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Abstract

We present a dynamic model of social network formation in which a fixed number of
agents interact in overlapping social groups. We derive several results on the formation
of links in such networks, including results on the degree distribution, on comparative
statics relating degree and group size, and on the dynamics of homophily. In particular,
we derive comparative statics showing that degree is typically positively related to social
group size but negatively related to the size of the overlap across multiple social groups.
This is supported by evidence from a Facebook dataset. We also show that homophily
over an agent’s lifespan in the network can be non-monotonic, reaching a global maximum
in some period before eventually decreasing.
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1. Introduction

Friendships are an essential part of economic life. Friendships result in peer effects,
which impact educational performance (Sacerdote, 2001), health (Kremer and Levy,
2008), group lending (Banerjee et al., 2012), and productivity at work (Falk and Ichino,
2006). The structure of friendships can be described by a social network.1 How friend-5

ships form is key to understanding the properties of social networks and “one of the most
important areas of network research [is] developing richer, but still tractable, models of
network formation.” (Jackson, 2014, p. 17).

IAn earlier version of this paper was circulated under the title “Friending”.
∗Corresponding author
Email addresses: bassel.tarbush@economics.ox.ac.uk (Bassel Tarbush),

alexander.teytelboym@inet.ox.ac.uk (Alexander Teytelboym)
1The best recent summaries of applications of networks in the social sciences are by Jackson (2008),

Goyal (2009), Easley and Kleinberg (2010), and Newman (2010).
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The theoretical model presented in this paper is a new dynamic network formation
process in which a fixed number of agents interact in overlapping social groups. In every10

period, every agent interacts with others with a probability that depends on mutual
social group sizes and on the size of their overlaps (as well as on a set of network-level
parameters). When interacting with others in a social group, an agent forms a friendship
with another agent chosen at random from among those in the group who are not yet
his friends. An example we have in mind is the formation of friendships among college15

students. A college freshman interacts with students in his class and his dorm. The sizes
of these two social groups and the size of their overlap (number of students who are both
in his class and in his dorm) determine his chance of becoming friends with students
either from his class or his dorm or both.

In this paper, we derive several properties of social networks that arise from our20

network formation process, including results on the degree distribution, on comparative
statics relating degree and group size, and on the dynamics of degree and of homophily
– the propensity of agents to be friends with others who are similar to themselves.

Our dynamic network formation process has two key features: a fixed number of
agents and overlapping social groups. The fixed number of agents in our model drives25

a number of features of the resulting link formation.2 For example, we find that agents
make friends at a decreasing rate over time because they gradually exhaust the pool of
potential friends in each social group. Let us return to our college freshman: after nu-
merous interactions with students in his dorm, he will have become friends with everyone
from that social group, and although he continues to interact with students in his dorm,30

he no longer spends this time making new friends, which thus reduces his overall rate of
friendship formation. This explanation for the concavity of degree over time contrasts
with those given in the literature. In a model with an infinite population of agents who
are matched according to probabilities that depend on their types, Currarini et al. (2009)
offer one alternative: agents have a decreasing marginal utility of friendships and stop35

making friends when the marginal cost of a friend exceeds the marginal benefit. The
concavity of degree over time is also a feature of many growing random network models,
in which new agents enter in each period and form links with pre-existing agents, who
are chosen according to a specific stochastic process, which may depend on the number
of links of the pre-existing agents (Barabási and Albert, 1999, Jackson and Rogers, 2007)40

or on their characteristics (Bramoullé et al., 2012). In these models, agents make friends

2Watts and Strogatz (1998) examine dynamics on a network of fixed size but their linking process
does not depend on agent characteristics, as it does here.
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at a decreasing rate because they are less likely to receive a link from the incoming agent
as the population grows over time. This paradigm is well suited for the analysis of social
networks in which the growth of the network is important in capturing features of link
formation, whereas focusing on a fixed network size, as we do here, may better capture45

situations in which there is relatively low volatility in the network growth relative to the
rate of link formation.

Our second key feature – overlapping social groups – allows us to derive nuanced
comparative statics on the relationship between an agent’s degree and the size of the
social groups that the agent belongs to. For example, if our freshman is studying for50

a degree in economics and is resident of a particular dorm, then one might ask what
the effect of being in a larger dorm would be, ceteris paribus, on his number of friends.
The problem is that the ceteris is not paribus in a network (or college) of fixed size.
If the freshman’s dorm is now larger, then the size of some other social group must
have changed for the total number of students to remain unchanged. In other words,55

one must keep track of what new students joined the dorm. If they were previously
in the freshman’s economics classes, then their joining the dorm increases the overlap
across the freshman’s social groups, which, as we show, has a negative impact on his
expected number of friends. On the other hand, if non-economists join the dorm, then
this positively impacts the freshman’s number of friends. Our comparative statics on60

varying the size of overlapping social groups are novel in the literature. Currarini et al.
(2009) show that agents belonging to larger groups have higher degrees. However, in
their model, there is only one group per agent (e.g. race), so the interaction across
social groups cannot be studied. de Marti and Zenou (2011) and Iijima and Kamada
(2014) consider strategic network formation models in which the costs and benefits of link65

formation depend on agents’ social groups.3 de Marti and Zenou (2011) study segregation
patterns that arise in stable networks as a function of relative costs and benefits of link
formation between and across social groups, whereas Iijima and Kamada (2014) show
how properties of stable networks (such as clustering and average path length) depend
on “social distance” parameters. However, these papers examine neither dynamics of link70

formation nor the effect of varying social group sizes and their overlaps.
We also derive results on the dynamics of homophily. Homophily is a commonly

observed empirical phenomenon (Kandel, 1978, Shrum et al., 1988, McPherson et al.,
2001, Moody, 2001, Mouw and Entwisle, 2006, Mayer and Puller, 2008, Currarini et al.,

3These models are in the spirit of Jackson and Wolinsky (1996) and Bala and Goyal (2000), but
these earlier contributions did not consider the effect of social groups.
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2009, Wimmer and Lewis, 2010), and most empirical studies of homophily have used75

surveys of close friendships. For example, Shrum et al. (1988) find that for school children
homophily in gender falls over time, but that homophily in race increases over time.
In a theoretical paper, Bramoullé et al. (2012) derive a negative relationship between
homophily and time and find some empirical support for their prediction in physics
citation networks. In contrast to previous work, we show that in our model, homophily80

is not necessarily monotonic in an agent’s degree or in the amount of time that the agent
has spent making friends. We provide sufficient conditions on the effective social group
sizes for (i) homophily to monotonically decrease over time, and (ii) to increase up to
peak and eventually fall over time.

One interpretation of our network formation process – that we use in a running exam-85

ple throughout the paper – is to consider it as a model of friendship formation in online
social networks, such as Facebook. “Friending” – recording friendships on online so-
cial networking platforms – is different from maintaining real-world friendships. Indeed,
different types of friendships – close, distant, romantic or online – generate remark-
ably dissimilar social networks (Jackson, 2008, Newman, 2010). Most people have few90

close friends and even fewer lovers. Many platforms, such as Facebook and LinkedIn,
provide a record of its users’ real-life meetings – an online Rolodex. Typically, after
meeting each other, people “send friend requests” in order to record the meeting on
Facebook and maintain a “Facebook friendship”. For this reason, many Facebook users
have more Facebook friends than friends with whom they interact daily.4 Our model95

complements growing random network models for understanding the process governing
friendship formation in online social networks. Firstly, we retain one standard feature
of growing random network models that captures the Rolodex aspect of many online
social networks – that agents do not break friendships. Secondly, we focus on friendship
formation in networks of fixed size since it is link formation rather than network growth100

that is the phenomenon of interest in some online social networks. Finally, in our model,
agents may initiate and receive multiple friendships throughout the friendship forma-
tion process whereas in growing random networks agents who have already entered the
network do not make friendships among themselves.

Although the focus of this paper is theoretical, we use Facebook data to provide105

supporting empirical evidence for our main comparative static results. The data repre-
sent a September 2005 cross-section of the complete structures of social connections on

4Therefore, rather than reflect close real-world relationships, many Facebook friendships represent
“weak ties”, which play an important role in economic and social outcomes (Granovetter, 1973, 2005).

4



www.facebook.com within (but not across) the first ten American colleges and univer-
sities that joined Facebook. We support our findings so far as it is possible with the
cross-sectional data at our disposal, and the empirical evidence presented lends support110

to our results.
Section 2 presents the model, and we use a mean-field approximation to derive base-

line results regarding agents’ friendship rate over time and the degree distribution in
Section 3. The main results regarding the relationship between degree and social group
size, as well as supporting empirical evidence using the Facebook data, are given in115

Section 4. The dynamics of homophily and its implications are discussed in Section 5.
Comparisons of simulations of the model against our mean-field approximation are pre-
sented in Section 6, and Section 7 concludes. All proofs, further discussion of the model,
and a data summary are in the Appendix.

2. Model120

In this section, we first introduce the social structure of our model (Section 2.1),
and then describe our complex stochastic network formation process (Section 2.2). In
the rest of the paper (starting from Section 3), we employ the mean-field approximation
method in order to get a handle on this process analytically. According to this method,
we assume that the realization of a random variable in any period is its expected value.125

Hence, the dynamic system generated by our model is not seen as evolving stochastically,
but rather deterministically at the rate proportional to the expected change. The method
has been adopted by the economics literature from statistical physics, and our analysis
here is similar to the one carried out in Jackson and Rogers (2007).

2.1. Social groups and social categories130

Let [K1, ...,KR] be a finite ordered list of social categories. For each r ∈ R =

{1, ..., R} the element Kr is the rth category and an element of Kr is a characteristic
within that category. The type of an agent i ∈ N is represented by a vector of charac-
teristics ki = (k1

i , ..., k
R
i ) ∈ K. Denote by K the set of all distinct vectors k = (k1, ..., kR)

where kr ∈ Kr for each r ∈ R, so the number of all possible types is |K| =
∏
r∈R |Kr|.

For any type k ∈ K and any agent i ∈ N , denote by Ni(k) the set of all agents other
than i who are of type k. For each r ∈ R and agent i ∈ N , define a social group
Γri = ∪{Ni(k) : kr = kri },5 which is the set of all agents (other than i) that share
the characteristic kri within the social category r with i. Additionally, define the social

5For any sequence of sets X1, ..., Xn, ∪{X1, ..., Xn} = ∪ni=1Xi.
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group Γ∅i = N \ {i} as the set of all agents other than i. For each S ⊆ R we can also
define the social subgroup πi(S) as the set of agents (other than i) that share only the
characteristics within the set of categories indexed by S with i. That is,

πi(S) = ∪{Ni(k) : kr = kri for each r ∈ S, and kr 6= kri for each r ∈ R \ S} (1)

Naturally, the subgroup πi(∅), which we refer to as the ∅-subgroup, denotes the set of
agents other than i who share no characteristics with i. We refer to πi(R) as the core
subgroup, and for any r ∈ R, πi({r}) is referred to as a singleton subgroup. The set
Πi = {πi(S) : S ⊆ R} induces a partition on N \ {i}.

We assume throughout that there are at least two social categories (|R| > 1) and135

that for every agent i ∈ N , every set Ni(k) contains at least one agent.

