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Abstract

A random assignment is ordinally efficient if it is not stochastically dom-

inated with respect to individual preferences over sure objects. When there

are no private endowments, the set of ordinally efficient random assignments is

characterized by the eating algorithm (Bogomolnaia and Moulin 2001). However,

when there are private endowments, the main requirement is individual rational-

ity and and the eating algorithm fails to deliver this property. Our contribution

is the natural generalization of the eating algorithm for this general class of

problems. The family of this generalized eating algorithm characterizes the set

of individually rational and ordinally efficient random assignments. A special

solution in this family, the individually rational probabilistic serial (PSIR), also

achieves a new fairness axiom, no justified-envy. However, it is not immune to

strategic manipulation. We show that individual rationality, no justified-envy

and strategy-proofness are incompatible.
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1 Introduction

An assignment problem is a resource allocation problem where a set of objects has

to be allocated to a group of agents in such a way that each agent receives at most

one object; monetary transfers between the agents are not permitted. This class of

problems occupies a special place in the literature due to its strong empirical relevance.

Examples include the assignment of campus housing to students, jobs to workers, rooms

to housemates, and offices to professors. For convenience, this paper uses language that

fits the first example and refers to the objects as houses.

Three special subclasses of assignment problems can be distinguished depending on

who owns the houses. In an assignment problem with private endowments, each agent

owns a particular house. In an assignment problem with a social endowment, agents

own houses collectively.1 The focus of the current paper is on the third class, which is a

mixture of the first two: Some agents (existing tenants) own their own houses whereas

others (new applicants) do not, and the houses not owned by the existing tenants are

the social endowment. Following Abdulkadiroğlu and Sönmez (1999), we refer to this

problem as a house allocation problem with existing tenants. Our goal is to propose an

efficient and fair solution to this class of assignment problems.

In assignment problems with private endowments, one of the main requirements

that one may want to impose is individual rationality : each agent finds his assignment

at least as desirable as his endowment. An individually rational solution is the top

trading cycles (TTC) solution. The TTC solution is defined as follows: Each agent

points to an agent (possibly himself). A top trading cycle consists of agents such that

each agent in the cycle points to the next agent. Since the number of agents is finite,

there is at least one cycle. Each agent in each cycle is assigned the house of the agent

to whom he points. The agents in all cycles are removed with their assigned houses.

The procedure is repeated until each agent receives a house.

In this class of problems, if preferences are strict, the core allocation is a singleton

(Roth and Postlewaite 1977), and the TTC solution selects it. The core, thus the

TTC solution, is strategy-proof (Roth 1982). In fact, it is the only solution that is

individually rational, efficient, and strategy-proof (Ma 1994, Svensson 1999).

In assignment problems with a social endowment, treating equals equally is in-

1Assignment problems with a social endowment and private endowments are introduced by Hylland
and Zeckhauser (1979) and Shapley and Scarf (1974), respectively. In the literature, these two classes
of problems are referred to as house allocation problems and housing markets, respectively.
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dispensable and to achieve it, a lottery mechanism is commonly used in real life ap-

plications: An ordering of agents is randomly drawn from the uniform distribution.

For a given ordering, the first agent chooses a house, then the second agent chooses

a house among the remaining houses, and so on. This is the random priority (RP)

solution.2 The RP solution is strategy-proof and it treats equals equally. Also, since,

for each ordering, it selects an efficient allocation, the RP solution is ex-post efficient.

However, when agents are equipped with von Neumann-Morgenstern preferences over

random allocations (lotteries over assignments of houses), an impossibility result by

Zhou (1990) implies that the RP solution is not ex-ante efficient.3 Actually, it does

not satisfy ordinal efficiency, an efficiency requirement for ordinal mechanisms where

only individual preferences over sure houses are elicited.4

Another class of solutions is proposed by Bogomolnaia and Moulin (2001): Each

house is imagined as being infinitely divisible. There is one unit of each house. A

quantity of house h, given to agent i, represents the probability with which agent i is

assigned house h. For each agent, an ‘eating’ speed is specified on the unit interval.

At any time, each agent eats his favorite available house at the specified speed: if the

houses a, b, c, . . . have been entirely eaten (one unit of each has been distributed), and

houses x, y, z, . . . have not, each agent starts eating his favorite house among x, y, z, . . . .

This class of algorithms is referred to as the parametric family of eating algorithms5

and characterizes the set of ordinally efficient random assignments. This family defines

a class of solutions. A special solution in this class is the probabilistic serial solution

(PS), which requires each agent’s eating speed to be the same and constant. The PS

solution improves on the RP solution in terms of efficiency and fairness: it is ordinally

efficient and envy-free. The weakness of the PS solution is that it only satisfies weak

strategy-proofness.

The class of assignment problems with private endowments and a social endowment

is a mixture of the first two, and the question is whether the solutions discussed above

2Abdulkadiroğlu and Sönmez (1998) show that the RP solution (they call it the random serial
dictatorship) is equivalent to the ‘core from random endowment’ solution, a solution that randomly
chooses an endowment profile and then selects the core of the induced assignment problem with private
endowments.

3Zhou shows that there is no lottery mechanism that is ex-ante efficient, anonymous, and strategy-
proof.

4For ordinal efficiency and its analysis, see Bogomolnaia and Moulin (2001), Abdulkadiroğlu and
Sönmez (2003), and McLennan (2002).

5See also Bogomolnaia and Moulin (2002), and Crès and Moulin (2001).
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extend to this general class of problems. (Note that for this general class of problems,

the TTC solution is not well defined, and the RP and PS solutions are not individually

rational.) Abdulkadiroğlu and Sönmez (1999) introduced a generalization of the TTC

solution, TTC solution from random orderings, which reduces to the RP solution when

there are no private endowments, and to the TTC solution when there is no social

endowment.6 The TTC solution from random orderings is individually rational, ex-post

efficient, and strategy-proof.7 On the other hand, how the eating algorithm extends so

as to satisfy individual rationality has been an open question.

Our contribution is to fill this gap: we generalize the parametric family of eating

algorithms to account for individual rationality. The family of this generalized eating

algorithm characterizes the set of individually rational and ordinally efficient random

assignments. The problem in generalizing the eating algorithm is that, while agents

eat houses, individual rationality is possibly violated for an agent or for a group of

agents. We develop a recursive algorithm to prevent these violations. Our algorithm

defines a class of solutions; to show that each solution in this class satisfies individual

rationality, we use an elegant result from graph theory, the Supply-Demand Theorem

by Gale (1957). Moreover, a special solution in this class satisfies a new axiom of

fairness, no justified-envy. This new axiom weakens no envy :8 it views an assignment

as unfair if an agent does not prefer his consumption to another agent’s consumption

and the assignment obtained by swapping their consumptions respects the individual

rationality requirement of the latter agent. We further show that individual rationality,

strategy-proofness and no justified-envy are incompatible.

2 The model

A non-empty finite set of houses H has to be allocated to a non-empty finite set of

agents I in such a way that each agent receives at most one house; monetary transfers

6Pápai (2000) introduced hierarchical exchange rules, which generalize TTC mechanism and in-
cludes TTC from random orderings as a special class.

7Recently, Sönmez and Ünver (2005) generalized the main result by Abdulkadiroğlu and Sönmez
(1998) (see footnote 2): First, construct an endowment structure by assigning each existing tenant
his own house and randomly assigning the vacant houses to new applicants with uniform distribution.
The core based mechanism chooses the core allocation of the induced housing market. The core
based mechanism is equivalent to an extreme case of the TTC mechanism where new applicants are
randomly ordered first and existing tenants are randomly ordered next.

8We need an alternative notion of fairness because individual rationality is the key property when
there are private endowments and it is incompatible with no envy, the central axiom of fairness.
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between agents are not permitted. Being unassigned to any of the houses in H is

denoted by h0.

An endowment profile is a function µ0 : I → H ∪ {h0} such that µ0(i) =

µ0(j) implies µ0(i) = h0. Let M0 denote the set of all endowment profiles. Given an

endowment profile µ0 ∈M0, the sets HO ≡ {µ0(i) : i ∈ I}\{h0} and HV ≡ H \HO are

the sets of occupied and vacant houses respectively. Also, IE ≡ {i ∈ I : µ0(i) ∈ H}
and IN ≡ {i ∈ I : µ0(i) = h0} are the sets of existing tenants and new applicants,

respectively. Each existing tenant i is assumed to have the right of living in the house

he occupies, µ0(i) ∈ HO.

