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ABSTRACT. We characterize the symmetrically balanced VCG
rule in the queueing problem using the axioms of outcome effi-
ciency, budget balance, equal treatment of equals, Pareto indifference,
together with a weakening of strategy-proofness, upward-invariance.
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1. INTRODUCTION

A group of agents must be served in a facility. The facility serves
only one agent at a time and agents incur idiosyncratic waiting costs.
Waiting costs are linear in time and an agent’s waiting cost is known
only to the agent. An agent’s utility is the difference between the
monetary transfer received and her waiting costs. The objective is
to determine the order in which to serve agents and the monetary
transfers they should receive. This queueing problem has been ana-
lyzed extensively from various perspectives (Dolan [3], Suijs [10],
Mitra [8], Maniquet [7], Chun [1], [2], Mitra and Mutuswami [9], and
others) and many allocation rules have been proposed.

The symmetrically balanced VCG rule has many nice properties. It
is strategyproof, outcome efficient and budget balanced and hence
“first-best” implementable (Mitra [8], Suijs [10]). It is also envy-free
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(Chun [2]). Allocation rules having good strategic and fairness prop-
erties are rare and indicates the importance of this rule.

Recently, Kayi and Ramaekers [5] provided an axiomatic charac-
terization of the symmetrically balanced VCG rule (which they call the
largest equally distributed pairwise pivotal rule). We show, however,
through a counter-example that their axioms are not sufficient to
characterize the rule (for details, see Remark 3.3). In a corrigendum,
Kayi and Ramaekers [6] provide a corrected statement of their char-
acterization. Here, we present another characterization of the rule
using the axioms of outcome efficiency, budget balance, equal treatment
of equals, Pareto indifference, together with a weakening of strategy-
proofness, upward-invariance. The axioms are similar to that used by
Kayi and Ramaekers [5] but our proof is very simple.

2. PRELIMINARIES

2.1. The queueing problem. Let N = {1, . . . , n}, n ≥ 3, be the set
of agents.1 Each agent has one job to process but only one job can be
processed at a time. All jobs take the same time to process which is
normalized to one.

A queue is an onto function σ : N → {1, . . . , n} denoting the or-
der in which jobs are processed. We denote σ(i) as σi. The set of
predecessors of agent i is Pi(σ) = { j ∈ N | σ j < σi} and the set of
followers is Fi(σ) = { j ∈ N | σ j > σi}. The set of all possible queues
is denoted Σ(N).

Agent i’s waiting cost per unit of time is denoted θi ∈ R+ and is
known only to her. A profile,θ = (θi)i∈N, is a collection of the waiting
costs of all agents. For all i ∈ N, θN\{i} denotes the collection of
waiting costs of all agents other than i. An allocation for θ is a pair
(σ , t), whereσ ∈ Σ(N) is the chosen queue and t = (t1, . . . , tn) is the
set of monetary transfers to the agents. An allocation is feasible if the
sum of transfers is not positive. The set of all feasible allocations for
θ is Z(θ) = {(σ , t) ∈ Σ(N)×Rn|∑n

i=1 ti ≤ 0}. Agents have quasi-
linear preferences and an agent’s utility is given by ui(σi, ti;θi) =
−(σi − 1)θi + ti.

An allocation rule, or simply a rule, is a mapping ϕ which asso-
ciates to each profile θ, a non-empty subset ϕ(θ) of feasible alloca-
tions. For all (σ , t) ∈ ϕ(θ), let ui(σi, ti;θ′i) = −(σi − 1)θ′i + ti denote
i’s utility inϕ when the announced profile is θ and her own waiting
cost is θ′i .

1We exclude n = 2 because the symmetrically balanced VCG rule, which is the focus
of our analysis is defined only for n ≥ 3.



THE SYMMETRICALLY BALANCED VCG RULE 3

In what follows, vector inequalities are denoted <, ≤, and 5.2

2.2. Axioms. A queue σ is efficient for the profile θ if σ ∈
argminσ ′∈Σ(N) ∑i∈N(σ

′
i − 1)θi. It is easy to see that efficiency implies

σi < σ j whenever θi > θ j. For all profiles θ, let E(θ) be the set of
all efficient queues. Note that E(θ) is always non-empty and is a
singleton if no two agents have the same waiting cost.

Now we are ready to introduce our axioms. Queue efficiency re-
quires that a rule should choose efficient queues. Budget balance re-
quires that the sum of transfers by a rule should be equal to zero.
Equal treatment of equals requires that two agents with the same wait-
ing cost should end up with the same utilities. Pareto indifference
requires that for all profiles, if an allocation is chosen by a rule and
there is another feasible allocation which gives the same utility to
each agent, then this alternative should also be chosen by the rule.
Our final axiom is upward-invariance which requires that an agent’s
transfer not be affected by misrepresenting her waiting cost upward
if the queue is unaffected.

