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The measurement and the allocation of risk are fundamental problems of portfolio
management. Coherent measures of risk provide an axiomatic approach to the former
problem. In an environment given by a coherent measure of risk and the various portfolios’
realization vectors, risk allocation games aim at solving the second problem: How to
distribute the diversification benefits of the various portfolios? Understanding these
cooperative games helps us to find stable, efficient, and fair allocations of risk.
We show that the class of risk allocation and totally balanced games coincide, hence a
stable allocation of risk is always possible. When the aggregate portfolio is riskless, the
class of risk allocation games coincides with the class of exact games. As in exact games
any subcoalition may be subject to marginalization even in core allocations, our result
further emphasizes the responsibility involved in allocating risk.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

The value of an investment portfolio is subject to all kinds of uncertain events. Firms, banks, or insurance companies (to
which we refer by the term portfolios) face risk and regulators may require them to hold cash reserves as a cushion against
default—this rather unfavorable state of nature—with the precise amounts determined by a measure of risk. A measure of risk
thereby specifies the minimal amount of cash the regulated agent has to add to his portfolio for his risk to be acceptable to
the regulator.

The literature knows of numerous possible ways to measure risk; lately interest shifted to coherent measures of risk
(Artzner et al., 1999) defined by four axioms: monotonicity, subadditivity, positive homogeneity, and translation invariance.
These axioms have been shown to be compatible with a natural general equilibrium approach to measure risk (Csóka et al.,
2007b).

Of these axioms, subadditivity expresses that the risk of an aggregate portfolio should not exceed the total risk of the
individual subportfolios. In particular, the risk of a firm is less than the sum of the risks of the constituents of the firm. Risk
allocation then addresses the distribution of the diversification benefits; risk allocation games (Denault, 2001) are transferable
utility games defined to this purpose.

A risk allocation game assigns to each coalition of portfolios the risk involved in the aggregate portfolio of the coalition.
An allocation shows how to share the risk of the aggregate portfolio of the grand coalition among the individual portfolios,

✩ We are grateful to two anonymous referees and conference participants in Warwick, Kos, Madrid, and Budapest for helpful comments. P.J.J. Herings
would like to thank the Netherlands Organisation for Scientific Research (NWO) for financial support. L.Á. Kóczy thanks funding by the EU under the Marie
Curie Intra-European Fellowship MEIF-CT-2004-011537.

* Corresponding author.
E-mail addresses: Peter.Csoka@uni-corvinus.hu (P. Csóka), P.Herings@algec.unimaas.nl (P.J.J. Herings), Koczy.Laszlo@kgk.bmf.hu (L.Á. Kóczy).
0899-8256/$ – see front matter © 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.geb.2008.11.001

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/geb
mailto:Peter.Csoka@uni-corvinus.hu
mailto:P.Herings@algec.unimaas.nl
mailto:Koczy.Laszlo@kgk.bmf.hu 
http://dx.doi.org/10.1016/j.geb.2008.11.001


P. Csóka et al. / Games and Economic Behavior 67 (2009) 266–276 267
which has of course consequences on the cash reserves to be held. The allocation makes clear what part of the risk of a
firm should be attributed to each of its constituents. A natural question that arises is whether there are stable allocations
of risk, allocations of risk that no coalition can object to, that is whether the core of the risk allocation game is non-empty.

We separate the risk environment specifying the individual portfolios’ realization vectors of discrete random variables and
a coherent measure of risk, a real valued function on the realization vectors, from the derived cooperative game that we
call risk allocation game.

A totally balanced game is a cooperative game having a non-empty core in all of its subgames. Totally balanced games
arise from a wide range of applications. They coincide with market games (Shapley and Shubik, 1969); also with a special
case of market games with a continuum of indivisible commodities: cooperation in fair division (Legut, 1990); they are
equivalent to a class of maximum flow problems (Kalai and Zemel, 1982a); and also to permutation games of less than
four players (Tijs et al., 1984). Moreover, totally balanced games are generated by linear production games (Owen, 1975),
generalized network problems (Kalai and Zemel, 1982b), and controlled mathematical programming problems (Dubey and
Shapley, 1984).

We show that the class of risk allocation games coincides with the class of totally balanced games, that is all risk
allocation games are totally balanced and all totally balanced games can be generated by a risk allocation game with a
properly specified risk environment. This result ensures that a regulator can always allocate risk in a stable way. No matter
how the risk environment changes, there is always a core element.

We next provide a linear program such that its optimal objective value can be used to determine whether a given
cooperative game is a risk allocation game or not. If the game is a risk allocation game, then an optimal solution to
the linear program yields a risk environment that generates the game. We then show how to use the linear program to
characterize all risk environments that generate a given totally balanced game.