Example. Suppose that the list of social categories at a university is given by [K1,K2] =

[class, dorm]. The “class” social category, K1, is given by {Econ, Math}, and the
“dorm” social category, K2, is given by {dorm X, dorm Y}. There are therefore four
possible types of students, namely a = (Econ, dorm X), b = (Econ, dorm Y), c =140

(Math, dorm X), and d = (Math, dorm Y). That is, K = {a, b, c, d}. To be concrete,
suppose there are 20 students of type a, 180 of type b, 50 of type c, and 250 of type d.
Furthermore, suppose that four particular students Alice, Bob, Charlie, and Diana, are
students of type a, b, c, and d respectively.6 For example, Figure 1a shows Alice’s par-
tition ΠA induced over all the other students at the university. The singleton subgroup145

πA({1}) includes all students other than Alice who are in her class only (and thus share
no other characteristic with Alice). The cardinality of πA({1}) is therefore 180. The
∅-subgroup includes all students other than Alice who are neither in her class (Econ)
nor in her dorm (dorm X). The “class” social group Γ1

A = πA({1}) ∪ πA({1, 2}) includes
all students other than Alice who are in her class (red circle on the left). Note that150

since the core subgroup πA({1, 2}) includes all students of type a other than Alice, the
cardinality of this set is 19, and the cardinality of Γ1

A is therefore 199. The “dorm” social
group Γ2

A = πA({2}) ∪ πA({1, 2}) includes all students other than Alice who are in her
dorm (blue circle on the right), and finally the social group Γ∅A = N \{Alice} includes all
students other than Alice (the entire rectangle). Note that for any other student i of type155

a, the corresponding elements in Πi and ΠA have the same cardinality. The analogous
partitions for Bob, Charlie, and Diana are represented in Figures 1b-1d respectively. �

6For these four students, every mathematical expression involving a student is subscripted by the
first letter of their name.
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πA({1, 2})
Econ &
dorm X
(Type a)

19

πA({1})
Econ &
dorm Y
(Type b)

180

πA({2})
Math &
dorm X
(Type c)

50

πA(∅)
Math &
dorm Y
(Type d)

250

(a) Alice’s partition ΠA

πB({1, 2})
Econ &
dorm Y
(Type b)

179

πB({1})
Econ &
dorm X
(Type a)

20

πB({2})
Math &
dorm Y
(Type d)

250

πB(∅)
Math &
dorm X
(Type c)

50

(b) Bob’s partition ΠB

πC({1, 2})
Math &
dorm X
(Type c)

49

πC({1})
Math &
dorm Y
(Type d)

250

πC({2})
Econ &
dorm X
(Type a)

20

πC(∅)
Econ &
dorm Y
(Type b)

180

(c) Charlie’s partition ΠC

πD({1, 2})
Math &
dorm Y
(Type d)

249

πD({1})
Math &
dorm X
(Type c)

50

πD({2})
Econ &
dorm Y
(Type b)

180

πD(∅)
Econ &
dorm X
(Type a)

20

(d) Diana’s partition ΠD

Figure 1: The partition Πj for students j of each type k ∈ K in the Example

2.2. The network formation process

The network formation process is as follows: At time period t = 0 all agents are160

active and have no friends. An agent is active in period t > 0 if the agent sends friend
requests and accepts all friend requests in period t. An agent is idle in period t > 0 if
the agent does not send friend requests and cannot receive friend requests in period t.
Let q = (q∅, q1, ..., qR) and

∑
r∈R∪{∅} q

r = 1. In each period t ∈ {1, 2, 3, ...} every active
agent i interacts with other agents as follows: Agent i selects the social group Γri with165

probability qr > 0 for r ∈ R∪{∅} and for each Ni(k) ⊆ Γri , selects the group of agents of
type k with probability |Ni(k)|

|Γri |
. Agent i then sends a friend request to an agent j selected

uniformly at random from among the active agents in Ni(k) who are not yet i’s friends.
If such an agent j can be found (i.e. the set of active agents in Ni(k) who are not yet
i’s friends is not empty), then the request is immediately accepted (since j would be170
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active) and agents i and j become friends at t.7 Otherwise, agent i does not initiate any
friendships in period t. At the end of every period t ≥ 0, agent i remains active with
probability p ∈ (0, 1) until the following period and becomes idle with probability 1− p.
If agent i becomes idle, i retains all his friendships, but no longer forms any new links
with other agents in all subsequent periods.8175

To be clear, when we say that agents i and j become friends, we mean that an
undirected link forms between them, and such a link is formed in period t if and only
if i sends a friend request to j at t that is immediately accepted, or j sends a friend
request to i at t that is immediately accepted. Note that it is therefore irrelevant for the
formation of the link ij whether it was i or j who initiated the friendship by sending the180

friend request. Once formed, a link cannot disappear. That is, we do not allow agents
to delete links or “unfriend” each other.9

Example. (cont.) Let us imagine that Alice, Bob, Charlie and Diana are users of an
online social networking platform, such as Facebook. Alice interacts with students in
her class Γ1

A, or in her dorm Γ2
A, or with everyone Γ∅A, with probabilities q1, q2, and q∅185

respectively. Suppose that in period t, Alice interacts with students in dorm X (that
is, with students of type a or c). This event occurs with probability q2. Conditional
on interacting with students in her dorm, Alice interacts with type c students with
probability |NA(c)|

|Γ2
A|

= |πA({2})|
|Γ2

A|
= 50

69 (Our running example is particularly simple because
each subgroup π ∈ Πi for any student i contains students of only one type. So πA({2})190

is precisely the set of type c students in this case).10 Alice then sends a friend request to
a student j selected uniformly at random from among the type c students in her dorm
who are active users of the online social network and who are not yet her friends. If such
a student, say Charlie, can be found, the request is immediately accepted and Alice and
Charlie become (online) friends. On the other hand, if the relevant set of students is195

empty, Alice initiates no new friendships in period t.11 Alice keeps making friends in this

7We effectively assume that friend requests are accepted with probability 1, but one could generalize
this to an exogenous probability 0 < mkk′ ≤ 1 that a friend request from an agent i of type k is accepted
by an agent j of type k′.

8There are several ways of interpreting 1 − p, the probability of becoming idle: There must be
reasons, other than having linked with every user in the network, for why people stop adding new friends
(online) such as reaching a cognitive capacity for social interaction, losing interest, finding an alternative
(online) social network and so on. Including all these explanations would require a much richer model,
so we simply capture them as a random process with the idleness probability 1− p.

9As noted in the Introduction, this feature captures the Rolodex aspect of many online social net-
works.

10If there were an additional subject, say Computer Science, then πA({2}) would contain dorm X stu-
dents studying Econ or CS. That is, we would have πA({2}) = NA((dorm X, Econ))∪NA((dorm X, CS)).

11The probability that Alice sends a friend request to any particular type c student conditional on
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manner until she becomes idle (that is, stops being an active user of the online social
network). This process happens simultaneously for all students in every period. The
implications of this are worth highlighting: If Bob (of type b) interacts with students
in his dorm in period t, then he would be interacting with students in dorm Y in that200

period, whereas if Alice interacts with students in her dorm in the same period, she
would be interacting with students in dorm X (and could thus send friend requests only
to students in that dorm at t). But in the same period t she may receive a friend request
from students who are not in her dorm. For example, Bob could be interacting with
students in his class in period t and could send a friend request to Alice in that period205

(since Alice and Bob are in the same class). In this context, we interpret the vector q as
students’ propensity to browse (or students’ allocation of time spent browsing) through
the online profiles of students of a particular social category. The probability q∅ is then
interpreted as the propensity to browse anyone in the network.12 �

The example highlights an important distinction between the probability of interact-210

ing with other agents and the probability of making a link with other agents. In our
model, an agent interacts with a set of agents. That is, when an agent i interacts with
a set of agents in period t we mean that this set is selected from among possible sets of
agents at t. The probability of interacting with a set of agents of a particular type is
constant and depends only on the number of agents of each type and on q. Conditional215

on interacting with a set of agents of a particular type, agent i sends a friend request to
an active potential friend in this set. If such an agent can be found a link is established
with probability 1. So even though i’s probability of interacting with a set of agents of a
particular type is constant, i’s probability of establishing a link with a particular agent
j from the set is increasing since the subset of active potential friends becomes smaller220

over time.13

Our model is conceptually related to affiliation networks introduced in sociology by
Breiger (1974) and Feld (1981). An affiliation network is described by a set of agents and
a set ofmemberships, such as clubs, online fora, research topics, or social groups (Newman

interacting with type c students increases over time: She sends a friend request to a student selected
uniformly at random from among the active type c students who are not yet her friends, but this pool
of students becomes smaller as Alice befriends type c students and as they become idle.

12In the Online Appendix, we describe an alternative version of the model in which q can be inter-
preted as the fraction of time that students allocate physically to being in a particular social group.

13Currarini et al. (2009, 2010) distinguish between the probability of agents of particular types “meet-
ing” and a separate probability of agents forming a link together conditional on a meeting. Both of these
probabilities are constant over time. Our notion of interacting is similar to their notion of “meeting”,
but we also keep track of the time-varying probabilities of linking between agents of particular types.
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et al., 2002). Some affiliation network models have found wide-spread application in225

online social networks (Botha and Kroon, 2010, Kumar et al., 2010, Xiang et al., 2010).
In more recent evolving models of affiliation networks, new memberships may emerge
over time, and the likelihood of meeting new agents can depend on their memberships
(Lattanzi and Sivakumar, 2009, Zheleva et al., 2009). However, these models typically
contain a large number of parameters and most, such as those by Leskovec et al. (2005,230

2008), rely entirely on simulations.14

3. Baseline results

This section presents our baseline results. All the analytical results presented in
this paper are derived using the mean-field approximation to the stochastic network
formation model described in Section 2.2.15 In Section 6, we show that the mean-field235

approximation performs well against simulations of the model. Appendix I contains
proofs of the analytical results.

Lemma 1. The probability with which agent i interacts with agents from a subgroup
πi(S) such that S ⊆ R is given by

qπi(S) = |πi(S)|

 ∑
r∈S∪{∅}

qr

|Γri |

 (2)

and by definition
∑

π∈Πi
qπ =

∑
S⊆R q

πi(S) = 1.

Example. (cont.) Equation (2) above highlights the role of overlaps across social groups
in our model. Suppose that q1 is small, so that Alice allocates little time specifically to240

14Within our framework, let K∅ be a social category containing a single characteristic (which implies
it is shared by all agents). Then the set of all memberships would be {kr ∈ Kr : r ∈ R ∪ {∅}} and
a link between an agent i and a membership kr ∈ Kr is given the weight qr for all i ∈ N . New links
form over time via a form of focal closure (Easley and Kleinberg, 2010, p. 97): in every period, every
agent i is assigned a membership kr ∈ Kr at random according to q. Agent i then selects a type of
agent from among those agents (other than i) that have a link with kr at random according to their
relative proportions, and then creates an undirected link with an agent j chosen uniformly at random
from among the remaining active agents of the selected type.

15This mean-field analysis highlights technical differences between our model and several other models
of network formation. Currarini et al. (2009) derive the steady-state of a process in which pools of agents
are matched at random to meet and strike friendships, whereas our analysis essentially derives the most
likely outcome of our process (which may be thought of as a finite Markov chain on a finite state space).
This also differs from all growing random network models (Barabási and Albert, 1999, Jackson and
Rogers, 2007, Bramoullé et al., 2012, for example) which have an infinite number of states, or which are
ergodic (Fosco et al., 2010).
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interacting with students from her class. If we increase q2, she would be more likely to
interact with those students in her dorm who are also in her class. �

Let di(t) denote the degree (or number of friends) of agent i in period t. Analogously,
let dπi (t) denote the number of friends i has in period t with agents in the subgroup
π ∈ Πi. Finally, let ∆dπi (t) denote the number of new friends i makes in period t with245

agents in the subgroup π ∈ Πi.

Proposition 1. For any agent i ∈ N and any π ∈ Πi, the function ∆dπi (t) is given by

∆dπi (t) = 2qπ1(t ≤ T π) (3)

where for each π ∈ Πi, the “expected depletion time” T π, which denotes the expected
number of periods it takes i to make a link with every other active agent in π, is given
by

T π =
ln
(

2qπp
2qπp+(1−p)|π|

)
ln(p)

(4)

This proposition states that agent imakes new friends at a rate of 2qπ in the subgroup
π ∈ Πi for every period t ≤ T π. We now provide some intuition for this result. As
shown in Lemma 1, agent i interacts with agents in the subgroup π with probability qπ.250

Conditional on interacting with agents in this subgroup, agent i sends an immediately
accepted friend request to some active agent in π who is not yet i’s friend (such an
agent can be found in every period t ≤ T π). Therefore, for any period t ≤ T π, agent
i initiates an expected qπ links with agents in π. It remains for us to determine the
expected number of links initiated by agents in π that agent i receives in any period255

t ≤ T π. To do this, we must determine the probability with which each agent j ∈ π

interacts with agents of i’s type (which will depend on the size of the subgroups in Πj

and is not necessarily equal to qπ). Conditional on j interacting with agents of i’s type,
we must also determine the probability that j selects agent i specifically as the agent to
whom the friend request is sent. But j is selecting uniformly at random from among the260

active potential friends of i’s type, and the size of this pool of agents varies with time as
j makes friends. Hence the probability that j selects i is also time-varying. Nevertheless,
in Appendix I we show that the expected number of links that agent i makes in a period
t ≤ T π that are initiated by agents in π ∈ Πi is constant and also equal to qπ.