Definition. A ruleϕ is queue efficient (EFF) if for all θ and all (σ , t) ∈
ϕ(θ), σ ∈ E(θ).

Definition. A ruleϕ is budget balanced (BB) if for all θ and all (σ , t) ∈
ϕ(θ), ∑

n
i=1 ti = 0.

Remark 2.1. Since ui(σi, ti;θi) = −(σi − 1)θi + ti, BB can alterna-
tively be written as ∑i∈N ui(σi, ti;θi) = −∑i∈N(σi− 1)θi. We use this
observation throughout the proof of the main result, Theorem 3.1.

Definition. A ruleϕ satisfies equal treatment of equals (ETE) if for all
θ, all i, j ∈ N, and all (σ , t) ∈ ϕ(θ), if θi = θ j, then ui(σi, ti;θi) =
u j(σ j, t j;θ j).

Definition. A rule ϕ satisfies Pareto indifference (PI) if for all θ,
all (σ , t) ∈ ϕ(θ) and all (σ ′, t′) ∈ Z(θ) such that ui(σ

′
i , t′i;θi) =

ui(σi, ti;θi) for all i ∈ N, (σ ′, t′) ∈ϕ(θ).

Call θ and θ′ i-variants if θ j = θ
′
j for all j ∈ N \ {i}.

Definition. A ruleϕ satisfies upward-invariance (U-INV) if for all i ∈
N, all i-variants θ,θ′ such that θ′i > θi, all (σ , t) ∈ ϕ(θ), and all
(σ ′, t′) ∈ϕ(θ′), if σ(θ′) = σ(θ), then ti(θ

′) = ti(θ).

Remark 2.2. It is easy to prove that there are no rules satisfying EFF,
BB, ETE and U-INV when n = 2.
2x < y if xi < yi for all i; x ≤ y if xi ≤ yi for all i with at least one strict inequality;
x 5 y if xi ≤ yi for all i.
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Kayi and Ramaekers [5] do not use U-INV; instead they use two
variants of strategy-proofness. We now define these axioms to facili-
tate a comparison.

Definition. Let θ and θ′ be i-variants. A mechanism is strongly
strategy-proof (SP) if for all i ∈ N, all (σ , t) ∈ ϕ(θ), and all
(σ ′, t′) ∈ ϕ(θ′), ui(σi, ti;θi) ≥ ui(σ

′
i , t′i;θi). It is weakly strategy-

proof (WSP) if for all i ∈ N, all (σ , t) ∈ ϕ(θ), and all (σ ′, t′) ∈
ϕ(θ′), (i) max(σ ,t)∈ϕ(θ) ui(σ , t;θi) ≥ max(σ ′ ,t′)∈ϕ(θ′) ui(σ

′, t′;θi) and
(ii) min(σ ,t)∈ϕ(θ) ui(σ , t;θi) ≥ min(σ ′ ,t′)∈ϕ(θ′) ui(σ

′, t′;θi)

Remark 2.3. Clearly, while SP and WSP imply U-INV, the reverse
implication does not hold: the mechanism in Remark 3.5(1) is an
example of a mechanism which satisfies U-INV but neither SP nor
WSP. Note that in this mechanism, an increase in an agent’s waiting
cost can result in her being assigned an inferior queue position. This
is incompatible with SP and WSP but compatible with U-INV.

3. THE SYMMETRICALLY BALANCED VCG RULE

The symmetrically balanced VCG rule (henceforth, the SB rule)ϕSB,
defined for n ≥ 3, is the rule such that for all profiles θ,

ϕSB(θ) =

{
(σSB, tSB) ∈ Z(θ)|σSB ∈ E(θ) and ∀i ∈ N,

tSB
i = ∑

`∈Pi(σSB)

(
σSB
` − 1
n− 2

)
θ` − ∑

`∈Fi(σSB)

(
n−σSB

`

n− 2

)
θ`

}
.

Remark 3.1. The SB rule satisfies BB no matter which efficient queue
is chosen. From the expression for tSB

i , it follows that the rule is es-
sentially single-valued in the sense that each agent’s utility is the same
in all efficient queues. Moreover, all efficient queues and the corre-
sponding transfers are chosen by the SB rule.

The following theorem is the main result of the paper.

Theorem 3.1. Let n ≥ 3. A rule satisfies EFF, BB, ETE, PI, and U-INV
if and only if it is the SB rule.