At last, we focus on games where only the distribution of values is uncertain, while the value of the aggregate portfolio
is constant over all states of nature. This case is relevant for situations where the risk of the aggregate portfolio is low
compared to the risk involved in the individual portfolios. We show that the class of risk allocation games with no aggregate
uncertainty coincides with the class of exact games (Schmeidler, 1972). As evidenced by the previous paragraphs, there are
many applications giving rise to the class of totally balanced games. There are few applications which lead to exact games.
The only example we know of is Calleja et al. (2005), who show that the class of multi-issue allocation games coincides
with the class of nonnegative exact games.

The fact that each risk allocation game is exact implies that for each coalition there is a core element such that the
coalition only gets its stand-alone value. This means that in the case of no aggregate uncertainty, this coalition does not
necessarily benefit from the diversification opportunities offered by the aggregate portfolio. As a consequence, the regulator
has a high level of discretion in allocating the risk to the individual portfolios.

The structure of the paper is as follows. First we introduce coherent measures of risk, transferable utility games, and risk
allocation games. In Section 3 we prove that the class of risk allocation games coincides with the class of totally balanced
games and investigate our constructive proof by linear programming. In Section 4 we show that the class of risk allocation
games with no aggregate uncertainty coincides with the class of exact games. In Section 5 we conclude.

2. Preliminaries

2.1. Coherent measures of risk

Consider the set R
S of realization vectors, where S denotes the number of states of nature. State of nature s occurs

with probability ps > 0 and
∑S

s=1 ps = 1. The vector X ∈ R
S represents a portfolio’s possible profit and loss realizations on

a common chosen future time horizon, say at t = 1. The amount Xs is the portfolio’s payoff in state of nature s. Negative
values of Xs correspond to losses. The inequality Y � X means that Ys � Xs for all s = 1, . . . , S .

A measure of risk is a function ρ : R
S → R measuring the risk of a portfolio from the perspective of the present (t = 0).

It is the minimal amount of cash the regulated agent has to add to his portfolio, and to invest in a reference instrument
today, such that it ensures that the risk involved in the portfolio is acceptable to the regulator. We assume that the refer-
ence instrument has payoff 1 in each state of nature at t = 1, thus its realization vector is 1S = (1, . . . ,1)� . The reference
instrument is riskless in the “classical sense,” having no uncertainty in its payoffs. It is most natural to think of it as a zero
coupon bond. The price of the reference instrument is denoted by δ ∈ R+ , where R+ = [0,∞). We adjust the definition of
coherent measures of risk to the discrete case with realization vectors as follows.

Definition 2.1. A function ρ : R
S → R is called a coherent measure of risk (Artzner et al., 1999) if it satisfies the following

axioms:

1. Monotonicity: for all X, Y ∈ R
S such that Y � X , we have ρ(Y ) � ρ(X).

2. Subadditivity: for all X, Y ∈ R
S , we have ρ(X + Y ) � ρ(X) + ρ(Y ).

3. Positive homogeneity: for all X ∈ R
S and h ∈ R+ , we have ρ(h X) = hρ(X).

4. Translation invariance: for all X ∈ R
S and a ∈ R, we have ρ(X + a1S ) = ρ(X) − δa.
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Acerbi (2002) treats a subclass of coherent measures of risk: spectral measures of risk. The definition of spectral measures
of risk with equiprobable outcomes, i.e. p1 = · · · = pS = 1/S, is as follows.

Let us introduce the ordered statistics Xs:S given by the ordered values of the S-tuple X1, . . . , X S , that is
{X1:S , . . . , X S:S} = {X1, . . . , X S} and X1:S � X2:S � · · · � X S:S .

Definition 2.2. Let the outcomes be equiprobable. Consider a vector φ ∈ R
S . The measure of risk Mφ : R

S → R defined by

Mφ(X) = −δ

S∑
s=1

φs Xs:S (1)

is a spectral measure of risk if φ ∈ R
S satisfies the conditions:

1. Nonnegativity: φs � 0 for all s = 1, . . . , S .
2. Normalization:

∑S
s=1 φs = 1.

3. Monotonicity: φs is non-increasing, that is φs1 � φs2 if s1 < s2 and s1, s2 ∈ {1, . . . , S}.

Spectral measures of risk are discounted weighted average losses, with non-increasing weights, with the highest weight
on the worst outcome. The weight vector φ is the so-called risk spectrum, the “attitude” toward risk. An important example
of a spectral measure of risk is the k-expected shortfall.

