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COSTLY NETWORK FORMATION AND REGULAR

EQUILIBRIA

FRANCESCO DE SINOPOLI† AND CARLOS PIMIENTA‡

Abstract. We prove that for generic network-formation games where players
incur some strictly positive cost to propose links the number of Nash equilibria

is finite. Furthermore all Nash equilibria are regular and, therefore, stable sets.

1. Introduction

Harsanyi (1973) proves that for almost all normal form games the number of Nash
equilibria is finite and, moreover, all Nash equilibria are regular. Of course, this
result does not apply to economic models that, even for generic preferences, give rise
to a nongeneric normal form. This is the case for the following network-formation
game (Myerson, 1991): Simultaneously, every player in the game proposes a list of
players with whom to form a link and a direct link between two players is formed if
and only if both players agree on that. This game is simple and intuitive, however,
since two players must agree to form a link, there is a coordination problem that
creates duplication of payoffs, i.e. the same network can be generated by many
different strategy profiles, most of them featuring miscoordination.

It has been common in the network literature to introduce costs associated to
link formation (see, for instance, Jackson and Wolinsky, 1996; Bala and Goyal,
2000; Calvo-Armengol, 2004). When this is the case, players have to ponder about
the benefits of different links considering that creating them is costly. In this paper
we prove that Harsanyi’s result can be extended to network-formation games if
proposing links is costly. For generic network-formation games with costly link
proposal, the number of Nash equilibria is finite and, furthermore, every Nash
equilibrium is regular.

There are two main motivations for the present analysis. First, Govindan and
McLennan (2001) have shown that it is not the case that for all game forms and for
almost all payoffs over outcomes the set of equilibrium distributions on outcomes
is finite. Hence, we have to turn to families of games to obtain positive results.
Obvious candidates are models that usually exhibit multiplicity of equilibria such
as signaling games (Park, 1997), voting games (De Sinopoli, 2001; De Sinopoli and
Iannantuoni, 2005), and network-formation games (Pimienta, 2008).

Second, the aforementioned possibility of miscoordination brings about inade-
quate Nash equilibria, thus invoking equilibrium refinements. For instance, Calvo-
Armengol and İlkilic (2007) study the original network-formation game to character-
ize how proper equilibrium (Myerson, 1978) relates to pairwise-stability, a network
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2 F. DE SINOPOLI AND C. PIMIENTA

equilibrium concept defined by Jackson and Wolinsky (1996). When proposing
links is costly, we obtain that generically all Nash equilibria are regular and, hence,
stable sets (as defined by Mertens, 1989).

In the next section we introduce basic notation and terminology of networks.
This is based on Jackson and Wolinsky (1996). In Section 3 we formally introduce
the network-formation game with costly link proposal. An example illustrating the
result is presented in Section 4. Section 5 contains the main result and its proof. To
conclude, Section 6 discusses possible relaxations of the assumptions and extensions
of the result to several variants of the network-formation game that can be found
in the literature.

2. Networks

Let N = {1, . . . , n} be the finite set of players. A network g connecting them
is a simple graph whose nodes are players in N and whose edges are direct links
between the agents. A direct link in the network g between two different agents i
and j is denoted by ij ∈ g. We focus on undirected networks or simple undirected

graphs, where links ij and ji are equivalent.
The set of i’s direct links in g is Li(g) = {jk ∈ g : j = i or k = i}. In the complete

network gN each player is linked to every other player, that is, Li(g
N ) = {ij : j 6= i},

for all i ∈ N . Therefore, given the finite set N , the set of all undirected networks
G is the set of all subsets of the complete network P(gN ).1

Each player i can be directly linked with n − 1 other players. The number of
links in the complete network gN is n(n − 1)/2. Since G is the power set of gN it
contains k = 2n(n−1)/2 different networks.

3. The Model

The model described here is a modified version of the network-formation game
proposed by Myerson (1991) to incorporate costly link proposal.

Given the set of players N = {1, . . . , n}, a pure strategy of player i is a subset
of N \ {i}. It is interpreted as a list of other players to whom player i proposes to
form bilateral links. A link between player i and player j is created if and only if i
is in the list of player j and j is in the list of player i.