Proof. Kayi and Ramaekers [5] show that the SB rule satisfies EFF, BB,
ETE, and SP. By Remark 2.3, it satisfies U-INV. By Remark 3.1, it also
satisfies PI. We now prove the converse. Let ϕ be a rule satisfying
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the five axioms. By Remark 3.1, it suffices to show that at all profiles
θ, each agent’s utility is the same as her utility in the SB rule.3

Let θ′ = (θ′i)i∈N be an arbitrary profile. Since we can always re-
name agents, we assume without loss of generality that θ′1 ≥ · · · ≥
θ′n. Let Θ be the set of profiles θ satisfying

A1. θi ∈ {θ′1, . . . ,θ′n}, i = 1, . . . , n,
A2. θi+1 ≤ θi ≤ θ′i , i = 1, . . . , n− 1,
A3. θn = θ′n.

Note that the set Θ associated with θ′ can be obtained by sequen-
tially and recursively replacing θ′i by θ′i+1 if θ′i 6= θ′i+1. The sequence
of changes for n = 4 is given in Figure 1. The smallest element of Θ
is (θ′n, . . . ,θ′n) and the largest element θ′ = (θ′1, . . . ,θ′n).

By (A2), for allθ ∈ Θ,θ1 ≥ · · · ≥ θn. Let (σ , t) ∈ϕ(θ). By EFF and
PI, we can assume that σi = i for all i ∈ N. From now on, we assume
that this is the case for all θ ∈ Θ. Since σ is fixed, for all θ, we denote
the transfer specified byϕSB by tSB(θ).

The proof is by induction. We first show that if θ = (θ′n, . . . ,θ′n),
then ui(σi, ti;θi) = ui(σi, tSB

i (θ);θi) for all i ∈ N and all (σ , t) ∈ϕ(θ).
Assuming that this is true for all θ̃ ≤ θ, θ̃ ∈ Θ, we then show that
it is also true for θ. Given PI, the essential single-valuedness ofϕSB,
and the tree structure of the set Θ, this proves the theorem.4

Initial Step: Let θ = (θ′n, . . . ,θ′n). By ETE and BB, ui(σi, ti;θi) =
−(n− 1)θ′n/2 for all i ∈ N. SinceϕSB satisfies ETE and BB, we have
ui(σi, ti;θi) = ui(σi, tSB

i (θ);θi) for all i ∈ N.

Induction Step: Suppose that for all θ̃ ≤ θ = (θ1, . . . ,θn), θ̃ ∈ Θ,
and all (σ , t̃) ∈ϕ(θ̃), ui(σi, t̃i; θ̃i) = ui(σi, tSB

i (θ̃); θ̃i) for all i ∈ N.

Step 1: Starting with i = 1, we apply the following argument suc-
cessively to i = 2, . . . , n− 1.

Let k ∈ N be the largest agent such that θk = θi. If k = n, proceed
to Step 2.5 If k < n, let θi be a k-variant of θ such that θi

k = θk+1
and θi

j = θ j for all j 6= k. Observe that θi ∈ Θ and θi ≤ θ. Let
(σ , ti) ∈ ϕ(θi). By U-INV, uk(σk, tk;θk) = uk(σk, ti

k;θi
k) and by the

induction hypothesis, uk(σk, ti
k;θi

k) = uk(σk, tSB
k (θi);θi

k). Since ϕSB

3For all θ and all σ ∈ E(θ), ui(σi , ti ;θ) = ui(σi , tSB
i ;θi) if and only if ti = tSB

i .
4See Figure 1 for an illustration of the tree structure. Note that every path emanat-
ing from a node θ ends at (θ′n, · · · ,θ′n).
5Since θ1 ≥ · · · ≥ θn, if k = n for some i, then k = n for all subsequent i. Hence
Step 1 ends the first time k = n for some i.
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satisfies U-INV, uk(σk, tSB
k (θ);θk) = uk(σk, tSB

k (θi);θi
k). Therefore,

uk(σk, tk;θk) = uk(σk, tSB
k (θ);θk). Applying ETE to ϕ and ϕSB, we

have ui(σi, ti;θi) = ui(σi, tSB
i (θ);θi).

Step 2: Let Nn = { j ∈ N|θ j = θn} be the set of agents whose waiting
cost is θn. By ETE, for all j ∈ Nn, u j(σ j, t j;θ j) = un(σn, tn;θn). Since
u j(σ j, t j;θ j) = u j(σ j, tSB

j (θ);θ j) for all j ∈ N\Nn by Step 1, applying
BB to ϕ and ϕSB, we conclude that for all j ∈ Nn, u j(σ j, t j;θ j) =

u j(σ j, tSB
j (θ);θ j).