Each agent i has a strict preference relation Ri on H. We denote this domain

of preferences by D. Each agent prefers each house to h0 and also, |I| = |H| .9 Let

R = (Ri)i∈I be a preference profile. Also, for each S ⊆ I, let RS = (Ri)i∈S.

A house allocation problem with existing tenants, or simply a problem, is

a quadruple (I, H, µ0, R). Since the sets I and H are fixed throughout the paper, we

use (µ0, R) instead of (I, H, µ0, R) to denote a problem.

Given a problem (µ0, R) and a house h ∈ H, let U(Ri, h) ≡ {h′ ∈ H : h′ Ri h} be

the upper contour set of Ri at h. When there is no danger of confusion, we denote

U(Ri, µ
0(i)) by Ui. Let

US ≡
⋃
i∈S

Ui.

A deterministic assignment is a bijection µ from I into H. A deterministic

assignment is represented as a permutation matrix, that is, a |I| × |H| matrix with

entries 0 or 1, and exactly one nonzero entry per row and one per column. Let M
denote the set of all deterministic assignments. We extend the preference of agent i to

the set of deterministic assignments in the following natural way: Agent i prefers µ

to µ′ if, and only if, he prefers µ(i) to µ′(i).

A random consumption is a probability distribution over H. Let 4H denote the

set of all random consumptions. A lottery is a probability distribution over deter-

ministic assignments. Let 4M denote the set of all lotteries. Each lottery induces a

random assignment Q = [qih]i∈I,h∈H , where qih ∈ [0, 1] is the probability that agent

i receives house h. Let Qi denote the resulting random consumption for agent i. A

random assignment is represented as a bistochastic matrix. By the classical Birkhoff

9These assumptions are not critical; all our definitions and results extend verbatim to the case of
opting out and the case of different number of agents and houses (Section 6).
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(1946) - von Neumann (1953) Theorem, every bistochastic matrix obtains as a (in

general, not unique) convex combination of permutation matrices (deterministic as-

signments). Thus, every such matrix corresponds to at least one lottery. Since two

lotteries resulting in the same bistochastic matrix yield the same random consump-

tion to each agent, we will not distinguish them. Let Q denote the set of all random

assignments. A solution is a function ϕ : M0 ×D|I| → Q.

A deterministic assignment is individually rational if each existing tenant finds

his assignment at least as desirable as his endowment. A solution is individually

rational, if for each agent, the support of his random consumption is contained in the

upper contour set of his preferences at his endowment.

A deterministic assignment is Pareto efficient if no other deterministic assignment

makes each agent at least as well off and at least one agent better off. A lottery is

ex post efficient if it gives positive weights only to Pareto efficient deterministic

assignments.

Given i ∈ I, Ri ∈ D, and a pair of random consumptions Qi and Ti, Qi stochas-

tically dominates Ti for agent i, written as Qi sd(Ri) Ti, if, and only if,

∀h ∈ H,
∑

h′∈U(Ri,h)

qih′ ≥
∑

h′∈U(Ri,h)

tih′ .

Given a pair of distinct random assignments Q, and T, Q stochastically dom-

inates T, if, and only if, for each i ∈ I, Qi stochastically dominates Ti. A random

assignment is ordinally efficient if, and only if, it is not stochastically dominated by

any other random assignment. A solution is ordinally efficient if it always selects

ordinally efficient random assignments.

Given a preference list R = (Ri)i∈I , a random assignment Q = [qih]i∈I,h∈H is envy-

free if, for each i, j ∈ I, Qi stochastically dominates Qj at Ri. A solution satisfies no

envy if it always selects envy-free random assignments.

A solution is strategy-proof if truth-telling is a dominant strategy in its associated

preference revelation game. A solution ϕ : M0×D|I| → Q is weakly strategy-proof

if, for each (µ0, R) ∈ (M0 ×D|I|), each i ∈ I, and each R∗
i ∈ D,

ϕi(µ
0, R∗

i , R−i) sd(Ri) ϕi(µ
0, R) ⇒ ϕi(µ

0, R∗
i , R−i) = ϕi(µ

0, R).
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3 The eating algorithm and individual rationality

Bogomolnaia and Moulin (2001) proposed a new class of solutions to assignment prob-

lems with a social endowment. This class is defined by the parametric family of eating

algorithms:

Each house is imagined as being infinitely divisible. There is one unit of each house.

A quantity of house h, given to agent i, represents the probability with which agent

i is assigned house h. For each agent i, let ωi : [0, 1] → R+ be a function such that
1∫
0

ωi(t)dt = 1. The function ωi is called the eating speed function of agent i, and ωi(t) is

the eating speed of agent i at time t. Given the profile of eating speeds ω = (ωi)i∈I and

the profile R of preferences, at time t, the eating algorithm lets agent i eat his favorite

available house at the speed ωi(t) : if at time t, the houses a, b, c . . . have been entirely

eaten and houses x, y, z . . . have not, he eats his favorite house among x, y, z . . . at the

speed ωi(t).

Theorem 1 (Bogomolnaia and Moulin 2001) For each profile of eating speeds, the

eating algorithm gives an ordinally efficient random assignment. Conversely, each

ordinally efficient random assignment can be obtained by the eating algorithm for some

profile of eating speeds.

The probabilistic serial (PS) solution is obtained by choosing uniform eating speeds:

for each agent i, and for 0 ≤ t ≤ 1, ωi(t) = 1. The PS solution satisfies no envy but it

is not strategy-proof.

The eating algorithm does not distinguish between existing tenants and new appli-

cants. Before it determines the consumption of existing tenant i, it may have already

allocated all the houses in Ui. Thus, in general, the assignment given by the eating

algorithm is not individually rational. An extension of the eating algorithm to account

for individual rationality is the eating rate (ER) algorithm (Sethuraman 2001). The

ER algorithm is designed to adjust the eating speeds of the existing tenants so that

each existing tenant’s house is secured. Very briefly, whenever existing tenant i’s house

is demanded more than one agent, the eating speed of agent i is increased to secure

his endowment. For the details, we provide the complete description.

The eating rate (ER) algorithm (Sethuraman 2001). Let ω = (ωi)i∈I be a profile

of eating speeds. Given ω, each agent i is given an ‘eating rate’ si(·), and at time t,
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agent i eats his most preferred house among all the houses still available at time t, at

the rate si(t). Let ei(t) be the amount that agent i has eaten by the time t. At time t,

agent i needs 1− ei(t) units of houses. If, at time t, the available portion of the house

µ0(i), that is the portion not yet eaten by any agent, exceeds what existing tenant i

needs, i.e. 1− ei(t), then we say that the house µ0(i) is publicly available at time t. At

time t, the eating rate profile s(t) is determined as follows: each new applicant eats at

the rate ωi(t). If the house µ0(i) is publicly available at time t, then existing tenant i

eats at the rate ωi(t). If the house µ0(i) is not publicly available at time t, then the

eating rate of agent i depends on the sum of the eating rates of the agents, who eat

µ0(i) at time t. If this sum is less than or equal to ωi(t), then existing tenant i eats at

the rate ωi(t); otherwise, the eating rate of existing tenant i is equal to this sum. A

key point to note is that whenever a cycle (i1, i2, i3, . . . ik) is formed among the existing

tenants such that for j = 1, . . . , k − 1, agent j eats the house owned by agent j + 1,

and agent k eats the house owned by agent 1, and if no portion of any of these houses

is publicly available, then each agent in the cycle is assigned the appropriate portion

of the house of the next agent in the cycle (the same idea as in the top trading cycle

solution discussed in the introduction). Specifically, the appropriate amount swapped

will be the largest quantity that is no greater than the residual requirement of an agent,

where the residual requirement of agent i is defined as 1− ei(t).

The uniform eating rate (UER) solution is obtained by choosing uniform eating

speeds. The UER solution reduces to the TTC solution when there are no new ap-

plicants, and to the PS solution when there are no existing tenants. This solution is

ordinally efficient and individually rational, but it is not weakly strategy-proof.

While the eating algorithm characterizes the set of ordinally efficient assignments

(Theorem 1), the following example illustrates why it is not possible to obtain a similar

result with the ER algorithm.

