

portant economic decisions in large-scale communication networks concern the investments in the

structure of the network and in bandwidth capacity. In fact, the last 20 years have witnessed sig-

nificant investments in broadband, high-speed and optical networks. Our objective in this paper

is to model price and capacity competition between service providers and investigate the efficiency

properties of the resulting equilibria. Following previous research in this area, we provide explicit

bounds on the efficiency losses by providing various worst-case performance results for equilibria.

Our model consists of N firms (service providers) and a mass of consumers wishing to send a

fixed amount of flow from a fixed source origin to a given destination using subnetworks operated

by these firms. Each user has an inelastic demand with a reservation utility R. Firms face

a linear and potentially different cost of investing to expand the capacity of their subnetwork.

For simplicity, we assume that once capacity is installed, there is no additional cost of allowing

consumers to use the subnetwork. In our baseline model, firms play a two-stage game. They first

choose the level of capacity in their subnetwork, and then set prices for consumers to use their

subnetwork. This game has an obvious similarity to Kreps and Scheinkman’s well-known model

of quantity precommitment and price competition for two firms, [9], but it is simpler because

demand is inelastic.

For expositional purposes, we start with the special case with two firms. For this case, we fully

characterize the set of pure strategy subgame perfect equilibria and prove that a pure strategy

equilibrium always exists. As in [9], subgame perfect equilibria in which firms use pure strategies

along the equilibrium path are nonetheless supported by mixed strategies off the equilibrium path.

As part of our equilibrium analysis, we also provide a complete characterization of the set of mixed

strategy equilibria following any choices of capacities by firms.

We then investigate the efficiency properties of equilibria in the worst-case scenarios. We
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quantify efficiency as the ratio of social surplus in equilibrium relative to the maximum value of

social surplus (in the hypothetical first best). Since the game typically has multiple pure strategy

equilibria, there are two possible approaches to quantifying worst-case scenarios. The first, referred

to as “the Price of Anarchy” in the computer science and previous network economics literature,

looks at the worst-case scenario in terms of the possible values of the parameters and selects

the worst equilibrium if there are multiple equilibria. The second, referred to as “the Price of

Stability,” selects the best equilibrium for any given set of parameters and then looks for the

worst-case values of the parameters (see [8], [2]).

Our first result is that even in the simplest structure with linear costs, the Price of Anarchy is

equal to zero, meaning that the equilibrium can be arbitrarily inefficient. Our second major result

is that once we focus on the Price of Stability there is a tight bound of 2
√

2− 2 ' 5/6, meaning

that if the (socially) best equilibrium is selected, the maximum inefficiency that may result from

capacity competition is no more than approximately 1/6 of the maximal social surplus. These

results suggest that even in the simplest capacity games if the “incorrect” equilibria arise, there

could be very large inefficiencies, but if the “appropriate” equilibrium is selected, capacity and

price competition between two firms is sufficient to ensure a high degree of efficiency.

We also suggest a simple way of implementing the best equilibrium, by considering a game

form in which firms make their capacity choices sequentially, in reverse order according to their

costs of investing in capacity. In the special case with two firms, this corresponds to a situation

in which the firm with the lower cost of capacity investment acts as the Stackelberg leader. This

“Stackelberg” game may be implemented by some type of regulation, for example by giving a

first-mover advantage to lower-cost firms, or it may arise as the focal point in the game. We

show that this Stackelberg game has a unique (pure strategy) equilibrium and inefficiency in this

equilibrium is bounded by 2
√

2− 2 ' 5/6.

We also show that our main results generalize to the game with N firms. For this case, we

characterize the pure strategy equilibria using a slightly different argument, and then show that

the Price of Anarchy (the combination of worst-case parameters and worst equilibrium) is again

equal to zero. Moreover, there is again a bound on the Price of Stability (the combination of

worst-case parameters with the selection of best equilibrium), equal to 2(
√

N − 1)/(N − 1), and

we show that this bound is also tight.

The differences in the structure of equilibria and the extent of inefficiency between our baseline

game and the Stackelberg game suggest that the timing of moves is an important determinant of

the extent of inefficiency in this class of games. This raises the natural question of how the set of
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equilibria will be affected when pricing and capacity decisions are made simultaneously. We show

that in this case there never exists a pure strategy equilibrium, which starkly contrasts with the

result that a pure strategy equilibrium always exists in the sequential game. This nonexistence of

equilibrium results from the ability of the firms to deviate simultaneously on their capacities and

prices. In contrast, in the sequential game, a firm could only deviate by changing its capacity first,

and then its rivals could also respond by adjusting their prices to this deviation. Since the sequence

of events in which capacities are chosen first and then prices are set later is more reasonable (in

the sense that it constitutes a better approximation to a situation in which prices can change at

much higher frequencies than capacities), we do not view this result as negative. Nonetheless, it

suggests that it is important for industries with major capacity investments to choose structures

of regulation that do not allow simultaneous deviations on capacities and prices.

In addition to the newly-burgeoning literature on competition and cooperation between users

and firms in communication networks, this paper is closely related to the industrial organization

literature on capacity competition. Classic contributions here include Levitan and Shubik, [11],

Kreps and Scheinkman, [9], and Davidson and Deneckere [5]. A key issue in these papers is the

rationing rule when total demand exceeds capacity. Our simpler framework with inelastic demand

avoids this issue and enables us to provide a complete characterization of the full set of subgame

perfect Nash equilibria.

Most closely related to our paper is the recent work by Weintraub, Johari, and Van Roy, [15],

who add investment decisions to the model of price competition with congestion externalities in

[1] and study the efficiency properties of oligopoly equilibria. Weintraub, Johari, and Van Roy put

very little restriction on how investments may affect congestion costs, but only focus on the case in

which all firms are symmetric and there are no capacity constraints. In this case, an equilibrium,

when it exists, is always efficient. The distinguishing feature of our work is to consider and

fully characterize the equilibria in the general non-symmetric case (where inefficiencies are indeed

important as shown by our unbounded Price of Anarchy result) and also to introduce capacity

constraints, which are a realistic feature of most communication networks.

The rest of the paper is organized as follows. Section 2 describes the model. Section 3

defines the price-capacity competition game and the oligopoly equilibria in this game. Section 4

characterizes the continuation price equilibria and the profits in the capacity subgames. Section

5 focuses on the special case with two firms and characterizes pure strategy oligopoly equilibria

of the game (as well as the mixed strategy off-the-equilibrium play). Section 6 contains our main

results and provides various efficiency bounds for the set of pure strategy oligopoly equilibria for
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the case of two firms. Section 7 generalizes the existence and efficiency results to an arbitrary

number of firms. Section 8 shows how the best oligopoly equilibria can be implemented by a

multi-stage game, where the low-cost firm acts as the Stackelberg leader. Section 9 analyzes a

related game with simultaneous capacity-price decisions and shows that this game never has a

pure strategy equilibrium. Section 10 concludes.

2 Model

We start with the general model with N firms. Each firm can be thought of as a service provider

operating its own communication subnetwork. For this reason, we refer to the demands for the

firms’ services as “flows”. We denote total flow for firm i ∈ {1, ..., N} by xi ≥ 0, and use

x = (x1, ..., xN ) to denote the vector of flows. We assume that firm i has a capacity ci ≥ 0, and

flow allocated to firm i cannot exceed its capacity, i.e., xi ≤ ci. We denote the vector of capacities

by c = (c1, ..., cN ). Investing in capacity is costly. In particular, the cost of capacity ci for firm i

is γici, where γi > 0 for i ∈ {1, ..., N}.1 For simplicity (and without loss of generality), we ignore

additional costs of servicing flows. We denote the price charged by firm i (per unit flow) by pi

and denote the vector of prices by p = (p1, ..., pN ).

We are interested in the problem of allocating d units of aggregate flow between these N

firms and without loss of generality, we set d = 1. We assume that this is the aggregate flow of

many “small” users.2 We also assume that the users have a reservation utility R; they choose

the lowest cost firm whenever there is unused capacity with this firm and do not participate if

the lowest available cost exceeds the reservation utility. Further, we assume throughout the paper

that γi ≤ R for all i ∈ {1, ..., N}. This is without loss of generality, since any firm with γi > R

will have no incentive to be active and can be excluded from the set i ∈ {1, ..., N}.
We start with a definition of flow equilibrium given a vector of capacities c and a vector of

prices p.

Definition 1 [Flow Equilibrium] For a given capacity vector c ≥ 0 and price vector p ≥ 0, a

vector x∗ is a flow equilibrium if

x∗ ∈ arg max
0≤xi≤ciPN
i=1

xi≤1

{
N∑

i=1

(R− pi) xi

}
. (1)

1Alternatively, we could assume γi ≥ 0, with essentially the same results, but in this case Propositions 7 and 13
below need to be modified slightly, since there could be excess capacity in some equilibria.

2In the presence of additional congestion costs, this small users assumption would lead to the Wardrop principle,
commonly used in communication and transport networks (see [14]), where flows are routed along paths with
minimum effective cost (see, for example, [10], [1]). In our context, there is no need to introduce this concept and
it suffices to observe that users will choose a lower cost provider whenever this is possible.
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We denote the set of flow equilibria at a given p and c by W [p, c].

This definition captures the simple notion that users will allocate their demand to the lowest

price firm up to the point where the capacity constraint of this firm is reached. After this, if there

are any more users, they will allocate their capacity to the second lowest price firm (as long as its

price does not exceed their reservation utility, R), and so on.

Using the optimality conditions for problem (1), it follows that a vector x∗ ≥ 0 is a flow

equilibrium if and only if
∑N

i=1 x∗i ≤ 1 and there exists λ ≥ 0 such that λ
(∑N

i=1 x∗i − 1
)

= 0 and

for i ∈ {1, ..., N},

R− pi ≤ λ if x∗i = 0, (2)

= λ if 0 < x∗i < ci,

≥ λ if x∗i = ci.

This is a convenient representation of the flow equilibrium, which will be used in the analysis

below. The following result on the structure of flow equilibria is an immediate consequence of this

characterization (proof omitted):

Proposition 1 Let c = (c1, ..., cN ) be a capacity vector and p = (p1, ..., pN ) be a price vector.

