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Abstract

We describe the construction and analysis of asymmetric Cost Sharing mech-
anisms, in which a variety of axioms are applied to subsets of the agents/goods.
We show that the analysis can be quite subtle as apparently similar axiom-
atizations lead to significantly different results; in particular, combinations
of symmetric mechanisms can be extremely asymmetric and biased. In ad-
dition, we characterize some interesting mixed mechanisms.
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1. Introduction

A standard definition of an a axiom is a “self evident truth.” At first
glance, this definition appears to motivate much of the literature on Cost
Sharing. Most axiomatizations in the literature are based on “universal ax-
iomatizations” where the same set of axioms are applied uniformly to all
agents or goods.

For example, many of the classic works in this area arose from the charac-
terization of the Shapley-Value [1] and the characterization of the Aumann-
Shapley Cost Sharing mechanism [2, 3, 4] by such a set of axioms. Since these
pioneering works there have been many axioms proposed to characterize a
variety of Cost Sharing mechanisms. (See [5] for a review and bibliography.)

However, in many of these papers, the motivations for various axioms
are based more on applications. For example, in the axiomatization of
the Aumann-Shapley mechanism, the motivation that homogeneous goods
should have equal prices is motivated by the more plebian concern that agents
might be able to arbitrage the system. Even the motivation for Scale Invari-
ance, which is based on the incomparability of different goods, need not apply
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when there is a natural basis for making comparisons of scale between select
goods. More directly, the Demand Monotonicity axiom introduced by Moulin
(6] and used in the axiomatization of the Friedman-Moulin mechanism [7] is
motivated by the need to prevent agents from padding their demands to lower
their total cost.

In this paper, we consider the use of axioms in an application dependent
way. We will view axioms as constraints that need to be imposed in certain
settings. For example, the axiomatization of the Aumann-Shapley mecha-
nism arose from the sharing of telephone costs at Cornell University in the
1970s [8]. Consider a modern version of this setting, in which agents pay for
use of various Information Technology services. If we assume that individual
agents (such as students) are responsible only for a minuscule fraction of the
calls and are able to use each others’ accounts to access the services (such as
students in a computer lab) then one should apply the equal prices axiom;
however, for other users, the equal prices axiom is less compelling, such as
for faculty in different departments and different physical locations. Next
consider the case of a small group of large users whose demand is a signifi-
cant fraction of the total demand. It is important that these large users not
be encouraged to pad their demand, so one should require the Cost Sharing
mechanism to be Demand Monotonic for them, but this axiom need not be
applied to the students, since a single small agent cannot significantly affect
prices.

Thus, we see the motivation for mixed axiomatizations of Cost Sharing
mechanisms. In this paper we provide an initial analysis of these problems
and focus on analyzing the situation described above. In so doing we reveal
some surprising subtleties to the analysis and construct new families of Cost
Sharing mechanisms. Although we focus on specific Cost Sharing mecha-
nisms and axioms in this paper, we note that our methods are quite general
and apply to a much broader class of Cost Sharing mechanisms and axioms
than we directly analyze.

This paper is organized as follows. In the following section we present
our basic model. Then in Section 3 we review the axiomatizations of several
well known mechanisms. Section 4 considers the “high level axiomatizations”
directly mixing mechanisms, while Section 5 considers the “lower level ax-
iomatizations”, mixing low level axioms, which turns out to be significantly
stronger (more restrictive). In Section 6 we discuss some symmetry issues
and conclude in Section 7 with a discussion.



2. Model

We consider the standard Cost Sharing setting. There are a set of agents
N ={1,2,...,n} and a vector of (bounded) demands

g€Q={qeRY | q< e}

for some fixed, but finite ¢¥» € R, where e is the vector of all 1’'s.! The
cost function is C' € C, where C is the set of nondecreasing continuously
differentiable functions from RY to R4, with C'(0) = 0. For notational
convenience we will denote the partial derivative of C' with respect to ¢; by
9;C and for q_,qy € RY define the interval

lg- gl ={peRY | ¢- <p<q}

A Cost Sharing mechanism, z is given by x(¢; C') € RY for ¢ € Q and
C € C. We will make the following standard assumptions on x.

Assumption 1. The set of valid Cost Sharing mechanisms, denoted by x €
X, satisfy the following:

1) Budget Balance: ), .\ z;(¢;C) =C(q), Vg € Q VC €C.

2) Dummy: if 0;C =0 then x;(¢;C) = 0.

3) Additivity: z(¢;C) + 2(q; D) =2(q¢;C+ D) Vg€ Q VYC,D €C.

Budget Balance guarantees that all costs will be recovered, while Dummy
requires that agents are not charged for free goods (which have no external-
ities). The Additivity assumption is nearly universal in the study of Cost
Sharing mechanisms (with the notable exceptions of [9, 10, 11]). It has several
justifications ranging from decentralization to immunity to some accounting
issues. (Nonetheless a general theory of nonlinear Cost Sharing mechanisms
is an important open problem.)

In addition, we will occasionally require “Null Continuity”:

lim 37(% q—i; O) = 55(01'7 q—i; O)-

q;—0

!'Note that we are connecting each g; with a specific agent. As seen from the examples
in the Introduction there are instances where we view each ¢; as associated with a large
group of agents. Nonetheless for presentational purposes we will use the term agent to
refer to either an agent or a good interchangeably.



This weak axiom requires regularity at zero and removes many complications
that can arise under the Scale Invariance axiom described below.