Example. (cont.) Recall that all the students in πA({2}) are of type c = (Math, dorm X).265

In every period, Alice interacts with them with probability qπA({2}) = q2 50
69 +q∅ 50

499 . (She
can interact with them via interacting with students in her dorm or via interacting with
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everyone.) Conditional on interacting with them, Alice sends an immediately accepted
friend request to some active student in πA({2}) who is not yet her friend. Such a stu-
dent can be found if t ≤ T πA({2}). Alice therefore initiates an expected qπA({2}) links270

with students in πA({2}) in a period t ≤ T πA({2}).
Now, we will determine the expected number of friend requests that Alice receives

(and immediately accepts) from students in πA({2}). Denote by ZπA({2})(t) the number
of active students in πA({2}) who are not Alice’s friends in period t, and let Charlie
be one such student. In every period, Charlie interacts with students of type a with
probability qπC({2}) = q2 20

69 + q∅ 20
499 . Conditional on interacting with type a students in

period t, he selects one to send a friend request to from among the remaining active
students in πC({2}) who are not yet his friends in period t. Since there are ZπC({2})(t)

such students, Charlie selects Alice in period t with probability 1
ZπC({2})(t)

. Therefore,
the expected number of friend requests that Alice receives in period t is given by

qπC({2})Z
πA({2})(t)

ZπC({2})(t)
(5)

Following the reasoning outlined in Appendix I, Equation (5) is equal to qπA({2}) in
this example. The reason is that ZπA({2})(t) and ZπC({2})(t) have the same growth rate
and therefore the fraction ZπA({2})(t)

ZπC({2})(t)
remains fixed at the initial value ZπA({2})(0)

ZπC({2})(0)
= 50

20 .

Therefore, Alice makes friends at a rate of 2qπA({2}) with students in πA({2}). �275

Corollary 1. The degree of agent i as a function of time t is a continuous, increasing,
piecewise linear concave function, and is given by

di(t) =
∑
π∈Πi

dπi (t) = 2
∑
π∈Πi

qπ [t1(t ≤ T π) + T π1(t > T π)] (6)

This corollary shows that agents make friends at a decreasing rate over time. Es-
sentially, in every period, each agent i ∈ N makes new friends at a rate of 2qπ in each
subgroup π ∈ Πi, and therefore at an overall rate which corresponds to the sum of the280

rates in each subgroup. As time passes, the agents in a subgroup π ∈ Πi either become
idle or become friends with i – thus leaving i with fewer agents in π to strike new friend-
ships with over time. Eventually, a period T π will be reached at which every agent in
π will either have become idle or will already be a friend of i, therefore any time spent
interacting with agents in the subgroup π after period T π no longer adds to i’s degree.285

The overall rate at which i makes new friends therefore diminishes by 2qπ after the pe-
riod T π. Note that this explanation for making new friends at a decreasing rate is purely
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due to the fact that as times passes, agents deplete the pools of potential friends, and
the expected depletion times are finite because the pools are finite. This contrasts with
models in which decreasing rates of friendship formation are due to decreasing marginal290

utility of friendships (Currarini et al., 2009).
The following lemma provides us with a useful characterization of the expected de-

pletion times.

Lemma 2. For every i ∈ N and any S, S′ ⊆ R, if S′ ⊆ S, then T πi(S′) ≥ T πi(S).

This result indicates that any agent i will deplete the subgroups of agents that share295

all their characteristics with i first and then will deplete subgroups of agents that share
subsets of those characteristics with i. The last subgroup to be depleted is the ∅-subgroup
(consisting of agents sharing no characteristics with i). Note that within a social group
this partial ordering over the expected depletion times of its subgroups is expressed,
somewhat remarkably, in terms of the number of characteristics only and it holds inde-300

pendently of social group sizes and of the vector q.

t

dA(t)

0 TπA({1,2}) TπA({1}) TπA({2}) TπA(∅)

Figure 2: A sketch of the function dA(t)

Example. (cont.) We sketch the function dA(t) in Figure 2. By Lemma 2, Alice must
first deplete the core subgroup, followed by the singleton subgroups (and we assume
here that πA({1}) is depleted before πA({2}), although the reverse could also hold), and
finally followed by the ∅-subgroup. We therefore have that 0 ≤ T πA({1,2}) ≤ T πA({1}) ≤

13



T πA({2}) ≤ T πA(∅). Furthermore, by Corollary 1 the slope of dA(t) is given by

2(qπA(∅) + qπA({2}) + qπA({1}) + qπA({1,2})) if t ∈ (0, T πA({1,2})]

2(qπA(∅) + qπA({2}) + qπA({1})) if t ∈ (T πA({1,2}), T πA({1})]

2(qπA(∅) + qπA({2})) if t ∈ (T πA({1}), T πA({2})]

2(qπA(∅)) if t ∈ (T πA({2}), T πA(∅)]

0 if t > T πA(∅)

That is, Alice starts off making friends at a rapid rate of 2 (since
∑

S⊆R q
πA(S) = 1).

Eventually, she becomes friends with everyone who is both in her class and her dorm (or
some of them become idle). Having depleted the core subgroup, the rate at which she
makes new friends drops by 2qπA({1,2}), since any period that she now spends interacting305

with agents in the core subgroup will not be spent making new friends. Alice subsequently
depletes the subgroup of agents who are in her class only, and then depletes the subgroup
of agents who are in her dorm only. Her rate of making new friends drops each time.
Finally, she is left with the ∅-subgroup. Once that is depleted, she can no longer make
any new friends.310

Note that the function dC(t) for Charlie (who is of type c) will differ from Alice’s
since the slope and the expected depletion times depend on the sizes of the subgroups
in ΠC and these differ from the corresponding ones for Alice. �

There are two sources of heterogeneity in degree that are admitted by our mean-field
approximation. Firstly, the function di(t) for an agent i depends only on p, q, and the315

size of the subgroups in the partition Πi. If we consider agents i and j of different types,
the sizes of the subgroups in their partitions Πi and Πj will typically be different from
each other. Hence di(t) and dj(t) will differ. That is, the mean-field approximation
preserves the heterogeneity of predicted degree trajectories for agents of different types
(with |K| types there are generically |K| distinct predicted trajectories for degree over320

time). Secondly, the function di(t) provides us with the expected degree of an agent i in
period t, provided that the agent actually remains active until period t. Therefore even
if i and j are of the same type (so that di(t) = dj(t) for all t), the realized degrees of
these agents will typically differ since agents i and j may become idle at different times.
This highlights the fact that to derive the degree distribution in the population, we must325

keep track of the point at which an agent becomes idle and thus the point at which that
agent’s degree must be measured. This point is determined stochastically according to
the probability of idleness 1 − p. The following proposition provides an expression for
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the resulting degree distribution.

Proposition 2. The overall cumulative distribution function for degree is given by

G(d) =
1

|N |
∑
i∈N

(
1− pti(d)+1

)
(7)

where ti(d) is the inverse of di(t) for each agent i ∈ N .330

Proposition 2 shows that with our network formation process, the resulting distri-
bution is roughly geometric (for which the continuous analogue is the exponential dis-
tribution). Jackson (2008) observes that empirically “more purely social networks” tend
to have degree distributions that are close to exponential.16 Other social networks tend
to follow a power law distribution. Such degree distributions can be generated by a link335

formation process exhibiting preferential attachment in growing random networks. In
these models, every new agent links to existing agents with a probability that is propor-
tional to the degree of these agents (Price, 1976, Barabási and Albert, 1999, Jackson and
Rogers, 2007). However, we show in Appendix II that none of the results in this paper
would change if our link formation process were governed by preferential attachment.340

4. Comparative statics on degree and group size

There are many ways of defining “an increase in the size of a social group” when social
groups can be overlapping and the number of agents is finite. In particular, it is crucial
to keep track of how the overlap across social groups changes as we expand a particular
social group. In some cases, we will show that expanding the size of an agent’s group345

increases that agent’s expected degree, but in other cases, it may decrease the agent’s
expected degree.

Before proceeding to the main definitions and results of this section, it will be useful
to impose a mild restriction on our model.

Assumption 1. For every i ∈ N and any S, S′ ⊆ R, if S′ 6= S, then T πi(S′) 6= T πi(S).350

This assumption allows us to impose a strict order on the expected depletion times,
which is relatively weak and considerably simplifies the proofs. It will also be useful to

16Quoting Jackson (2008, p. 65): “some of the more purely social networks have parameters that
indicate much higher levels of random link formation, which are very far from satisfying a power law. In
fact, the degree distribution of the romance network among high school students is essentially the same
as that of a purely random [growing] network [i.e. exponential].”
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introduce the following definition: For any r ∈ R and any agent i ∈ N , we refer to |Γ
r
i |
qr

as the effective size of the social group Γri (since the size of the group is normalized by

the probability of interacting with that group). We refer to |Γ
∅
i |
q∅

as the effective network355

size.
We consider two definitions of “subgroup expansion” below. In each case, we denote

every variable after the expansion by that variable’s name with an added “hat”. For
example, the core subgroup is denoted by πi(R) before an expansion (as usual), and by
π̂i(R) after the expansion.360

Definition 1. For any agent i ∈ N , there is a singleton subgroup expansion by
δ > 0 of a singleton subgroup πi({r}) if

i. |π̂i({r})| = |πi({r})|+ δ

ii. |π̂i(∅)| = |πi(∅)| − δ

and the cardinality of all other subgroups remains unchanged.365

That is, there is a singleton subgroup expansion by δ of a singleton subgroup πi({r})
if |πi({r})| increases by δ and |πi(∅)| decreases by δ. Note that such an expansion implies
that the cardinality of Γri increases by δ while leaving the cardinality of every other social
group for agent i unchanged.

Proposition 3. For any agent i ∈ N and some r ∈ R, suppose there is a singleton370

subgroup expansion by δ of πi({r}) and suppose Assumption 1 holds. There is a δ̄ > 0

such that if |Γ
∅
i |
q∅
≥ (|Γri |+ δ̄)

|Γri |
qr then, for all δ < δ̄ and all t, d̂i(t) ≥ di(t).

This proposition shows that the degree of agent i increases from di(t) to d̂i(t) for every
t following a singleton subgroup expansion if the effective network size is large enough.
A detailed explanation of singleton subgroup expansions, as well as the intuition for this375

result can be given with the help of our example.

Example. (cont.) On the left-hand side of Figure 3 (top of panel (a)) we illustrate the
singleton subgroup expansion of πA({1}) by δ for Alice, so that |π̂A({1})| = |πA({1})|+δ,
and |π̂A(∅)| = |πA(∅)| − δ. All other subgroups remain unchanged. The expansion is
equivalent to δ Math students living in dorm Y changing their “class” to Econ. The380

number of students other than Alice who are in the Econ class but not in her dorm is
thus greater by δ.

Before the expansion, let us suppose that the expected depletion times satisfied

0 < T πA({1,2}) < T πA({1}) < T πA({2}) < T πA(∅)
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πA({1, 2})
Econ &
dorm X

π̂A({1})

Econ &
dorm Y

πA({2})

Math &
dorm X

π̂A(∅)
Math &
dorm Y

π̂A({1, 2})
Econ &
dorm X

π̂A({1})

Econ &
dorm Y

π̂A({2})

Math &
dorm X

π̂A(∅)
Math &
dorm Y

t0 TπA({1,2})TπA({1}) TπA({2}) TπA(∅)

T π̂A({1,2})T π̂A({1})T π̂A({2}) T π̂A(∅)

dA(t)
d̂A(t)

t0 TπA({1,2})TπA({1}) TπA({2}) TπA(∅)

dA(t) d̂A(t)

(a) A singleton subgroup expansion of
πA({1}) for Alice in the Example

(b) A core subgroup expansion for Alice
in the Example

Figure 3: An illustration of Propositions 3 and 4 using the Example

The strict inequalities follow from Assumption 1. If δ is sufficiently small (δ < δ̄), the
order of expected depletion times remains unchanged, so after the expansion they satisfy

0 < T π̂A({1,2}) < T π̂A({1}) < T π̂A({2}) < T π̂A(∅)

On the left-hand side of Figure 3 (bottom of panel (a)) we represent degree as a function
of time for Alice before the expansion by dA(t) (in black) and after the expansion by
d̂A(t) (in green). By the definition of expected depletion times, we can show that T πA(S)

385

for any S ⊆ R such that 1 ∈ S will be greater after the expansion, and will remain
unchanged for any S such that 1 6∈ S. In other words, any subgroup that is a subset of
the “class” social group will take longer to deplete. This shift in the expected depletion
times is shown in the diagram. Interestingly, because the cardinality of πA({1}) and of
Γ1

A has increased, Alice’s probability of interacting with students within the “class” social390
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group increases. Indeed, since the “class” social group is larger, Alice is now more likely
to become friends with students from her class when she is interacting with students
from other social groups that overlap with the “class” social group. From this we can
show that for any t ≤ T πA({1}), the slope of dA(t) is smaller than that of d̂A(t), from
which it follows that d̂A(t) ≥ dA(t) for all t ≤ T πA({1}).395

Following the depletion of every subgroup that is a subset of the “class” social group,
Alice is left with fewer students to strike new friendships with (since the ∅-subgroup is
now smaller). Effectively, Alice is now more likely to interact with students that she is
already friends with, and thus adds new friends at a slower rate. The slope of d̂A(t) is
therefore smaller than that of dA(t) for any t ≥ T π̂A({1}). Nevertheless, if the effective400

network size is large enough the functions never cross, so d̂A(t) ≥ dA(t) for all t.17,18 �

We now introduce a different type of expansion which is specific to overlapping
groups.