Suppose that for some M ≤ N , we have p1 < p2 < ... < pM ≤ R < pM+1 (with the convention

that pM+1 = +∞ if M = N). Then, there exists a unique flow equilibrium x ∈ W [p, c] given by

x1 = min{c1, 1},

and

xm = min

{
cm,max

{
0, 1−

m−1∑

i=1

xi

}}

for all 2 ≤ m ≤ M .

Remark 1 If instead of p1 < p2 < ... < pM ≤ R, we have pi = pj for some i 6= j, the flow

equilibrium is not necessarily unique, since users would be indifferent between allocating their

flow across these two firms. Note also that in the special case with N = 2, this proposition simply

states that when p1 < p2 ≤ R, the unique flow equilibrium will involve x1 = min{c1, 1} and

x2 = min{c2, 1− x1}.

We next define the social optimum, which is the capacity and flow allocation that would be

chosen by a planner that has full information and full control over the allocation of resources.
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Since there is no cost of servicing flows beyond the capacity costs, the following definition for a

social optimum follows immediately.

Definition 2 A capacity-flow vector (cS , xS) is a social optimum if it is an optimal solution of

the social problem

maximizex≥0, c≥0 R
N∑

i=1

xi −
N∑

i=1

γici (3)

subject to
N∑

i=1

xi ≤ 1,

xi ≤ ci, i ∈ {1, ..., N}.

The social problem has a continuous objective function and a compact constraint set, guar-

anteeing the existence of a social optimum (cS , xS). It is also clear from the preceding that we

have cS
i = xS

i , for i ∈ {1, ..., N}. We refer to cS as the social capacity. In view of the fact that

cS
i = xS

i , for i ∈ {1, ..., N}, the social capacity is given as the solution to the following maximization

problem:

cS ∈ arg max
c≥0,

P
i=1N ci≤1

{
N∑

i=1

(R− γi)ci

}
. (4)

For future reference, for a given capacity vector c ≥ 0, we define the social surplus as

S(c) =
N∑

i=1

(R− γi)ci, (5)

i.e., the difference between the users’ utility and the total capacity cost.

3 Price and Capacity Competition Game

We next consider the two-stage competition game in which capacities are chosen first and then

firms compete in prices as outlined in the previous section.

The price-capacity competition game is as follows. First, the N firms simultaneously choose

their capacities, i.e., firm i chooses ci at cost γici. At the second stage, firms, having observed the

capacities set at the first stage, simultaneously choose prices, i.e., firm i charges a price pi. Given

the price vector of other firms, denoted by p−i, the profit of firm i is

Πi[pi, p−i, x, ci, c−i] = pixi − γici,

where x ∈ W [p, c] is a flow equilibrium given the price vector p and the capacity vector c. The

objective of each firm is to maximize profits. We refer to the dynamic game between the two
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firms as the price-capacity competition game, and look for the subgame perfect equilibria (SPE)

of this game. Since the capacities set in the first stage are observed by all firms, every capacity

vector c = (c1, ..., cN ) defines a proper subgame, and subgame perfection requires that in each

subgame, the continuation equilibrium strategies constitute a Nash equilibrium.3 For each capacity

subgame, we first define the price equilibrium between the firms, which we will also refer to as

the (continuation) Price Equilibrium. As we will see below, pure strategy equilibria will fail to

exist in some capacity subgames. For this reason, we define both pure and mixed strategy price

equilibria. Let B denote the space of all (Borel) probability measures on the interval [0, R]. Let

µi ∈ B be a probability measure, and denote by µ ∈ BN the product measure µ1 × ... × µN , and

by µ−i the product measure µ excluding µi (i.e., µ−i = µ1 × ...× µi−1 × µi+1 × ...× µN ).

Definition 3 [Price Equilibrium] Let c ≥ 0 be a capacity vector. A vector [p(c), x(c)] is a pure

strategy Price Equilibrium in the capacity subgame if x(c) ∈ W [p(c), c] and for all i ∈ {1, ..., N},

Πi[pi(c), p−i(c), x(c), c] ≥ Πi[pi, p−i(c), x, c], ∀ pi ≥ 0, ∀ x ∈ W [pi, p−i(c), c]. (6)

We denote the set of pure strategy price equilibria at a given c by PE(c).

A vector [µc, xc(p)] is a mixed strategy Price Equilibrium in the capacity subgame if µc ∈ BN

and the function xc(p) ∈ W [p, c] for every p, and
∫

[0,R]N
Πi[pi, p−i, x

c(pi, p−i), c] d
(
µc

i (pi)× µc
−i(p−i)

)

≥
∫

[0,R]N
Πi[pi, p−i, x

c(pi, p−i), c]d
(
µi(pi)× µc

−i(p−i)
)
,

for all i ∈ {1, ..., N} and µi ∈ B. We denote the set of mixed strategy price equilibria at a given c

by MPE(c).

In the following, with a slight abuse of notation, we will write [µ, x(·)] ∈ MPE(c) for mixed

strategy equilibria.4 Note that here x (·) is not a vector, but a function of p, i.e., x(p) is a selection

from the correspondence W (p, c). We denote the profits for firm i in the mixed strategy price
3A subgame is identified with the public history (of previous moves). Hence, the SPE notion requires that the

action prescribed by each player’s strategy is optimal given the other player’s strategies, after every history; see, for
example, [6], [12].

4Note also that the pure strategy Price Equilibrium notion here may appear slightly stronger than the stan-
dard subgame perfection, since it requires that a strategy profile yields higher profits for each player for all
x ∈ W [pi, p−i (c) , c], rather than for some such x. Nevertheless, [1] shows, for a more general game, that this
definition of equilibrium coincides with the standard pure strategy subgame perfect equilibrium (but is slightly more
convenient to work with). Given this relation, we have PE(c) ⊂ MPE(c), in the sense that for every [p, x] ∈ PE(c),
there exists [µ, x(·)] ∈ MPE(c) such that µ is the degenerate measure with µ({p}) = 1, and x(·) is an arbitrary
selection from W [p, c] with x(p) = x.
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equilibria in the capacity subgame by Πi[µ, x(·), c], i.e.,

Πi[µ, x(·), c] =
∫

[0,R]N
Πi[p, x(p), c]dµ(p). (7)

We will also use the notation Πi[pi, µ−i, x(·), c] for some pi ∈ [0, R] to denote the expected profits

when firm i uses the degenerate mixed strategy µi with µi(pi) = 1, while the remaining firms use

the mixed strategy µ−i.

Note that since the profit functions are discontinuous in prices, it is not obvious that each

capacity subgame has a mixed strategy price equilibrium. In the next section, we will show that

in each capacity subgame c, a pure or mixed strategy price equilibrium always exists.

We next define the subgame perfect equilibrium of the entire game. For notational convenience,

we focus on the actions along the equilibrium path to represent the subgame perfect equilibrium.

Definition 4 [Oligopoly Equilibrium] A vector [cOE , p(cOE), x(cOE)] is a (pure strategy)

Oligopoly Equilibrium (OE) if [p(cOE), x(cOE)] ∈ PE(cOE) and for all i ∈ {1, ..., N},

Πi[p(cOE), x(cOE), (cOE
i , cOE

−i )] ≥ Πi[µ, x(·), (ci, c
OE
−i )], (8)

for all ci ≥ 0, and for all [µ, x(·)] ∈ MPE(ci, c
OE
−i ). We refer to cOE as the OE capacity.

Note that pure strategy OE may involve pure strategies along the equilibrium path, but mixed

strategy continuation price equilibria in some off-the-equilibrium subgames. Throughout the pa-

per, pure strategy OE refers to equilibria where pure strategies are used along the equilibrium

path.

4 Price Equilibria in the Capacity Subgame With Two Firms

Our first task is to characterize the entire set of subgame perfect equilibria in this game. For

expositional purposes, we start with the case where N = 2, which enables us to provide an explicit

characterization of the equilibria and the extent of the efficiency losses. We generalize our main

results to an arbitrary number of firms in Section 7 below.

We consider an arbitrary capacity subgame, and then prove the existence of pure or mixed

strategy price equilibria and provide a characterization of these equilibria. We will then use

this characterization to determine the form of oligopoly equilibria and analyze their efficiency

properties. Since in this and in the next section we consider only two firms, we sometimes refer

to these two firms using the indices i and −i.
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4.1 Existence of Pure and Mixed Strategy Price Equilibria With Two Firms

Proposition 2 Let c be a capacity vector such that c1 + c2 ≤ 1 and ci > 0 for i = 1, 2. Then

there exists a unique Price Equilibrium in the capacity subgame [p, x] such that pi = R and xi = ci

for i = 1, 2.

Proof. Since c1 + c2 ≤ 1, it follows by the equivalent characterization of a flow equilibrium [cf.

equation (2)] that for all p ∈ [0, R]2, the flow allocation (c1, c2) ∈ W (p, c). Therefore, by charging

a price pi, firm i can make a profit of

Πi[pi, p−i, x, c] = pici,

for all p−i ∈ [0, R]. This shows that pi = R strictly dominates all other price strategies of firm i,

so that pi = R and xi = ci, i = 1, 2, is the unique Price Equilibrium. Q.E.D.

Proposition 3 Let c be a capacity vector such that c1 + c2 > 1, ci > 0 for i = 1, 2 and ci < 1

for some i. Then there exists no pure strategy Price Equilibrium in the capacity subgame.

Proof. Suppose there exists a pure strategy Price Equilibrium (p, x). The following list con-

siders all candidates for a Price Equilibrium and profitable unilateral deviations from each, thus

establishing the nonexistence of a pure strategy Price Equilibrium:

• Suppose p1 < p2. Then the profit of firm 1 is Π1[p, x, c] = p1 min{c1, 1}. A small increase in

p1 will increase firm 1’s profits, thus firm 1 has an incentive to deviate.

• Suppose p1 = p2 > 0. If x1 < min{c1, 1}, then firm 1 has an incentive to decrease its price.

If x1 = min{c1, 1}, then, since c1 + c2 > 1, firm 2 has an incentive to decrease its price.

• Suppose p1 = p2 = 0. Since by assumption ci < 1 for some i, firm −i has an incentive to

increase its price and make positive profits.