It is convenient to describe Cost Sharing mechanisms with path func-
tions. Let v(¢; ¢) be a continuous non-decreasing path such that v(0;¢) = 0
and lim;,, Y(¢;¢) = gq. The Cost Sharing mechanism induced by the path
function v is given by

z(q:C) = /OOO %C(v(t;q))dvi(t; ). (%)

It is important to note that the parametrization of the of the path does not
affect the Cost Sharing mechanism. For example, the Cost Sharing mecha-
nism generated by the path function 7(¢; ¢) is the same as the one generated
by v(o(t;q); q) where ¢(t;q) is any continuous scalar function which is non-
decreasing in t, for fixed ¢ that satisfies ¢(0;¢) = 0 and lim;_,.¢(t; q) = oc.
Note that the dependence of ¢ on ¢ can be completely arbitrary.

For example, the Aumann-Shapley mechanism is given by the well known
direct linear path,

vt q) =tq N g

where the wedge operator is the componentwise minimum, (aAb); = min|a;, b;,
while the Friedman-Moulin mechanism, which is an extension of the Serial

Cost mechanism which was defined for homogeneous goods [12, 13], is gen-

erated by the following path:

VMt q) =teng

where e is the vector of all 1’s.

The Shapley-Shubik [14] mechanism can be written as an average over the
Random Order mechanisms [15], which are path generated. Let 7 : N — N
be an ordering of the agents. The Random Order path associated with this
ordering is given by

Vi (t; q) =0 t<m(i)—1 (1)
=q(t—m()+1) w(i)—1<t<m(i) (2)
=G t>m(i) (3)

We then write the Random Order mechanism associated with an ordering 7 €
IT as 2™ = 27" and the Shapley-Shubik mechanism as z°% = > 2™/|I],
where II is the set of all orderings.



We note that any Cost Sharing mechanism can be written as a sum of
path mechanisms. This is because the set of Cost Sharing mechanisms is
convex so any element of the set can be written as a sum over its extreme
points, which are the path generated mechanisms.

Lemma 1 ([16, 17]). Let x € ext(X), the extreme points of the set X.
Then x = x7 for some path function .

Thus, if we let I'(q) be the set of paths from 0 to ¢ then we can, for any
fixed ¢, identify any Cost Sharing mechanism with a probability measure over
['(¢) which we denote p(z;q). Similarly, if there are no other constraints,
we can identify a full Cost Sharing mechanism with a parameterized set of
measures p(x) which is a different measure for each ¢q. Note that p(x) and
p(x; q) are not unique as there can be many probability measures representing
the same .2

An implicit fact that is very useful, but not explicitly stated in any pre-
vious papers is the following. It follows directly from the application of the
Riesz representation theorem in the Appendix of [7].

Lemma 2. For any q € Q, if 11(q),72(q) € I'(q) and 11(q) # 12(q) (there
is no reparameterization of the paths that make them identical) then for any

i € N with ¢; > 0 there exists some C € C such that z]'(q; C) # x]*(¢; C).

3. Axioms and Axiomatizations

There are four main axioms that we will focus on in this paper. The
first is scale invariance which we emphasize refers to relative scale between
the different ¢;’s. It is fundamental when there is no natural comparison
scale between agents’ demands. First we define Scale Invariance in a manner
which will naturally generalize to asymmetric situations.

Definition 1. A Cost Sharing mechanism x € X is Scale Invariant® for
agent i if for all ¢ € Q and o > 0 such that ¢; > 0 and ¢;/a < 1,

2(¢:0) = (g m(@) 0 C)

2For example, if two paths intersect each other than one can construct two different
paths by joining the initial part (before the intersection) of each path with the latter part
of the other path.

3Note that we are implicitly assuming that the Cost Sharing Mechanism does not
depend on the values of the cost function outside of the set [0, ¢, a result proved in [7].



where 1;(a) o C(q) = C(aqi, q—i). A Cost Sharing mechanism x € X is Scale
Invariant on A C N if it is Scale Invariant for all i € A.

For later use, we note the following characterization of Scale Invariant
Cost Sharing mechanisms, based on the scale invariant paths. However,
note that we assumed that « # 0 in the previous definition and thus scale
invariance only connects non-zero demands. Let n(q) = {i € N | ¢ > 0}
then we say that a path is Scale Invariant on S C N if there exists a family
of continuous and nondecreasing paths, o(t, gn\s; B), for all B C S such that

Y(t,q)i = o(t, av\s,1(q))iG

for all 7 € S and
Y(t,q)i = o(t,av\s,n(q))i

for all © ¢ S. Note that to simplify the presentation, what we are calling a
path is actually a set of paths, one for each ¢q. Let I'/(S) be the set of Scale
Invariant (families of) paths for S.

Lemma 3 ([17]). Let © € X be Scale Invariant for S C N. Then there
exists some p(z) that has full support on T51(S) and generates x.

Note that the measure is on scale invariant (families of) paths as men-
tioned above, so is essentially an infinite sum over (sets of) paths. The proof
of this lemma is a slight modification of the proof in [17]. For any i € S
and fixed 7(q) one can take a path decomposition of x(¢egs,q_gs;-) and note
that a path decomposition for any x(g; -) can be written by simply extending
Yi(t;ves, q-s) by setting v;(¢; q) = vi(t; ves, q-i)qi /v for all i € S.