Definition 2. For any agent i ∈ N , there is a core subgroup expansion by δ > 0 if

i. |π̂i(R)| = |πi(R)|+ δ405

ii. |π̂i({r})| = |πi({r})| − δ, for all r ∈ R

iii. |π̂i(∅)| = |πi(∅)|+ (|R| − 1)δ

and the cardinality of all other subgroups remains unchanged.

A core subgroup expansion by δ represents a situation in which the overlap of all of
agent i’s social groups increases by δ, while leaving all social group sizes unchanged. Let410

r∗ denote the social category for which the singleton subgroup πi({r∗}) is the last to be
depleted for agent i (before πi(∅)).

Proposition 4. For any agent i ∈ N suppose there is a core subgroup expansion by
δ of πi(R) and suppose Assumption 1 holds. If |Γ

∅
i |
q∅
≥ (|R| − 2)

|Γr∗i |
qr∗

, then for all t,

d̂i(t) ≤ di(t).415

This proposition shows that the degree of agent i decreases from di(t) to d̂i(t) for
every t following a core subgroup expansion if the effective network size is large enough.

17Note that |Γ
∅
i |
q∅
≥ (|Γri |+ δ̄)

|Γr
i |
qr

is a sufficient but not a necessary condition. For example, one can

verify that limp→1− d̂i(t) ≥ limp→1− di(t) regardless of effective social group sizes.
18Note that if the network itself were allowed to expand by δ, that is, |π̂i({r})| = |πi({r})| + δ and

|π̂i(∅)| = |πi(∅)|+ δ, then one could easily show that d̂i(t) would lie above di(t) for every t.
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Note that when there are only two social categories (|R| = 2), the sufficient condition
holds trivially. A detailed explanation of core subgroup expansions and some intuition
for this result is given by returning our running example.420

Example. (cont.) On the right-hand side of Figure 3 (top of panel (b)) we illus-
trate a core subgroup expansion by δ for Alice. So |π̂A({1, 2})| = |πA({1, 2})| + δ, and
|π̂A({1})| = |πA({1})| − δ, and |π̂A({2})| = |πA({2})| − δ, and |π̂A(∅)| = |πA(∅)|+ δ. If
there were any other subgroups, their cardinality would remain unchanged. Furthermore,
note that the cardinality of every social group remains unchanged. That is, |Γ̂rA| = |ΓrA|425

for all r ∈ R ∪ {∅}. Somewhat less abstractly, a core subgroup expansion in this case
would be equivalent to δ Econ students from dorm Y switching to Alice’s dorm (dorm
X), and δ Math students from Alice’s dorm switching to dorm Y.19

Now, since the cardinality of every social group ΓrA (r ∈ R∪ {∅}) is unchanged, the
expected depletion times remain unchanged. On the right-hand side of Figure 3 (bottom430

of panel (b)) we represent degree as a function of time for Alice before the expansion
by dA(t) (in black) and after the expansion by d̂A(t) (in green). The slope of d̂A(t)

is smaller than that of dA(t) over some range because after having depleted the core
subgroup πA({1, 2}), Alice is likely to deplete the singleton subgroups next, but these
are now smaller. The slope of d̂A(t) eventually becomes larger than that of dA(t) because435

the ∅-subgroup is larger after the expansion. However, we show that the functions never
cross and so d̂A(t) ≤ dA(t) for all t. �

Remark 1. Under the relevant conditions, Proposition 3 (Proposition 4) shows that the
function for degree over time is higher (lower) in every period following a singleton (core)
subgroup expansion. Since the probability of idleness is unchanged from an expansion, it440

follows that the expectation for the realized degree is higher (lower) following a singleton
(core) subgroup expansion. �

4.1. Supporting evidence from Facebook data

We use Facebook data to provide some supporting evidence for the theoretical results
of this section. Our data represent a September 2005 cross-section of the complete445

19Note that the definition of core subgroup expansion allows the number of agents transferred from
a singleton subgroup to the core subgroup to be different for different singleton subgroups. That is,
we could transfer δ1 units from πi({1}) to πi({1, 2}), and δ2 6= δ1 units from πi({2}) to πi({1, 2}). If
we then transfer δ1 units from the ∅-subgroup to πi({1}) and δ2 from the ∅-subgroup to πi({2}), the
number of agents and the cardinality of all social groups remains unchanged. Note that this system of
transfers is equivalent to the definition of core subgroup expansion when δ = δ1 + δ2 and can easily be
generalized to more than two social categories.

19



structures of social connections on www.facebook.com within (but not across) the first
ten American colleges and universities that joined Facebook. The (anonymized) raw data
contain over 130,000 nodes (users) and over 5.6 million links (friendships). We observe
six social categories for each user: gender, year of graduation, major, minor, dorm, and
high school. We cleaned the data as described in Appendix III. There are 27,454 users450

and 492,236 links in our cleaned data, consisting only of students graduating between
2006 and 2009, who have supplied all the relevant personal characteristics (except high
school).20 We provide a more complete description of the dataset in Appendix III.

Using the available information in our data, we define agents i and j to be in the
same class if and only if they have the same year of graduation and major or have the455

same year of graduation and minor. We then let [K1,K2] = [class, dorm] to match the
running example of this paper. That is, we assumed that every student in our dataset
interacts with other students in their “class” social group Γ1

i and with other students in
their “dorm” social group Γ2

i . Naturally, these groups often overlap.

Remark 2. To match our Example, suppose there are only two social categories (|R| =460

2). Also note that any two agents i and j are distinguished only by their type. That is,
for a given p and q, if i and j have social groups and overlaps across those social groups
that are of the same size, their degrees and expected depletion times should be the same;
the labels of the social groups within the social categories are therefore irrelevant, only
their sizes matter. Proposition 4 can therefore be read as saying that if i and j have the465

same social group sizes but i’s core social subgroup is larger, then i’s expected degree
will be smaller than j’s. Similarly, under the relevant conditions, Proposition 3 can be
read as saying that if only one of i’s social groups is larger than j’s (and i and j have
core subgroups of the same size), then i’s expected degree is larger than j’s. �

To test the implications in Remark 2, we ran the following regression for each college

di = β0 + β1|Γ1
i |+ β2|Γ2

i |+ β3|πi({1, 2})|+ εi (8)

That is, we assumed that the degree of student i depends on the size of i’s “class” social470

group, the size of i’s “dorm” social group, and on the size of the intersection of these
groups. The parameter β1 is interpreted as the marginal effect on degree of increasing
the size of the “class” social group holding the size of the “dorm” social group, and of

20Technically, we consider a non-random subsample of the data since there might be selection biases in
data disclosure preferences. But while cleaning the data may affect the value of the parameter estimates,
we do not expect their sign to be significantly affected, which is the only aspect that is relevant for testing
our comparative static results.
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Dependent variable: agent’s degree
|Γ1
i | s.e. |Γ2

i | s.e. |πi({1, 2})| s.e. const. N

Harvard 0.170*** (0.032) 0.239*** (0.034) -0.273 (0.308) 9.002 1325
Columbia 0.149*** (0.022) 0.012 (0.012) -0.627*** (0.141) 33.94 2663
Stanford 0.319*** (0.031) 0.071*** (0.021) -1.995*** (0.429) 35.53 2254

Yale 0.035 (0.043) 0.056** (0.023) 0.518 (0.458) 25.06 1431
Cornell 0.034** (0.017) 0.002 (0.003) -0.308*** (0.096) 21.07 2509

Dartmouth 0.200*** (0.037) -0.035 (0.036) -0.689 (0.512) 37.04 1612
UPenn 0.153*** (0.018) -0.018*** (0.005) -0.427*** (0.128) 37.55 3006

MIT 0.063** (0.032) -0.028 (0.018) -0.328 (0.274) 42.38 1563
NYU 0.085*** (0.012) 0.020*** (0.003) -0.218*** (0.061) 23.98 5581

Boston U. 0.091*** (0.011) 0.008*** (0.002) -0.274*** (0.044) 26.02 5510
Comment: Standard OLS regression with robust standard errors in parentheses

∗∗∗/∗∗/∗ denote rejection of H0 : β = 0 at the 1/5/10% significant level respectively

Table 1: Regression results

the intersection of the groups constant. Similarly, β3 is interpreted as the marginal
effect on degree of increasing the size of the core subgroup holding the size of the social475

groups constant. Given Remark 2, we should find β1 and β2 to be positive and β3 to be
negative.21

The evidence is reported in Table 1 and largely supports the results of this section,
with β1 and β2 appearing as positive, and β3 as negative. We therefore learn that the
definition of a social group matters for the resulting comparative statics. If one were to480

define agents in πi({1, 2}) as constituting their own “group”, then one would be surprised
to find that expanding that group has a negative effect on degree. On the other hand,
defining the set of agents πi({1, 2}) as the intersection of social groups yields the result
established in our model.

We have only considered singleton subgroup and core subgroup expansions. While485

many other types of expansion exist, the results of this section suffice to highlight the
importance of accounting for the overlap across social groups.

5. Homophily

We now turn to the dynamics of homophily in our model and show that they depend
crucially on the relative sizes of social groups and on their overlaps. First of all, for any

21From Appendix III, note that the average dorm social group size in our dataset is 50.5 and the
average class social group size is 62.8, but the network size |Γ∅i | is two orders of magnitude larger, so
we can assume that the sufficient condition for a large enough effective network size in Proposition 3 is
satisfied.

21



agent i, the individual homophily index in social category r ∈ R is given by22

number of friends of i that share characteristic kri with i
number of friends of i

(9)

To express the individual homophily index within our model, let us define Πr
i =

{πi(S) ∈ Πi : S ⊆ R, r ∈ S}. This is the set of subgroups that contain agents who share
i’s characteristic in social category r. Using Equation (9), the individual homophily
index in social category r of agent i in period t is

Hr
i (t) =

∑
π∈Πri

dπi (t)∑
π∈Πi

dπi (t)
=

∑
π∈Πri

dπi (t)

di(t)
(10)

Proposition 5. For any agent i ∈ N and any r ∈ R, the function Hr
i (t) is equal to the

constant
∑

π∈Πri
qπ for any t ≤ T πi(R), is decreasing for any t ∈ (T πi({r}), T πi(∅)], and is490

equal to the constant
∑
π∈Πr

i
qπTπ∑

π∈Πi
qπTπ for any t > T πi(∅).

This result shows that the homophily index for agent i is a constant for any t up to
the expected depletion time of the core subgroup T πi(R), and the index then decreases
from T πi({r}) to some constant. The fact that homophily decreases over some range is
intuitive: Within a social group, agents deplete subgroups from those that contain agents495

who share the largest number of characteristics with them to those that contain agents
who share the smallest number of characteristics. Therefore, as time passes, the agents
that are added as friends later in time from that social group are likely to be less similar
to the agent, which reduces the homophily index. Note that this feature of homophily
eventually decreasing over time is specific to our model, which captures the Rolodex500

aspect of online social networks. Indeed, rather than recording close friendships, such
networks tend to become a repository of past acquaintances. This contrasts with “best”
friendship networks reported in surveys in which we observe that homophily in certain
social categories increases over time (e.g. in race among school students, see Shrum et al.
1988, McPherson et al. 2001).505

A feature to highlight in Proposition 5 is that we cannot determine the shape of
Hr
i (t) in the range (T πi(R), T πi({r})] without further restrictive assumptions. That is,

while homophily must eventually decrease over time, it is possible for it to increase over

22Boucher (2012) and Iijima and Kamada (2014) analyze static network formation models in which
agents have multi-dimensional characteristics. They focus their attention on a homophily index which
measures the distance between any two vectors of characteristics. This differs somewhat from the usual
measure typically encountered (McPherson et al., 2001, Currarini et al., 2009) and used in this paper.
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some range. This non-monotonicity can have important implications, which we return
to after Proposition 6 (a special case of Proposition 5 for two social categories).510

Proposition 6. Suppose that R = {r, r′} and that Assumption 1 holds. Then, for any
agent i ∈ N ,

i. If |Γ
r
i |
qr <

|Γr′i |
qr′

, then Hr
i (t) is decreasing for all t.

ii. If |Γ
r
i |
qr >

|Γr′i |
qr′

and |Γri ∩ Γr
′
i | is sufficiently small, then Hr

i (t) is non-monotonic and

reaches a global maximum at T πi({r}) � 0.515

The proposition above states that when there are only two relevant social categories,
the homophily index for the social category of the effectively smaller social group is
decreasing over time. On the other hand, if the intersection of the social groups is
sufficiently small, the homophily index for the social category of the effectively larger
social group increases over some range until it reaches a global maximum at T πi({r})520

before decreasing down to a constant. (More specifically, the proof of the second part
of Proposition 6 reveals that Hr

i (t) is constant in the range (0, T πi(R)], is decreasing in
the range (T πi(R), T πi({r