Q.E.D.

Proposition 4 Let c be a capacity vector such that c1 + c2 > 1, ci > 0 for i = 1, 2 and ci < 1

for some i. Then there exists a mixed strategy Price Equilibrium in the capacity subgame.

Proof. The subgame following any capacity choice c is a special case of the model in [1]. Building

on [4], Proposition 4.3 in [1] establishes that there always exists a mixed strategy equilibrium in

any such subgame. We do not repeat this proof here to avoid repetition. Q.E.D.

When c1, c2 ≥ 1, the capacity subgame is an uncapacitated Bertrand price competition between

two firms. Thus, we immediately have the following result (proof omitted).
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Proposition 5 Let c be a capacity vector such that c1, c2 ≥ 1. Then, for all Price Equilibria

[p, x], we have pi = 0 for i = 1, 2, i.e., both firms make zero profits.

4.2 Characterization of Mixed Strategy Price Equilibria

We next provide an explicit characterization of the mixed strategy price equilibria and the profits

in each capacity subgame.

Let c = (c1, c2) be a capacity vector. Throughout this section, we focus on the case where

c1 + c2 > 1, ci > 0 for i = 1, 2 and ci < 1 for some i. By Proposition 4, there exists a mixed

strategy Price Equilibrium [µ, x(·)] in the capacity subgame. Let ui denote the upper support of

µi, and li denote the lower support of µi, i.e.,

ui = inf
{

p̄ : µi({p ≤ p̄}) = 1
}

,

li = sup
{

p : µi({p ≥ p}) = 1
}

.

Let (F1, F2) denote the corresponding cumulative distribution functions for the measure (µ1, µ2),

i.e., Fi(p̄) = µi({p ≤ p̄}), for i = 1, 2.

Recall that [µ, x(·)] is a mixed strategy Price Equilibrium if and only if

Πi[p, µ−i, x(·), c] ≤ ΠE
i , (9)

for all p ∈ [0, R], and there exists a set P̄i ⊂ [li, ui] such that µi(P̄i) = 1 and

Πi [p, µ−i, x (·) , c] = ΠE
i for all p ∈ P̄i. (10)

(see, e.g., [12]). We will now use this property of mixed strategy equilibria to derive three lemmas

that will allow us to explicitly characterize the unique mixed strategy Price Equilibrium in the

capacity subgame.

Lemma 1 Assume that c1 + c2 > 1, ci > 0 for i = 1, 2 and ci < 1 for some i. Then, for any

i = 1, 2, the mixed strategy µi cannot have all its mass concentrated at a single point, i.e., µi

cannot be degenerate.

Proof. By Proposition 3, both µi’s cannot be degenerate. To obtain a contradiction, assume that

µ1 is degenerate at some p1 ∈ [0, R] (i.e., µ1({p = p1}) = 1). We first show that µ2({p < p1}) = 0.

Consider p1 > 0. Charging the price p2 = p1−ε for some ε > 0 yields a profit of (p1 − ε)min{c2, 1}
for firm 2, which is strictly decreasing in ε, showing that µ2({p < p1}) = 0. We next show that µ2

cannot have an atom at p = p1. Suppose it does; then there is a positive probability of both firms
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charging the price p1. If x2(p1, p1) < min{c2, 1}, then charging a price of p1 − δ for some small

δ > 0 generates higher profits for firm 2. If x2(p1, p1) = min{c2, 1}, then, since c1 + c2 > 1, the

same applies to player 1, showing that µ2 cannot have an atom at p2. Finally, if firm 2 charges

the price p2 = p1 + ε for 0 < ε ≤ R − p1, it yields a profit of (p1 + ε) (1−min{c1, 1}), which is

strictly increasing in ε, thus µ2 should have all its mass concentrated at p2 = R. However both

µi’s cannot be degenerate, thus we arrive at a contradiction. Q.E.D.

Lemma 2 Assume that c1 + c2 > 1, ci > 0 for i = 1, 2 and ci < 1 for some i. Then:

(i) F1 and F2 have the same lower support, i.e., l1 = l2 = l.

(ii) F1 and F2 have the same upper support, i.e., u1 = u2 = u.

(iii) F1 and F2 are strictly increasing over [l, u].

Proof.

(i) Assume that l1 < l2. Let p1 ∈ P̄1, p′1 ∈ P̄1 be two prices such that p1 < p′1 < l2. Then,

by Proposition 1, it follows that for all p2 ∈ P̄2 and p = p1 or p = p′1, any flow equilibrium

x ∈ W [(p, p2), c] satisfies x1 = min{c1, 1}. Thus the profits of firm 1 at prices p1, p′1 are

given by

Π1[p1, µ2, x, c] = p1x1 < Π1[p′1, µ2, x, c] = p′1x1,

contradicting (10).

(ii) Assume that u1 > u2. Let p1 ∈ P̄1, p′1 ∈ P̄1 be two prices such that u2 < p1 < p′1. Then, by

Proposition 1 and the assumption c1 + c2 > 1, it follows that for all p2 ∈ P̄2 and p = p1 or

p = p′1, any flow equilibrium x ∈ W [(p, p2), c] satisfies x1 = 1−min{c2, 1}. Thus the profits

of firm 1 at prices p1, p′1 are given by

Π1[p1, µ2, x, c] = p1x1 < Π1[p′1, µ2, x, c] = p′1x1,

contradicting (10).

(iii) Assume to arrive at a contradiction that F1 is constant over the interval [p1, p
′
1] for some

p1, p
′
1 ∈ [l, u] with p1 < p′1. We will first show that this implies F2 is constant over the

same interval. Suppose F2 is not constant over this interval, which implies the existence of

p2, p′2 ∈ P̄2 such that p1 < p2 < p′2 < p′1. By Proposition 1 and the assumption c1 + c2 > 1,

for all flow equilibria x(p) ∈ W [p, c], we have

x2(p, p2) = x2(p, p′2) =
{

1−min{c1, 1} if p < p1,
min{c2, 1} if p > p′1.
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Since F1 is constant over [p1, p
′
1], this implies that the profits of firm 2 at p′2 are higher than

those at p2, which, since p2, p
′
2 ∈ P̄2, leads to a contradiction. Hence, the distributions F1 and

F2 are constant over [p1, p
′
1]. By a similar argument as above, it follows that p2 = p′1 yields

higher profits than p2 = p1 for firm 2, leading to another contradiction and establishing this

part of the lemma.

Q.E.D.

Lemma 3 Assume that c1 + c2 > 1, ci > 0 for i = 1, 2 and ci < 1 for some i. Then:

(i) The distribution Fi, i = 1, 2, does not have any atoms except possibly at the upper support

u.

(ii) Both distributions Fi cannot have an atom at the upper support u.

(iii) The upper support u is equal to R.

Proof.

(i) Without loss of generality, we consider F1. We first show that F1 cannot have an atom

at any p ∈ (l, u). Assume to arrive at a contradiction that there exists an atom at some

p ∈ (l, u), i.e., F1 (p+) > F1 (p−). By Lemma 2(iii), F2 is strictly increasing over the interval

[l, u] (which satisfies l < u in view of Lemma 1). Thus, there exists some ε > 0 sufficiently

small such that the prices p − ε and p + ε belong to P̄2, and p + ε < R. Using Proposition

1, the profits of firm 2 at these two prices can be written as

Π2[p− ε, µ1, x(·), c] = F1 (p− ε) (p− ε) (1−min{c1, 1}) + (1− F1 (p− ε)) (p− ε)min{c2, 1},

and

Π2[p + ε, µ1, x(·), c] = F1 (p + ε) (p + ε) (1−min{c1, 1}) + (1− F1 (p + ε)) (p + ε)min{c2, 1}.

Since F1 (p+) > F1 (p−) and min{c2, 1} > 1−min{c1, 1}, it follows that for small enough ε,

we have

Π2[p− ε, µ1, x(·), c] > Π2[p + ε, µ1, x(·), c],

yielding a contradiction.

We next show that F1 cannot have an atom at p = l. We first prove that the common lower

support must satisfy l > 0. If l = 0, since l ∈ P̄i for i = 1, 2 [cf. Lemma 2(iii)], this implies
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that the profits of either firm at any price vector are equal to 0. Since by assumption ci < 1

for some i, the profits of firm −i at p = u cannot be equal to 0 at any flow equilibrium.

Hence, it follows that l > 0. Consider the profits of firm 2 at price l− ε for some sufficiently

small ε,

Π2[l − ε, µ1, x(·), c] = (l − ε)min{c2, 1}.

Consider next the profits of firm 2 at the price l + ε, which belongs to P̄2:

Π2[l + ε, µ1, x(·), c] = (1− F1(l + ε))(l + ε)min{c2, 1}+ F1(l + ε)(l + ε)(1−min{c1, 1}).

If there is an atom at l, i.e., F1(l+) > 0, then since 1 −min{c1, 1} < min{c2, 1}, it follows

from the preceding two relations that for sufficiently small ε,

Π2[l − ε, µ1, x(·), c] > Π2[l + ε, µ1, x(·), c],

contradicting equation (9).

(ii) Assume that both distributions have an atom at p = u. Then, it follows that with probability

[F1 (u+)− F1 (u−)] · [F2 (u+)− F2 (u−)] > 0, both firms will be charging a price of p = u.

Suppose x1 (u, u) < min{c1, 1}. Then charging a price of p1 = u− ε generates higher profits

for firm 1 than charging a price of p1 = u. If x1 (u, u) = min{c1, 1}, then, since c1 + c2 > 1,

the same applies to player 2, establishing this part of the lemma.

(iii) Assume that u < R. By part (ii), it follows that there is no atom at u for one of the players,

say player 2. Then

Π1[u, µ2, x(·), c] = u (1−min{c2, 1}) < Π1[R,µ2, x(·), c] = R(1−min{c2, 1}),

showing that the upper support u cannot be strictly less than R.

Q.E.D.

The next proposition characterizes the expected profits of the two firms in capacity subgames

with continuation mixed strategy price equilibrium.