Next we consider the Average Cost Pricing for Homogeneous Goods ax-
iom. In this case instead of cost shares z;(¢q; C') we consider the average prices
pi(q; C) = x;(¢; C)/q;. In the case where the goods are essentially the same
we want these prices to be equal, in order to prevent arbitrage opportunities
among agents with infinitesimal demands. This occurs when the cost function
is homogeneous, i.e. if C'€ C¥ then C(q) = D(|q|) for some scalar function
D where |g| = >,.y ¢;- We also say the a cost function is homogeneous on
a subset A C N of agents if we can write C'(q) = D(|qal,q-a)-

Definition 2. A Cost Sharing mechanism x € X satisfies Average Cost
Pricing for Homogeneous Goods on A C N ifp;(¢;C) = p;(q; C) foralli,j €
A and q € Q with g;,q; > 0 when the cost function C € C is homogeneous on
A



For later use, we quote the following axiomatization of the Aumann-
Shapley mechanism.

Theorem 1 ([3, 4]). Let x € X be a Cost Sharing mechanism that is Scale
Invariant and satisfies Average Cost Pricing for Homogeneous Goods on N.
Then x € X is the Aumann-Shapley mechanism.

In the case where each ¢; is controlled by a single agent, it is important
not to have an incentive to overstate demands, which motivates the Demand
Monotonicity axiom.

Definition 3. A Cost Sharing mechanism x € X is Demand Monotonic
on agent i if x;(q¢;C) < x;(q},q—i;C) for all ¢ € Q with ¢, > q;. A Cost
Sharing mechanism x € X is Demand Monotonic on S C N if it is Demand
Monotonic for alli € S.

A fixed path for S C N can be written as 7(¢,q) where vs(t,q) =
As(t;g_s)es A qs for some function 4 and let TP (S) be the set of such
paths. Note that as in the definition of Scale Invariant paths, when we refer
to a fixed path, we are also referring to the family of paths generated by the
fixed path, one for each q € Q.

Lemma 4 ([17]). Let x € X be Demand Monotonic for S C N. Then there
exists some p(x) that has full support on TPM(S).

The proof of this lemma is a slight modification of the proof in [17] which is
based on a characterization of Demand Monotonic Cost Sharing mechanisms
in [7]. Note that the decomposition of Demand Monotonic Cost Sharing
Mechanism as convex combinations of fixed paths relies on our assumption
that ¢ is bounded. For example, for unbounded domains it is not possible to
write a random order mechanism as a fixed path mechanism.

Lastly we consider an axiom which protects agents from extreme costs
imposed by other agents. For example, consider a 2 agent problem where the
cost function is C(q) = (q; + ¢2)? and the Cost Sharing Mechanism satisfies
Average Cost Pricing for Homogeneous Goods (such as the Aumann-Shapley
mechanism). Then

21(q;C) = qu(qu + QQ)Q/(Ql +q2) = q(q1 + q2)

is strictly increasing in ¢, and can be arbitrarily large for fixed ¢;. The
Upper Bound for Homogeneous Goods axiom prevents this with the tightest
uniform bound possible.



Definition 4. A Cost Sharing mechanism x € X satisfies Upper Bound for
Homogeneous Goods on S C N if

74(q; C) < Clgie)
for all ¢ € QQ and i € S when the cost function C' € C is homogeneous on S.

Next, we quote the following axiomatization of the Friedman-Moulin
mechanism.

Theorem 2 ([7]). Let x € X be a Cost Sharing mechanism that is Demand
Monotonic and satisfies the Upper Bound for Homogeneous Goods on N.
Then x € X s the Friedman-Moulin mechanism.

Finally, we note another useful axiomatization.

Theorem 3 ([7]). Let © € X be a Cost Sharing mechanism that is Scale
Invariant and Demand Monotonic on N. Then xz € X is a Random Order
mechanism [15].

Lastly we note the following impossibility results, which slightly generalize
those found in [7].

Theorem 4. There is no Cost Sharing Mechanism satisfying any one of the
following pairs of axioms on any subset S C N with |S| > 2:

1) Average Cost Pricing for Homogeneous Goods and Demand Monotonicity.
2) Average Cost Pricing for Homogeneous Goods and Upper Bound for Ho-
mogeneous Goods.

3) Scale Invariance and Upper Bound for Homogeneous Goods.

Proof: This result is proven in [7] for the case that S = N. To prove it for
proper subsets of N one only need consider cost functions for which agents
not in .S are Dummies. O



4. Mixing Mechanisms

We first consider the issue of directly mixing different Cost Sharing mech-
anisms, where precise Cost Sharing mechanisms are specified on subgroups of
the agents. Given a subset of the agents, A C N we say that the Cost Shar-
ing mechanism reduces to y on A if x;(q; C) = y;(qa; D) for all i € A when
C(q) = D(qa) for all ¢ € Q. This says that the Cost Sharing mechanism
reduces to y when all agents in N \ A are Dummies.

We now consider the problem when we want the Cost Sharing mecha-
nism to reduce to two different Cost Sharing mechanisms on different subsets
of the agents. For concreteness we consider mixing Aumann-Shapley with
Friedman-Moulin, i.e. the mechanism reduces to Aumann-Shapley on A and
Friedman-Moulin on S = N \ A. It is easy to see that such a mechanism ex-
ists, by simply combining the path functions for the individual mechanisms:

Y(t;q) = (tqa A qa,tes A gs).

Our first result is that the only such Cost Sharing mechanisms are of this
type.