We have thus shown for all (σ , t) ∈ ϕ(θ), ui(σi, ti;θi) =
ui(σi, tSB

i (θ);θi) for all i ∈ N. This establishes the induction step
and proves the theorem. �

Remark 3.2. Similar to upward-invariance (U-INV), we can define
downward-invariance (D-INV) requiring that a unilateral decrease in
an agent’s waiting cost leave his transfer unchanged if the queue is
unchanged. Starting from (θ′1, . . . ,θ′1) and decreasing the waiting
costs of agents sequentially to (θ′1, . . . ,θ′n), we will obtain a similar
(but different) tree. The proof technique of Theorem 3.1 can be easily
adapted to show that a rule satisfies EFF, BB, ETE, PI and D-INV if
and only if it is the SB rule.

Remark 3.3. Kayi and Ramaekers [5] show (Theorem 3(1), pp. 227)
that only subcorrespondences of the SB rule satisfy EFF, BB, ETE and
WSP. In a subcorrespondence of the SB rule, some efficient queues
may not be chosen at a profile. In order to characterize the SB rule
(Theorem 3(3), pp. 227), they replace ETE by symmetry which says
that if an allocation is chosen at a profile θ where i and j have the
same waiting cost, then the allocation where j receives i’s allocation
and vice versa must also be chosen by the allocation rule.6

Definition. A ruleϕ satisfies symmetry (SYM) if for all θ, all (σ , t) ∈
ϕ(θ) and all i, j ∈ N such that i 6= j and that θi = θ j, if (σ ′, t′) ∈
Z(θ) is such that (σ ′i , t′i) = (σ j, t j), (σ ′j, t′j) = (σi, ti), and for all ` ∈
N\{i, j}, (σ ′`, t′`) = (σ`, t`), then (σ ′, t′) ∈ϕ(θ).

However, Theorem 3(3) is flawed since we can find a family of
extended symmetrically balanced VCG rules parametrized by α,
ϕESBα , satisfying EFF, BB, SYM and WSP, defined as follows.

Let α ∈ R+ be given. For each (σ , t) ∈ ϕSB(θ), and each pair
{i, j} ⊆ N, let (σ i j, ti j) be such that σ i j = σ , ti j

i = ti +α, ti j
j = t j −α,

6In their corrigendum, Kayi and Ramaekers [6] use equal treatment of equals in wel-
fare along with symmetry, Pareto efficiency and strategy-proofness to characterize
the SB rule.
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and σ ji = σ , t ji
i = ti −α, t ji

j = t j +α; for all k /∈ {i, j}, ti, j
k = t j,i

k = tk.
For all θ, let ϕESBα(θ) be the set of allocations including all (σ , t) ∈
ϕSB(θ), together with all (σ i j, ti j) and (σ ji, t ji).

It is not difficult to check that the family of extended symmetri-
cally balanced VCG rules satisfies all the axioms of Kayi and Ra-
maekers [5], EFF, BB, SYM and WSP. Observe that this rule does not
satisfy ETE ifα 6= 0.

Remark 3.4. There is no logical relationship between PI and SYM.
However, our proof will go through if SYM is assumed instead of PI.

Remark 3.5. To check the independence of our axioms, we show that
dropping one of EFF, BB, ETE, PI and U-INV gives rules different
from the symmetrically balanced VCG rule.

(1) Let N = {1, 2, 3}. Consider the mechanism (σ , t) where σ is
chosen according to the reverse-efficient order. (That is, θi >
θ j implies σi > σ j.) The transfers for the profile θ1 ≥ θ2 ≥ θ3
and σ1 > σ2 > σ3 are given by t1(θ) = θ2 = −t3(θ), t2(θ) =
0. This mechanism satisfies all axioms except EFF.

(2) Let e = (1, . . . , 1). The mechanism (σSB, tSB + e) satisfies all
axioms other than BB.

(3) Let c = (c1, . . . , cn) where ci 6= c j, i 6= j and ∑
n
i=1 ci = 0. The

mechanism (σSB, tSB + c) satisfies all axioms other than ETE.
(4) Take a linear order � on the set of queues Σ(N). Consider

the following mechanism (σ , t). At any profile where there is
more than efficient queue, the mechanism selects one queue
using the order �. For this queue, transfers are chosen ac-
cording to the SB-rule. This mechanism satisfies all axioms
except PI.

(5) The minimum and maximum transfer rules (Maniquet [7],
Chun [1]) satisfy all axioms except U-INV.

Remark 3.6. Our characterization will obviously go through if we
replace U-INV by SP since U-INV is a weaker requirement. A natural
question then is whether one of the other axioms (EFF, BB, ETE, PI)
can be dropped. It is easy to show the necessity of BB, ETE and PI
as dropping any one of them gives mechanisms which are not the
SB rule. However, the necessity of EFF is not clear. Hashimoto and
Saitoh [4] show that EFF is implied by SP and anonymity in welfare.
The latter is stronger than ETE; hence, there is a gap which remains
to be filled.
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