Proposition 6 Let c = (c1, c2) be a capacity vector with c1 + c2 > 1, ci > 0 for i = 1, 2 and

ci < 1 for some i. Let [µ, x(·)] be a mixed strategy Price Equilibrium in the capacity subgame c.

The expected profits Πi[µ, x(·), c], for i = 1, 2 are given by

Πi[µ, x(·), c] =

{
R(1−ci)ci

min{c−i,1} − γici, if ci ≤ c−i,

R(1− c−i)− γici, otherwise.
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Proof. Assume that c1 ≤ c2. We denote the equilibrium profits of player i in the capacity

subgame c by ΠE
i . We will now use the characterization of mixed strategy equilibrium in equation

(10) to explicitly characterize the equilibrium distributions F1 and F2. Note that we have li ∈ P̄i

and ui ∈ P̄i.

By Lemma 3(i), the distributions F1 and F2 do not contain an atom except possibly at the

upper support R. Using the Flow Equilibrium characterization given in Proposition 1, we can

write the expected profits of firm 1 for any p1 ∈ P̄1, p1 6= R as

Π1[p1, µ2, x(·), c] = p1c1(1− F2(p1)) + p1(1−min{c2, 1})F2(p1)− γ1c1,

= ΠE
1 .

Similarly, for all p2 ∈ P̄2, and p2 6= R, we have

Π2[p2, µ1, x(·), c] = p2 min{c2, 1}(1− F1(p2)) + p2(1− c1)F1(p2)− γ2c2,

= ΠE
2 .

Let Π̄E
1 = ΠE

1 + γ1c1 and Π̄E
2 = ΠE

2 + γ2c2. Solving for F1(p) and F2(p) in the preceding relations,

we obtain

F1(p) =
min{c2, 1} − Π̄E

2 /p

c1 + min{c2, 1} − 1
, ∀ p ∈ P̄1, p 6= R, (11)

F2(p) =
c1 − Π̄E

1 /p

c1 + min{c2, 1} − 1
, ∀ p ∈ P̄2, p 6= R.

Let l denote the common lower support of µ1 and µ2, i.e., l1 = l2 = l (cf. Lemma 2). Using

F1(l) = F2(l) = 0, it follows that l = Π̄E
2 /min{c2, 1}, and

Π̄E
1 = Π̄E

2

c1

min{c2, 1} .

By Lemma 2 and Lemma 3(iii), we have u1 = u2 = R. We next show that F1 does not have an

atom at u = R, and therefore the characterization in (11) is also valid for p = R. Assume to

arrive at a contradiction that F1 has an atom at R, i.e., F1(R−) < 1. Then, using c1 ≤ c2 and the

preceding relation between Π̄E
1 and Π̄E

2 , it follows that F2(R−) < 1. But, by Lemma 3(ii), both

distributions cannot have an atom at the upper support, yielding a contradiction. Hence, we can

use the characterization in (11) for p = R to write

F1(R) = 1 =
min{c2, 1} − Π̄E

2 /R

c1 + min{c2, 1} − 1
,
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which shows that

Π̄E
2 = R(1− c1),

Π̄E
1 =

R(1− c1)c1

min{c2, 1} .

The argument for c1 ≥ c2 is similar and completes the proof. Q.E.D.

5 Oligopoly Equilibria With Two Firms

In this section, we prove the existence and characterize the properties of pure strategy Oligopoly

Equilibria. We first provide a characterization of pure strategy OE capacities. Using this charac-

terization, we show that the price-capacity competition game always has a pure strategy Oligopoly

Equilibrium. We then use this characterization to study the efficiency properties of pure strategy

Oligopoly Equilibria in the next section.

Proposition 7 Assume that γi < R for some i = 1, 2. A capacity vector c = (c1, c2) is an OE

capacity if and only if c1 + c2 = 1 and

R− γi

2R− γi
≤ ci ≤ c−i, (12)

for some i = 1, 2.

Proof. (Sufficiency) We first show that c1 + c2 = 1 together with (12) is an OE capacity. First,

since c1 + c2 ≤ 1, Proposition 2 implies that the profits of firm i = 1, 2 are

Πi[p (c) , x, c] = (R− γi)ci, (13)

where p (c) denotes the continuation equilibrium price vector, which in this case is (R, R).

Consider a deviation ĉi 6= ci by firm i. If ĉi < ci, Proposition 2 still applies and the resulting

profit for firm i is Π̂i[p (ĉi, c−i) , x, (ĉi, c−i)] = (R − γi)ĉi ≤ Πi[p (c) , x, c], establishing that there

are no profitable deviations with ĉi < ci.

Next consider ĉi > ci. Clearly, if ĉi, c−i ≥ 1, Proposition 5 applies and Π̂i[p (ĉi, c−i) , x, (ĉi, c−i)] =

0 so that the deviation is not profitable. So suppose that ĉi + c−i > 1, ĉi, c−i > 0 and either ĉi < 1

or c−i < 1. Proposition 4 applies and the deviation will induce a mixed strategy continuation

equilibrium µ. There are two cases to consider: ĉi > c−i and ĉi ≤ c−i.

• Suppose that ĉi > c−i, which by Proposition 6 implies that the deviation profits of firm i are

Π̂i[µ, x(·), (ĉi, c−i)] = R(1− c−i)− γiĉi,

= (R− γi) ci − γi (ĉi − ci) ,

≤ Πi[p (c) , x, c]
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where the second line exploits the fact that c1+c2 = 1 and the third line uses the definition of

equilibrium profits from (13) together with ĉi ≥ c−i, establishing that there are no profitable

deviations with ĉi > c−i.

• Suppose that ĉi ≤ c−i. Then by Proposition 6, we have

Π̂i[µ, x(·), (ĉi, c−i)] =
R(1− ĉi)ĉi

min{c−i, 1} − γiĉi. (14)

Let ĉmax
i denote the capacity that maximizes (14), given by

ĉmax
i ≡ 1

2
− min{c−i, 1}γi

2R
. (15)

Since ci < ĉi ≤ c−i, we obtain from equation (12) that ĉmax
i ≤ ci. Therefore, for all

ci < ĉi ≤ c−i, we have

Π̂i[µ, x(·), (ĉi, c−i)] ≤ Πi[p (c) , x, c],

establishing that there are no profitable deviations with ĉi ≤ c−i.

This proves that any c1 + c2 = 1 together with (12) is an OE capacity.

(Necessity) Clearly, any c1 + c2 < 1 cannot be a pure strategy OE capacity, since the firm

with γi < R can increase profits by raising ci. Similarly, any c1, c2 ≥ 1 cannot be a pure strategy

OE capacity, since the profits of both firms are equal to 0. Suppose, to obtain a contradiction,

that there exists an OE capacity equilibrium with c1 + c2 > 1, ci > 0 for i = 1, 2 and ci < 1 for

some i. Without loss of generality, we assume that c1 ≥ c2. Then Proposition 6 implies that

Π1[µ, x(·), c] = R(1− c2)− γ1c1. (16)

Consider the deviation to ĉ1 = 1− c2 < c1 by firm 1, which by Proposition 2 yields profits

Π̂1[µ, x(·), (ĉ1, c2)] = R(1− c2)− γ1ĉ1,

> R(1− c2)− γ1c1,

= Π1[µ, x(·), c],

where the inequality exploits the fact that γ1 > 0 and establishes that such an equilibrium cannot

exist.

Next, to obtain a contradiction, suppose that there exists an equilibrium with c1 + c2 = 1, but

(12) is violated. Without loss of generality, assume that c1 ≤ c2, so that

c1 <
R− γ1

2R− γ1
. (17)
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Now consider a deviation by firm 1 to ĉ1 = ĉmax
1 as given by (15). In view of (17), ĉmax

1 > c1 and

from Proposition 6, the deviation profits are given by

Π̂1[µ, x(·), (ĉmax
1 , c2)] =

(R− (1− c1)γ1)
2

4R(1− c1)
> Rc1 − γ1c1

= Π1[µ, x(·), c].

To see that the inequality holds, we consider the function

f(c1) =
(R− (1− c1)γ1)

2

4R(1− c1)(Rc1 − γ1c1)
,

for c1 6= 0 (for c1 = 0, the inequality holds trivially). Note that the function f(c1) is strictly

decreasing in c1 for c1 ≤ R−γ1

2R−γ1
. Therefore, for all c1 < R−γ1

2R−γ1
,

f(c1) > f

(
R− γ1

2R− γ1

)
= 1.

This implies that
(R− (1− c1)γ1)

2

4R(1− c1)
> Rc1 − γ1c1.

The right hand side in the preceding relation is equal to Π1[µ, x(·), c] by (13). This establishes

that there cannot be any equilibrium OE capacity with c1 + c2 = 1 that does not satisfy (12),

completing the proof. Q.E.D.

Since we have c1 + c2 = 1 for all OE capacities, the relation in (12) can equivalently be written

as
R− γ1

2R− γ1
≤ c1 ≤ R

2R− γ2
, (18)

and

c2 = 1− c1. (19)

Note that for all 0 < γi ≤ R, i = 1, 2, the capacity vector c = (1/2, 1/2) satisfies equations (18)

and (19). Thus, we immediately obtain the existence of a pure strategy Oligopoly equilibrium as

a corollary:

Theorem 1 The price-capacity competition game has a pure strategy Oligopoly Equilibrium.

6 Efficiency of Oligopoly Equilibria

In this section, we quantify the efficiency losses of Oligopoly Equilibria. We take the measure of

efficiency to be the ratio of the social surplus of the equilibrium capacity cOE to the social surplus
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of the social capacity cS , S(cOE)/S(cS) [cf. equation (5)]. We investigate the worst-case bound on

this metric over all problem instances characterized by γ1 and γ2, either for the worst equilibrium

among the set of oligopoly equilibria or for the best equilibrium among the set of equilibria.

Given capacity costs γ1 and γ2, let C({γi}) denote the set of OE capacities. We define the

efficiency metric at some cOE ∈ C({γi}) as

r({γi}, cOE) =
∑2

i=1(R− γi)cOE
i∑2

i=1(R− γi)cS
i

,

where cS is the social capacity given the capacity costs γi and reservation utility R [cf. (4)].

Following the literature on the efficiency losses of equilibria, we are interested in the perfor-

mance of both the worst and the best OE capacity equilibria of price-capacity competition games.