Definition 2.3. Let the outcomes be equiprobable and let k ∈ {1, . . . , S}. The k-expected shortfall of the realization vector X is
defined by

ESk(X) = −δ

k∑
s=1

1

k
Xs:S . (2)

The k-expected shortfall is the discounted average of the worst k outcomes. For a detailed discussion see Acerbi and
Tasche (2002).

2.2. Transferable utility games

Let N = {1, . . . ,n} denote a finite set of players. A value function v : 2N → R with v({∅}) = 0 gives rise to a cooperative game
with transferable utility (game, for short) (N, v). Let Γ denote the set of games with n players. An allocation is a vector x ∈ R

n ,
where xi is the payoff of player i ∈ N . An allocation x yields payoff x(C) = ∑

i∈C xi to a coalition C ∈ 2N . An allocation x ∈ R
n

is called efficient, if x(N) = v(N); individually rational, if xi � v({i}) for all i ∈ N , and coalitionally rational if x(C) � v(C) for
all C ∈ 2N . The core is the set of efficient and coalitionally rational allocations.

For each C ∈ 2N let a(C) ∈ R
n be the membership vector, ai(C) = 1 for i ∈ C and ai(C) = 0 otherwise.

Definition 2.4. A balanced vector of weights is a vector (λC )C∈2N ∈ R
2N

+ such that
∑

C∈2N λC a(C) = a(N). A game (N, v) is
balanced if

∑
C∈2N λC v(C) � v(N) for all balanced vectors of weights.

A well-known interpretation of balancedness is that the players can distribute one unit of working time to any coalition
and if each coalition is active during a fraction λC of a unit of time then the players cannot generate more value than v(N),
the value of the grand coalition. Balancedness is a necessary and sufficient condition for non-emptiness of the core in a
transferable utility game (Bondareva, 1963; Shapley, 1967). See Predtetchinski and Herings (2004) for an extension of the
concept of balancedness to be necessary and sufficient for non-emptiness of the core in non-transferable utility games.

For a game (N, v) and a coalition C ∈ 2N , a subgame (C, vC ) is obtained by restricting v to subsets of C .

Definition 2.5. A game (N, v) is totally balanced if for every D ∈ 2N its subgame (D, v D) is balanced, that is, if for all D ∈ 2N

and for all vectors (λC )C∈2D ∈ R
2D

+ satisfying
∑

C∈2D λC a(C) = a(D), we have
∑

C∈2D λC v(C) � v(D).

In a totally balanced game every subgame has a non-empty core. Let Γtb denote the family of totally balanced games
with n players. An interesting subclass of totally balanced games is the class of exact games (Shapley, 1971; Schmeidler,
1972).

Definition 2.6. A game (N, v) is exact if for each C ∈ 2N there exists a core allocation x such that x(C) = v(C).

Schmeidler (1972) characterizes exact games as follows (see also Derks and Reijnierse, 1998, Theorem 7).
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Theorem 2.7. (See Schmeidler, 1972.) A game (N, v) ∈ Γ is exact if and only if for every D ∈ N \ {N}, for each vector (γ C )C∈N such
that γ C ∈ R+ and

∑
C∈N \{N} γ C a(C) = a(D) + γ Na(N) we have

∑
C∈N \{N} γ C v(C) � v(D) + γ N v(N).

Let Γe denote the family of exact games with n players. Convex games (Shapley, 1971) are a subset of exact games.

Definition 2.8. A game (N, v) is convex if for all C, D ∈ 2N we have that v(C) + v(D) � v(C ∪ D) + v(C ∩ D).

Let Γc denote the family of convex games with n players. We have that Γ ⊇ Γtb ⊇ Γe ⊇ Γc.

2.3. Risk allocation games

Denault (2001) introduces risk capital allocation problems: Suppose a firm has n constituents and the matrix of their
realization vectors is given by X ∈ R

S×n .1 The question is how the risk of the firm as measured by a coherent measure of
risk has to be allocated to its constituents in a stable way, meaning that the risk allocated to a coalition of constituents does
not exceed the risk of the coalition’s aggregate portfolio.

Let X·i denote the ith column of X , the realization vector of portfolio i. Let Xs· denote the row of X corresponding to
state of nature s, Xs,i its element at row s and column i, and (Xs,i)i∈D the row vector corresponding to state of nature s
with elements i ∈ D . For a coalition of portfolios C ∈ 2N , let X(C) = ∑

i∈C X·i and Xs(C) = ∑
i∈C Xs,i .

Denault (2001) assumes that the nth portfolio equals b ∈ R units of the reference instrument: X·n = b1S . We will con-
sider the slightly more general setting where X·n can be any portfolio. Moreover, we make a distinction between the risk
environment and the induced game.