Example 1 Consider the following preferences: (A boxed house below stands for the

private endowment.)

R1 R2 R3

h2 h1 h1

h3 h3 h2

h1 h2 h3
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In this example, since individual rationality imposes no constraints at all (namely, any

allocation is individually rational), the natural extension of the eating algorithm should

ignore individual rationality and give the same allocation as the eating algorithm.

However, agents 1 and 2 form a cycle at time 0, and for each profile of eating speed,

the ER algorithm allocates h2 to agent 1 and h1 to agent 2. Thus, the ER algorithm

does not characterize the set of individually rational and ordinally efficient assignments:

Consider an individually rational and ordinally efficient assignment Q other than the

one obtained by the ER algorithm. Since the set of random assignments given by the

family of the ER algorithms is a singleton, it is not possible to obtain the assignment

Q with the ER algorithm. Moreover, the fairness aspect of the PS solution is not

present in the UER solution: the allocation is unfair to agent 3; while agents 1 and 2

are assigned their most preferred houses, agent 3 is assigned to the bottom house in

his ranking, although this is not imposed by individual rationality.10

4 The generalized eating algorithm

We construct the generalized eating (GE) algorithm, which is the natural generalization

of the eating algorithm so as to account for individual rationality. The GE algorithm

follows the general outline of the eating algorithm. As soon as the individual rationality

(IR) constraint of a subset of existing tenants becomes binding, the algorithm pledges

the remainder of the acceptable houses of these existing tenants -‘bottleneck’ group-

to them. At this point, the bottleneck group and the remainder of their acceptable

houses constitute a sub-problem; the rest of the agents and the remainder of the rest

of the houses constitute another sub-problem. The GE algorithm proceeds in each

sub-problem in a recursive manner. Other IR constraints may become binding within

the sub-problem or sub-sub-problem etc. Whenever that happens the remainders of

acceptable houses of the bottleneck group are pledged to the group. Within each

problem, defined by a bottleneck group of agents and the remainders of their acceptable

houses, the GE algorithm proceeds with the eating algorithm until possibly another

bottleneck group appears, and so on. It continues until all houses are allocated.

Let rh(t) be the remainder of house h at time t. At time 0, there is one unit of each

house available. What remains of a set of houses H ′ ⊆ H is the sum of what remains

10For the formal definition of fairness, see Section 5.1.
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of each house in that set: for each time t,

rH′(t) =
∑

h∈H′
rh(t).

At time t, agent i has eaten
t∫

0

ωi(y)dy units and needs 1−
t∫

0

ωi(y)dy units more to

obtain a (random) consumption. Thus, for each nonempty subset S of IE, the slack

of the IR constraint of S at time t, denoted by rdS
(t),11 is the difference between the

remainder of US and the total amount that the agents in S need:

rdS
(t) = rUS

(t)−
∑
i∈S

(1−
t∫

0

ωi(y)dy)

A bottleneck group appears in the algorithm when the slack of the associated IR

constraint is equal to zero. These critical points in time are determined by the following

argument: First, note that each agent in S eats a house in US at time t. As long as

only the agents in S eat a house in US at time t, the slack, rdS
(t), remains constant.

However, if there are other agents eating a house in US, then the slack decreases at a

rate equal to the aggregate eating speed of these agents. For each nonempty subset S

of IE, let ωdS
(t) be the aggregate eating speed of the agents, each of whom belongs to

I \S and eats a house in US at time t. Thus, the slack at time t, rdS
(t), decreases at the

rate ωdS
(t). By keeping track of each slack and the rate at which each slack decreases,

we determine when a subset of existing tenants becomes a bottleneck group.

The generalized eating (GE) algorithm. Initialization: Let t = 0, N ≡ I, and

the remainder of each house in H be 1. Recursive step: The algorithm starts at time

t. Each agent i eats his favorite available house at the speed of ωi(t) and for each

S ⊆ IE ∩ N (if N ⊆ IE, then for each S  N), the slack rdS
(t) decreases at the rate

ωdS
(t). It continues until the IR constraint of, say S0, is binding (i.e. until the slack

rdS0
is equal to zero). The set S0 is the bottleneck group. (If there is more than one

bottleneck group, the algorithm arbitrarily chooses one of them.) At this time, say t0,

the recursive step is applied to the following two sub-problems. The first sub-problem:

11Note that r denotes both the remainder of a house and also the slack of an IR constraint. We use
the subscript dS for the IR constraint of S to distinguish it from houses. One can consider the slack
of an IR constraint, say rdS

, as the remainder of a dummy house dS , being eaten at a certain speed.
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Let t = t0, N ≡ S0, and the remainder of each house h be rh(t0). The second sub-

problem: Let t = t0, N ≡ I \ S0, the remainder of each house h in H \ US0 be rh(t0),

and the remainder of each house h in US0 be 0.

Example 2 Consider the profile of uniform eating speeds: for each t, 0 ≤ t ≤ 1, and

for each i ∈ S, ωi(t) = 1. Note that, in this case,

rdS
(t) = rUS

(t)− (1− t) |S|

and ωdS
(t) is the number of agents, each of whom belongs to I \ S and eats a house in

US at time t. Consider the following preferences:

R1 R2 R3 R4 R5 R6

h2 h3 h1 h2 h1 h3

h3 h2 h4 h4 h4 h2

h1 h3 h5 h3 h5

h6 h6 h4

h1 h2 h6

h3 h5 h1

Let Q denote the random assignment generated by the generalized eating algorithm.

Step 1: We identify each IR constraint, the associated slack and the rate at which

it decreases at time zero. For convenience, for each {a, b, c, ...} ⊆ IE, let dabc.. denote

d{a,b,c,...}. Thus, there are seven constraints: d1, d2, d3, d12, d13, d23, d123

|US| |S| rdS
(0) ωdS

(0)

d1 3 1 2 5

d2 2 1 1 3

d3 3 1 2 3

d12 3 2 1 4

d13 4 2 2 4

d23 4 2 2 4

d123 4 3 1 3

Each agent eats his favorite available house and each slack rdS
decreases at the rate

ωdS
. The bottleneck set is {1, 2}; at time t1 = 1

4
, rd12(t) is equal to zero. At this time,

11



none of the houses is fully allocated; the partial assignment is as follows: q12 = q23 =

q31 = q42 = q51 = q63 = 1
4
.

Step 2: Sub-problem {1, 2}. The remainder of U{1,2} = U1 ∪ U2, i.e. half of h1, h2 and

h3, will be allocated to agents 1 and 2.

IR constraints:





∑
h∈US

rh(t
1) (1− t1) |S| rdS

(t1) ωdS
(t1)

d1
3
2

3
4

3
4

1

d2 1 3
4

1
4

1

Agent 1 eats h2 and agent 2 eats h3 until the slack of the IR constraint of agent 2 is

zero, which occurs at time t1 + t′ = 1
4
+ 1

4
. At this time, partial assignment is as follows:

q′12 = q′23 = 1
4
.

Step 3: Sub-sub-problem {2}. The remainder of U2, i.e. a quarter of h2 and a quarter

of h3, will be allocated to agent 2, and the rest to agent 1. The assignment is as follows:

Q11({1, 2}, t1) = Q23({1, 2}, t1) = 1
2
; Q12({1, 2}, t1) = Q22({1, 2}, t1) = 1

4
. Each house

h is allocated and for k = 1, 2, agent k is assigned 3
4

= (1 − t1) |{k}| units. Agents 1

and 2 leave. The partial assignment is as follows: q11 = 1
2
, q12 = 1

2
, q22 = 1

4
, q23 = 3

4
,

q31 = q42 = q51 = q63 = 1
4
.

Step 4: The remaining agents are 3, 4, 5, 6 and remaining houses are h4, h5, h6. The

only remaining existing tenant is agent 3.

∑
h∈US

rh(t
1) (1− t1) |{3}| rd3(t

1) ωd3(t
1)

d3 1 3
4

1
4

2

At time t2 = t1 +
rd3

(t1)

ωd3
(t1)

= 3
8
, the slack rd3(t

2) is equal to zero. At this time, the partial

assignment is as follows: q31 = q42 = q51 = q63 = 1
4

and q34 = q44 = q54 = q65 = 1
8
.