In particular, we first look for a lower bound on the worst performance in a capacity equilibrium,

inf
{0<γi<R}

inf
cOE∈ C({γi})

r({γi}, cOE),

which is commonly referred to as the Price of Anarchy in the literature (see [8]). We then study

the best performance in a capacity equilibrium given an arbitrary price-competition game, and

thus provide a lower bound on

inf
{0<γi<R}

sup
cOE∈ C({γi})

r({γi}, cOE), (20)

which is commonly referred to as the Price of Stability in the literature (see [2]).

Example 1 Consider a price-capacity competition game with two firms, and γ1 = R− ε for some

0 < ε < min{1, R}, γ2 = R− ε2. The unique social capacity is (cS
1 , cS

2 ) = (1, 0) with social surplus

S(cS) = ε.

Using Proposition 7, it follows that the capacity vector

cOE = (cOE
1 , cOE

2 ) =
(

ε

R + ε
,

R

R + ε

)
,

is an OE capacity with social surplus

S(cOE) =
ε2(1 + R)

R + ε
.

Therefore, as ε → 0, the efficiency metric gives

lim
ε→0

r({γi}, cOE) = lim
ε→0

ε(1 + R)
R + ε

= 0.
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Recall that when γ1 = γ2, S(cOE) = S(cS). Instead in the preceding example we have that as

γ1 → γ2 (as ε → 0), the efficiency metric converges to 0.

The preceding example implies the following efficiency result:

Theorem 2 Consider the price-competition game with two firms. Then

inf
{0≤γi≤R}

inf
cOE∈ C({γi})

r({γi}, cOE) = 0,

i.e., the Price of Anarchy of the price-capacity competition game is 0.

We next provide a non-zero lower bound on the Price of Stability of a price-capacity competi-

tion game.

Theorem 3 Consider the price-competition game with two firms. Then, for all 0 ≤ γi ≤ R,

i ∈ {1, ..., N}, we have

inf
{0≤γi≤R}

sup
cOE∈ C({γi})

r({γi}, cOE) ≥ 2
√

2− 2,

i.e., the Price of Stability of the price-capacity competition game is 2
√

2 − 2 and this bound is

tight.

Proof. We assume without loss of generality that γ1 ≤ γ2. Then, the capacity vector (cS
1 , cS

2 ) =

(1, 0) is a social capacity (unique social capacity if γ1 < γ2), with social surplus S(cS) = R − γ1.

Using the definition of the efficiency metric r({γi}, xOE), we consider the following optimization

problem:

sup
cOE∈ C({γi})

R− γ1c
OE
1 − γ2c

OE
2

R− γ1
. (21)

Since for all cOE ∈ C({γi}), we have cOE
1 + cOE

2 = 1, the supremum in the above expression is

clearly attained at some cOE ∈ C({γi}) with the maximum value of cOE
1 . By Proposition 7 and

equations (18)-(19), the maximum value of cOE
1 at an OE capacity is given by

cOE
1 =

R

2R− γ2
. (22)

Substituting cOE
1 = R

2R−γ2
and cOE

2 = R−γ2

2R−γ2
in the objective function in (21), we see that the

optimal value is given by
R− Rγ1

2R−γ2
− (R−γ2)γ2

2R−γ2

R− γ1
.
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We are interested in finding a lower bound on the preceding over all 0 ≤ γi ≤ R with γ1 ≤ γ2, i.e.,

we consider the following optimization problem:

inf
0≤γi≤R
γ1≤γ2

R− Rγ1

2R−γ2
− (R−γ2)γ2

2R−γ2

R− γ1
.

This problem has a compact constraint set and a lower semicontinuous objective function [note

that for γ1 = R, the efficiency metric satisfies r({γi}, cOE) = 1]. Therefore it has an optimal

solution (γ̄1, γ̄2). For γ2 = R, the objective function value is 1, showing that γ̄2 < R. For all

γ2 6= R, the objective function is strictly increasing in γ1, showing that γ̄1 = 0. It follows then

that the unique stationary point given by γ̄2 =
(
2 − √

2
)
R attains the infimum, showing that

the optimal solution of the preceding problem is given by (γ̄1, γ̄2) =
(
0, (2−√2)R

)
with optimal

value 2
√

2− 2.

Finally, to see that the bound of 2
√

2− 2 is tight, consider the best OE capacity of the game

with γ1 = δ > 0 and γ2 =
(
2−√2

)
R. As δ → 0, the surplus in the best oligopoly equilibrium

relative to social optimum limits to 2
√

2− 2. Q.E.D.

7 Equilibria and Efficiency With N Firms

We now generalize the results on the characterization and existence of pure strategy Oligopoly

Equilibria (cf. Section 5) and the efficiency bounds (cf. Section 6) to N firms. While all the

results provided so far generalize, the argument is slightly different, and does not rely on explicitly

characterizing the expected profits of the firms for all mixed strategy Price Equilibria.

7.1 Preliminaries

The next set of results generalize Propositions 2-5 of Section 4. Note that in our analysis of mixed

strategy price equilibria, it is sufficient to focus on capacity subgames in which ci > 0 for all

i ∈ {1, ..., N} (since if ci = 0, profits are equal to 0 for that firm).

Proposition 8 Let c be a capacity vector such that
∑N

i=1 ci ≤ 1 and ci > 0 for i ∈ {1, ..., N}.
Then there exists a unique Price Equilibrium in the capacity subgame [p, x] such that pi = R and

xi = ci for i ∈ {1, ..., N}.

Proof. Since
∑N

i=1 ci ≤ 1, it follows by the equivalent characterization of a flow equilibrium that

for all p ∈ [0, R]N , the flow allocation (c1, c2, ..., cN ) ∈ W (p, c). Therefore, by charging a price pi,

firm i can make a profit of

Πi[pi, p−i, x, c] = pici,
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for all p−i ∈ [0, R]N−1. This shows that pi = R strictly dominates all other price strategies of firm

i, so that pi = R and xi = ci, i ∈ {1, ..., N}, is the unique Price Equilibrium. Q.E.D.

Proposition 9 Let c be a capacity vector such that
∑N

i=1 ci > 1, ci > 0 for all i ∈ {1, ..., N} and

assume that there exists some j with
∑N

i=1 ci − cj < 1. Then there exists no pure strategy Price

Equilibrium in the capacity subgame.

Proof. Suppose there exists a pure strategy Price Equilibrium (p, x). Without loss of generality

suppose that p1 ≤ pj , for all j. Let P1 be the set of players whose price is equal to p1, i.e.,

P1 = {j : pj = p1}. The following list considers all candidates for a Price Equilibrium and

provides profitable unilateral deviations from each, thus establishing the nonexistence of a pure

strategy Price Equilibrium:

• p1 < minj 6=1 pj , i.e., P1 = {1}: Then the profit of firm 1 is Π1[p, x, c] = p1 min{c1, 1}. A

small increase in p1 will increase firm 1’s profits, thus firm 1 has an incentive to deviate.

• p1 = minj 6=1 pj > 0: Let CP1 =
∑

i∈P1
ci be the sum of capacities of the firms that belong to

set P1. If CP1 ≤ 1, then we have to consider the following two cases:

– p1 = minj 6=1 pj = R: Then, since by assumption
∑N

i=1 ci > 1, there exists firm j,

j /∈ P1, such that pj > R and firm j is making zero profits, since its price is greater

than the reservation utility R. Firm j can change its price to pj = R − ε, for some ε

with 0 < ε < R, and make positive profits.

– p1 = minj 6=1 pj < R: Then firm 1 can increase slightly its price without affecting its

flow allocation and thus increase its profits.

If CP1 > 1, we consider the following two cases:

– x1 < min{c1, 1}: Firm 1 can decrease its price slightly, and increase its flow and its

profits.

– x1 = min{c1, 1}: Since CP1 > 1, there exists firm j 6= 1, such that j ∈ P1 and

xj < min{cj , 1}, which can decrease its price and increase its profits.

• p1 = minj 6=1 pj = 0. If CP1 ≤ 1, then firm 1 can increase its price and make positive

profits. Let’s consider next the case when CP1 > 1. By assumption there exists some j with
∑N

i=1 ci − cj < 1. Note that j ∈ P1, since otherwise CP1 ≤
∑N

i=1 ci − cj < 1. Firm j can

increase its price and make positive profits.
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Q.E.D.

Similar to Proposition 4, the next proposition establishes the existence of a mixed strategy

Price Equilibrium in capacity subgames with no pure strategy price Equilibrium (proof follows

from Proposition 4.3 in [1], and therefore is omitted).

Proposition 10 Let c be a capacity vector such that
∑N

i=1 ci > 1, ci > 0 for i ∈ {1, ..., N}
and suppose that there exists j with

∑N
i=1 ci − cj < 1. Then there exists a mixed strategy Price

Equilibrium in the capacity subgame.

Proposition 11 Let c be a capacity vector such that for each j ∈ {1, ..., N}, ∑N
i=1 ci − cj ≥ 1

and ci > 0 for i ∈ {1, ..., N}. Then, for all Price Equilibria [p, x], we have pi = 0 for i ∈ {1, ..., N},
i.e., all firms make zero profits.

Proof. The proof follows from a Bertrand price competition argument among the N firms.

Q.E.D.

In the remainder of this section, we consider a subgame defined by a capacity vector c, where

c is such that
∑N

i=1 ci > 1, ci > 0 for i ∈ {1, ..., N}, and there exists j with
∑N

i=1 ci − cj < 1.

Proposition 9 implies that there does not exist a pure strategy Price Equilibrium in this subgame.

However, Proposition 10 implies that a mixed strategy Price Equilibrium exists. Let µi denote the

probability measure of prices used by firm i in this equilibrium. We denote the (essential) support

of µi by [li, ui] and the corresponding cumulative distributions by Fi. Next, we will provide a

series of lemmas regarding the structure of the mixed strategy Price Equilibrium.