Definition 2.9. A risk environment is a tuple (N, S, p, X,ρ), where N is the set of portfolios, S indicates the number of
states of nature, p = (p1, . . . , pS ) is the vector of realization probabilities of the various states, X is the matrix of realization
vectors, and ρ is a coherent measure of risk.

Definition 2.10. Given a risk environment (N, S, p, X,ρ) a risk allocation game is a game (N, v), where the value function
v : 2N → R is defined by

v(C) = −ρ
(

X(C)
)

for all C ∈ 2N . (3)

A risk allocation game with n players is induced by the number of states of nature, their probability of occurrence,
n realization vectors and a coherent measure of risk. Let Γr denote the family of risk allocation games with n players. In
such a game, according to Eq. (3), the larger the risk of any subset of portfolios, the lower its value.

If the rows of a matrix of realization vectors sum up to the same number, then there is no aggregate uncertainty. Formally:

Definition 2.11. A matrix of realization vectors X ∈ R
S×n has no aggregate uncertainty if there exists a number α ∈ R such

that X(N) = α1S .

Let Γrnau denote the family of risk allocation games with n players with no aggregate uncertainty. Obviously, Γrnau ⊆ Γr.
We first study risk allocation games in general, then with no aggregate uncertainty.

3. Total balancedness

3.1. Risk allocation games and totally balanced games

Denault (2001, Theorem 4) shows that the family of risk capital allocation problems is balanced. As a subgame of a
risk allocation game is also a risk allocation game, we can adjust his proof to show that risk allocation games are totally
balanced.

Proposition 3.1. All games (N, v) ∈ Γr are totally balanced, Γr ⊆ Γtb .

Proof. Consider a risk environment (N, S, p, X,ρ) inducing the game (N, v). We show that for any D ∈ 2N , the subgame
(D, v D) is balanced. Take any (λC )C∈2D ∈ R

2D

+ such that
∑

C∈2D λC a(C) = a(D). Then by Eq. (3) and the positive homogeneity
and subadditivity of ρ we have that

1 Denault (2001) uses continuously distributed random variables. We adjust his setting to the more tractable setup with discrete random variables,
resulting in realization vectors.
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∑
C∈2D

λC v D(C) = −
∑

C∈2D

ρ
(
λC X(C)

)
� −ρ

( ∑
C∈2D

( ∑
i∈C

λC X·i
))

= −ρ

( ∑
i∈D

( ∑
C∈2D , C�i

λC X·i
))

= −ρ

( ∑
i∈D

X·i
)

= −ρ
(

X(D)
)

= v D(D),

where the last line follows from rearranging the summation and using the fact that we have a balanced vector of weights.
Thus (D, v D) is balanced. �

Not only is it true that all risk allocation games are totally balanced, but also any totally balanced game can be generated
by a risk allocation game. We illustrate Proposition 3.2 and its proof by Example 3.3.

Proposition 3.2. Each game (N, v) ∈ Γtb is induced by some risk environment (N, S, p, X,ρ), so Γtb ⊆ Γr .

Proof. Take any game (N, v) ∈ Γtb. The zero-normalized value function v0 corresponding to v is defined by

v0(C) = v(C) −
∑
i∈C

v
({i}), C ∈ 2N . (4)

It is well known that (N, v0) ∈ Γtb. Using the singletons with weights 1 it follows from the total balancedness of v0 that
for any C ∈ 2N

0 =
∑
i∈C

v0
({i}) � v0(C). (5)

Moreover, any C ∈ 2N partitions N into C and N \ C, and using weights 1 on C and N \ C leads to

v0(C) + v0(N \ C) � v0(N). (6)

Using Eqs. (5) and (6) we obtain that for any C ∈ 2N

0 � v0(C) � v0(N). (7)

The remainder of the proof is constructive. We specify the risk environment (N, S, p, X0,ρ) as follows. We introduce
a state of nature for all non-empty coalitions of N , so S = 2n − 1. We label states of nature by C, D ∈ 2N \ {∅}. We con-
sider equiprobably outcomes, p1 = · · · = pS = 1/S , and we let ρ be the risk measure equal to the 1-expected shortfall
(Definition 2.3) with δ = 1. For each state of nature C ∈ 2N \ {∅}, let the row vector X0

C · be such that

(
X0

C,i

)
i∈C belongs to the core of

(
C, vC

0

)
, (8)

X0
C,i = v0(N), i ∈ N \ C . (9)

The risk environment (N, S, p, X0,ρ) induces the game (N, v̄0). We will show that v̄0 = v0.
By the definition of 1-expected shortfall, we have

v̄0(C) = −ρ
(

X0(C)
) = min

D∈2N \{∅}
X0

D(C), C ∈ 2N . (10)