′})], is increasing in the range (T πi({r
′}), T πi({r})], is decreasing

in the range (T πi({r}), T πi(∅)], and is finally constant for any t > T πi(∅)).
We can provide some intuition for this result by returning to our running example.525

Example. (cont.) Suppose we are interested in Alice’s homophily index over time for
the “class” social category, that is, H1

A(t). We illustrate the first part of Proposition 6
on the left-hand side of Figure 4 (panel (a)), and the second part of Proposition 6 on
the right-hand side of Figure 4 (panel (b)). Suppose |Γ1

A| <
q1

q2 |Γ2
A|. Then Alice will

first deplete the core subgroup, followed by the “class” subgroup πA({1}), followed by530

the “dorm” subgroup πA({2}), and finally by the ∅-subgroup. Therefore, Alice makes
friends with the students who share her characteristic within the “class” social category
first, and therefore her homophily index decreases over time. On the other hand, sup-
pose |Γ1

A| >
q1

q2 |Γ2
A|. Now, Alice will first deplete the core subgroup, followed by the

“dorm” subgroup πA({2}), followed by the “class” subgroup πA({1}), and finally by the535

∅-subgroup (Notice the switched expected depletion times in Figure 4). So, having de-
pleted the core subgroup, Alice will make friends with students from within the “dorm”
subgroup, which reduces her homophily index in the “class” social category. But, having
depleted the “dorm” subgroup πA({2}), Alice continues making friends from within the
“class” subgroup πA({1}) which will increase her homophily index. If, in addition, the540

size of the core subgroup πA({1, 2}) is sufficiently small, this increase in her homophily
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Figure 4: An illustration of Proposition 6 using the Example

index reaches a global maximum (as shown in panel (b) of Figure 4). The reason for
this is that if the core subgroup is small (and since the “dorm” social group is smaller
than the “class” social group), Alice’s homophily index will have started off low in early
periods so the eventual addition of new friends who are similar to her in the relevant545

social category has a large effect on her homophily index.23 �

Bramoullé et al. (2012) derive a negative relationship between homophily and time (or

23Looking at panel (b) of Figure 4, while the slope of dA(t) must be everywhere greater than the
slope of

∑
π∈Π1

A
dπA(t), it is not necessarily true that the growth rate of dA(t) is everywhere greater than

that of
∑
π∈Π1

A
dπA(t), and that is what would be required for H1

A(t) decreasing for all t.
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indeed between homophily and degree). As Propositions 5 and 6 show, this relationship
holds only under certain conditions in our model. The novel prediction of our analysis
is that under the condition of part (ii) of Proposition 6, homophily increases over some550

range, which offers a way to distinguish empirically between the models.
The non-monotonicity of the homophily index over time may affect various dynamic

economic processes that occur in social networks. For example, Golub and Jackson (2012)
find that increasing homophily tends to reduce the speed of information transmission
because the information will tend to circulate rapidly within but not across clusters of555

similar individuals. If homophily is indeed non-monotonic, as we demonstrate, then
our results suggest that information will transmit quickest through the “older” nodes or
through the “youngest” nodes in the network (for example, through seniors and freshmen
respectively, in the context of an American university), but may transmit more slowly
among “middle-aged” nodes.24

560

6. Simulations

Since we derived our analytical results using a mean-field approximation, it is fruitful
to verify that the approximation is consistent with simulation results. We do this by
returning to our running example.

Example. (cont.) In line with our running example, we have 20 type a students, 180565

type b students, 50 type c students, and finally 250 type d students. We chose q1 = q2 =

0.4 and p = 0.995. In Figure 5 we can see the performance of our approximation against a
single run of the simulation.25 Panel (a) shows the degree distribution resulting from one
run of the simulation in black against our analytical degree distribution, corresponding
to Equation (7), in red. Panel (b) shows our predicted degree over time for each agent570

type (in red) against the simulation results. Grey lines trace the degree over time for
each agent as long as they are active, and blue crosses indicate the point at which each
agent becomes idle. The black line shows the average degree over time across all the
active agents of a given type. Similarly, panels (c) and (d) show our predicted path for

24It is unfortunately not possible for us to test the non-monotonicity of the homophily index over time
with our cross-sectional dataset. While it is possible for us to discard the time dimension by defining
the composition function hri (d) = (Hr

i ◦ ti)(d) which expresses homophily as a function of degree, the
function hri (d) will typically be different for different agents. Since we only have a single observation for
degree and for the homophily index in a given category for each agent, we cannot test what hri (d) looks
like empirically for a given agent.

25That is, the simulation was initialized with the chosen parameters and terminated only when every
student became idle.
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Figure 5: Performance of the mean-field approximation against one run of the simulation

homophily over time in red, in social categories 1 and 2 respectively, for each agent type.575

Grey lines trace the homophily index over time for each agent as long as they are active,
and blue crosses indicate the point at which each agent becomes idle. Also, the black
line shows the average homophily over time across all the active agents of a given type.

The parametrization used to generate Figure 5 was chosen to highlight the fact that
homophily over time can be non-monotonic (see the top left of panel (c)), but Figure 5580

is representative of how well our approximation matches the simulation results.
Figure 6 uses the same parametrization to show the performance of our approxima-

tion against the average of 100 runs of the simulation. Panel (a) shows degree distribution
averaged across 100 runs of the simulation in black against our analytical degree distribu-
tion in red. In panels (b) to (d), the black lines show the average degree (or homophily)585

over time across all the active agents of a given type averaged across 100 runs of the
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simulation. The red lines in those panels show our analytical predictions. Once again,
Figure 6 is representative of how well our approximation matches the simulations. �
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Figure 6: Performance of the mean-field approximation against 100 runs of the simulation

While our approximation matches the simulation output well, it is not indistinguish-
able from the output for the following reasons: (i) The expected depletion times are the590

same for any two agents of the same type. So in our mean-field approximation, agents of
the same type all abruptly and simultaneously stop making new friends with others from
a particular social group. Due to the randomness in the simulation however, agents of the
same type may deplete their social groups at slightly different times. The implication is
that the average degree over time across active agents will be slightly smoother than our595
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prediction for degree as a concave piecewise linear function.26 (ii) In deriving the degree
over time for an agent i, we added the expected number of friendships that i initiates
with other agents and the expected number of friendships that are initiated by other
agents j with i in every period t. However, we do not subtract the intersection: Namely,
we ignore the possibility that i initiates a friendship with some agent j in period t while600

j simultaneously initiates a friendship with i in that period. The likelihood of such an
event is small when the pools of active agents are large, but becomes more significant
when the pools are close to being completely depleted.

In an Online Appendix, we present further simulations of the model (and of variants
of the model) for different values of p and q.27

605

7. Conclusion

We presented a new dynamic model of network formation over a fixed number of
agents with overlapping social groups. We derived some comparative static results on
the relationship between degree and group size, showing that degree should increase with
social group size, but should decrease when the overlap of social groups is increased.610

We gave some supportive evidence using data from Facebook. We also showed that
homophily can be non-monotonic, reaching a global maximum in some period before
eventually falling. Future work could empirically investigate the testable implications
for the dynamics of degree and homophily of this model.
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Appendix I: Proofs

Baseline results

In this section, we first carry out the analysis in terms of pairs of agent types. We
then extend the analysis to obtain the formulae in the main text which express the630

relevant variables (such as probabilities of interaction, expected depletion times, etc) in
terms of an agent i and their corresponding partition Πi.

For any agent i ∈ N of type k and any type k′ ∈ K denote by qNi(k′) the probability
with which agent i interacts with agents of type k′. Also, for any setX, letX+ = X∪{∅}.

Lemma 3. Consider an agent i of type k and any type k′ ∈ K. Denote by S the set of635

indices for which the vectors k and k′ are equal. Then, (i) qNi(k′) =
∑

r∈S+
qr |Ni(k

′)|
|Γri |

,

and (ii) for any other agent j of type k, qNi(k′) = qNj(k
′).

Proof. (i) Agent i interacts with agents in Ni(k
′) ⊆ Γri with positive probability only if

r ∈ S+. Furthermore, for any r ∈ S+ agent i interacts with agents in the social group Γri
with probability qr, and conditional on interacting with agents in Γri , agent i interacts
with those in Ni(k

′) ⊆ Γri with probability |Ni(k
′)|

|Γri |
. Therefore, an agent interacts with

agents in Ni(k
′) with probability

∑
r∈S+

qr
|Ni(k

′)|
|Γri |

(11)

(ii) If agents i and j are of the same type, then for all k′ ∈ K, |Ni(k
′)| = |Nj(k

′)|, and
for all r ∈ S+, |Γri | = |Γrj |.

Since all agents of the same type have the same probability of interacting with agents640

of a given type (Lemma 3 part (ii)), for any types k, k′ ∈ K we can let αkk′ denote the
probability with which an agent of type k interacts with agents of type k′. That is for
any i ∈ N such that ki = k, αkk′ = qNi(k

′).28

For any types k, k′ ∈ K, let Zkk′(t) denote the remaining number of agents of type k′

that an agent of type k can still make a link with in period t. That is, for agent i of type645

k, Zkk′(t) is the number of agents of type k′ who are active in period t and who have
neither received a friend request from i (that they accepted) nor sent a friend request to
i (that i accepted) before period t. Also denote by T kk′ the period in which an agent
of type k can no longer make any new links with agents of type k′ (because they are all

28The probability αkk
′
resembles what Currarini et al. (2009, 2010) refer to as the probability of two

agent types “meeting”.
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either friends with the agent of type k or are idle). That is, T kk′ is the smallest t for650

which Zkk′(t) = 0.

Remark 3. For any k, k′ ∈ K, although it is not necessarily the case that Zkk′(t) =

Zk
′k(t), it must be the case that T kk′ = T k

′k. Indeed, the initial number of type k
agents, which is equal to Zk′k(0), may differ from the initial number of type k′ agents,
which is equal to Zkk′(0). The fact that T kk′ = T k

′k simply follows from the fact that if655

T kk
′ is the period in which agents of type k can no longer make new links with agents of

type k′, then it also must be the period in which agents of type k′ can no longer make
new links with agents of type k. �

Denote by ∆dkk
′

i (t) the number of friends that an agent i of type k makes with agents
of type k′ in period t. Note that the index “i” in ∆dkk

′
i (t) is in some sense redundant660

because any two agents of the same type are indistinguishable as long as they are active.
Nevertheless, the notation is useful for tracking any two agents of the same type who
may differ in their realized times of idleness, and thus in their realized degrees. The
equations for Zkk′(t) and for ∆dkk

′
i (t), as well as their relationship, are derived below.

The equation for ∆dkk
′

i (t). We find the equation for ∆dkk
′

i (t) by deriving the expected665

number of (immediately accepted) friend requests that an agent i of type k sends to
agent of type k′ in period t and the expected number of friend requests that an agent i
of type k receives (and immediately accepts) from agents of type k′ in period t.

In period t an agent i of type k interacts with agents of type k′ with probability αkk′ .
Provided that t ≤ T kk

′ agent i sends an immediately accepted friend request to one of
the remaining type k′ agents. If t > T kk

′ agent i makes no new links with agents of type
k′ in period t. Therefore the expected number of immediately accepted friend requests
that an agent i of type k sends to agents of type k′ in period t is given by

αkk
′
1(t ≤ T kk′) (12)

Similarly, in period t, an agent j of type k′ interacts with agents of type k with
probability αk

′k. Provided that t ≤ T k
′k = T kk

′ (see Remark 3), and conditional on
interacting with agents of type k, agent j (of type k′) sends an immediately accepted
friend request to some remaining agent of type k (who is not idle and is not yet friends
with j). There are precisely Zk′k(t) agents of type k that an agent j of type k′ can still
make new links with in period t. Since j selects the specific agent that the friend request
is sent to uniformly at random, the probability that it is specifically agent i who receives
the friend request is therefore 1

Zk′k(t)
. Finally, there are precisely Zkk′(t) agents j of type
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k′ from which an agent i of type k could accept a friend request from in period t. From
the above, it follows the expected number of friend requests that an agent i of type k
receives (and immediately accepts) from agents of type k′ in period t is given by

αk
′kZ

kk′(t)

Zk′k(t)
1(t ≤ T kk′) (13)

The total expected number of friends that an agent i of type k makes with agents of
type k′ in period t is therefore given by the sum of Equations (12) and (13). That is,

∆dkk
′

i (t) = αkk
′
1(t ≤ T kk′) + αk

′kZ
kk′(t)

Zk′k(t)
1(t ≤ T kk′) (14)

The equation for Zkk′(t). For any t < T kk
′ the equation for Zkk′(t) is given by

Zkk
′
(t+ 1) = Zkk

′
(t)−

[
∆dkk

′
i (t) + (1− p)Zkk′(t)− (1− p)∆dkk′i (t)

]
(15)

The interpretation of Equation (15) is straightforward. The number of remaining active
agents of type k′ that an agent i of type k can make a link with in period t + 1 is670

the number of active agents of type k′ at t less the number of such agents that have
either become idle or that become friends with i at t. This includes the agents who
became friends with i at t [∆dkk′i (t)] and those who have become idle at t [(1−p)Zkk′(t)]
and excludes the ones who became friends with i at t and have become idle at t [(1 −
p)∆dkk

′
i (t)].675

Lemma 4. For any k, k′ ∈ K, the growth rates of Zkk′(t) and Zk′k(t) are equal for all t.