Step 5: Sub-problem {3}. The remainder of h4 will be allocated to agent 3. Thus,

Q34({3}, t2) = 5
8
. Agent 3 leaves: q31 = 1

4
, q34 = 1

8
+ 5

8
= 3

4
.

Step 6: Since each remaining agent is a new applicant, there are no bottleneck sets in
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the rest of the algorithm. The random assignment is as follows:

Q =

h1 h2 h3 h4 h5 h6

1 1
2

1
2

0 0 0 0

2 0 1
4

3
4

0 0 0

3 1
4

0 0 3
4

0 0

4 0 1
4

0 1
8

7
16

3
16

5 1
4

0 0 1
8

0 10
16

6 0 0 1
4

0 9
16

3
16

We turn to the formal definition of the generalized eating algorithms. We use the

following notation: whenever h ∈ H ′, let

M(h,H ′) = {i ∈ I : h Pi h′ ∀h′ ∈ H ′, h′ 6= h},

and m(h,H ′) = |M(h,H ′)| . Given an ordinal preference profile R = (Ri)i∈I ∈ D|I| and

an endowment profile µ0 ∈M0, the random assignment corresponding to the profile ω

is denoted by Q(ω) and defined by the following recursive procedure.

Let I0
E = I, H0 = H, t0 = 0, and Q0 = [0] (the |I| × |I| matrix of zeros). For each

h ∈ H, let rh(0) = 1. For each ∅ 6= S ⊆ IE, let rdS
(0) = |US| − |S| and for t ≥ 0,

ωdS
(t) =

∑

i∈
(

⋃
h∈US

M(h,H)

)
\S

ωi(t).

Let k ∈ N, and suppose Ik−1
E , Hk−1, tk−1, Qk−1, r(tk−1), ω(tk−1) have been defined. For

each h ∈ Hk−1, define

tk(h) = min{t |
∑

i∈M(h,Hk−1)

t∫

tk−1

ωi(y)dy = rh(t
k−1)}

(tk(h) = +∞, if M(h,Hk−1) = ∅).
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Let

tk = min

{
min

h∈Hk−1
tk(h), min

S∈Ik−1
E

{t(S) | rdS
(tk−1) =

t(S)∫
tk−1

ωdS
(y)dy}

}

Bk ≡ {S ⊆ Ik−1
E : tk = t(S)}

Ik
E ≡ Ik−1

E \
(

⋃
S∈Bk

S

)

Hk ≡ Hk−1 \
((

⋃
S∈Bk

US

)
⋃{h : tk = tk(h)}

)
.

For each h ∈ Hk, let

rh(t
k) = rh(t

k−1)−
∑

i∈M(h,Hk−1)

tk∫

tk−1

ωi(y)dy.

For each S ⊆ Ik
E, let

rdS
(tk) = rUS

(tk)−
∑
i∈S

(1−
tk∫

0

ωi(y)dy),

and for t ≥ tk,

ωdS
(tk) =

∑

i∈

 ⋃

h∈Hk∩US

M(h,Hk)


\S

ωi(t).

We call each S ∈ Bk a bottleneck set. Let Q(ω)

(
⋃

S∈Bk

S, tk

)
denote the assignment

of the houses in
(
Hk−1 \ {h : tk = tk(h)})∩U ⋃

S∈Bk
S to the agents in

⋃
S∈Bk

S, given by the

generalized eating algorithm, where the remainder of house h is rh(t
k), and each agent

14



i ∈ ⋃
S∈Bk

S receives exactly (1−
tk∫
0

ωi(y)dy) units. Define

Qk : qk
ih =





qk−1
ih

if i 6∈ M(h,Hk−1)

and i 6∈ ⋃
S∈Bk

S

qk−1
ih + tk − tk−1

if i ∈ M(h,H
k−1

)

and i 6∈ ⋃
S∈Bk

S

qk−1
ih + q(ω)ih

(
⋃

S∈Bk

S, tk

)
if i 6∈ M(h,H

k−1
)

and i ∈ ⋃
S∈Bk

S

qk−1
ih + tk − tk−1 + q(ω)ih

(
⋃

S∈Bk

S, tk

)
if i ∈ M(h,H

k−1
)

and i ∈ ⋃
S∈Bk

S

The random assignment Q(ω) is the one obtained by the above recursive procedure:

Q(ω) = QK where all the houses are allocated at tK .

If, for some S ⊆ IE, rdS
(t) = 0, then the constraint is binding and individual

rationality implies that the remainder of US has to be allocated only to the agents

in S. Thus, a necessary condition for individual rationality is that the slack of the IR

constraint of each subset of existing tenants is nonnegative. It turns out that this is

also sufficient (Lemma 1): At time t, if, for each T ⊆ S, rdT
(t) ≥ 0, then there is an

allocation of the remainder of US, such that the random consumption of each agent

in S is individually rational for him. This is a direct consequence of the following

result:12

Theorem 2 (The Supply-Demand Theorem, Gale 1957). Assume that there are k

suppliers h1, h2, . . . , hk of some commodity and n consumers i1, i2, . . . , in. Let Ui be the

set of suppliers who can ship to consumer i. Let rh be the supply of supplier of h, and

λ(i) be the demand of consumer i, and xab denote the shipment from supplier ha to

consumer ib. Then, there is a shipment vector x = (xab)a,b such that

for each a ∈ {1, ..., k} :
∑

b

xab ≤ rha ,

12Gale’s Theorem is a generalization of Hall’s Set Representation Theorem (1935) which holds only
for integers.
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for each b ∈ {1, ..., n} :
∑

a

xab ≥ λ(ib),

xab > 0 implies ha ∈ Uib

if, and only if, for each subset S of consumers

∑
i∈S

λ(i) ≤
∑

h∈ ∪
i∈S

Ui

rh.

The following lemma is a corollary to this theorem:

Lemma 1 Let S be a subset of existing tenants. At time t, the remainder of house h

is rh(t) and each agent i in S needs 1 −
t∫

0

ωi(y)dy units from the houses in Ui. Then,

each agent in S can be satisfied if, and only if, for each T ⊆ S,

∑

h∈UT

rh(t) ≥
∑
i∈T

(1−
t∫

0

ωi(y)dy).

The GE algorithm is designed so as to maintain the nonnegativity of each slack at each

time, and Lemma 1 says that the nonnegativity of each slack is sufficient to satisfy

each existing tenant. This is the argument behind the following result.

Theorem 3 Let R = (Ri)i∈I ∈ D|I| be an ordinal preference profile and µ0 ∈M0 be an

endowment profile. (1) For each profile of eating speed function ω = (ωi)i∈I , the random

assignment Q(ω) is individually rational and ordinally efficient. (2) Conversely, for

each individually rational and ordinally efficient random assignment Q at (µ0, R), there

exists a profile ω such that Q = Q(ω).

5 The individually rational probabilistic serial as-

signment

Definition 1 Given an endowment profile µ0 ∈ M0 and an ordinal preference pro-

file R = (Ri)i∈I ∈ D|I|, the individually rational probabilistic serial assignment is the

random assignment corresponding to the profile of uniform eating speeds: for each t,

0 ≤ t ≤ 1, and for each i ∈ S, ωi(t) = 1. It is denoted by PSIR(µ0, R).
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5.1 Fairness: No justified-envy

When there are private endowments, individual rationality is an indispensable property

for a solution. Unfortunately, individual rationality is incompatible with no envy.

However, this does not mean that we should disregard fairness. Our approach is to

weaken no envy by insisting that, while evaluating the equity of a solution, one should

not ignore individual rationality. We argue that because of individual rationality, some

violations of no-envy are justified.

Example 3 Illustration of unjustified envy. Consider the following preferences:

R1 R2 R3

h2 h1 h1

h1 h2 h2

h3 h3 h3

Individual rationality implies that house h3 has to be allocated to agent 3. By ignoring

this fact, one can conclude that such an allocation is not fair to agent 3. On the other

hand, if one accepts individual rationality as an indispensable requirement, one cannot

deem it unfair.

Example 4 Illustration of justified envy. Consider the preferences and the endowment

profile in Example 1. Consider an allocation at which agent 3 is assigned house h3.

Here, individual rationality imposes no constraints. Thus, agent 3 envies both agents

1 and 2. Even if one accepts individual rationality, the unfairness of this allocation is

not justified.