The definition of a subgame, Eq. (8), and the efficiency of a core element imply

vC
0 (C) = v0(C) = X0

C (C), C ∈ 2N \ {∅}. (11)

We show next that

X0
C (C) � X0

D(C), C, D ∈ 2N \ {∅}. (12)

Indeed, if D ⊇ C then inequality (12) follows from (8) as we have for a core element (X0
D,i)i∈D in subgame (D, v0

D) that

X0
C (C) = v0(C) � X0

D(C). (13)

If D ⊇ C then one of the components of (X0
D,i)i∈C is v0(N), and using Eq. (7) inequality (12) follows immediately. Combining

Eqs. (11) and (12) with Eq. (10) we obtain that v̄0 = v0.
By using the matrix of realization vectors X defined by X·i = X0

·i + v({i})1S , i ∈ N , we obtain a risk environment that
induces the game (N, v). �
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Table 1
A totally balanced game and its zero-normalized game.

C v(C) v0(C)

{1} −10 0
{2} 3 0
{3} −2 0
{1,2} −4 3
{1,3} −6 6
{2,3} 2 1
{1,2,3} −1 8

Table 2
Payoff matrices for the zero normalized and the original games.

S X0
·1 X0

·2 X0
·3 X·1 X·2 X·3

{1} 0 8 8 −10 11 6
{2} 8 0 8 −2 3 6
{3} 8 8 0 −2 11 −2
{1,2} 1 2 8 −9 5 6
{1,3} 2 8 4 −8 11 2
{2,3} 8 1 0 −2 4 −2
{1,2,3} 2 1 5 −8 4 3

Example 3.3. We illustrate the construction used in the proof of Proposition 3.2 in an example with 3 players. Table 1
presents the value function v of a totally balanced game, as well as the zero-normalized value function v0 corresponding
to v . Note that inequality (7) is satisfied by v0.

In Table 2 we have specified the matrix of realization vectors X0 according to requirements (8) and (9). For instance,
for C = {1,2} we have that (X0

{1,2},1, X0
{1,2},2) = (1,2) is a point in the core of the subgame with players 1 and 2, and

X0
{1,2},3 = 8 = v0(N).

It is easy to check that the risk environment specified by X0 and the risk measure equal to the 1-expected shortfall with
δ = 1 generate v0.

To generate the value function v, we transform X0 into X by specifying X·i = X0
·i + v({i})1S for all i ∈ N . The risk

environment corresponding to X and the risk measure equal to the 1-expected shortfall with δ = 1 can be verified to
induce the game (N, v).

Note that in our constructive proof the statement of Proposition 3.2 is strengthened in the sense that the family of
games induced by risk environments with S � 2n − 1 and the risk measure equal to the 1-expected shortfall with δ = 1
coincides with the family of totally balanced games with n players, that is any totally balanced game can be generated by a
properly specified risk environment with the 1-expected shortfall and 2n − 1 states of nature. From Propositions 3.1 and 3.2
we derive the following theorem.

Theorem 3.4. The class of risk allocation games coincides with the class of totally balanced games, Γr = Γtb .

Kalai and Zemel (1982b) use a similar construction to show that a game is totally balanced if and only if it is the
minimum game of a finite collection of additive games. A game (N, v) is called additive if there exists a set of real numbers
b1, . . . ,bn such that for every C ∈ 2N , v(C) = ∑

i∈C bi . For a finite collection of games {vt}t∈T the minimum game is defined
by (min vt)(C) = mint∈T vt(C). It is easy to see that the totally balanced game v in Table 1 is equal to the minimum game
of the collection of additive games generated by XC ·, C ∈ 2N \ {∅}, in Table 2.

3.2. Linear programming results

Consider a totally balanced game (N, v) ∈ Γtb. Throughout the subsection, we choose S = 2n − 1, p1 = · · · = pS = 1/S,

and ρ the risk measure equal to 1-expected shortfall with δ = 1, just like in Proposition 3.2. Whenever we write v is
generated by a matrix of realization vectors X we mean that the risk allocation game induced by the risk environment
(N, S, p, X,ρ) equals (N, v).

In the proof of Proposition 3.2 the matrix of realization vectors X generating v was constructed using the core require-
ment2 (8): for every C ∈ 2N \ {∅}

(XC,i)i∈C belongs to the core of
(
C, vC )

. (14)

2 There we had a zero normalized game, but it is easy to see that after renormalizing the core requirement is still satisfied.
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The other elements of X were chosen to be sufficiently large.
Let a game (N, v) ∈ Γ be given. We develop a linear programming problem such that the optimal value of the objective

function will exceed
∑

C∈2N v(C) if (N, v) ∈ Γ \ Γtb and is equal to
∑

C∈2N v(C) whenever the game is totally balanced.
Moreover, in the latter case the matrices derived from the linear program’s optimal solutions generate v .