Lemma 4 Let c be a capacity vector such that
∑N

i=1 ci > 1, ci > 0 for i ∈ {1, ..., N} and assume

that there exists j with
∑N

i=1 ci − cj < 1. Let l denote the minimum of the lower supports of the

mixed strategies, i.e., l = mini∈{1,2,...,N} li. Let Pl denote the set of firms whose lower support is

l, i.e., Pl = {i ∈ {1, . . . , N} : li = l}. Then:

(i)
∑

i∈Pl
ci > 1.

(ii) For all i ∈ Pl, the distribution Fi does not have an atom at l.

Proof.

(i) Suppose to obtain a contradiction that
∑

i∈Pl
ci ≤ 1. Let l′ = mini/∈Pl

li. Then consider firm
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j ∈ Pl deviating to µ̂j such that the new cumulative distribution F̂j is given by:

F̂j(p) =





0 p < l′

Fj(l′) p = l′

Fj(p) p > l′

where F is the original cumulative distribution. Essentially all the mass between l and l′

is shifted to l′. In such a deviation profile, the flow equilibrium remains unchanged since,
∑

i∈Pl
ci ≤ 1, but the prices charged for positive flows by firm j have increased, thus its

profits increase, leading to a contradiction.

(ii) We first show that j ∈ Pl. Assume to arrive at a contradiction that j /∈ Pl. Then, we have

∑

i∈Pl

ci ≤
∑

i6=j

ci < 1,

where the second inequality holds by the assumption that
∑N

i=1 ci − cj < 1. But this

contradicts part (i), showing that j ∈ Pl.

We next show that l > 0. Assume to arrive at a contradiction that l = 0. This implies that

the profits of firm j at any price vector are equal to 0 [see the characterization of mixed

strategy equilibria; cf. equations (9)-(10)]. However, by the assumption that
∑N

i=1 ci−cj < 1,

there exists a price vector and a flow equilibrium at which the profits of firm j are nonzero,

thus showing that l > 0.

Note that the set Pl cannot consist of only one firm, since then this firm has an incentive

to increase its price. Let m 6= n be two firms that belong to Pl. Assume to arrive at a

contradiction that distribution Fm has an atom at l. By considering the profits of firm n at

prices l− ε, l + ε, and using a similar argument as in the proof of Lemma 3[ii], it can be seen

that Fm cannot have an atom at l.

Q.E.D.

Lemma 5 Let c be a capacity vector such that
∑N

i=1 ci > 1, ci > 0 for i ∈ {1, ..., N} and assume

that there exists j with
∑N

i=1 ci − cj < 1. Let u denote the maximum of the upper supports of

the mixed strategies, i.e., u = maxi∈{1,2,...,N} ui. Let k be a firm with the maximum capacity, i.e.,

ck ≥ ci, for all i ∈ {1, . . . , N}. Then:

(i) At most one distribution Fi can have an atom at the maximum upper support u.

(ii) If the distribution Fi has an atom at u, then ci = ck.
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(iii) The maximum upper support u is equal to R.

Proof.

(i) We first show that at most one distribution can have an atom at u. We define the set

Patom = {i ∈ {1, . . . , N} : Fi has an atom at u}.

Suppose to arrive at a contradiction that Patom has more than one element. It follows that

with probability Πi∈Patom(Fi(u+) − Fi(u−)) > 0, all firms that belong to Patom will charge

a price of p = u.

Let Catom =
∑

i∈Patom
ci and Dres = max{0, 1−∑

i/∈Patom
ci}. We have

Catom =
N∑

i=1

ci −
∑

i/∈Patom

ci > max



0, 1−

∑

i/∈Patom

ci



 = Dres,

where the strict inequality follows by the assumption that
∑N

i=1 ci > 1. This implies that

there exists some h ∈ Patom, such that xh(pu) < min{ch, 1}, where pu is the price vector for

which all firms in Patom charge the price u. Then, firm h can increase its profits by reducing

its price to u− ε for some ε > 0 (since firm h is undercutting the rest of the firms in Patom).

This show that there exists at most one distribution, which has an atom at p = u.

(ii) Assume that the distribution Fi has an atom at u. We will show that ci = ck.

Let Pl denote the set of firms whose lower support is l, i.e., Pl = {i ∈ {1, . . . , N} : li = l}.
We first show that i ∈ Pl. Suppose that i /∈ Pl. Then since

∑
h∈Pl

ch > 1 [cf. Lemma 4(i)],

firm i’s profits when he charges the price p = u are equal to 0. Using the assumption that
∑N

i=1 ci − cj < 1, and an argument similar to that in the proof of Lemma 4(ii), it can also

be seen that k ∈ Pl.

Suppose to obtain a contradiction that for the only firm with atom at u, firm i, we have

ci < ck. Let Π̄i and Π̄k denote the expected profits (plus the capacity costs) of firms i and k

respectively at the mixed strategy Price Equilibrium (i.e., Π̄i = Πi+γici and Π̄k = Πk+γkck,

where Πj denotes the equilibrium profits of firm j in the mixed strategy Price Equilibirum).

Using i, k ∈ Pl, and the fact that Fi, Fk do not have an atom at the lower support l [cf.

Lemma 4(ii)], it can be seen that Π̄i = cil and Π̄k = ckl, which implies

Π̄i = Π̄k
ci

ck
. (23)
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Next note that since the upper support of Fi is u and no other firm has an atom at u, it is

also the case that

Π̄i = R


1−

∑

j 6=i

cj


 .

using equation (23), this implies

Π̄k = R


1−

∑

j 6=i

cj


 ck

ci
.

Now consider a deviation for firm k to charging a price p = R− ε with probability 1 for some

ε > 0. The expected profits for firm k following this deviation satisfy

Π̄k ≥ (R− ε)


1−

∑

j 6=k

cj




Since ck > ci and
∑N

j=1 cj > 1, we have that


1−

∑

j 6=k

cj


 =


1−

N∑

j=1

cj + ck


 >


1−

N∑

j=1

cj + ci


 ck

ci
=


1−

∑

j 6=i

cj


 ck

ci
.

Therefore, for ε sufficiently enough, the deviation for firm k is profitable, yielding a contra-

diction and proving that ci = ck.

(iii) The proof of this part is similar to the proof of Lemma 3(iii) and is omitted.

Q.E.D.

Proposition 12 Let c be a capacity vector such that
∑N

i=1 ci > 1, ci > 0 for i ∈ {1, ..., N} and

suppose that there exists j with
∑N

i=1 ci − cj < 1. Let c̄ = maxi=1,...,N ci. Let u denote the

maximum of the upper supports of the mixed strategies, i.e., u = maxi∈{1,2,...,N} ui. For firm j,

the expected profits Πj [µ, x(·), c] are given by

Πj [µ, x(·), c] =





R
(
1 + c̄−∑N

i=1 ci

)
cj

c̄ − γjcj , if Fj has no atom at u,

R
(
1 + c̄−∑N

i=1 ci

)
− γjcj , if Fj has an atom at u.

Proof. Let Π̄j = Πj + γjcj as in the proof of Lemma 5. If the distribution of firm j, Fj , has

an atom at the maximum upper support, then Lemma 5 implies that Fj is the only distribution
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having an atom at the maximum upper support u = R and, moreover, cj = c̄. Firm j is charging

price p = R with positive probability and

Πj [R, µ−j , x(·), c] = R


1−

∑

i6=j

ci


 ,

= R

(
1 + c̄−

N∑

i=1

ci

)
.

Thus, Π̄j = R
(
1 + c̄−∑N

i=1 ci

)
and the expected profits of firm j are given by

Πj [µ, x(·), c] = R

(
1 + c̄−

N∑

i=1

ci

)
− γjcj ,

as claimed in the proposition.

Suppose next that Fj does not have an atom at the maximum upper support. We consider

the following two cases:

• None of the distributions have an atom at u. Then, using the Flow Equilibrium characteri-

zation given in Proposition 1, we have that the equilibrium profits for firm j at price pj = R

are given by

Π̄j = R


1−

∑

i6=j

ci


 .

Note that firm j has to satisfy cj = c̄. Assume otherwise and let firm k be such that ck = c̄.

Then, as argued in Lemma 4, both firm j, which is such that
∑N

i=1 ci − cj < 1, and firm k

belong to set Pl (recall that Pl = {i : li = l}, where l is the minimum lower support). Using

the Flow Equilibrium characterization we have that

Π̄k = R


1−

∑

i6=k

ci


 .

However, since j, k ∈ Pl [as in the proof of Lemma 5] then Π̄k = Π̄j
ck
cj

. For this to be true,

it has to be that cj = ck = c̄. Therefore,

Πj [µ, x(·), c] = R


1−

∑

i 6=j

ci


 = R

(
1 + c̄−

N∑

i=1

ci

)
.

• The distribution Fk has an atom at the maximum upper support, for some k 6= j. Then by

the first part of the proof ck = c̄ and Π̄j = R(1 + c̄ −∑N
i=1 ci). Moreover, j, k ∈ Pl, which
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implies that

Π̄j = Π̄j
cj

ck
= R

(
1 + c̄−

N∑

i=1

ci

)
cj

ck
.

We conclude that

Πj [µ, x(·), c] = R

(
1 + c̄−

N∑

i=1

ci

)
cj

c̄
.

Q.E.D.

7.2 Oligopoly Equilibria With N Firms

In this section, we provide a characterization of Oligopoly Equilibria capacities with N ≥ 2 firms.

Similar to the analysis for two firms, we will use this characterization to establish the efficiency

properties of Oligopoly Equilibria.

Proposition 13 Assume that γi < R for some i. Let k be a firm with the maximum capacity,

i.e., ck ≥ ci for all k ∈ {1, . . . , N}. A capacity vector c is an OE capacity if and only if
∑N

i=1 ci = 1

and
R− γi

2R− γi
· (ci + ck) ≤ ci ≤ ck, (24)

for all i 6= k.

Proof. (Sufficiency) We first show that
∑N

i=1 ci = 1 together with (24) define an OE capacity.

Note that since
∑N

i=1 ci ≤ 1, Proposition 8 implies that the profits of firm i, i ∈ {1, ...N}, are

Πi[p (c) , x, c] = (R− γi)ci, (25)

where p (c) denotes the continuation equilibrium price vector, which in this case is (R, ..., R).