Definition 2 i) A solution ϕ : M0 × D|I| → Q satisfies no justified-envy if, for

each µ0 ∈M0, each R = (Ri)i∈I ∈ D|I|, and each i, j ∈ I : either

ϕi(µ
0, R) sd(Ri) ϕj(µ

0, R)

or

Support(ϕi(µ
0, R)) \ Uj 6= ∅.

ii) A solution ϕ : M0 × D|I| → Q satisfies weak no justified-envy if, for each

17



µ0 ∈M0, each R = (Ri)i∈I ∈ D|I|, and each i, j ∈ I : either

ϕj(µ
0, R) sd(Ri) ϕi(µ

0, R) ⇒ ϕi(µ
0, R) = ϕj(µ

0, R)

or

Support(ϕi(µ
0, R)) \ Uj 6= ∅.

The PSIR solution satisfies no justified-envy. The intuition for this result is as fol-

lows: At a given time, each agent eats his favorite available house. Also, a set of houses

is eaten exclusively by a set of existing tenants only if otherwise, individual rational-

ity is violated. The PSIR solution ignores the endowment profile as long as there is

an allocation of the remainder of the available houses such that the resulting random

assignment is individually rational. Thus, the existing tenants do not receive spe-

cial treatment until egalitarianism can not be maintained without violating individual

rationality. This is the reason for its fairness.

Proposition 1 The PSIR solution satisfies no justified-envy.

5.2 Strategic Manipulation

While the PS solution is weakly strategy-proof, the PSIR solution is not.

Example 5 The PS IR solution is not weakly strategy-proof. Consider the following

preferences:

R1 R2 R3

h2 h1 h2

h3 h2 h1

h1 h3 h3

The PSIR solution gives the following probabilistic assignment:

PSIR(µ0, R) =

h1 h2 h3

1 0 1
2

1
2

2 1 0 0

3 0 1
2

1
2

Suppose agent 1 announces that he prefers h2 to h1 and h1 to h3. Let R′
1 denote these

preferences. The other agents are truthful. For these preferences, the PSIR solution
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assigns h2 to agent 1 with probability 1. Thus, PSIR
1 (µ0, R′

1, R−1) sd(R1)PSIR
1 (µ0, R).

In Example 5, agent 1 announces the reduced ranking of his true preferences on

a proper subset of U1. We call this type of misrepresentation a truncation (Roth and

Rothblum 1999). Thus, the PSIR solution can be manipulated via truncation. The

other possible manipulation (for the existing tenants or new applicants) is via reshuf-

fling houses in the preference ranking and the PSIR solution can be manipulated via

reshuffling as well (even in the weak sense).

Recently, Kojima and Manea (2007) showed that, in the PS solution, truthful re-

porting of ordinal preferences is a dominant strategy for an agent if the number of

copies of each house type is sufficiently large.13 Given an agent and a set of houses,

this result holds irrespective of the set of other agents and their ordinal preferences.

However, when there are private endowments as well, this result does not extend for the

PSIR solution: For any number of copies of the houses, say h1, h2 and h3, it is possible

to replicate the preferences R1, R
′
1, R2, and R3 in Example 5 so that truncation makes

agent 1 better off.

5.3 Impossibility results

The TTC solution from random orderings is strategy-proof but violates no justified-

envy. The PSIR solution satisfies no justified-envy but not strategy-proofness. As the

following theorem shows, the tension between these two properties is actually more

severe.

Theorem 4 Assume |I| ≥ 3. (i) No solution meets the following three requirements:

individual rationality, strategy-proofness, and no justified-envy. (ii) No solution meets

the following four requirements: individual rationality, ordinal efficiency, weak strategy-

proofness, and weak no justified-envy.

5.4 An invariance property

Individual rationality requires that each existing tenant finds his assignment at least

as desirable as his endowment. However, there is no reason to accept that an existing

tenant should have an advantage (or a disadvantage) besides this guarantee. Thus, we

should distinguish the privilege of an existing tenant due to individual rationality from

13Note that, for the case of objective indifferences, the PSIR solution is unambiguously defined.
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other advantages (or disadvantages) related to his endowment: Suppose an existing

tenant occupies a house, which is his worst house. Then, given that the number of

houses is equal to the number of agents, any allocation is individually rational for him.

In other words, the fact that he is an existing tenant is irrelevant in terms of individual

rationality. Thus, a robust solution should be indifferent between whether an agent is

the existing tenant of his worst house or he is a new applicant.

Definition 3 Given (µ0, R) ∈M0 ×D|I|, define µ1 (µ0, R) ∈M0 as follows:

µ1(i) =

{
h0 if i ∈ {j ∈ IE : Uj = H}
µ0(i) otherwise

A solution ϕ : M0×D|I| → Q satisfies worst-object endowment invariance (WI)

if, for each (µ0, R) ∈M0 ×D|I|, ϕ (µ0, R) = ϕ (µ1 (µ0, R) , R) .

Proposition 2 The PSIR solution satisfies worst-object endowment invariance.

6 Extensions

We list some extensions of our random assignment model. In all but one, the definition

of the PSIR extends almost verbatim, and the properties are preserved.

6.1 Different number of agents and houses, opting out

Suppose there are n agents and m houses. If n < m, then a random assignment is a

nonnegative and row-stochastic matrix; its rows sum to one and its columns sum to at

most one. The algorithm remains the same and the results are preserved. If n > m,

then a random assignment is a nonnegative and column-stochastic matrix; its rows

corresponding to existing tenants sum to one, its rows corresponding to new applicants

sum to m−|IE |
n−|IE | , and its columns sum to one. In this case, the characterization of ordinal

efficiency in terms of the acyclicity of the relation τ (proof of Proposition 2) holds.

The definition of the PSIR remains the same.

In some examples, an agent may prefer h0 to some of the houses. The extension of

the PSIR solution to this general case is straightforward: if an existing tenant prefers

h0 to his house, then he should be treated as a new applicant; otherwise, opting out is

irrelevant for him.
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6.2 Fractional endowments

Suppose agents may own fractions of different houses. Let ei = (eij)j be agent i′s

endowment where eij is agent i′s fractional endowment of house hj ∈ H. Thus, an

endowment profile can be represented by a sub-stochastic matrix:

e =

h1 h2 · · · hn

1 e11 e12 · · · e1n

2 e21 e22 · · · e2n

...
...

...
...

...

n en1 en2 · · · enn

The PSIR solution extends to this general case as follows.

Let e be an endowment profile as defined in the conclusion. A random assignment Q

is individually rational if, for each agent i, Qi sd(Ri) ei. For each positive fraction of

a house endowed by an agent, individual rationality imposes a constraint. In order to

keep track of these constraints, we define pseudo-agents associated with the fractions

that the agents are endowed with. Let Ip = {(i, j) : i ∈ I, eij > 0} be the set of

pseudo-agents. The endowment of pseudo-agent (i, j) ∈ Ip is µ0(i, j) =
∑

k: hk∈U(Ri,hj)

eik.

Let S be a family of subsets of Ip such that S ∈ S if, and only if, for (i1, j1), (i2, j2) ∈ S,

i1 = i2 implies j1 = j2.

The remainder of a house at time t, rh(t), is defined as before. For S = {(i1, j1),

(i2, j2), . . . , (ik, jk)} ∈ S, the slack of the IR constraint of S at time t is

rdS
(t) = r ⋃

(i,j)∈S

U(Ri,hj)(t)−
∑

(i,j)∈S

µ0(i, j) + t |S| .

Each agent i ∈ I eats his favorite available house at the speed 1. For each S ∈ S,

let ωdS
(t) be the number of agents, each of whom belongs to I \ {i : (i, j) ∈ S for

some j} and eats a house in
⋃

(i,j)∈S

U(Ri, hj) at time t. Thus, the slack at time t, rdS
(t),

decreases at the rate ωdS
(t). By keeping track of each slack and the rate at which each

slack decreases, we determine when a subset of pseudo-agents becomes a bottleneck

group. Let S0 be a bottleneck group at time t0. As in the GE algorithm, at time t0,

we define two sub-problems and solve them recursively.
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The first sub-problem: Let t = t0; {i : (i, j) ∈ S0 for some j} be the set of agents, and

N = {(i, k) : for some j, (i, j) ∈ S0, eik > 0 and hk ∈ U(Ri, hj)};

be the set of pseudo-agents; and the remainder of each house h be rh(t0).