To do so, given a matrix X we define the vector X̂ ∈ R
Sn by juxtaposing the rows of X ∈ R

S×n , that is X̂ =
(X1·, X2·, . . . , X S·)� ∈ R

Sn, and the reverse operation transforms a vector X̂ ∈ R
Sn into a matrix X ∈ R

S×n . We will use
the notations X̂ and X interchangeably.

Let 0n = (0,0, . . . ,0) ∈ R
1×n be the n-dimensional row vector of zeros. For every C ∈ 2N \ {∅}, we define the matrices

A(C) =

⎛
⎜⎜⎜⎝

a(C)� 0n 0n

0n a(C)� 0n

. . .
.
.
.

0n 0n · · · a(C)�

⎞
⎟⎟⎟⎠ ∈ R

S×Sn (15)

containing the membership vector a(C) transposed along the “diagonal” and 0n otherwise.
A matrix X ∈ R

S×n generates v if and only if for every C ∈ 2N \ {∅}
v(C) = min

D∈2N \{∅}
XD(C). (16)

Eq. (16) can be rewritten as

v(C) = min
D∈2N

AD·(C) X̂, (17)

where AD·(C) denotes the Dth row of A(C). It follows from Eq. (17) that X generates v if and only if for every C ∈ 2N \ {∅}
A(C) X̂ � v(C)1S , (18)

where for each C at least one inequality holds with equality.
We introduce some additional notation. Let

E = (
a
({1})�

,a
({2})�

, . . . ,a(N)�
) ∈ R

1×Sn,

V =

⎛
⎜⎜⎜⎝

v({1})1S

v({2})1S

.

.

.

v(N)1S

⎞
⎟⎟⎟⎠ ∈ R

S2
, (19)

and

A =

⎛
⎜⎜⎜⎝

A({1})
A({2})

.

.

.

A(N)

⎞
⎟⎟⎟⎠ ∈ R

S2×Sn. (20)

Consider the linear programming problem (Pv ):

(Pv) min E X̂

s.t. A X̂ � V ,

X̂ ∈ R
Sn.

The objective function of (Pv ) captures the constructive proof of Proposition 3.2, as it is minimizing exactly the sum of those
elements of X̂ which are used in the core requirement (14). Using Eq. (18) it can be seen that the feasibility constraints in
the linear program are the necessary requirements for v to be generated by a feasible solution.

The set of optimal solutions of (Pv ) is non-empty, since X̂ = (k, . . . ,k) ∈ R
Sn is a feasible solution, where k =

maxC∈2N v(C) and the set of feasible solutions is bounded from below. We denote the set of optimal solutions of (Pv )
by X ∗

v and a particular optimal solution by X̂∗ ∈ R
Sn .

Proposition 3.5. Consider a game (N, v) ∈ Γ and an optimal solution X̂∗ ∈ X ∗
v of (Pv ). The optimal value of the objective function

E X̂∗ equals
∑

C∈2N v(C) if and only if v is generated by X∗ .
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Proof. (⇒) By the feasibility constraints it holds that

AD·(C) X̂∗ � v(C), C ∈ 2N \ {∅}, D ∈ 2N \ {∅}. (21)

Since by assumption E X̂∗ = ∑
C∈2N v(C), it follows that

AC ·(C) X̂∗ = v(C), C ∈ 2N \ {∅}. (22)

It follows by inequality (21) and Eq. (22) that v is generated by X∗ .
(⇐) We use a proof by contradiction. Suppose E X̂∗ = ∑

C∈2N v(C). By the feasibility constraints it holds that

E X̂∗ >
∑

C∈2N

v(C). (23)

Note that minD∈2N \{∅} X∗
D(C) is attained in row C of X∗ , since otherwise we could decrease the objective function by

substituting the row attaining the minimum for row C . Combining this with Eq. (23) we obtain that there exists a coalition
C ∈ 2N such that

min
D∈2N \{∅}

X∗
D(C) > v(C), (24)

which implies that v is not generated by X∗ , a contradiction. �
Take any matrix of realization vectors X ∈ R

z×n , where z is a strictly positive integer. Let Y (X) ∈ R
(2n−1)×n denote a

matrix in which for all C ∈ 2N \ {∅} we have that YC ·(X) = Xk· , where k ∈ arg mink∈{1,2,...,z} Xk(C). The following proposition
claims that the realization matrix X generates v if and only if Ŷ (X) is an optimal solution of (Pv ).