Theorem 5. = € X is a Cost Sharing mechanism that reduces to the Aumann-
Shapley mechanism on A C N and Friedman-Moulin on S = N\ A such that
|A| > 2 and |S| > 2, if and only if x € X is a convex combination of path
generated mechanisms, with paths given by

v(t:q) = (6 (t; 9)qa A qa, 9°(t; Q)es A gs),

where both ¢*(t;q) and ¢°(t;q) are continuous nondecreasing functions of t
and both
lim ¢ (t; ) = oo

t—o0
and

lim ¢°(t;q) = oo
for all q € Q.

Proof: It is easy to see that if both ¢*(t;¢) and ¢(¢;q) are continuous
nondecreasing functions of ¢ then

v(t:q) = (6 (t; 9)qa A qa, 9°(t; @)es A gs),



is a valid path and satisfies the basic axioms. Then one can see directly from
formula (*) that if C'(q) is independent of g4 then the cost shares are 0 for
the players in A and the same as the Friedman-Moulin on S. Similarly it
follows directly that the mechanism projects to the Aumann-Shapley on A.

To show the converse consider a Cost Sharing mechanism satisfying the
assumptions of the theorem and a fixed ¢. First we recall the following result
from [7] (Lemma 3). Any z € X can be written as

zi(q; C) = 9,C(p)dui(p) (%)

[0,q]

where ! is a non-negative radon measure on [0, ¢] such that for all 0 < a <
b<q
pi{z€0,q |a<qg <b})=b-a.

Now, fix ¢ and for any i € B C N define {g(p!) to be the projection of !
on RY. Formally, for any set H C [0, ¢p] define

Ep(pf)(H) = pi(H x [0, gn\5))-

Given ¢ € B note that if C' is such that all j € N \ B are Dummy agents
then
zi(¢; C) = ’ }az‘C(P&ON\B)dWB(M?(p))-
a
(This is analogous to the argument given in Section 4 of [17].)

Next, let X be the Cost Sharing mechanism satisfying the above assump-
tions. As shown in [17],  can be approximated (in the Prohorov metric of
the underlying measures) by a finite convex combination of path generated
methods. In fact, it can be approximated as a convex combination of a fixed
number of paths, all with equal weights. Consider the simultaneous approx-
imation, one for each ¢, of x(q;-) into r equally weighted paths that provide
the best approximations.

Consider any such a path, ~(¢; ), after this decomposition. From the
argument in the previous paragraph, the support of its projection onto A
must be the path for the Aumann-Shapley Mechanism. Thus, we can define
¢*(t; q) by the condition that ¢*(t;q)qa A ga = va(t;q). Similarly, we can
define ¢°(t;q) by the condition that ¢°(t;q)es A gs = 7s(t;q). By mono-
tonicity of the path we see that both ¢“(t;¢) and ¢°(¢;q) are continuous
nondecreasing functions of .

10



To complete the proof let » — oo and note that for each ¢ the approxi-
mate mechanism converges to the true one. O

It is interesting to note that these mixtures can be extremely unstable.
For example, let (¢2(t; q), ¢°(t;q)) = (t, max[0, ¢ —1]) when all ¢; are rational
and (¢(t;q), #°(t; q)) = (t|q], max[0,t — 1]) otherwise. It is easy to see that
for many reasonable C' € C' the cost shares will differ depending on whether
q is rational. A simple example arises when C(q) = max|0, (|¢| — 1)* and
lga| = 2/3 while |gs| = 2/3. If all the components of g, are rational, then
> iea i = 0 while if any are irrational >, _, z; = 1/9.4

Even if we eliminate the Cost Sharing mechanisms that are non-differentiable
we are still left with an infinite number of possibilities.> (This can be done
by requiring that the both ¢(t; ¢) and ¢°(¢; ¢) be continuous in q.)

5. Mixing Axioms

In this section we explore a subtle distinction. In the previous section
we essentially mixed different Cost Sharing mechanisms. In this section we
mix the underlying axioms that axiomatize those Cost Sharing mechanisms.
The reason that this is nontrivial can be seen by considering the mechanisms
analyzed in the previous section. Even though z € X reduces to Aumann-
Shapley on A and the Aumann-Shapley mechanism is Scale Invariant, r € X
need not be Scale Invariant on A. Additionally even though x € X reduces
to Friedman-Moulin on N \ A it need not be Demand Monotonic on N \ A.
This should be clear from the example of an everywhere discontinuous Cost
Sharing mechanism in the previous section, but is true even for many well-
behaved mechanisms.

Theorem 6. For any A C N and S = N\ A, such that |A| > 2 and |S| > 2,
x € X is a Cost Sharing mechanism that satisfies all of the following:

1) x reduces to the Aumann-Shapley mechanism on A and Friedman-Moulin
on S,

2) x is Scale Invariant on A and Demand Monotonic on S,

4Although the discontinuities only occur on a set of measure 0, it is easy to modify this
example using Cantor sets to get discontinuities on sets of positive measure.

5An anonymous referee has pointed out the amusing example where we mix a Cost
Sharing mechanism with itself and similar instability results arise.

11



if and only if x € X is a convex combination of path generated mechanisms,
with paths given by

vt q) = (*(t,1(qa))qa, ° (t,1(qa))es) A g,

where both ¢ (t) and ¢°(t) are nondecreasing functions of t, and both

. A .
i 9"(0) = oo
Jim °(0) = oo

and n(ga) ={i € A | ga > 0}.