The second sub-problem: Let t = 0; I \ {i : (i, j) ∈ S0 and µ0(i, j) =
∑
l

eil} be the

set of agents; Ip \ N be the set of pseudo-agents; the remainder of each house h in

H \ ⋃
(i,j)∈S0

U(Ri, hj) be rh(t0), and the remainder of each house h in
⋃

(i,j)∈S0

U(Ri, hj)

be 0. Also, update the endowment profile to e′ as follows: if (i, k) ∈ N, then let e′ik = 0;

otherwise, let e′ik = eik.

6.3 Weak preferences

We assumed that preferences are strict, and this assumption is critical for our results.

However, there are both practical and technical reasons to consider the more general

weak preferences domain, yet, the GE algorithm is not well-defined when agents are

allowed to be indifferent between houses. The assignment problem with private en-

dowments and a social endowment on the weak preferences domain has been recently

studied (Yılmaz, forthcoming), and the connection between this specific assignment

problem and the parametric network flow problem is established. The non-triviality of

this connection is due to the individual rationality constraints.

7 Conclusion

We proposed the natural generalization of the eating algorithm to account for individ-

ual rationality. The generalized eating algorithm characterizes the set of individually

rational and ordinally efficient random assignments. Also, a special solution in the

class of solutions reduced by the family of generalized eating algorithms achieves a

new fairness axiom (no justified envy); however, it does not satisfy strategy-proofness,

even in the weak sense. We also show that no justified envy, strategy-proofness and

individual rationality are incompatible.

While there are many real-life resource allocation problems that correspond to our

model, here we present two of them: school choice and kidney exchange problems.

In a school choice problem, there are a number of students each of whom should
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be assigned a seat at one of a number of schools (Abdulkadiroğlu and Sönmez 2003).

Each student has strict preferences over all schools, and each school has a strict priority

ordering of all students. Here, priorities are imposed by state or local laws. Several

central assignment mechanisms are adopted to place students to schools, and it is not

rare that some students are not assigned to any of the schools by these mechanisms

in the first round. For example, in New York City, the number of students who are

unassigned after the main round is over 8,000 students (Pathak 2006). However, each

student has the right to attend school, and to place the unassigned students, a supple-

mentary round is organized. In this round, students are asked to submit a new ranking

of the participant schools, and no school ranks the students. Our model corresponds to

this assignment problem when, along unassigned students, there are also some existing

students who wish to transfer their assignments.

A kidney exchange problem consists of incompatible patient-donor pairs; the kidney

of the donor cannot be transplanted to the patient (the intended recipient) due to

medical incompatibilities (Roth et al. 2004). Each patient has a preference ordering

over the set of donors. In our language, the patients are the existing tenants, and the

donors are the occupied houses. Individual rationality implies that each patient either

receives a compatible donor kidney transplantation or he remains with his donor. No

justified-envy implies that for each i, j ∈ I either patient i does not envy patient j

or at least one of the donors that patient i is assigned with positive probability is

not compatible with patient j. The PSIR is an alternative solution satisfying these

properties and ordinal efficiency.

8 Appendix: Proofs

PROOF OF THEOREM 3

Proof of Part 1: Let R = (Ri)i∈I ∈ D|I| be an ordinal preference profile and µ0 ∈ M0

be an endowment profile. Let ω = (ωi)i∈I be a profile of eating speeds. In order to

show that the random assignment Q(ω) = [q(ω)ih]i∈I,h∈H is individually rational and

ordinally efficient, we need two more lemmas in addition to Lemma 1 in Section 4.

Lemma 2 Let tk ∈ [0, 1] such that Bk 6= ∅. If S1, S2 ∈ Bk, then

i) S1 ∩ S2 ∈ Bk,

ii) S1 ∪ S2 ∈ Bk,
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iii) S1 ∩ S2 = ∅ ⇒ (
Hk−1 \ {h : tk = tk(h)}) ∩ (US1 ∩ US2) = ∅.

Proof Let S1, S2 ∈ Bk, and H ′ =
(
US1\S2 ∩ US2\S1

) \ US1∩S2 . By definition of a

bottleneck set, for S = S1, S2, rdS
(tk) = 0, thus,

∑

h∈Hk−1∩US


rh(t

k−1)−
∑

i∈M(h,Hk−1)

tk∫

tk−1

ωi(y)dy


 =

∑
i∈S


1−

tk∫

0

ωi(y)dy


 .

By adding these two equalities for S1 and S2,

∑

h∈Hk−1∩H′


rh(t

k−1)−
∑

i∈M(h,Hk−1)

tk∫

tk−1

ωi(y)dy




+
∑

h∈Hk−1∩US1∩S2


rh(t

k−1)−
∑

i∈M(h,Hk−1)

tk∫

tk−1

ωi(y)dy


−

∑
i∈S1∩S2


1−

tk∫

0

ωi(y)dy




+
∑

h∈Hk−1∩US1∪S2


rh(t

k−1)−
∑

i∈M(h,Hk−1)

tk∫

tk−1

ωi(y)dy


−

∑
i∈S1∪S2


1−

tk∫

0

ωi(y)dy




= 0.

First note that, by definition of tk,

∑

h∈Hk−1∩H′


rh(t

k−1)−
∑

i∈M(h,Hk−1)

tk∫

tk−1

ωi(y)dy


 ≥ 0.

If S1 ∩ S2 is not a bottleneck set, then

∑

h∈Hk−1∩US1∩S2


rh(t

k−1)−
∑

i∈M(h,Hk−1)

tk∫

tk−1

ωi(y)dy


 >

∑
i∈S1∩S2


1−

tk∫

0

ωi(y)dy


 ,

which implies

∑

h∈Hk−1∩US1∪S2


rh(t

k−1)−
∑

i∈M(h,Hk−1)

tk∫

tk−1

ωi(y)dy


 <

∑
i∈S1∪S2


1−

tk∫

0

ωi(y)dy


 .
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This means that the slack of the IR constraint of S1 ∪ S2 is negative at time tk, and it

is equal to zero before tk, thus

rdS1∪S2
(tk−1) =

t(S1∪S2)∫

tk−1

ωdS1∪S2
(y)dy, where t(S1 ∪ S2) < tk.

But this contradicts the definition of tk. Thus, S1 ∩ S2 ∈ Bk. By the same argument,

S1 ∪ S2 ∈ Bk as well. Moreover, these imply

∑

h∈Hk−1∩H′


rh(t

k−1)−
∑

i∈M(h,Hk−1)

tk∫

tk−1

ωi(y)dy


 = 0. (1)

Also, if S1∩S2 = ∅, then H ′ = US1∩US2 . Thus, by equality (1), h ∈ Hk−1∩(US1 ∩ US2)

implies rh(t
k−1)− ∑

i∈M(h,Hk−1)

tk∫
tk−1

ωi(y)dy = 0, which means tk(h) = tk. QED

Lemma 3 For each k, S ⊆ Ik
E implies rdS

(tk) > 0.

Proof If Bk = ∅, the result follows immediately. Let S ′ = ∪
Sj∈Bk

Sj be nonempty.

Suppose there is S ′′ ⊆ Ik
E such that

rdS′′ (t
k) =

∑

h∈Hk∩US′′

rh(t
k)−

∑

i∈S′′


1−

tk∫

0

ωi(y)dy


 ≤ 0.

Since houses in US′ are fully allocated at or before tk,

rdS′′ (t
k) =

∑

h∈Hk−1∩(US′′\US′ )


rh(t

k−1)−
∑

i∈M(h,Hk−1)

tk∫

tk−1

ωi(y)dy


−

∑

i∈S′′


1−

tk∫

0

ωi(y)dy


 .
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It implies that, for S ′ ∪ S ′′,

∑

h∈Hk−1∩US′∪S′′


rh(t

k−1)−
∑

i∈M(h,Hk−1)

tk∫

tk−1

ωi(y)dy




=
∑

h∈Hk−1∩(US′′\US′ )


rh(t

k−1)−
∑

i∈M(h,Hk−1)

tk∫

tk−1

ωi(y)dy




+
∑

h∈Hk−1∩US′


rh(t

k−1)−
∑

i∈M(h,Hk−1)

tk∫

tk−1

ωi(y)dy




≤
∑

i∈S′′


1−

tk∫

0

ωi(y)dy


 +

∑

i∈S′


1−

tk∫

0

ωi(y)dy


 =

∑

i∈S′∪S′′


1−

tk∫

0

ωi(y)dy


 ,

where the last equality follows from the fact that the sets S ′ and S ′′ are disjoint. This

means that the slack of the IR constraint of S ′ ∪ S ′′ is non-positive at time tk, thus

rdS′∪S′′ (t
k−1) =

t(S′∪S′′)∫

tk−1

ωdS′∪S′′ (y)dy, where t(S ′ ∪ S ′′) ≤ tk.