Proposition 3.6. Consider a game (N, v) ∈ Γtb . The matrix of realization vectors X ∈ R
z×n generates v if and only if Ŷ (X) ∈ X ∗

v .

Proof. (⇒) Since X generates v, for all C ∈ 2N \ {∅} there exists a state of nature s(C) such that

Xs(C)(C) = v(C),

Xs(C) � v(C), s ∈ {1, . . . , S}.
It follows that Ŷ (X) is a feasible and optimal solution of (Pv ).

(⇐) Since the game (N, v) is totally balanced, according to Theorem 3.4 v is generated by some matrix of realization
vectors. By Proposition 3.5, it follows that v is generated by all elements of X ∗

v , so Y (X) generates v , and by construction
X generates v . �

The following result shows that any matrix of realization vectors X that generates v satisfies (14).

Proposition 3.7. Consider a game (N, v) ∈ Γtb . Any optimal solution of (Pv ) X̂∗ ∈ X ∗
v satisfies the core requirement (14).

Proof. Take any X̂∗ ∈ X ∗
v . Since by Proposition 3.2 all totally balanced games can be generated, we know by Proposition 3.5

that E X̂∗ = ∑
C∈2N v(C). For every C ∈ 2N \ {∅}, feasibility requires that AC ·(C) X̂∗ � v(C), so

AC ·(C) X̂∗ = v(C). (25)

The equalities in (25) together with the feasibility constraints imply that the rows of X∗ contain core allocations of the
respective subgames. �

Propositions 3.6 and 3.7 imply that if a game is generated by X ∈ R
z×n, then Y (X) satisfies the core requirement (14).

Thus to generate a given totally balanced game the rows of the matrix of realization vectors can be permutated and some
of them can be combined, but essentially the core requirement (14) is satisfied in all of them.

4. Exactness

In this section we show that if there is no aggregate uncertainty in a risk environment, then the induced risk allocation
game is an exact game, and conversely all exact games can be generated by a properly specified risk environment with no
aggregate uncertainty. Proposition 4.1 claims that risk allocation games with no aggregate uncertainty are exact.

Proposition 4.1. All games with (N, v) ∈ Γrnau are exact, Γrnau ⊆ Γe .
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Proof. Consider the risk environment (N, S, p, X,ρ), where X has no aggregate uncertainty. We show that the induced risk
allocation game is exact by Theorem 2.7.

Take any D ∈ N \ {N} and any vector (γ C )C∈N such that γ C ∈ R+ and∑
C∈N \{N}

γ C a(C) = a(D) + γ Na(N). (26)

Then, by Eq. (3), the positive homogeneity, and subadditivity of ρ we have that

∑
C∈N \{N}

γ C v(C) = −
∑

C∈N \{N}
ρ

(∑
i∈C

γ C X·i
)

� −ρ

( ∑
C∈N \{N}

(∑
i∈C

γ C X·i
))

= −ρ

(∑
i∈N

( ∑
C�i, C∈N \{N}

γ C X·i
))

= −ρ

(∑
i∈D

X·i + γ N
∑
i∈N

X·i
)

, (27)

where the last two lines follow from rearranging the summation and using Eq. (26), thus if i ∈ D then
∑

C�i, C∈N \{N} γ C =
1 + γ N , and if i /∈ D then

∑
C�i, C∈N \{N} γ C = γ N . Using translation invariance and positive homogeneity, inequality (27)

can be rewritten as
∑

C∈N \{N}
γ C v(C) � −ρ

(∑
i∈D

X·i + γ N
∑
i∈N

X·i
)

= −ρ
(

X(D)
) − ρ

(
γ N X(N)

)
= −ρ

(
X(D)

) − γ Nρ
(

X(N)
)

= v(D) + γ N v(N), (28)

thus we have an exact game. �
Proposition 4.2 shows that each exact game is generated by some risk environment with no aggregate uncertainty.

Proposition 4.2. Each game (N, v) ∈ Γe is induced by some risk environment (N, S, p, X,ρ) such that X has no aggregate uncer-
tainty, Γe ⊆ Γrnau .

Proof. Consider the exact game (N, v) ∈ Γe. We specify the risk environment (N, S, p, X,ρ) as follows. We introduce a state
of nature for all proper non-empty subcoalitions of N , thus S = 2n − 2. Let p1 = · · · = pS = 1/S , and let ρ be the 1-expected
shortfall with δ = 1. For all C ∈ 2N \ {∅} there exist a core element xC such that xC (C) = v(C) since (N, v) is exact. Construct
X ∈ R

S×n as follows. We define, for all C ∈ 2N \ {∅, N}, XC · = xC . Since xC is a core element, it holds that XC ·(N) = v(N),

thus X has no aggregate uncertainty. We denote the game induced by the risk environment by v̄ . Now we have for every
C ∈ 2N \ {∅} that

v̄(C) = min
D∈2N \{∅,N}

XD(C) = v(C), (29)

thus v̄ = v . �
Note that in the proof of Proposition 4.2 the sum of the entries in each row of X is equal to v(N). That is why we need

only 2n − 2 states of nature.
Combining Propositions 4.1 and 4.2 we have the following theorem.