Proof: From the previous theorem, we know that all x satisfying (1) can be
written as a convex combination of path generated mechanisms with paths
of the form

Y(t:q) = (™ (£ 0)qa A qa, 6°(; Q)es A gs),

where both ¢(t; q) and ¢(¢; q) are nondecreasing functions of ¢ and both

lim ¢ (t; ) = o0

t—o0
and

: S(t. _

for all ¢ € Q. Assume that ¢; > 0 for all i € A. Now, by scale invariance, we
can replace every path

v(t;q) = (6™ (t; 9)qa A qa, 6°(; )es A gs),

by
v(t;q) = (6™ (t; qs, ea)qa A qa, 6°(t; qs, ea)es A qs),

thus eliminating the dependence of both ¢4 and ¢° on 4. If some ¢; = 0
for i € A we simply modify this argument, as in the construction of the scale
invariant paths to get:

Y(t;q) = (0™ (t; s, €nign)s 1(q4))qa A qas &° (t; 45, €qan)» M(qa))es A gs)-

Next consider x(q) where gs = e and apply Demand Monotonicity.
From the analysis in Appendix B of [7], Demand Monotonicity implies that

12



wd(p) must not change (on [0, qa]) if ¢; is increased. Thus for all paths of the
form

Y(t;q) = (0™ (t; s, €nign)s 1(q4))qa A qa, ¢° (t; 45, €nan)» M(qa))es A gs),

we can replace them by

V(t;q) = (9™ (t; €5, €nan), M(qa))qa A qa, 0°(t; €5, €niany 1(q4))es A gs)

which leaves them in the form as stated by the theorem, completing the
proof. O

This allows us to characterize a mixed axiomatic characterization.

Corollary 1. For any AC N and S = N\ A, with |A| > 2 and |S| > 2 let
x € X be a Cost Sharing mechanism that satisfies all of the following:

1) x is Scale Invariant on A and satisfies Average Cost for Homogeneous on
A.

2) x is Demand Monotonic on S and satisfies Upper Bound for Homogeneous
on S.

Then x € X is a convex combination of path generated mechanisms, with
paths given by

v(t;q) = (¢ (t,1(ga))qa, 6% (£, n(qa))es) A g,
where both ¢(t) and ¢°(t) are nondecreasing functions of t, and both

lim ¢ (t)

= OO’
t—o00
. S -
tliglo(ﬁ () = oo

There are still infinitely many such mechanisms but they are now contin-
uous, except possibly at ¢; = 0 for some ¢ € A, which we could remedy by
requiring Null Continuity.

Corollary 2. For any A C N and S = N\ A, let © € X be a Cost Shar-
ing mechanism that reduces to the Aumann-Shapley mechanism on A and
Friedman-Moulin on S. In addition it is Scale Invariant on A and Demand
Monotonic on S. Then x(q; C) is continuous in q for any C € C and q > 0.

13



Proof: To prove this, consider a single path generated mechanism, 27, with
path of the form

1t q) = (¢*(H)ga, ¢°(t)es) A .

That 7 will be continuous follows directly from the formula for the path
generated Cost Sharing mechanisms, the fact that 9;C is continuous on [0, ¢]
and the continuity of the path ~ as a function of ¢ which can be seen directly
from its formula. a

6. Agreement Points and Unbiasedness

In this section we characterize a class of interesting mixed Cost Sharing
mechanisms. Our first approach is based on the fact that the Aumann-
Shapley mechanism and the Friedman-Moulin mechanism agree when players
have identical demands. Thus, it seems natural that the mixed mechanism
should satisfy this property. However, this is not possible.

Theorem 7. For any A C N and S = N\ A, such that |A| > 2 and |S| > 2,
there does not exist a Cost Sharing mechanism x € X that satisfies all of the
following:

1) x reduces to the Aumann-Shapley mechanism on A and Friedman-Moulin
on S.

2) x is Scale Invariant on A and Demand Monotonic on S.

3) x is Null Continuous.

4) For all a > 0, the point ce is an agreement point, i.e., for all C € C,

z(ae; C) = 2 (ae; C) = 2™ (ae; C).
Proof: This will follow directly from the next theorem. a

Consider a family of mixed mechanisms, the a-mixed Cost Sharing mech-
anisms, x®, which reduce to the Aumann-Shapley mechanism or Friedman-
Moulin mechanism for the symmetric demand ¢ = e, where z¢ is generated
by the path:

vt q) = (tga, (t/a)es) Ag.
These are characterized by this property.

14



Theorem 8. Forany A C N and S = N\ A, such that |A| > 2 and |S| > 2,
giwen a > 0 there exists a unique Cost Sharing mechanism, the c-mized Cost
Sharing mechanism, x® € X that satisfies all of the following:

1) x reduces to the Aumann-Shapley mechanism on A and Friedman-Moulin
on S.

2) x is Scale Invariant on A and Demand Monotonic on S.

3) x is Null Continuous.

4) The point ae is an agreement point, for all C' € C,

z(ae; O) = 2 (ae; O) = 2 (ae; C).

Proof: From the previous theorem we know that we only need to consider
convex combinations of paths of the form

v(t;q) = (6 (t,1(qa))aa, ¢° (t,n(qa))es) A q.

In addition by Null Continuity we can assume that ¢ > 0 and thus ignore
the dependence of ¢ on n(q).