Proof. For any t ≤ T kk′ , Equation (15) for Zkk′(t) can be written as

Zkk
′
(t+ 1)− Zkk′(t) = −

[
(1− p)Zkk′(t) + p∆dkk

′
i (t)

]
(16)

= −

[
(1− p)Zkk′(t) + p

(
αkk

′
+ αk

′kZ
kk′(t)

Zk′k(t)

)]
(17)

where Equation (14) was used to obtain the second line. Equation (17) can then be
re-arranged to obtain

Zkk
′
(t+ 1)− Zkk′(t)
Zkk′(t)

= −

[
(1− p) + p

(
αkk

′

Zkk′(t)
+

αk
′k

Zk′k(t)

)]
(18)
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Similarly, from the equation for Zk′k(t) one obtains

Zk
′k(t+ 1)− Zk′k(t)

Zk′k(t)
= −

[
(1− p) + p

(
αk
′k

Zk′k(t)
+

αkk
′

Zkk′(t)

)]
(19)

The right hand sides of Equations (18) and (19) are identical, from which it follows that
their left hand sides are also equal. Therefore the growth rates of Zkk′(t) and Zk

′k(t)

are equal.

Lemma 4 is key in rendering the mean-field approximation analytically tractable by680

allowing us to simplify the expression for ∆dkk
′

i (t) as shown in the following corollary.

Corollary 2. Equation (14) for ∆dkk
′

i (t) can be written as ∆dkk
′

i (t) = 2αkk
′
1(t ≤ T kk′).

Proof. Consider agents i and j of types k and k′ respectively. It follows from Lemma 4
that Zkk

′
(t)

Zk′k(t)
is a constant and equal to Zkk

′
(0)

Zk′k(0)
. Equation (14) can therefore be re-written

as

∆dkk
′

i (t) = αkk
′
1(t ≤ T kk′) + αk

′kZ
kk′(0)

Zk′k(0)
1(t ≤ T kk′) (20)

=
∑
r∈S+

qr
|Ni(k

′)|
|Γri |

1(t ≤ T kk′) +
∑
r∈S+

qr
|Nj(k)|
|Γrj |

|Ni(k
′)|

|Nj(k)|
1(t ≤ T kk′) (21)

= 2
∑
r∈S+

qr
|Ni(k

′)|
|Γri |

1(t ≤ T kk′) (22)

The second line follows from the first by the definitions of αkk′ and αk′k (S denotes the
set of indices for which the vectors k and k′ are equal), and by the fact that Zkk′(0) is
simply the initial number of agents of type k′ and is therefore equal to |Ni(k

′)|. Similarly,685

Zk
′k(0) is the initial number of agents of type k and is equal to |Nj(k)|. The the third

line follows from the second by the definition of social groups: Since r ∈ S+, i ∈ Γrj and
j ∈ Γri ; from which it follows that |Γri | = |Γrj |.

Corollary 2 shows that the expected number of agents of type k′ that an agent i
of type k becomes friends with in period t is a constant and is equal to 2αkk

′ for any690

t ≤ T kk
′ . In fact, the expected number of agents of type k′ that agent i sends an

(immediately accepted) friend request to in period t is αkk′ , and the expected number
of friend requests that i receives (and immediately accepts) from agents of type k′ in
period t is also equal to αkk′ .

Having carried out the analysis in terms of interacting pairs of types, we now ag-695

gregate our results over elements of Πi for any agent i to obtain the formulae stated in
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the main text. To do this, for any agent i and any π ∈ Πi, it will be useful to define
Kπ = {k′ ∈ K : Ni(k

′) ⊆ π}. That is, Kπ is the set of types of all the agents in the
subgroup π ∈ Πi.

Proof of Lemma 1. Consider any subset of indices S ⊆ R. The probability qπi(S) with
which an agent i of type k interacts with agents in the subgroup πi(S) is the sum of the
probabilities with which i interacts with each type in Kπi(S).29 That is,

qπi(S) =
∑

k′∈Kπi(S)

αkk
′

=
∑

k′∈Kπi(S)

∑
r∈S+

qr
|Ni(k

′)|
|Γri |

(23)

=
∑
r∈S+

qr
|πi(S)|
|Γri |

(24)

The second line follows from the fact that
∑

k′∈Kπi(S) |Ni(k
′)| = |πi(S)|.700

For an agent i of type k and any subgroup π ∈ Πi, the expected time it takes for all
the agents of type k′ ∈ Kπ to either become friends with i or to become idle is given by
T kk

′ . The following lemma shows that for any k′, k′′ ∈ Kπ, T kk′ is the same as T kk′′ and
their value is given by Equation (25).

Lemma 5. Consider an agent i of type k. For any S ⊆ R and any k′ ∈ Kπi(S),705

T kk
′

=
ln
(

2qπi(S)p

2qπi(S)p+(1−p)|πi(S)|

)
ln(p)

(25)

Proof. By Lemma 2, for any t ≤ T kk′ , we can re-write Equation (16) as

Zkk
′
(t+ 1)− Zkk′(t) = −

[
(1− p)Zkk′(t) + p2αkk

′
]

(26)

Solving this difference equation with Zkk′(0) = |Ni(k
′)|, we obtain

Zkk
′
(t) = |Ni(k

′)|pt +
2αkk

′
p(pt − 1)

1− p
(27)

Solving Equation (27) with Zkk′(T kk′) = 0 yields the expression for T kk′ which is given

29Obviously, for any k′, k′′ ∈ Kπi(S), the set of indices such that k and k′ are equal is the set as the
set of indices such that k and k′′ are equal, and that set of indices is simply S.
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by

T kk
′

=
ln
(

2αkk
′
p

2αkk′p+(1−p)|Ni(k′)|

)
ln(p)

=

ln

(
2
∑
r∈S+

qr
|Ni(k

′)|
|Γr
i
| p

2
∑
r∈S+

qr
|Ni(k′)|
|Γr
i
| p+(1−p)|Ni(k′)|

)
ln(p)

(28)

=

ln

(
2
∑
r∈S+

qr
|πi(S)|
|Γr
i
| p

2
∑
r∈S+

qr
|πi(S)|
|Γr
i
| p+(1−p)|πi(S)|

)
ln(p)

=
ln
(

2qπi(S)p

2qπi(S)p+(1−p)|πi(S)|

)
ln(p)

(29)

The first line simply uses the definition of αkk′ (noting that the set of indices S for which
the vectors k and k′ are equal is the same for any k′ ∈ Kπi(S)). To obtain the second
line, we simply replace |Ni(k

′)| by |πi(S)| in both the top and bottom of the fraction
that appears in the numerator, and then use the definition of qπi(S).

We are finally in a position to prove Proposition 1.710

Proof of Proposition 1. Consider an agent i of type k and any S ⊆ R. The expected
depletion time T πi(S) is the expected time it takes for every agent in πi(S) to either
become friends with i or to become idle. Since T kk′ , the expected time it takes for every
agent in Ni(k

′) ⊆ πi(S) to become friends with i or to become idle, is the same for each
k′ ∈ Kπi(S) (see Lemma 5), it follows that T πi(S) = T kk

′ . Therefore, for any k′ ∈ Kπi(S),
∆dkk

′
i (t) = 2αkk

′
1(t ≤ T πi(S)). The number of friends i adds in period t from the set

πi(S) ∈ Πi is the sum of the friends that i adds in period t from each set Ni(k
′) ⊆ πi(S)

for k′ ∈ Kπi(S). That is

∆d
πi(S)
i (t) =

∑
k′∈Kπi(S)

∆dkk
′

i (t) =
∑

k′∈Kπi(S)

2αkk
′
1(t ≤ T πi(S)) = 2qπi(S)1(t ≤ T πi(S))

(30)
The last step follows from Equation (23).

Proof of Corollary 1. In period t = 0, every agent i has no friends. Solving Equation
(30) with the initial condition dπi(S)

i (0) = 0 gives

d
πi(S)
i (t) = 2qπi(S)

[
t1(t ≤ T πi(S)) + T πi(S)1(t > T πi(S))

]
(31)

The degree of agent i in period t is therefore given by Equation (6) below

di(t) =
∑
π∈Πi

dπi (t) = 2
∑
π∈Πi

qπ [t1(t ≤ T π) + T π1(t > T π)] (32)
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Note that di(t) is a continuous concave piecewise linear function that is strictly increasing
in the range (0,maxπ∈Πi{T π}].

Incidentally, it should be clear from the above proof that in every period t ≤ T π,715

agent i initiates an expected qπ links with agents in π ∈ Πi, and an expected number qπ

of i’s links are initiated by agents in π ∈ Πi.

Proof of Lemma 2. Using Equations (2) and (4), we obtain

T πi(S) =

ln

 2p

[∑
r∈S+

qr

|Γr
i
|

]
2p

[∑
r∈S+

qr

|Γr
i
|

]
+(1−p)


ln(p)

(33)

This equation immediately shows that if S′ ⊆ S, then
∑

r∈S′+
qr

|Γri |
≤
∑

r∈S+

qr

|Γri |
and

therefore T πi(S′) ≥ T πi(S) (since ln(p) < 0).

Proof of Proposition 2. Since di(t) is increasing, we can find its inverse in the range
(0, di(maxπ∈Πi{T π})], which is given by

d−1
i (d) = ti(d) =

d− 2
∑

π∈Πi
qπT π1(d > di(T

π))

2
∑

π∈Πi
qπ1(d ≤ di(T π))

(34)

We now obtain Gi(d) – the probability that agent i has degree at most d (degree
distribution of agent i).

Pr(di(t) ≤ d) = Pr(d−1
i (di(t)) ≤ d−1

i (d)) = Pr(t ≤ ti(d)) = Gi(d) (35)

Since an agent i remains active exactly x periods with probability px(1 − p), we have
that

Pr(t ≤ x) =

t=x∑
t=0

pt(1− p) = 1− px+1 (36)

Therefore, the degree distribution of agent i is given by

Gi(d) = Pr(t ≤ ti(d)) = 1− pti(d)+1 (37)

Finally, the overall degree distribution G(d) is the average of the degree distributions
across all agents and is given by

G(d) =
1

|N |
∑
i∈N

(
1− pti(d)+1

)
(38)
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Comparative statics on degree and group size

We introduce the following notation which will be useful for the rest of the proofs. Let
V = {1, ..., V }. For some sequence of distinct terms S0, S1, S2, ..., SV such that T πi(S0) =

0, and in which S1, ..., SV are the subsets of R partially ordered by set inclusion,30

Lemma 2 allows us to order the expected depletion times as

T πi(S0) < T πi(S1) < T πi(S2) < · · · < T πi(SV ) (39)

Assumption 1 guarantees the inequalities to be strict. Note that V = 2|R|, and that
SV = ∅, and that S1 = R. For any r ∈ R, let us define Vr = {j ∈ V : r ∈ Sj} and
V¬r = {j ∈ V : r 6∈ Sj}. This notation allows us to re-express Equation (6) for the
degree of agent i over time as

di(t) = 2
∑
π∈Πi

qπ [t1(t ≤ T π) + T π1(t > T π)]

= 2
V∑
v=1

qπi(Sv)
[
t1(t ≤ T πi(Sv)) + T πi(Sv)1(t > T πi(Sv))

]
(40)

Using Equation (40) note that for any v ∈ V, and any t in the interval (T πi(Sv−1), T πi(Sv)],
the function di(t) can be written as

di(t) = di

(
T πi(Sv−1)

)
+ 2

(
t− T πi(Sv−1)

) V∑
j=v

qπi(Sj) (41)

where di(T πi(S0)) = 0. Notably, this implies that for any v ∈ V and any t in the interval
(T πi(Sv−1), T πi(Sv)], the function di(t) can be written as

di(t) = 2

v−1∑
j=1

qπi(Sj)T πi(Sj) + t
V∑
j=v

qπi(Sj)

 (42)

Proof of Proposition 3. In this proof, we show that the expected depletion times are
shifted rightwards after the singleton subgroup expansion of πi({r}). Furthermore, the
slope of the degree function over time is larger for every t ≤ T πi({r}) after the expansion,
from which it follows that d̂i(t) ≥ di(t) for every t ≤ T πi({r}). In addition, the slope of725

30For any Sv with v > 1, there is a set Sv′ with v′ < v (v, v′ ∈ V) such that Sv ⊆ Sv′ .
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the degree function over time is weakly smaller for every t ∈ (T πi{r}, T πi(∅)] after the
expansion, but we can show that for any t ≥ T πi(∅), d̂i(t) and di(t) are both flat and
satisfy d̂i(t) ≥ di(t) when the effective size of Γ∅i is large compared to that of Γri . From
this it follows that the functions never cross and therefore d̂i(t) ≥ di(t) for all t.