If this inequality is strict, then it contradicts the definition of tk. If it holds with

equality, then S ′ ∪ S ′′ ∈ Bk. But it contradicts S ′′ ⊆ Ik
E. QED

Now, we show that Q(ω) is individually rational. Let agent i be an existing tenant. If

he leaves the algorithm at time 1, then, by Lemma 3, he is assigned one unit from the

houses in Ui; thus, the random assignment Q(ω) is individually rational for agent i.

Let i ∈ S for some S ∈ Bk where tk < 1. By Lemma 3,

∑

h∈Hk−1∩Ui

rh(t
k−1) > 1−

tk−1∫

0

ωi(y)dy.
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Also, by definition of tk,

∑

h∈Hk−1∩Ui


rh(t

k−1)−
∑

i∈M(h,Hk−1)

tk∫

tk−1

ωi(y)dy


 ≥ 1−

tk∫

0

ωi(y)dy.

Note that this holds with equality if, and only if, {i} ∈ Bk. In this case, the remainder

of each house h ∈ Hk−1 ∩ Ui is allocated to agent i, and agent i is assigned a total of

one unit. Otherwise, the houses in Hk−1 ∩ US are allocated to the agents in S. From

Lemma 1, we know that there is an allocation that is individually rational for each

agent in S (including i). The same argument applies recursively to the sub-problem

(S, tk) : if agent i has not been assigned one unit of houses, then the remainder of the

houses in Ui is enough to guarantee him a random consumption. The GE algorithm

maintains this guarantee until the end and the induced random assignment Q(ω) is

individually rational for agent i.

Now, we show that Q(ω) is ordinally efficient. We need the following characterization

result:

Lemma 4 (Bogomolnaia and Moulin 2001) Given a preference profile R and a random

assignment Q, define a binary relation in H as follows:

for each h, h′ ∈ H : h τ(Q,R) h′ ⇔ {there is i ∈ I : h Pi h′ and qih′ > 0}.

The random assignment Q ∈ Q is ordinally efficient if, and only if, the relation τ(Q,R)

is acyclic.

Suppose the random assignment Q(ω) is not ordinally efficient. Then, by Lemma 4,

there is a set of houses {h1, h2, . . . , hk} and a function β : {h1, h2, . . . , hk} → I such

that

h1 Pβ(h1) h2 Pβ(h2) h3 Pβ(h3) . . . hk Pβ(hk) h1

and, for i = 1, . . . , k − 1, q(ω)β(hi),i+1 > 0, and q(ω)β(hk),1 > 0.

Let t(h) denote the time at which house h is allocated. At time t(h1), agent β(h1)

eats either house h1 or a better house for himself, and he has not yet eaten house h2.

Thus, q(ω)β(h1),2 > 0 implies t(h1) ≤ t(h2). By the same argument, t(h1) ≤ t(h2) ≤
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... ≤ t(hk) ≤ t(h1). Thus,

t(h1) = t(h2) = . . . = t(hk) = tk.

At time t ∈ [0, tk), each house in {h1, h2, . . . , hk} is available; for i = 1, . . . , k − 1,

q(ω)k−1
β(hi),i+1 = 0 and q(ω)k−1

β(hk),1 = 0. Also, since

∑

i∈M(hi,Hk−1)

tk∫

tk−1

ωi(y)dy = rhi
(tk−1)

implies q(ω)β(hi−1),i = 0, it must be that for each i = 1, 2, . . . , k,

∑

i∈M(hi,Hk−1)

tk∫

tk−1

ωi(y)dy < rhi
(tk−1).

Thus, since houses h1, h2, . . . , hk are allocated at time tk, for each i = 1, 2, . . . , k,

hi ∈ US for some S ∈ Bk. Also, since house h1 is allocated in the problem (
⋃

S∈Bk

S, tk),

agent β(hk) has not eaten h1 until tk, and q(ω)β(hk),1 > 0, agent β(hk) must be in a

bottleneck group S ∈ Bk. This holds for each agent β(hi) for i = 1, . . . , k; thus,

{β(h1), β(h2), . . . , β(hk)} ⊆
( ⋃

S∈Bk

S

)
⊆ I \ Ik

E.

Let Sk
β(hi)

∈ Bk be the smallest bottleneck set that involves β(hi). We claim that

Sk
β(h1) ⊆ Sk

β(h2). First, suppose Sk
β(h1) ! Sk

β(h2). Then, h2 will be allocated in the problem

(Sk
β(h2), t

k), and since β(h1) 6∈ Sk
β(h2), q(ω)β(h1),2 = 0, which is a contradiction. Now,

suppose that Sk
β(h1) * Sk

β(h2) and Sk
β(h1) + Sk

β(h2). Since, by Lemma 2, Sk
β(h1) ∩ Sk

β(h2)

(if nonempty) is a bottleneck set, it must be that β(h1) ∈ Sk
β(h1) \ Sk

β(h2) and β(h2) ∈
Sk

β(h2) \ Sk
β(h1). Thus,

h2 ∈ USk
β(h1)

\Sk
β(h2)

∩ USk
β(h2)

\Sk
β(h1)

.

If h2 ∈ USk
β(h1)

∩Sk
β(h2)

, then, by Lemma 2, Sk
β(h1) ∩ Sk

β(h2) is a bottleneck set and h2 is

allocated to the agents in Sk
β(h1) ∩ Sk

β(h2). Then, since β(h1) 6∈ Sk
β(h2), q(ω)β(h1),2 = 0,
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which is a contradiction. Thus, h2 6∈ USk
β(h1)

∩Sk
β(h2)

, and

h2 ∈
(
USk

β(h1)
\Sk

β(h2)
∩ USk

β(h2)
\Sk

β(h1)

)
\ USk

β(h1)
∩Sk

β(h2)
.

Then, by equality (1) in the proof of Lemma 2,

∑

i∈M(h2,Hk−1)

tk∫

tk−1

ωi(y)dy = rh2(t
k−1)

which is a contradiction. Thus, Sk
β(h1) ⊆ Sk

β(h2). Since the same argument applies to

Sk
β(h3), S

k
β(h4), . . . , it implies

Sk
β(h1) ⊆ Sk

β(h2) ⊆ · · · ⊆ Sk
β(hk) ⊆ Sk

β(h1).

Thus, Sk
β(h1) = Sk

β(h2) = · · · = Sk
β(hk) = S1. The houses h1, h2, . . . , hk are allocated to

the agents in the sub-problem (S1, t
k). In the sub-problem (S1, t

k), the same argument

applies: The houses h1, h2, . . . hk and the agents β(h1), β(h2), . . . , β(hk) leave at the

same time, say time tl. Let Sl
β(hi)

∈ Bl be the smallest bottleneck set that involves

β(hi). Then, Sl
β(h1) = Sl

β(h2) = · · · = Sl
β(hk) = S2. The houses h1, h2, . . . , hk will be

allocated to the agents in S2 in the sub-sub-problem (S2, t
l). This contradicts the

finiteness of problem.

Proof of Part 2: Let Q be an individually rational and ordinally efficient random

assignment. By Theorem 1, there exists a profile of eating speeds ω such that Q is

equivalent to the random assignment generated by the eating algorithm for ω. Since

Q is individually rational, by Lemma 1, the slack of each IR constraint is nonnegative

throughout the algorithm. Now, consider the generalized eating algorithm. Since the

slack of each IR constraint is nonnegative on [0, 1], there is no bottleneck set. Thus,

the generalized eating algorithm reduces to the eating algorithm, and Q(ω) = Q.