The set of pure strategies of player i, denoted by Si, is the set of all collection of
players that do not include himself P(N \ {i}). Therefore, the set of pure strategy
profiles is S =

∏

i∈N Si. Given a pure strategy profile s ∈ S we denote as θ(s) the
network that is created, i.e. θ(s) = {ij : j ∈ si and i ∈ sj}.

To capture the idea that proposing links is costly, we assume that if player i plays
the pure strategy si she has to pay the cost |si|δi. Costs are, therefore, described
by a vector δ = (δ1, . . . , δn) ∈ R

n
++. Namely, each link proposal has associated a

strictly positive cost and costs may differ among players.2

Player i’s set of mixed strategies is Σi = ∆(Si) and the set of mixed strategy
profiles is Σ =

∏

i Σi. We write σi(si) to denote the probability attached to si

by the mixed strategy σi. While a pure strategy profile results on a network with
certainty, a mixed strategy profile σ ∈ Σ generates a probability distribution p(σ) =
{pg(σ)}g∈G on the set of networks G, where

pg(σ) =
∑

s∈θ−1(g)

(

∏

i∈N

σi(si)

)

.

1As usual, if A is a finite set we denote as P(A) the set of all subsets (including the empty set)

of A. Furthermore, ∆(A) denotes the set of all probability distributions on A.
2See Section 6.2 for different costs structures.
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A set of players N defines a family of network-formation games. Each game
in this family is identified with the utility vectors {ui}i∈N , where ui = {ug

i }g∈G

and ug
i is the payoff that player i obtains from network g, and the cost vector

δ = (δ1, . . . , δn). A network-formation game with costly link proposals can be seen
as a point (u, δ) ∈ R

nk × R
n
++.3

The strategy profile σ gives player i an expected payoff given by

Ui(σ) =
∑

g∈G

pg(σ)ug
i −

∑

si∈Si

σi(si)|si|δi.

4. An Example

In this section we illustrate the meaning of the result by means of a simple
example. Namely, we describe a network-formation game with costly link proposal
with a continuum of equilibria where some player uses dominated strategies. Then
we show that after a small perturbation in the vector of utilities over networks only
a finite number of (undominated) Nash equilibria survives.

Consider a 3-person network-formation game with costly link proposal. Each
player derives a utility from network g equal to the number of links that she main-
tains in g, i.e. ui(g) = Li(g) for i = 1, 2, 3. The cost vector is δ = (δ1, δ2, δ3) =
(0.5, 0.5, 1). Notice that for player 3 any strategy that proposes some link is a
weakly dominated strategy. We define the following set of strategy profiles:

Σ′ =
{

({2, 3}, {1, 3}, α{1} + β{2} + (1 − α − β){1, 2}) : α, β ∈ [0, 0.5]
}

.

Any strategy profile in Σ′ is a Nash equilibrium. Therefore, the game has a
continuum of equilibria which involve the use of dominated strategies. However,
this is no longer the case when we slightly change the utility vector of Player 3 so
that u3(g) = L3(g) + ε. If ε > 0 then {1, 2} is not anymore a dominated strategy
and ({2, 3}, {1, 3}, {1, 2}) is the only equilibrium in Σ′. If ε < 0 then {1, 2} is a
strictly dominated strategy and no equilibrium in Σ′ exists.

5. The Result

The proof, which follows Harsanyi’s proof of the generic regularity of equilibria in
normal form games, constructs a smooth map from the best reply correspondence
to the space of network-formation games with costly link proposals. Given an
equilibrium, the set of pure best replies, the costs of proposing links and some of
the utilities over networks, the equalities imposed by the best reply conditions allow
us to uniquely reconstruct the entire vector of utilities that, together with the cost
vector, defines the game.4

We use the definition of regular equilibrium proposed by van Damme (1991,
Definition 2.5.1). The definition of van Damme requires that the strategy profile
used as reference point be in the support of the equilibrium, while Harsanyi uses the
first strategy of every player. In the proofs, Harsanyi (1973, p. 246) assumes that
his reference point is, in fact, contained in the support of the equilibrium. Hence
they both use the same definition.