First consider ¢ = ae and note that the Cost Sharing mechanism must
be the Aumann-Shapley mechanism which in this case is the same as the
Friedman-Moulin mechanism and is generated by the path which is a line
from the origin to ae. By scale invariance this implies that for any ¢ > 0
such that ¢gg = aeg the mechanism x(q, -) is generated by the path

Y(t; q) = (tqa, taes) A q.

Comparing this with the general form for these paths

v(t;q) = (¢4 (t)qa, 6° (t)es) A q

we see that ¢(t) =t for t < 1 and ¢*(¢) is not relevant for t > 1, so we need
only consider paths of the form

Y(t;q) = (tqa, ¢°(t)es) A q.

Next, by demand monotonicity, the “projection” of the paths must be
unchanged on [0, ¢ if gs < aeg and unchanged on [0, (¢4, aes)] if g5 > aeg.
This implies that ¢°(t,qs) = t for t < 1 but the generated Cost Sharing
mechanism does not depend on ¢°(t, qs) for t > 1, since v4(¢; q) is constant
in that case.
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Thus, every path in the decomposition of = is equivalent to the path that
generates the a-mixed Cost Sharing mechanism, completing the proof. O

The Cost Sharing mechanisms defined in the previous theorem are well
defined for limiting values of a. For example, when o« = 0 the Cost Sharing
mechanisms converge to 0-mixed Cost Sharing mechanism, x*=°, in which
we first apply the Friedman-Moulin mechanism among the agents in set S,
setting g4 = 0, then apply the Aumann-Shapley mechanism to the remain-
ing cost function C(qa,qs) — C(04,qs), while we can define the co-mixed
Cost Sharing mechanism, x*=°°, to be the reverse procedure where we first
allocate cost shares among the agents in A then the residual cost using the
Friedman-Moulin mechanism among the agents in S. Note that this proce-
dure generalizes to any mixture of mechanisms and can generate simple, but
extremely asymmetric, cost allocations; however the “mixed-mixed” Cost
Sharing mechanism which is constructed by x = (1/2)2%=0 + (1/2)z°=, is
an interesting mixture which has aspects of the Shapley-Shubik mechanism
on top of a mixture of the Aumann-Shapley mechanism and the Friedman-
Moulin mechanism.

In fact, we can characterize the “mixed-mixed” Cost Sharing mechanism
by a very weak symmetry requirement. We say that a Cost Sharing mecha-
nism is Unbiased if the cost shares are equal when everything else is equal.
We define a cost function to be symmetric if it is unchanged by any permu-
tation of its arguments.

Definition 5. A Cost Sharing mechanism is Unbiased if for all « > 0 and
all symmetric C € C,
z(ae, C) = C(ae)/n.

Note that this differs from the previous requirement in that we only con-
sider symmetric cost functions. It is easy to see that “mixed-mixed” Cost
Sharing mechanism is unbiased. In fact, it is the only unbiased mixture.

Theorem 9. For any A C N and S = N\ A such that |A| > 2 and |S| > 2,
there is a unique Cost Sharing mechanism x € X that satisfies all of the
following:

1) x reduces to the Aumann-Shapley mechanism on A and Friedman-Moulin
on S.

2) x is Scale Invariant on A and Demand Monotonic on S = N \ A, when
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1< |A]l <n.
3) x is Null Continuous®.
4) x is Unbiased.

Proof: (Sketch) First, note that it is easy to check that the mechanism de-
scribed above satisfies all the requirements, so we only need to prove unique-
ness. Next, note that for the mechanism described above all paths are con-
tained on the four faces defined by p4 = 0, p4 = qa, ps = 0 and pg = gs. Our
goal is to show that this must be true of any z satisfying the assumptions
of the Theorem. To prove this for any x satisfying the assumptions of this
theorem we assume, for contradiction, that there exists some ¢ > 0 and some
p < ¢ such that for some 7 € A and j € S, p; € (0,4;) and p; € (0,4;), the
set of paths passing through any neighborhood of p has nonzero measure.
By Demand Monotonicity we can assume that g = gg, where § = e, since
that does not alter the paths at p and by Scale Invariance we can assume,
by rescaling, that g4 = G4. Thus, we consider z(q, -) and the point p. Also
assume that ¢ maximizes p; for i € A and j maximizes p; for j € S.

We first consider the case where p; > ;- Consider a continuously differ-
entiable monotonic function g.(q), for 0 < € < 1/4, whichis 0 if ¢ < 1 —¢
and 1 if any ¢; > 1 for some ¢ € N and define he () = g.(qa/a,qs/b). Note
that as € — 0 this function converges to a step function on the largest g;.

Set a = p; —d and and define a = (p; —0)/(p;h + 9) for 6 > 0 sufficiently
small. By unbiasedness,

2i(a; heaa) = 1/n,
for all « € N. By demand monotonicity
(0 45 qs; heaa) = 1/n,
for all « € N. Then by scale invariance
2i(Q; Peajaa) = 1/n,
for all « € N. However,

wz(@v he,a/a,a/a) = 1/”7

6Null Continuity is used here to simplify the statement of the Theorem. Alternatively,
one could impose a stronger version of Unbiasedness which rely only on the players with
nonzero demands.
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by Unbiasedness. Since an addition nonzero measure of paths passes through
heaja,a/a Dut doesn’t pass through heq/q,. we see that

xz(f_], he,a/a,a/a) > ZL‘Z(Q, hga/a,a)a

yielding a contradiction.