Theorem 4.3. The class of risk allocation games with no aggregate uncertainty coincides with the class of exact games, Γrnau = Γe .

Biswas et al. (1999) and Csóka et al. (2007a) show that a game is convex if and only if any of its subgame is exact.
This result implies directly that if there are less than four players, then the class of exact games coincides with the class of
convex games. Using this observation Theorem 4.3 can be reformulated as follows.

Theorem 4.4. Let n ∈ N be such that n < 4. Then the class of risk allocation games with n portfolios and no aggregate uncertainty
coincides with the class of convex games with n players, Γrnau = Γc .
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Table 3
The value function of a convex game v .

C v(C)

{1} −10
{2} 3
{3} −2
{1,2} −5
{1,3} −6
{2,3} 2
{1,2,3} −1

Table 4
A matrix of realization vectors generating v .

S X·1 X·2 X·3
∑

i∈N Xs,i

1 −3 4 −2 −1
2 −7 3 3 −1
3 −10 5 4 −1

Theorem 4.4 is illustrated by the following example.

Example 4.5. In this example we show how a 3-player convex game is generated by a risk allocation game with no aggregate
uncertainty. Note that the game in Table 1 of Example 3.3 is not convex since v({1,2}) + v({1,3}) = −4 − 6 = −10 >

v({1}) + v({1,2,3}) = −10 − 1 = −11. However, by changing v({1,2}) to −5 we get the convex game displayed in Table 3.
This game is generated by the risk environment with matrix of realization vectors X depicted in Table 4 and the risk

measure of 1-expected shortfall with δ = 1.
Notice that the rows of X correspond to appropriately chosen marginal contribution vectors. For instance, in the first row

of X we have the marginal contribution vector corresponding to the permutation (3,2,1): v({3}) − v({∅}) = −2 − 0 = −2,
v({2,3}) − v({2}) = 2 − (−2) = 4, and v({1,2,3}) − v({2,3}) = −1 − 2 = −3. At any marginal contribution vector, there
are n coalitions that exactly receive their value. Thus to generate a convex game fewer states of nature are required than
2n − 1. In the example 3 states of nature suffice. Also note that all rows of X sum up to −1, since the sum of the marginal
contributions is always the value of the grand coalition, and there is no aggregate uncertainty.

Similarly to Proposition 3.6 we can characterize all the risk environments that generate a given exact game.

Proposition 4.6. Consider a game (N, v) ∈ Γe . The matrix of realization vectors X ∈ R
z×n without aggregate uncertainty generates v

if and only if Ŷ (X) ∈ X ∗
v .

Proof. Proposition 3.6 characterizes all the matrices that generate a given totally balanced game. Since by Proposition 4.1
only exact games can be generated with matrices satisfying no aggregate uncertainty, the proof is straightforward. �
5. Conclusion

In this paper we have discussed transferable utility cooperative games derived from a risk environment: risk allocation
games. We have shown that the class of risk allocation games coincides with the class of totally balanced games. This result
makes sure that a regulator or performance evaluator can always allocate risk in a stable way: there will always be a core
element, no matter how the risk environment is changing.

We have also studied the case when the aggregate portfolio has the same payoff in all states of nature. We proved
that if there is no aggregate uncertainty then the class of risk allocation games equals the class of exact games, where for
each coalition there is a core element such that the coalition gets only its stand-alone value. This means that if there is no
aggregate uncertainty, then not necessarily everybody benefits from the diversification effects in a stable allocation of risk.
The regulator or performance evaluator has much discretionary power in allocating risk, since for each coalition there is
always a stable allocation of risk such that the coalition gets its stand-alone value.

We have characterized all the matrices of realization vectors that generate a given totally balanced game or a given exact
game. In both cases the vectors derived from the matrices by juxtaposing their rows are related to the optimal solutions of
a linear programming problem.

Denault (2001) shows that if a risk allocation game for an arbitrary matrix of realization vectors is convex then the risk
measure by which it is induced is necessarily additive, thus the generated risk allocation game is also additive. However, by
imposing some structure on the matrix of realization vectors we have proven the following theorem: If there are less than
four players and the matrix of realization vectors has no aggregate uncertainty, then the generated risk allocation game is
convex, and any convex game can be generated by such a risk environment.
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