3Note that each player has 2n−1 pure strategies, producing 2n(n−1) strategy profiles. The
dimension of the space of games in Harsanyi’s framework is therefore given by n2n(n−1), while in

our case the dimension is nk + n, where k = 2n(n−1)/2. This is the reason why Harsanyi’s result
does not apply here.

4In Harsanyi (1973) the map from equilibria to games is the solution of a diagonal system
while in our case, paralleling De Sinopoli and Iannantuoni (2005), this map is the solution of a
linear system. The reason is that given a pure strategy of a player, many networks can arise that

differ on which links proposed by that player are actually formed.
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Let us fix the set of players N . Let C and B be subsets of the set of strategy
profiles such that ∅ 6= C ⊆ B ⊆ S.

The elements of B can be partially ordered according to ⊆. Hence, let t∗ be a
minimal element of B.5 Furthermore, let Hi = Bi \{t

∗
i }, H =

∏

i Hi, hi = |Hi| and
h =

∑

i hi.
Consider a network-formation game with costly link proposal (u, δ) and a Nash

equilibrium σ with support C = C(σ) and set of pure best responses B = PBR(σ).
The following equalities hold for all players i ∈ N and all strategies si ∈ Hi:

∑

g∈G

pg(σ−i, si)u
g
i − |si|δi =

∑

g∈G

pg(σ−i, t
∗
i )u

g
i − |t∗i |δi.(1)

Since link proposals entail positive costs, in equilibrium players will only play
strategies that propose links that will be formed with positive probability. This
fact has consequences to the set of pure best responses.

Lemma 1. If si is a best response against σ−i then every link proposed in si is

formed with positive probability under (σ−i, si).

Proof. Let si ∈ PBRi(σ−i) and suppose that some player contained in si, say
j, is not including i in any of the pure strategies contained in C(σj). Letting
s′i = si \ {j} we can see that the strategy profile (σ−i, s

′
i) generates the same

probability distribution on networks as (σ, si) but at a smaller cost. This implies
that si is not a best response against σ−i. �

Corollary. If Bi is the set of pure best responses against σ−i there is a pure strategy

profile ti−i ∈ C(σ−i) of the opponents of player i such that all the links proposed by

any strategy si ∈ Bi are formed under (ti−i, si).

For each player i ∈ N fix ti−i ∈ C(σ−i) as in the previous corollary. The set of

networks G0
i is given by

(2) G0
i =

{

g ∈ G : g = θ(ti−i, si) for some si ∈ Hi

}

.

It is important to notice that the corollary implies that the set G0
i contains hi

different networks, all of them different from θ(ti−i, t
∗
i ).

Let us denote u0
i the elements of ui that correspond to a network in G0

i . Likewise,
we denote as u∗

i the vector of elements of ui not included in u0
i . Reorganizing (1)

we obtain:

(3)
∑

g∈G0
i

[

pg(σ−i, si) − pg(σ−i, t
∗
i )
]

u0g
i =

δi(|si| − |t∗i |) −
∑

g∈G\G0
i

[

pg(σ−i, si) − pg(σ−i, t
∗
i )
]

u∗g
i .

Given a Nash equilibrium σ, a reference pure strategy profile t∗, the utilities
contained in u∗ and the cost vector δ, the equalities in (3) define a system of
hi equations in hi unknowns, the unknowns being represented by the vector u0

i .
We have to show that such a system is nonsingular, that is, that the matrix of
coefficients of u0

i , henceforth denoted by Πi(σ), has determinant different from
zero.

The next lemma spells out some results about the elements of Πi(σ) that guar-
antee that such a matrix is invertible.

Lemma 2. The following assertions regarding Πi(σ) hold:

(1) pg(σ−i, t
∗
i ) = 0 for all g ∈ G0

i .

5Therefore, t∗i is a minimal element of Bi for each i.
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(2) All the elements in the main diagonal of Πi(σ) are nonzero.

(3) The (n,m) entry of Πi(σ) can be nonzero only if sm
i ⊂ sn

i .