One can apply the same argument when p; < p; by using a function
which converges to a step function on the smallest ¢; instead of the largest
q;- Thus we see that the paths in the Cost Sharing mechanism lie on the faces
described above. It is straightforward, although tedious, to show that this
fact, combined with the assumptions of the theorem lead to the mixed-mixed
Cost Sharing mechanism. a

7. Multiple Paths and Internal Symmetry

In this section we consider mixtures of the Aumann-Shapley mechanism
and the Shapley-Shubik mechanism to highlight some symmetry issues which
arise from the fact the the Shapley-Shubik mechanism is not generated by
a single path. Analogously to the previous section assume that we want
the Cost Sharing mechanism to reduce to the Aumann-Shapley mechanism
on A C N and the Shapley-Shubik mechanism on S = N \ A, assuming
that |A] > 2 and |S| > 2. Clearly, there exist Cost Sharing mechanisms
x which satisfy these requirements. However, even though the Aumann-
Shapley mechanism and the Shapley-Shubik mechanism are both Scale In-
variant the mixture mechanism need not be.

Theorem 10. For any A C N and S = N\ A such that |A| > 2 and |S| > 2,
there exist Cost Sharing mechanisms x € X that satisfy the following:

1) x reduces to the Aumann-Shapley mechanism on A and the Shapley-Shubik
mechanism on S.

2) x is not scale invariant for any i € N.

Proof: Let 749(t;q4) be the path that generates the Cost Sharing mech-
anism for the Aumann-Shapley mechanism on A and ~7(¢; ¢s) be the path
that generates the Cost Sharing mechanism for a Random Order mechanism
on S. Then simply construct

ATt q) = (Yt qa), Y (t|qal: gs))
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and construct = as the average over all such path generated mechanisms
(where the average is over 7 € II). It is easy to check that this Cost Sharing
mechanism is not Scale Invariant, since for all 7 € II the Cost Sharing mech-
anism 27"°" is not Scale Invariant, since the underlying path is not Scale
Invariant. Since the scale invariant paths form a basis for the scale invariant
mechanisms [17] this completes the proof. 0

One interesting difference in combining the Aumann-Shapley mechanism
with the Shapley-Shubik mechanism from the previous section (combining
the Aumann-Shapley mechanism with the Friedman-Moulin mechanism) arises
from the fact that the Shapley-Shubik mechanism is not generated by a sin-
gle path. This allows more freedom in the possible extensions and shows
that many basic properties of the Cost Sharing mechanisms can be lost by
asymmetric axiomatizations. In particular, even though both the Aumann-
Shapley mechanism and the Shapley-Shubik mechanism are symmetric, one
can construct extensions without symmetry, even among agents in the same
set.

To formulate this define, for any pair of agents, i,j € N, the exchange
operator 7;; such that 7;;(¢); = ¢; and 7, ;(¢); = ¢, while 7, ;(q)r = g for
k # i, j. Its action on functions is defined similarly, 7;; 0 C(q) = C(7; ;(q)).

Definition 6. A Cost Sharing mechanism is Symmetric with respect toi,j €
N if forallg e @, all C € C and alli € N,

f(% C) = Tig’x(Ti,j(Q)u Tij © C)-

It 1s Symmetric with respect to B C N if it ws Symmetric with respect to all
pairs i,j € B.

Thus, in our formulation where = reduces to the Aumann-Shapley mech-
anism on A and the Shapley-Shubik mechanism on S one might expect z
to be Symmetric with respect to A and also Symmetric with respect to S
since the Aumann-Shapley mechanism and the Shapley-Shubik mechanism
are both Symmetric on all agents. However, this need not be true, even when
we mix axiomatizations.

Theorem 11. For any A C N and S = N\ A such that |A| > 2 and |S| > 2,
there exist Cost Sharing mechanisms x € X that satisfy the following:
1) x reduces to the Aumann-Shapley mechanism on A and the Shapley-Shubik
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mechanism on S.
2) x is Scale Invariant on all of N and Demand Monotonic on S.
3) x is not Symmetric among some pair i,j € S.

Proof: In order to construct such a Cost Sharing mechanism one need
only construct paths that are not symmetric with respect to the underlying
orderings. Pick some 7,5 € S and for all 7 € II define

'VASW(t; q) = (7As(t; qs), ’YW(tQ QA))a

if 7(i) < 7(j) and

7AS7F<t; q) — ('yAS(t; qS), 7W<2t; QA))7

otherwise. Let z be the average over all the path generated mechanisms
27" Choose some k € S and consider a cost function where all players be-
sides i, j, k are dummies. To calculate z(q; C') we note that the Cost Sharing
mechanism where all other players are dummies is equivalent to that for which
we assume there are only those 3 players. In that case, there are two paths
in the Cost Sharing mechanism, one in which ¢ precedes j in the Shapley-
Shubik mechanism and one in which j precedes ¢ in the SSM. Setting ¢ = e
and C(p) = (pi+p;+pk)? and we can compute the cost shares for the first path
to be (2,5, 2), since it divides the cost on ¢; = 1,¢; = 0, g, = 1 evenly among
1,k and allocates the remaining cost to j; however, the shares differ for the
other path, since it first allocates the Aumann-Shapley mechanism costs for
¢ =0,9; =1/2,q; = 1 to j, k then the excess cost for ¢; =0,¢; =1,¢, = 1 to
J then the excess cost for ¢; = 1,¢; = 1, g, = 1 to 4, which yields (5,5/2,3/2).
Taking the average of these two gives (7/2,15/4,7/8) which is not symmetric
between ¢ and j. O

Note that one can extend the proof to construct Cost Sharing mechanisms
which are not symmetric for every pair 7,5 € N. Also, this asymmetry
arises because of the multiple paths in the Shapley-Shubik mechanism, as
can be seen from the construction used in the proof and these issues can not
arise when only path generated Cost Sharing mechanisms are involved. For
example, it is easy to show the following:

Corollary 3. Forany A C N and S = N\ A such that |A| > 2 and |S| > 2,
let x € X be a Cost Sharing mechanism that satisfies all of the following:
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1) x is Scale Invariant and satisfies Average Cost for Homogeneous on A.
2) x is Demand Monotonic and satisfies Upper Bound for Homogeneous on
S.