PROOF OF PROPOSITION 1

Let (µ0, R) be a problem. Let i ∈ I and label houses in H, such that

h1 Pi h2 Pi . . . Pi h|Ui|−1 Pi µ0(i).
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For each i′ ∈ I, let k(i′) be such that i′ ∈ Ik(i′)−1 \ Ik(i′). Let i, j ∈ I.

Case 1: k(i) > k(j)

The houses in Uj are allocated at time tk(j) ≤ tk(i)−1. Let h be agent i′s favorite house

among the houses in Hk(i)−1. Since PSIR
i,h > 0 and h 6∈ Uj, the random consumption

PSIR
i is not individually rational for agent j.

Case 2: k(i) < k(j)

Let S ∈ Bk(i) where i ∈ S. Each house in the set Ui = {h1, h2, . . . , h|Ui|−1, hi}
is allocated at or before tk(i). Let k1 be the step at which h1 is allocated. Thus,

h1 ∈ Hk1−1\Hk1 . Since i ∈ M(h1, H
k) for k ≤ k1−1, qk1

i1 ≥ tk1 . Also, k(i′) > k1 implies

tk1 ≥ qk1

i′1. Since k1 ≤ k(i) < k(j), qk1
i1 ≥ tk1 ≥ qk1

j1 . Let k2 be the step at which the houses

h1 and h2 are allocated. Note that k ≤ k2−1 implies i ∈ M(h1, H
k)∪M(h2, H

k). Thus,

qi1+qi2 = qk2
i1 +qk2

i2 ≥ tk2 . Also, k(i′) > k2 implies tk2 ≥ qk2

i′1+qk2

i′2. Since k2 ≤ k(i) < k(j),

qi1 + qi2 = qk2
i1 + qk2

i2 = tk2 ≥ qk2
j1 + qk2

j2 = qj1 + qj2.

The same argument applies to the rest of the houses in Ui. Thus, PSIR
i stochastically

dominates PSIR
j at Ri, and agent i does not envy agent j.

Case 3: k(i) = k(j) = k∗

If tk
∗

= 1, then, by the same argument used in the proof of Proposition 1 by Bogomol-

naia and Moulin (2001), agent i does not envy agent j. Assume tk
∗

< 1. Thus, i, j ∈⋃
S∈B

k∗
S. We now consider the problem (

⋃
S∈B

k∗
S, tk

∗
). Let Si, Sj ⊆

⋃
S∈B

k∗
S be the smallest

bottleneck sets involving i and j, respectively.

If Si ∩ Sj = ∅, then by Lemma 2,

(
Hk∗−1 \ {h : tk

∗
= tk

∗
(h)}) ∩ (USi

∩ USj
) = ∅.

Thus, the random consumption PSIR
i is not individually rational for agent j.

If Si 6= Sj and Si ∩ Sj 6= ∅, then either i ∈ Si \ Sj or j ∈ Sj \ Si. At time tk
∗
, the

remainder of the houses in USi∩Sj
will be allocated to the bottleneck group Si∩Sj. Let

H ′ =
(
USi\Sj

∩ USj\Si

) \ USi∩Sj
. Since, by equality (1) in the proof of Lemma 2,

∑

h∈Hk∗−1∩H′

(
rh(t

k∗−1)− (tk
∗ − tk

∗−1)m(h, Hk∗−1)
)

= 0.
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the remaining houses in USi\Sj
and USj\Si

are disjoint. Thus, if i ∈ Si \ Sj, then PSIR
i

is not individually rational for agent j. If i 6∈ Si \ Sj and j ∈ Sj \ Si, then, since Sj \ Si

is not a bottleneck set, agent i leaves before agent j. Then, by the same argument in

Case 2, PSIR
i stochastically dominates PSIR

j .

If Si = Sj = S, then, without loss of generality, we assume that, in the problem

(S, tk
∗
), agents i and j leave the algorithm at time 1− tk

∗
.(If not, then, in the problem

(S, tk
∗
), either Case 1 or Case 2 applies, thus, either PSIR

i is not individually rational

for agent j, or PSIR
i stochastically dominates PSIR

j at Ri.) Then agent i does not

envy agent j by the same argument in the proof of Proposition 1 by Bogomolnaia and

Moulin (2001).

PROOF OF THEOREM 4

First note that it is enough to consider the case of three agents: For an arbitrary

number of agents |I| , let agents 1, 2, 3 prefer h1, h2, and h3 to other houses, while

for i > 3, agent i is the existing tenant of hi 6= h0, and hi Pi hj for j = 1, 2, 3. By

individual rationality, the houses h4, h5, ..., h|I| are allocated to the agents 4, 5, ..., |I| ,
and the houses h1, h2, h3 are allocated to the agents 1, 2, 3.

Let the endowment profile be such that µ0(1) = h1, µ0(2) = h2, and µ0(3) = h0. Let

ϕ be a solution satisfying individual rationality, strategy-proofness and no justified-envy.

We proceed by considering three preference profiles. Let ϕk
ij represent the probability

that agent i is assigned house hj under the preference profile k.

(1) (2) (3)

R1 R2 R3 R1 R2 R3 R1 R2 R3

h2 h1 h2 h2 h1 h2 h2 h1 h2

h1 h2 h1 h3 h2 h1 h3 h3 h1

h3 h3 h3 h1 h3 h3 h1 h2 h3

Profile 1: By individual rationality, h1 and h2 are allocated to agents 1 and 2. Note

that ϕ1
12 = ϕ1

21. By no justified-envy, ϕ1
12 = ϕ1

21 ≥ 1/2.

Profile 2: By strategy-proofness, ϕ2
12 ≥ ϕ1

12 ≥ 1/2. By no justified-envy, ϕ2
12 = ϕ2

32.

Thus, ϕ2
12 = ϕ2

32 = 1/2. By individual rationality, ϕ2
21 = 1.

Profile 3: By strategy-proofness, ϕ3
21 = 1. By no justified-envy, agent 3 does not envy

agent 2, implying that ϕ3
32 +ϕ3

31 ≥ ϕ3
22 +ϕ3

21 = 1. Thus, ϕ3
32 = 1 and ϕ3

13 = 1. However,

at this allocation, agent 1 envies agent 3, and this contradicts no justified-envy. This
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proves the first part of the theorem.

For the second part, note that, by individual rationality and ordinal efficiency,

ϕ1
12 = ϕ1

21 = 1. By weak strategy-proofness, ϕ2
12 = 1. Thus, ϕ2

1 sd(Ri) ϕ2
3 and ϕ2

1 6= ϕ2
3

and Support(ϕ2
3) \ U1 = ∅. But this violates weak no justified-envy.

PROOF OF PROPOSITION 2

Let (µ0, R) be a problem, where {j ∈ IE : Uj = H} 6= ∅. Let

k∗ = ArgMax{k : tk < 1 and Bk 6= ∅}.

If k∗ is not well defined, then each agent leaves at time 1. Then, individual rationality

does not restrict the set of random assignments and for the problem (µ1(µ0, R), R),

the PSIR solution gives the same random assignment. Suppose k∗ is well defined. We

claim that for each k ∈ {0, 1 . . . , k∗} and for each S ∈ Bk, {j ∈ IE : Uj = H} ∩S = ∅.
Suppose not. Then, there is k1 such that {j ∈ IE : Uj = H}∩S 6= ∅ for some S ∈ Bk1 .

Since S involves an agent i such that Ui = H, and
(
Hk1−1 \ {h : tk1 = tk1(h)}) ⊂ US,

all the remainders of the houses are allocated and the algorithm terminates at time tk1 .

Since IN ⊂ Ik∗ , it implies IN = ∅ and k1 = k∗. Then, since the algorithm terminates

at tk
∗

< 1,

tk
∗

= tk
∗−1 +

rd
Ik∗−1
E

(tk
∗−1)

ωd
Ik∗−1
E

(tk∗−1)
.

But, this contradicts ωd
Ik∗−1
E

(tk
∗−1) = 0. Thus, for each k ∈ {0, 1 . . . , k∗} and for each

S ∈ Bk, {j ∈ IE : Uj = H} ∩ S = ∅. Thus, {j ∈ IE : Uj = H} ⊂ Ik∗
E and the algorithm

terminates at t = 1. Each agent in {j ∈ IE : Uj = H} has eaten 1 unit through [0, 1).

Thus, the PSIR solution is invariant to whether an agent is an existing tenant of the

bottom house in his ranking or he is a new applicant.
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