Proof. Parts (1) and (3) follow form the same argument. (Recall that we chose
t∗i to be a minimal element of Bi.) Let si and s′i be two different best responses
against σ−i inducing networks g = θ(ti−i, si) and g′ = θ(ti−i, s

′
i). Assume that there

exists at least one j ∈ si such that j /∈ s′i. Given the definition of ti−i all the links
proposed by si are formed. Therefore, ij ∈ g and pg(σ−i, s

′
i) = 0 since j /∈ s′i.

Finally, part (2) is straightforward since t∗−i ∈ C(σ−i). �

Lemma 2 implies that the matrix Πi(σ) can be transformed into a triangular
one by exchanging rows and columns and consequently it is invertible. This implies
that given an equilibrium σ with support C and set of pure best replies B, a pure
strategy profile t∗, the utilities in u∗ and the vector δ we can uniquely reconstruct
the entire vector (u, δ).

Let EC,B be the graph of the correspondence that associates to each game in
R

nk × R
n
++ the set of equilibria with support C and set of pure best responses B.

EC,B =
{

(u, δ, σ) : (u, δ) ∈ R
nk × R

n
++, C(σ) = C,PBR(σ) = B

}

.

Let E∗
C,B be the projection of EC,B on the strategy space and on those coordi-

nates not corresponding to H:

E∗
C,B = Proj(Σn×Rnk−h×R

n

++)EC,B .

We have shown that there exists a function FC,B : E∗
C,B → R

nk × R
n
++ that

maps (σ, u∗, δ) into (u∗, u0, δ). An application of Sard’s Theorem to FC,B proves:

Theorem 1. For generic network-formation games with costly link proposal every

Nash equilibrium is regular.

Proof. It is enough to prove that for every possible C and B, the set of games
that have an irregular equilibrium with support C and set of best responses B is a
semi-algebraic set with dimension less than n(k + 1).

First we notice that for any C and B with ∅ 6= C ⊆ B the sets E∗
C,B and

R
nk × R

n
++ as well as the map FC,B are semi-algebraic.6

If C ⊂ B the equilibrium is irregular since it is not quasi-strict (van Damme,
1991, Corollary 2.5.3). In this case the result follows from Theorem 2.8.8 in Bochnak
et al. (1987) which establishes that:

dim
(

FC,B(E∗
C,B)

)

≤ dim E∗
C,B

=
∑

i∈N

|Ci| − n + (nk − h) + n

=
∑

i∈N

|Ci| −
∑

i∈N

|Bi| + n(k + 1)

< n(k + 1).

That is, the set of network-formation games with costly link formation that have
an equilibrium that is not quasi-strict is a lower-dimensional semi-algebraic set.

6A subset on an Euclidean space is semi-algebraic if it can be defined by a finite set of poly-
nomial equations and inequalities or by any finite union of such sets. A map between two semi-
algebraic sets is semi-algebraic if its graph is a semi-algebraic set of the corresponding product

space. The main reference for algebraic geometry is Bochnak et al. (1987).
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If C = B the equilibrium is quasi-strict. The equilibrium σ is regular if and only
the Jacobian of the map F̃ (x|t∗) defined by

F̃ si

i (x|t∗) = xi(si)
[

Ui(x−i, si) − Ui(x−i, t
∗
i )
]

for all i ∈ N, si ∈ Si \ {t
∗
i }

F̃
t∗
i

i (x|t∗) =
∑

si∈Si

xi(si) − 1,

and evaluated at the equilibrium point x = σ is nonsingular. It follows from the
definition of FC,B that this matrix is singular if and only if the matrix

∂FC,B(x, u∗, δ)

∂x

∣

∣

∣

∣

x=σ

is singular.

The semi-algebraic version of Sard’s Theorem, Bochnak et al. (1987, Th. 9.5.2),
which assures that the set of critical values of FC,B is a semi-algebraic set of di-
mension strictly less than n(k + 1), completes the proof. �

6. Remarks

6.1. Absence of Mutual Consent. When mutual consent is not needed to create
a link, e.g. Bala and Goyal (2000), the proof needs some modifications.