Then x is Symmetric among any pair i,j € A and any pair i,j € S.

Proof: From Theorem 6 we know that any such Cost Sharing mechanism
is constructed from paths of the form:

v(t;q) = (¢ (t)qa, 8° (t)es) A q.

Thus, it is clear from the symmetry of the path that the induced Cost Sharing
mechanism will by also have the required symmetry and any combination of
such symmetric Cost Sharing mechanisms will have the required symmetry.

O

There are two natural, but perhaps unfair, mixtures that are interesting.
These are the ordered mixtures. The first is 24%% in which we first allocate
costs among the agents in A by x49(q4;Ca) then allocate the remainder
among the agents in S by computing 2°%(qg; Cs) where Cx(qa) = C(qa,05)
and Cs(qs) = C(qa,qs). Reversing the order of allocations yields x4%55.

These have simple axiomatizations.

Theorem 12. For any A C N and S = N \ A, such that |A| > 2 and
|S| > 2, let © € X be a Cost Sharing mechanism such that x reduces to the
Aumann-Shapley mechanism on A and Shapley-Shubik on S.

1) If x4(q; C) is independent of qs for all g4 € Qa and C € C then x =
AS.SS

2) If z5(q; O) is independent of qa for all gs € Qg and C' € C then x = 1545,

However, there is a more interesting mechanism which fits in with the
spirit of the Shapley-Shubik mechanism. To define it, consider the path

V(1) = (461 (1). 44), 75 (9 (), 04)),

where ¢*(t) is 0 for t < i, 1 for t > i+ 1 and ¢ — i otherwise while ¢Z(¢)
istfort < i, t—1for ¢t > i+ 1 and i otherwise. (This path follows the
Random Order path up to agent 7, then follows the Aumann-Shapley path
for the agents in 7 then returns to the Random Order path.) Define %™ to
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be generated by the path 4*". Now we define the Cost Sharing mechanism
that mixes all of the %™, the SS-mixed Cost Sharing mechanism:

m 1 1,7
o = i 2 2

well €S

Theorem 13. Forany A C N and S = N\ A such that |A| > 2 and |S| > 2,
the SS-mized Cost Sharing mechanism is the unique x € X such that:

1) x reduces to the Aumann-Shapley mechanism on A C N and Shapley-
Shubik on S.

2) x is Symmetric among any pair i,j € A and any pairi,j € S.

3) For any i € A the mechanism reduces to the Shapley-Shubik mechanism
on S\U{i}, i.e., 5(0a\i}, 4, qs; C) is the Shapley-Shubik mechanism.

Proof:  Projecting v»™ onto {i}|JS for i € A yields a Random Order
path for {i}|JS and thus x projects to the Shapley-Shubik mechanism on
{i} U S and clearly satisfies the other requirements. To show uniqueness,
consider ¢ such that g4 = e4/|A| and g5 = eg. Next consider some i € A
and 5 € S. This projection of the Cost Sharing mechanism onto i, 7 is
the Shapley-Shubik mechanism, and thus has support only on the edges of
the unit square. Also, if j,k € S then the projection of the Cost Sharing
mechanism onto j, k has support only on the diagonal line from (0,0) to
(1,1). Combining these shows that the projection onto {i} (J S is the sum of
two paths, (t A1, max(t—1,0)es Aeg) and (max(t—1,0)A1l,tes Aeg). Thus,
the support of the Cost Sharing mechanism must have the same support as
2499 and the fact that the underlying measures are identical follow from
symmetry and budget balance. O

8. Discussion

We have constructed and characterized several interesting mixed Cost
Sharing mechanisms and pointed out several subtleties in the analysis of
such methods. Nonetheless, our analysis has only touched the surface of
this topic of mixed axiomatizations and thus there are many new directions
for research and open problems in this area. Many of these problems are
amenable to the techniques and analysis used in this paper. One interesting
goal is to create a full constructive theory of mixed axiomatizations: given
some set valued axioms, such as Scale Invariance, which must hold for agents
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in A C N while Demand Monotonicity must hold for agents in B C N and
some other axiom that must hold for agents in £ C N where A, B, E are
arbitrary, construct a Cost Sharing mechanism that satisfies all of them or
show that none exist.

Another direction can be driven by applications. In addition to the moti-
vating examples discussed in the introduction, other examples merit analysis.
For example, when sharing water resources [18] the necessary constraints may
depend on physical constraint — which farmers can easily share trade water,
while similar considerations apply when allocating transmission costs [19].

Lastly, one can consider problems where agents have multidimensional
demands. The characterization of cost sharing methods for these problems
has been sparse, with the notable exception of [20]. One can apply some of the
techniques from this paper to these problems by asymmetric axiomatizations
that prevent arbitrage opportunities among different goods demanded by the
same agent.
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