Consider a deviation ĉi 6= ci by firm i. If ĉi < ci, Proposition 8 still applies and the resulting

profit for firm i is Π̂i[p (ĉi, c−i) , x, (ĉi, c−i)] = (R − γi)ĉi ≤ Πi[p (c) , x, c], establishing that there

are no profitable deviations with ĉi < ci.

Next consider ĉi > ci. Clearly, if ci = 0,
∑N

i=1 ci = 1 and ĉi = 1 (i.e., firm i changed its capacity

from 0 in the original vector to 1 in the new), Proposition 11 applies and Π̂i[p (ĉi, c−i) , x, (ĉi, c−i)] =

0 so that the deviation is not profitable. Therefore, we must have
∑

j 6=i cj + ĉi > 1, cj > 0 for

j ∈ {1, ..., N} and
∑

j 6=i cj < 1. In this case, Proposition 10 applies and the deviation will induce

a mixed strategy continuation equilibrium µ. We consider the following two cases:

• Firm i has the maximum capacity in the new subgame, i.e., ĉi ≥ cj , for all j. Then,
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Proposition 12 implies that the deviation profits of firm i are

Π̂i[µ, x(·), (ĉi, c−i)] = R


1−

∑

j 6=i

cj


− γiĉi,

= (R− γi) ci − γi (ĉi − ci) ,

≤ Πi[p (c) , x, c].

Thus, in this case, there is no profitable deviation.

• Firm i does not have the maximum capacity in the new subgame, i.e., there exists some k

such that ck is the maximum capacity and ck > ĉi. Then by Proposition 12,

Π̂i[µ, x(·), (ĉi, c−i)] =
R

(
1−∑

j 6=k cj

)
ĉi

ck
− γiĉi. (26)

Let ĉmax
i denote the capacity that maximizes (26), given by

ĉmax
i ≡ 1

2
− ckγi

2R
−

∑
j 6=k,i cj

2
. (27)

From equation (24) we have that R−γi

2R−γi
· (ci + ck) ≤ ci , which implies that ĉmax

i ≤ ci.

Therefore, for all ci < ĉi ≤ ck, we have

Π̂i[µ, x(·), (ĉi, c−i)] ≤ Πi[p (c) , x, c],

establishing that there are no profitable deviations with ĉi ≤ ck.

This proves that any
∑N

i=1 ci = 1 together with (24) is an OE capacity.

(Necessity) Any capacity vector c such that
∑N

i=1 ci < 1 cannot be a pure strategy OE

capacity, since the firm with γi < R can increase profits by raising ci. Similarly, any capacity

vector c such that for all j,
∑N

i=1 ci − cj ≥ 1 cannot be a pure strategy OE capacity, since the

profits of all firms are equal to 0. Suppose, to obtain a contradiction, that there exists an OE

capacity equilibrium with
∑N

i=1 ci > 1, ci > 0 for i ∈ {1, ..., N} and suppose that there exists j

with
∑N

i=1 ci − cj < 1. Consider the profits firm k for which ck ≥ cj for all j. Then, we have

Πk[µ, x(·), c] = R


1−

∑

i6=k

ci


− γkck. (28)
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Consider the deviation to ĉk = 1−∑
i 6=k ci < ck by firm k, which yields profits

Π̂k[µ, x(·), (ĉk, c−k)] = R


1−

∑

i6=k

ci


− γkĉk,

> R


1−

∑

i6=k

ci


− γkck,

= Π1[µ, x(·), c],

establishing that such an equilibrium cannot exist.

Next, to obtain a contradiction, suppose that there exists an equilibrium with
∑N

i=1 ci = 1,

but (24) is violated. Without loss of generality, assume that firm 1 violates (24), i.e.,

c1 <
R− γ1

2R− γ1
(c1 + ck). (29)

Now consider a deviation by firm 1 to ĉ1 = ĉmax
1 as given by (27). In view of (29), ĉmax

1 > c1 and

from Proposition 12, the deviation profits are given by

Π̂1[µ, x(·), (ĉmax
1 , c−1)] =

(
R

(
1−∑

j 6=1,k cj

)
−

(
1−∑

j 6=1,k cj − c1

)
γ1

)2

4R(1−∑
j 6=1,k cj − c1)

,

> Rc1 − γ1c1,

= Π1[µ, x(·), c],

This establishes that there cannot be any equilibrium OE capacity with
∑N

i=1 ci = 1 that does

not satisfy (24), completing the proof. Q.E.D.

7.3 Efficiency of Oligopoly Equilibria With N Firms

We next investigate the Price of Anarchy and Price of Stability for oligopoly equilibria with N

firms. The following example shows that the efficiency loss in the worst oligopoly equilibrium

(Price of Anarchy) can again be arbitrarily high.

Example 2 Consider a price-capacity competition game with two firms, and γ1 = R− ε for some

0 < ε < min{1, R}, γ2 = ... = γN = R − ε2. The unique social capacity is (cS
1 , cS

2 ) = (1, 0, ..., 0)

with social surplus

S(cS) = ε.

Using Proposition 13, it follows that the capacity vector

cOE = (cOE
1 , cOE

2 , ..., cOE
N ) =

(
ε

R + ε
,

R

(R + ε)(N − 1)
, ...,

R

(R + ε)(N − 1)

)
,
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is an OE capacity with social surplus

S(cOE) =
ε2(1 + R)

R + ε
.

Therefore, as ε → 0, the efficiency metric satisfies

lim
ε→0

r({γi}, cOE) = lim
ε→0

ε(1 + R)
R + ε

= 0.

The preceding example implies the following efficiency result:

Theorem 4 Consider the price-competition game with N firms, N ≥ 2. Then

inf
{0≤γi≤R}

inf
cOE∈ C({γi})

r({γi}, cOE) = 0,

i.e., the Price of Anarchy of the price-capacity competition game is 0.

Next we provide a non-zero lower bound on the Price of Stability of a price-capacity competition

game.

Theorem 5 Consider the price-competition game with N firms, N ≥ 2. Then, for all 0 ≤ γi ≤ R,

i ∈ {1, ..., N}, we have

sup
cOE∈ C({γi})

r({γi}, cOE) ≥ 2
√

N − 1
N − 1

i.e., the Price of Stability of the price-capacity competition game is 2(
√

N − 1)/(N − 1) and this

bound is tight.

Proof. We assume without loss of generality that γ1 ≤ mini∈{2,...,N} γi and that γ1 < R [if γ1 = R,

then by definition γj = R for all j, so that the equilibrium and social surpluses coincide]. Then, the

capacity vector (cS
1 , cS

2 , ..., cS
N ) = (1, 0, ..., 0) is a social capacity, with social surplus S(cS) = R−γ1.

Using the definition of the efficiency metric r({γi}, xOE), we consider the following optimization

problem:

sup
cOE∈ C({γi})

R−∑N
i=1 γic

OE
i

R− γ1
. (30)

Since for all cOE ∈ C({γi}), we have
∑N

i=1 cOE
i = 1, the supremum in the above expression is

clearly attained at some cOE ∈ C({γi}) with the maximum value of cOE
1 . By Proposition 13, the

maximum value of cOE
1 at an OE capacity is given by

cOE
1 =

R

R +
∑N

i=2(R− γi)
. (31)
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Substituting cOE
1 = R/(R +

∑N
i=2(R− γi)) and cOE

i = (R − γi)/(R +
∑N

i=2(R− γi)) for i ∈
{2, ..., N} in the objective function in (30), we see that the optimal value is given by

R−Rγ1/(R +
∑N

j=2(R− γj)−
∑N

i=2(R− γi)γi/(R +
∑N

j=2(R− γj))
R− γ1

.

We are interested in finding a lower bound on the preceding over all 0 ≤ γi ≤ R with γ1 ≤
mini∈{2,...,N} γi, i.e., we consider the following optimization problem:

inf
0≤γi≤R
γ1≤γi

R−Rγ1/(R +
∑N

j=2(R− γj)−
∑N

i=2(R− γi)γi/(R +
∑N

j=2(R− γj))
R− γ1

. (32)

This problem has a compact constraint set and a lower semicontinuous objective function [note

that for γ1 = R, the efficiency metric satisfies r({γi}, cOE) = 1]. Therefore it has an optimal

solution (γ̄1, γ̄2, ..., γ̄N ). For γ2 = ... = γN = R, the objective function value is 1, showing that

there should exist at least an i such that γ̄i < R. For all (γ2, ..., γN ) 6= (R, ..., R), the objective

function is strictly increasing in γ1, showing that γ̄1 = 0. Moreover it is not hard to see that the

optimal solution to (32) will satisfy (γ̄1, γ̄2, ..., γ̄N )=(0, γ̄, ..., γ̄), i.e., γ̄2 = ... = γ̄N = γ̄. It follows

then that the optimal solution is given by (γ̄1, γ̄2, ..., γ̄N ) = (0, N−√N
N−1 R, ..., N−√N

N−1 R) with optimal

value 2
√

N−1
N−1 .

Finally, to see that this bound is tight, consider the best OE capacity of the game with

γ1 = δ > 0 and

γ2 = · · · = γN =
N −√N

N − 1
R.

In this case, as δ → 0 the ratio of the surplus in the equilibrium and the surplus in the social

optimum is 2
√

N−1
N−1 . Q.E.D.

An interesting implication of this result is that as the number of players increases not only is

the Price of Anarchy equal to zero, but the Price of Stability also goes to zero. Therefore, while

coordination with a limited number of players can ensure that inefficiencies remain bounded when

there are many competing firms even the best equilibrium has unbounded inefficiency. This result

is interesting in part because it goes against a naive conjecture that increasing the number of

oligopolistic competitors should increase efficiency (or even ensure that the equilibrium limits to

a competitive allocation). The reason why this naive intuition does not apply in this case is that

as the number of firms increases, investment incentives become potentially more distorted.
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8 Stackelberg Leader Game

We have so far characterized the set of pure strategy equilibria in the baseline price-capacity

competition game, where a set of competing firms choose capacity simultaneously first and then

compete in prices (and users allocate their demands in the third stage). The analysis has shown

that different equilibria within this set have widely differing efficiency features. In particular, the

worst equilibrium from the set of pure strategy equilibria can have arbitrarily low efficiency, while

if we select the best equilibrium from the set of equilibria, the worst efficiency performance will

be 2(
√

N − 1)/(N − 1) (in particular, 2
√

2 − 2 with two firms). This raises the question of how

the equilibrium will be selected from the set of pure strategy equilibria and whether some type of

regulation may be used to affect equilibrium selection.