Suppose that each link ij can be created unilaterally by either player i or player
j at a strictly positive cost.7 That is, the pure strategy profile s creates the network

θ̂(s) = {ij : i ∈ si or i ∈ sj}. Let σ be a Nash equilibrium and let Bi = PBR(σ−i).
If j ∈ si for some si ∈ Bi the positive cost of creating links implies that with
positive probability player j is not going to create the link ij . Therefore, there
exists a tij ∈ C(σj) such that i /∈ tij . Define the vector ti−i in the same vein letting

tik to be arbitrarily chosen within C(σk) if k /∈ si for all si ∈ Bi.
As a counterpart of Lemma 2, we observe that if two strategies si and s′i that

belong to Bi are such that si contains a player who is not included in s′i then,

denoting g′ = θ̂(ti−i, s
′
i), we obtain that pg′(si, σ−i) = 0. In words, network g′ does

not contain at least one of the links that will be formed by (si, σ−i) with certainty.
This reasoning implies that the same construction as in Section 5 can be repli-

cated with the only exception that the reference strategy t∗ should now be chosen
to be a maximal element of B. Again, applying Sard’s theorem to the mapping
that is defined from the best reply correspondence to the space of games completes
the proof.

A different model of network-formation where links do not need mutual consent
can be constructed by defining utilities on the set of all directed networks or simple

directed graphs.8 In this model, each player chooses a set of other players with
whom to start an arrowhead link pointing at herself. It should be noted that each
pure strategy profile corresponds to a different network and consequently Harsanyi’s
result goes through.

6.2. Costs’ Structures. We have assumed that players incur in different costs
when proposing links and that each link proposal carries the same cost for each
player. This is not a critical condition for the result. Note that costs of proposing
links are not the unknowns of the system and that have only been used in Lemma 1.
Formally, let us denote as ci(si) the cost associated to the pure strategy si. For
Lemma 1 to be true is is enough to assume that for every player i if si ⊂ s′i then
ci(si) < ci(s

′
i), and this condition is satisfied by many reasonable cost structures.

7The cost is only payed by the player creating the link.
8In a directed network, links ij and ij are different. This difference can stem from, for instance,

what is the direction of the flow of information.
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Of course, for different cost structures, genericity must be defined in the relevant
space of network-formation games with costly link proposals. For example, if costs
are homogeneous among players and links, the space of games is R

nk × R+. The
same remark must be taken into consideration for the modifications that we study
in the next sections.

6.3. Links’ Restrictions and Links of Different Types. In some economic
applications the set of links that may be formed does not coincide with the complete
network gN . One instance where this is true is when only some subset of the
complete network contains the set of possible links. For example, agents can be
exogenously assigned to different groups, say producers and consumers, and links
between two players formed only if they are of different groups. As an example,
suppose that the link ij cannot be formed. The only alteration that we need is to
redefine the game so that strategy sets for players i and j are Si = Sj = P(N\{i, j}).

Other example where gN does not represent the set of possible links is when
players can form bilateral links of different types. To accommodate for this in the
network-formation game, players should propose several lists of players, one for
each type of link. Clearly, this modification cannot affect the result, even if this
extension is combined with the previous one, e.g. a network-formation game with
producers and consumers such that links of one type are only possible between two
producers and links of a second type are only possible between a producer and a
consumer.

6.4. Restrictions in the Utility Function. So far we have assumed that utility
functions are defined over the set G. This means that player i generically cares
about whether player j and k are linked or not. In some situations this may not be
an appropriate assumption. Assume then that for each player i her utility function
is defined over the set P(N \{i}). Mimicking the same construction as in Section 5
we can observe that Lemma 1, Lemma 2 and the corollary are still true, that the
matrix of coefficients is again triangular and that, consequently, the genericity result
follows.9

6.5. On the Generic Determinacy of Equilibria. A regular equilibrium is
necessarily an isolated point in the set of equilibria, and since such a set is compact,
when all equilibria are regular the number of equilibrium points is finite. The
definition of regularity, however, is not essential to obtain the generic finiteness
of equilibria. We have already seen that the set of network-formation games with
equilibria that is not quasi-strict is a lower-dimensional semi-algebraic set. If we
only consider quasi-strict equilibria, i.e. B = C, we can apply Generic Local
Triviality (Hardt, 1980; Bochnak et al., 1987) to FC,B to show that the set of
games whose inverse image has dimention greater than zero in E∗

C,B is again a
lower-dimensional semi-algebraic set.
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