For reference, let us set Sv∗ = {r}. Assumption 1 allows us to order the expected
depletion times before the expansion as in Equation (39). From Equation (33) one can
verify that T πi(S) is increasing in the cardinality of Γri for any S ⊆ R such that r ∈ S.
The singleton subgroup expansion of πi({r}) results in an increase of the cardinality
of the social group Γri , but leaves the cardinality of any other social group unchanged.
From this it follows that for any v ∈ V such that v > v∗, T πi(Sv) = T π̂i(Sv), and for any
v ≤ v∗, T πi(Sv) ≤ T π̂i(Sv). Finally, T πi(S0) = T π̂i(S0) = 0. Now, Equation (33) shows that
expected depletion times vary continuously with social group sizes, so for a sufficiently
small δ < δ̄, the order of expected depletion times after the expansion becomes

T π̂i(S0) < T π̂i(S1) < T π̂i(S2) < · · · < T π̂i(SV ) (43)

where the sequence of the sets S0, S1, ..., SV is unchanged.730

From Equation (2), and by definition of the singleton subgroup expansion, one can
verify that for any v ∈ V,

qπ̂i(Sv) =



q∅ |πi(Sv)|−δ
|Γ∅i |

if v = V

q∅ |πi(Sv)|
|Γ∅i |

+ qr |πi(Sv)|
|Γri |+δ

+
∑

h∈Sv\{r} q
h |πi(Sv)|
|Γhi |

if v ∈ Vr \ {v∗}

q∅ |πi(Sv)|+δ
|Γ∅i |

+ qr |πi(Sv)|+δ
|Γri |+δ

if v = v∗

q∅ |πi(Sv)|
|Γ∅i |

+
∑

h∈Sv q
h |πi(Sv)|
|Γhi |

if v ∈ V¬r \ {V }

(44)

For any v ∈ V the slope of d̂i(t) in the non-empty interval (T π̂i(Sv−1), T π̂i(Sv)] is given
by 2

∑V
j=v q

π̂i(Sj) (see Equation (42)). We will compare this slope with the slope of
di(t) in the corresponding non-empty interval (T πi(Sv−1), T πi(Sv)], which is given by
2
∑V

j=v q
πi(Sj). That is, for any v ∈ V we need to evaluate the expression

2
V∑
j=v

(
qπ̂i(Sj) − qπi(Sj)

)
(45)

Now, note that for any v ∈ Vr, v ≤ v∗. That is, if we consider a v ≤ v∗, then at least
some set in {Sv, Sv+1, ..., Sv∗} must contain r. But, for every v > v∗, r 6∈ Sv. Note also
that since |R| > 1, v∗ > 1.

38



Suppose v ≤ v∗. By Equation (44) one can verify that Equation (45) is smallest
when v = 1, and in which case its value is zero. So for any v ≤ v∗, d̂i(t) has a steeper735

slope (at least weakly) in the interval (T π̂i(Sv−1), T π̂i(Sv)] than di(t) in the corresponding
interval (T πi(Sv−1), T πi(Sv)]. From the above, we have that d̂i(t) lies above di(t) for every
t ≤ T πi({r}).

Suppose v > v∗. The summation in Equation (45) is therefore over sets Sv not
containing r. In this case it follows that 2

∑V
j=v

(
qπ̂i(Sj) − qπi(Sj)

)
= −2 q

∅δ

|Γ∅i |
which is740

negative. So the slope of di(t) over any interval in (T πi({r}), T πi(∅)] must be greater than
that of d̂i(t) in the corresponding interval.

However, both d̂i(t) and di(t) are flat for any t ≥ T π̂i(∅) = T πi(∅). And we now show
that when the effective size of Γ∅i is large compared to that of Γri , d̂i(T

πi(∅)) ≥ di(T πi(∅)),
from which it follows that the functions never cross, and therefore d̂i(t) lies above di(t)
for every t. Using Equation (42) one can verify that d̂i(T πi(∅)) = 2

∑V
v=1 q

π̂i(Sv)T π̂i(Sv)

and that di(T πi(∅)) = 2
∑V

v=1 q
πi(Sv)T πi(Sv). Since for every v ∈ V, T π̂i(Sv) ≥ T πi(Sv), for

d̂i(T
πi(∅)) ≥ di(T πi(∅)) to hold it suffices to show that

V∑
v=1

qπ̂i(Sv)T πi(Sv) ≥
V∑
v=1

qπi(Sv)T πi(Sv) (46)

We can think of
(
qπ̂i(Sv)

)
v∈V and of

(
qπi(Sv)

)
v∈V as being probability distributions over(

T πi(Sv)
)
v∈V . To show that the expectation of the former is greater than that of the latter,

it suffices to show that the former second-order stochastically dominates the latter. That745

is, we must establish that for every h ∈ V,
∑h

j=1

∑j
v=1

(
qπ̂i(Sv) − qπi(Sv)

)
≤ 0.

Using Equation (44), one can verify that
∑j

v=1

(
qπ̂i(Sv) − qπi(Sv)

)
is equal to

−qr δ
|Γri |(|Γri |+δ)

∑
v∈Vr∩{1,..,j} |πi(Sv)| if 1 ≤ j < v∗

q∅ δ
|Γ∅i |

if v∗ ≤ j < V

0 if j = V

(47)

Therefore
∑h

j=1

∑j
v=1

(
qπ̂i(Sv) − qπi(Sv)

)
≤ 0 is equal to

−qr δ
|Γri |(|Γri |+δ)

∑h
j=1

∑
v∈Vr∩{1,..,j} |πi(Sv)| if 1 ≤ h < v∗

(h− (v∗ − 1))q∅ δ
|Γ∅i |
− qr δ

|Γri |(|Γri |+δ)
∑v∗−1

j=1

∑
v∈Vr∩{1,..,j} |πi(Sv)| if v∗ ≤ h < V

(V − v∗)q∅ δ
|Γ∅i |
− qr δ

|Γri |(|Γri |+δ)
∑v∗−1

j=1

∑
v∈Vr∩{1,..,j} |πi(Sv)| if h = V

(48)
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The top line is negative, and the second line is negative if the expression in the third line
is negative. Therefore, we obtain the desired result if the third line is (weakly) negative.
That is,

|Γ∅i |
q∅
≥ (|Γri |+ δ)

[
V − v∗∑v∗−1

j=1

∑
v∈Vr∩{1,..,j} |πi(Sv)|

]
|Γri |
qr

(49)

We now show that the fraction in square brackets in Equation (49) is at most 1. The
smallest value of v∗ is 2|R|−1, since it is the index of the first singleton set; and V =

2|R|. Therefore the largest value of the numerator is 2|R| − 2|R|−1. Now consider the
denominator: Since every set Ni(k) contains at least one agent, every social subgroup750

contains at least one agent, so |πi(Sv)| ≥ 1 for each v ∈ V. The sum in the denominator
is equal to (2|R|−1 − 1)|πi(R)| when |R| = 2, and it is at least (2|R|−1 − 1)|πi(R)| plus
at least one other |πi(S)| for some S such that r ∈ S when |R| > 2. Therefore, the sum
in the denominator is at least 2|R|−1 when |R| > 2. This therefore establishes that for
any |R| > 1, the fraction in square brackets in Equation (49) is at most 1. Finally, since755

δ < δ̄, the condition in Equation (49) holds if |Γ
∅
i |
q∅
≥ (|Γri |+ δ̄)

|Γri |
qr .

Proof of Proposition 4. This proofs follows similar steps to the ones in the proof of
Proposition 3. Assumption 1 allows us to order the expected depletion times before
the expansion as in Equation (39). However, since the core subgroup expansion leaves
the cardinality of every social group Γri (r ∈ R+) unchanged, it follows from Equation760

(33) that T πi(S) = T π̂i(S) for every S ⊆ R.
From Equation (2), and by definition of the core subgroup expansion, one can verify

that for any v ∈ V,

qπ̂i(Sv) =



q∅ |πi(Sv)|+(|R|−1)δ

|Γ∅i |
if Sv = ∅

q∅ |πi(Sv)|−δ
|Γ∅i |

+ qr |πi(Sv)|−δ
|Γri |

if Sv = {r} for r ∈ R

q∅ |πi(Sv)|+δ
|Γ∅i |

+
∑

h∈R q
h |πi(Sv)|+δ

|Γhi |
if Sv = R

q∅ |πi(Sv)|
|Γ∅i |

+
∑

h∈Sv q
h |πi(Sv)|
|Γhi |

otherwise

(50)

For any v ∈ V the slope of d̂i(t) in the non-empty interval (T π̂i(Sv−1), T π̂i(Sv)] is given
by 2

∑V
j=v q

π̂i(Sj) (see Equation (42)). We will compare this slope with the slope of
di(t) in the corresponding non-empty interval (T πi(Sv−1), T πi(Sv)], which is given by
2
∑V

j=v q
πi(Sj). That is, for any v ∈ V we need to evaluate the expression given in765

Equation (45).
Recall that S1 = R and SV = ∅, and let Ṽ denote the set of indices v such that Sv is
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a singleton. Let v be the smallest index and v̄ be the largest index in Ṽ, and note that
v̄ = V − 1, and that v must be at least 2|R|−1. Also, let Xn = Ṽ ∩ {n, ..., V } denote the
set of indices of singleton sets Sv for which v ≥ n. Note finally that |Ṽ| = |R|. One can
verify that

∑V
j=v

(
qπ̂i(Sj) − qπi(Sj)

)
is equal to

0 if v = 1

−δ q∅

|Γ∅i |
− δ

∑
r∈R

qr

|Γri |
if 1 < v ≤ v

δ q∅

|Γ∅i |
(|R| − 1− |Xv|)− δ

∑
r∈∪h∈XvSh

qr

|Γri |
if v < v ≤ v̄

δ q∅

|Γ∅i |
(|R| − 1) if v = V

(51)

Equation (51) shows that the difference between the slope of d̂i(t) and di(t) is negative
for all t ∈ (T πi(S0), T πi(Sv∗ )], and switches to being positive for any t > T πi(Sv∗ ), for
some v∗ > v. This shows that d̂i(t) lies below di(t) for every t ≤ T πi(Sv∗ ), and that d̂i(t)
eventually has a steeper slope than di(t). However, both d̂i(t) and di(t) are flat for any770

t ≥ T π̂i(∅) = T πi(∅). And we now show that d̂i(T πi(∅)) ≤ di(T πi(∅)), from which it follows
that they never cross, and therefore d̂i(t) lies below di(t) for every t.

Using Equation (42), d̂i(T πi(∅)) ≤ di(T πi(∅)) holds if

V∑
v=1

qπ̂i(Sv)T πi(Sv) ≤
V∑
v=1

qπi(Sv)T πi(Sv) (52)

Equation (52) holds if the distribution
(
qπi(Sv)

)
v∈V second-order stochastically dominates(

qπ̂i(Sv)
)
v∈V , and this is true if Equation (53) is positive for all h ∈ V.

h∑
j=1

j∑
v=1

(
qπ̂i(Sv) − qπi(Sv)

)
(53)

Let Xn = Ṽ ∩ {1, ..., n} denote the set of indices of singleton sets Sv for which v ≤ n.
For any j ∈ V we have that

∑j
v=1

(
qπ̂i(Sv) − qπi(Sv)

)
is equal to

δ q∅

|Γ∅i |
+ δ

∑
r∈R

qr

|Γri |
if 1 ≤ j < v

−δ q∅

|Γ∅i |
(|Xj | − 1) + δ

∑
r∈R\(∪

h∈XjSh)
qr

|Γri |
if v ≤ j < v̄

−δ q∅

|Γ∅i |
(|R| − 1) if j = v̄

0 if j = V

(54)
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The second line of Equation (54) is smallest for j = v̄ − 1, and is positive if

|Γ∅i |
q∅
≥ (|R| − 2)

|Γr∗i |
qr∗

(55)

where r∗ satisfies Sv̄ = {r∗}. If Equation (55) holds, then the second line of Equation
(54) is positive. One can then verify that for any 1 ≤ h < v̄, Equation (53) is a sum of
positive terms, and (by the first line of Equation (54)), must be at least δ q∅

|Γ∅i |
(v−1), and775

therefore must be at least δ q∅

|Γ∅i |
(2|R|−1 − 1). At h = v̄, we subtract δ q∅

|Γ∅i |
(|R| − 1), but

the difference remains positive for any positive |R|. Therefore, if Equation (55) holds,
Equation (53) is positive for all h ∈ V, as desired.