While an analysis on equilibrium selection is beyond the scope of the current paper, there

is a natural and simple multi-stage game that implements the best equilibrium. In this section,

we discuss this multi-stage game, which involves the firms choosing their capacities sequentially,

acting in reverse order of their capacity costs. In the special case with two firms, this is equivalent

to the lower-cost firm acting as the Stackelberg leader and choosing its capacity first.

To simplify the exposition, in this section we suppose that N =2 and again use i and −i to

denote the two firms. In this case, the Stackelberg game works as follows: if γi < γ−i, firm i moves

first and chooses ci. Then firm −i, after observing ci, chooses c−i. After the capacity choices, the

two firms simultaneously choose prices, and after capacities and prices are revealed, users allocate

their demand. If γi = γ−i, the two firms choose their capacities at the same time.

This game form may result as a focal point, giving the first-mover advantage to the low cost

firm. Alternatively, if the low cost firm is an incumbent in the industry, we may think that this

equilibrium will arise naturally, since the incumbent may have chosen its capacity before the new

entrant. However, it is possible to imagine situations in which the lower cost firm is the entrant

not the incumbent, in which case such a Stackelberg game will not arise naturally.

For the rest of this section, let us suppose that γ1 < γ2, and by a Stackelberg game, we refer

to the multi-stage game where firm 1 chooses its capacity first, followed by firm 2, and then the

two firms choose their prices simultaneously. A pure strategy Stackelberg equilibrium is defined

as follows.

Definition 5 [Stackelberg Equilibrium] For a given c1 ≥ 0, let BR2(c1) denote the set of

best response capacities for firm 2, i.e.,

BR2(c1) = arg max
c2≥0

[µ,x(·)]∈MPE(c1,c2)

Π2[µ, x(·), c1, c2].
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A vector [cSE , p(cSE), x(cSE)] is a (pure strategy) Stackelberg Equilibrium (SE) if [p(cSE), x(cSE)] ∈
PE(cSE), cSE

2 ∈ BR2

(
cSE
1

)
, and

Π1[p(cSE), x(cSE), (cSE
1 , cSE

2 )] ≥ Π1[µ, x(·), c1, c2], (33)

for all c1 ≥ 0, [µ, x(·)] ∈ MPE(c1, c2), and c2 ∈ BR2 (c1) .

Proposition 14 Suppose that γ1 < γ2 < R. Then there exists a unique Stackelberg equilibrium

in which

cSE
1 = 1− R− γ2

2R− γ2

cSE
2 =

R− γ2

2R− γ2
,

pSE
1 = pSE

2 = R and xSE
1 = cSE

1 , xSE
2 = cSE

2 .

Proof. (Existence) It follows from the sufficiency part of proof of Proposition 7 that given cSE
1 ,

cSE
2 is a best response for firm 2, i.e., cSE

2 ∈ BR2

(
cSE
1

)
. To see that there is no deviation for firm

1, first note that any c1 < cSE
1 gives lower profits. Next consider c1 > cSE

1 . An argument identical

to that in the proof of Proposition 7 shows that the best response of firm 2 to such c1 will satisfy

c1 + c2 > 1. Since

c1 > 1− R− γ2

2R− γ2
,

the analysis in the proof of Proposition 7 establishes that firm 1 will make lower profits.

(Uniqueness) From Proposition 7, this is the equilibrium with the highest level of c1. Any

other choice of c1 can be improved upon by firm 1 deviating to cSE
1 . Q.E.D.

Denote the set of Stackelberg equilibria by SE ({γi}). Combining this result with Theorem 2,

we have the following result.

Theorem 6 Consider the Stackelberg game described above with two firms. Then, for all 0 ≤
γi ≤ R, i = 1, 2, we have

inf
cSE∈ SE({γi})

r({γi}, cSE) = sup
cSE∈ SE({γi})

r({γi}, cSE) = 2
√

2− 2,

i.e., both the Price of Anarchy and the Price of Stability of the Stackelberg game are 2
√

2− 2 and

this bound is tight.
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9 Simultaneous Capacity-Price Selection Game

In this section, we consider the alternative one-stage competition between the two firms: firms

simultaneously choose the capacity levels ci on their links and the price pi they will charge per

unit bandwidth. Given the price and the capacity set by the other firm, p−i, c−i, the profit of

firm i is

Πi[(pi, p−i), x, (ci, c−i)] = pixi − γici,

where x ∈ W [p, c], i.e., x is a flow equilibrium given the price vector p and the capacity vector

c. The objective of each firm is to maximize profits. We next define the one-stage Oligopoly

Equilibrium for this competition model.

Definition 6 A vector [c∗, p∗, x∗] is a (pure strategy) one-stage Oligopoly Equilibrium (OE) if

x∗ ∈ W [p∗, c∗] and for all i ∈ {1, ..., N},

Πi[(p∗i , p
∗
−i), x

∗, (c∗i , c
∗
−i)] ≥ Πi[(pi, p

∗
−i), x, (ci, c

∗
−i)], (34)

for all pi ≥ 0, ci ≥ 0, and for all x ∈ W [(pi, p
∗
−i), (ci, c

∗
−i)].

Proposition 15 Consider N firms playing the one-stage game described above with N ≥ 2.

Given any γi, with 0 < γi < R, i ∈ {1, ..., N}, there does not exist a one-stage Oligopoly Equilib-

rium.

Proof. Suppose, to obtain a contradiction, that there exists a one-stage Oligopoly Equilibrium

[c∗, p∗, x∗]. We first show that in this equilibrium, we must have
∑N

i=1 c∗i = 1 and p∗i = R. If
∑N

i=1 c∗i < 1, then since the flow allocation vector c ∈ W [p, c] for all p ∈ [0, R]N and
∑N

i=1 c∗i < 1,

the profit of firm 1 is given by

Π1[p∗, x∗, c∗] = (p1 − γ1)c∗1. (35)

Since γ1 < R, by increasing c∗1 slightly, firm 1 increases its profits, contradicting the claim that

[c∗, p∗, x∗] is a one-stage OE.

Consider next
∑N

i=1 c∗i > 1. Then there exists j ∈ {2, 3, ..., N} for which x∗j < c∗j . Clearly it

is profitable for firm j to deviate to (cj , pj) = (x∗j , pj), since it reduces its capacity costs without

affecting its price and flow allocation.

Hence, we must have
∑N

i=1 c∗i = 1 and also p∗i = R by equation (35). If c∗1 = 0, then since

x∗1 = 0, firm 1 can increase its capacity level and make positive profits. Assume next that c∗1 = ε

for some ε > 0. Then the profit of any firm j ∈ {2, ..., N} is at most (R − γj)(1 − ε). But if

firm j changes its capacity and price to (cj , pj) = (1, R − δ) for some δ > 0 and δ < (R − γj)ε, it
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will make a profit of R − δ − γj > (R − γj)(1− ε), showing that there does not exist a one-stage

Oligopoly Equilibrium. Q.E.D.

10 Conclusions

In this paper, we studied the efficiency of oligopoly equilibria in a model where firms compete

over capacities and prices. This problem is not only of theoretical interest, but it is relevant

for understanding the extent of potential inefficiencies that may arise in the process of capacity

extension in modern communication networks.

To isolate the main economic interactions, we considered the following simple game form. First,

firms independently choose their capacity levels. Second, after the capacity levels are observed,

they set prices. Finally, consumers allocate their demands across the firms. This game has

an obvious similarity to Kreps and Scheinkman’s model of quantity precommitment and price

competition, [9], but it is simpler because demand is inelastic and because results do not have to

rely on specific rationing rules.

Using similar ideas to the analysis in [9] and in [1], we characterized the entire set of pure strat-

egy equilibria. A pure strategy oligopoly equilibrium always exists in this game but is supported

by mixed strategies off-the-equilibrium path. The complete characterization of the equilibrium set

enables us to investigate the worst-case efficiency properties of oligopoly equilibria.

Our first result here is that efficiency in the worst oligopoly equilibria (also referred to as the

Price of Anarchy) of this game can be arbitrarily low. However, we also show that if the best

oligopoly equilibrium is selected, the worst-case efficiency loss (also referred to as the Price of

Stability) can be bounded. With two firms, this bound is tight and equal to 2
√

2 − 2. With

an arbitrary number of firms, N , the bound is again tight and equal to 2(
√

N − 1)/(N − 1).

Interestingly, this bound goes to zero as the number of firms, N , increases. This result contrasts

with a naive intuition that the efficiency of oligopoly equilibrium should improve as the number

of firms increases. The reason why this intuition does not apply in the current context is that

with the greater number of competitors, ex ante investment incentives become potentially more

distorted.

We also suggested a simple way of implementing the best oligopoly equilibrium, which involves

the lower cost firms acting before higher cost firms as the “Stackelberg leaders” and choosing their

capacities. With two firms, the Stackelberg game gives a unique equilibrium, with the efficiency

loss bounded by 2
√

2− 2.

Finally, we studied an alternative game form where capacities and prices are chosen simulta-
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neously and showed that it always fails to have a pure strategy equilibrium. These results suggest

that the timing of capacity and price choices in oligopolistic environments is important both for

the existence of equilibrium and the extent of efficiency losses.

Many features of the model analyzed here were chosen to simplify the exposition. The analysis

here can be easily generalized to arbitrary (convex) costs functions for investment in capacities,

without changing the essence of the analysis or the results.

Another more important generalization is to include potential congestion costs, which are an

important feature of many communication networks. Existence and efficiency of oligopoly equi-

libria with congestion costs (but without capacity investments) are analyzed in [1], and existence

and efficiency of oligopoly equilibria with congestion costs and with capacity investments in the

case with symmetric firms are studied in [15]. The problem is much more challenging when there

are asymmetries, either in the costs of investing in capacity or in the extent of congestion costs

within a subnetwork. We leave the analysis of this general model to future work.
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