Homophily

Consider any sequence of expected depletion times T πi(S0), T πi(S1), ..., T πi(SV ), or-
dered according to Equation (39). Similarly to Equation (42), for any Πr

i induced
by r ∈ R, and for any t in the interval (T πi(Sv−1), T πi(Sv)] with v ∈ V, the function∑

π∈Πri
dπi (t) can be written as

∑
π∈Πri

dπi (t) = 2

 ∑
j∈{1,...,v−1}∩Vr

qπi(Sj)T πi(Sj) + t
∑

j∈{v,...,V }∩Vr

qπi(Sj)

 (56)

Finally, from Equations (42) and (56), one can verify that for any v ∈ V and any t in
the interval (T πi(Sv−1), T πi(Sv)] the slope of Hr

i (t) is negative if and only if∑
j∈{v,...,V }∩Vr q

πi(Sj)∑
j∈{1,...,v−1}∩Vr q

πi(Sj)T πi(Sj)
≤

∑
j∈{v,...,V } q

πi(Sj)∑
j∈{1,...,v−1} q

πi(Sj)T πi(Sj)
(57)

Equation (57) shows that Hr
i (t) is decreasing in the interval (T πi(Sv−1), T πi(Sv)] if the780

growth rate of di(t) is greater than the growth rate of
∑

π∈Πri
dπi (t) in that interval.

Proof of Proposition 5. Using Equation (42), since (T πi(S0), T πi(S1)] = (0, T πi(R)], for
any t in this interval, di(t) = 2

∑
π∈Πi

qπt. But note that
∑

π∈Πi
qπ = 1. Similarly,

using Equation (56),
∑

π∈Πri
dπi (t) = 2

∑
π∈Πri

qπt, therefore Hr
i (t) is equal to

∑
π∈Πri

qπ.
Since T πi(SV ) = T πi(∅), using Equation (42), we find that for any t ∈ (T πi(∅),∞), di(t) =785

2
∑

π∈Πi
qπT π. Similarly,

∑
π∈Πri

dπi (t) = 2
∑

π∈Πri
qπT π, therefore Hr

i (t) is equal to∑
π∈Πr

i
qπTπ∑

π∈Πi
qπTπ . Finally, the slope of

∑
π∈Πri

dπi (t) is zero for any t > T πi({r}), while the

slope of di(t) is positive for any t ≤ T πi(∅). It follows that the slope of Hr
i (t) is negative

for any t ∈ (T πi({r}), T πi(∅)].
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Proof of Proposition 6. LetR = {r, r′}. From Equation (33) one can verify that T πi({r}) <

T πi({r
′}) if and only if |Γ

r
i |
qr <

|Γr′i |
qr′

. Supposing Assumption 1 holds, we obtain the following
ordering of the expected depletion times for the first part of the proposition:

0 < T πi({r,r
′}) < T πi({r}) < T πi({r

′}) < T πi(∅) (58)

And, we obtain the following ordering for the second part of the proposition:

0 < T πi({r,r
′}) < T πi({r

′}) < T πi({r}) < T πi(∅) (59)

By Proposition 5, Hr
i (t) is a constant for any t ∈ (0, T πi({r,r

′})] ∪ (T πi(∅),∞), and790

it is decreasing in the range (T πi({r}), T πi(∅)]. Therefore it only remains for us to show
that the relevant conditions hold in the interval (T πi({r,r

′}), T πi({r})] for the first part of
Proposition 6, and in the intervals (T πi({r,r

′}), T πi({r
′})] and (T πi({r

′}), T πi({r})] for the
second part.

Let us focus on the first part of Proposition 6. We will verify that the slope of Hr
i (t)

is negative in the interval (T πi(S1), T πi(S2)] = (T πi({r,r
′}), T πi({r})]. Applying Equation

(57) in this interval by setting v = 2, we obtain the following inequality which holds
trivially,

qπi({r})

qπi({r,r′})T πi({r,r′})
≤ qπi({r

′}) + qπi({r}) + qπi(∅)

qπi({r,r′})T πi({r,r′})
(60)

Now, let us focus on the second part of Proposition 6. Firstly, we show that Hr
i (t) is

decreasing in the interval (T πi(S1), T πi(S2)] = (T πi({r,r
′}), T πi({r

′})]. Applying Equation
(57) in this interval, we once again obtain exactly Equation (60) which holds. Secondly,
we show that Hr

i (t) is increasing in the interval (T πi(S2), T πi(S3)] = (T πi({r
′}), T πi({r})],

and reaches a global maximum if |Γri ∩ Γr
′
i | = |πi({r, r′})| is sufficiently small. Applying

Equation (57) with v = 3, the slope of Hr
i (t) in the interval (T πi({r

′}), T πi({r})] is positive
if and only if

qπi({r})

qπi({r,r′})T πi({r,r′})
>

qπi({r}) + qπi(∅)

qπi({r,r′})T πi({r,r′}) + qπi({r′})T πi({r′})

⇔ qπi({r})qπi({r
′})T πi({r

′}) > qπi(∅)qπi({r,r
′})T πi({r,r

′}) (61)

Equation (61) holds when |πi({r, r′})| is sufficiently small. Finally, we show that under
this condition, Hr

i (T πi({r})) > Hr
i (T πi({r,r

′})). Applying Equations (42) and (56), we
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find that

Hr
i (T πi({r})) =

∑
π∈Πi

dπi (T πi({r}))

di(T πi({r}))

=
2
[
qπi({r,r

′})T πi({r,r
′}) + qπi({r})T πi({r})

]
2
[
qπi({r,r′})T πi({r,r′}) + qπi({r′})T πi({r′}) + (qπi({r}) + qπi(∅))T πi({r})

] (62)

And,

Hr
i (T πi({r,r

′})) =

∑
π∈Πi

dπi (T πi({r,r
′}))

di(T πi({r,r
′}))

=
2
[
qπi({r,r

′})T πi({r,r
′}) + qπi({r})T πi({r,r

′})
]

2
[
qπi({r,r′})T πi({r,r′}) + (qπi({r′}) + qπi({r}) + qπi(∅))T πi({r,r′})

] (63)

Now, note that since T πi({r′}) > T πi({r,r
′}) and

∑
π∈Πi

qπ = 1, we have that Hr
i (T πi({r}))

is strictly greater than

qπi({r,r
′})T πi({r,r

′}) + qπi({r})T πi({r})

qπi({r′})T πi({r′}) + (1− qπi({r′}))T πi({r})
(64)

Denote the denominator in Equation (64) byW , and note that T πi({r,r′}) < W < T πi({r}).
Now, Hr

i (T πi({r})) > Hr
i (T πi({r,r

′})) if the expression in Equation (64) is strictly greater
than the expression in Equation (63). This inequality can be arranged to obtain

qπi({r})(T πi({r}) −W ) > qπi({r,r
′})(W − T πi({r,r′})) (65)

Equation (65) holds for |πi({r, r′})| sufficiently small, which suffices to establish that795

Hr
i (t) reaches a global maximum at T πi({r}).

Appendix II: Preferential attachment

Suppose that in each period t ∈ {1, 2, 3, ...} every active agent i interacts with other
agents as follows: Agent i selects the social group Γri with probability qr ≥ 0 for r ∈ R+

and for each Ni(k) ⊆ Γri , selects the group of agents of type k with probability |Ni(k)|
|Γri |

.800

Agent i then sends a friend request to an agent j selected at random with a probability
that is proportional to j’s degree from among the active agents in Ni(k) who are not yet
i’s friends.

We can re-derive Equations (12) and (13) as follows: For any agent i of type k, i
interacts with agents of type k′ with probability αkk′ , and provided that t ≤ T kk′ , agent
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i sends a friend request to some active agent of type k′ who is not yet friends with i.
Therefore, i initiates αkk′1(t ≤ T kk

′
) links with agents of type k′ in period t (This is

identical to Equation (12)). Similarly, in period t, an agent j of type k′ interacts with
agents of type k with probability αk

′k. Provided that t ≤ T k
′k = T kk

′ (see Remark
3), and conditional on interacting with agents of type k, agent j (of type k′) sends an
immediately accepted friend request to some remaining agent of type k (who is not idle
and is not yet friends with j). Denote by Zkj (t) the set of active agents of type k who
are not yet friends with j in period t. Since j selects agent i to send a friend request
to with a probability that is proportional to i’s degree, i is selected with probability

di(t)∑
h∈Zk

j
(t)
dh(t) . Finally, there are precisely Z

kk′(t) agents j of type k′ from which an agent

i of type k could accept a friend request from in period t. From the above, it follows the
expected number of friend requests that an agent i of type k receives (and immediately
accepts) from agents of type k′ in period t is given by

αk
′k di(t)∑

h∈Zkj (t) dh(t)
Zkk

′
(t) (66)

As long as they are not idle, any two agents that are of the same type are essentially
indistinguishable. Therefore, for any agent j of type k′, we have that |Zkj (t)| = Zk

′k(t),
and for any agents i and j of type k, di(t) = dj(t).31 From this it follows that Equation
(66) can be re-written as

αk
′k di(t)

Zk′k(t)di(t)
Zkk

′
(t) (67)

This is identical to Equation (13). So, none of our results change if the link formation
process were governed by preferential attachment.805

31The manner in which we simplify Equation (66) is usually not possible in a typical growing random
network model because in such models the function expressing the degree of the ith node in period t
differs from that of the jth node in period t. For example, see Jackson (2008, p. 131).
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Appendix III: Data description

We use a dataset from Facebook that was anonymized by Adam D’Angelo (the then
CTO of Facebook) and first made available to Traud et al. (2010). The dataset was also
analyzed by Shaw et al. (2011), Traud et al. (2012), Tarbush and Teytelboym (2012).

The data represent a September 2005 cross-section of the complete structures of social810

connections on www.facebook.com within (but not across) the first ten American colleges
and universities that joined Facebook. At the time, Facebook was available only to those
registered as students or staff with .edu email addresses at selected American colleges
and universities. Signing up was free. Users were able to search for and browse through
profiles of other users of Facebook and send them “friend requests”. If the friend request815

were accepted, the users became “friends” and could access further information on each
others’ profiles. The users’ profiles contained their photo, a space for public comments
(a “wall”), private information (such as their age or gender), contact information (such
as their email address), courses, and a list of their friends.

For the first ten American colleges and universities that joined Facebook, the (anonymized)820

raw data contain over 130,000 nodes (users) and over 5.6 million links (friendships). We
observe six social categories for each user: gender, year of graduation, major, minor,
dorm, and high school. Since all personal data were provided voluntarily, some users did
not submit all their information. We therefore cleaned the data as follows. We dropped
any user (and their links), who had not provided all the personal characteristics other825

than high school.32 In addition, some users were listed as faculty members and some
students listed graduation years that were probably untruthful (e.g. 1926). We therefore
dropped all faculty members and every user whose year of graduation is outside 2006-
2009. There are 27,454 users and 492,236 links in our cleaned data, consisting only of
students graduating between 2006 and 2009, who have supplied all the relevant personal830

characteristics (except high school).
A summary of the data can be found in Table 2.

32While high school is an interesting social category, the relative group sizes within colleges are too
small to allow for a meaningful analysis.
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College

Raw

number

of nodes

Raw

number

of edges Nodes Edges

Average

degree Women Men

Avg.

major

size

Avg.

minor

size

Avg.

dorm

size

Avg.

class

size
Harvard U. 15126 824617 1325 18608 28.1 567 758 23.2 22.5 42.7 46.9

Columbia U. 11770 444333 2663 52697 39.6 1573 1090 29.6 29.9 54.3 65.7
Stanford U. 11621 568330 2254 55,124 48.9 1043 1211 30.9 30.1 25.6 55.0

Yale U. 8578 405450 1431 23847 33.3 639 792 19.6 19.1 68.1 38.2
Cornell U. 18660 790777 2509 26653 21.2 1078 1431 27.6 24.6 20.6 51.6

Dartmouth College 7694 304,076 1612 34030 42.2 780 832 29.9 29.3 23.0 45.0
U. of Penn. 14916 686501 3006 60516 40.3 1417 1589 28.4 27.1 50.9 77.0

M.I.T. 6440 251252 1563 32751 41.9 626 937 44.7 37.2 26.1 58.2
New York U. 21679 715715 5581 95968 34.4 3345 2236 53.7 52.2 105.5 99.7

Boston U. 19700 637528 5510 92042 33.4 3355 2155 37.5 34.7 91.8 90.8
Average 13618 562858 2745 49224 36.3 1442 1303 32.5 30.7 50.5 62.8

Table 2: Data summary
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