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Will generous return policies in auctions benefit bidders? We investigate this issue using 
second-price common-value auctions. Theoretically, we find that the bidding equilibrium 
is unique unless returns are free, in which case there exist multiple equilibria with 
different implications for sellers. Moreover, more generous return policies hurt bidders by 
eroding consumer surplus through higher bids. In the experiment, bids increase and 
bidders’ earnings decrease with more generous return policies as predicted. With free 
returns, many bidders bid above the highest possible value, subsequently returning the 
item regardless of value. Though consistent with equilibrium behavior, this is not optimal 
for sellers.  
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1. Introduction 

The rapid growth of Internet commerce has resulted in the development of online 

auctions as a popular trading method over the past decades. Return policies are widely 

available in such online auctions. Return policies permit auction winners to change their 

minds by paying a pre-specified penalty fee when they receive relevant ex-post 

information after the auction concludes. A recent search for antique auctions on eBay.com 

yielded 35,758 such auctions with 23,014 (64%) of the sellers offering a 7-day or 14-day 

money-back guarantee. The percentage of art auctions offering refunds on eBay.com was 

even higher, with 131,944 out of 175,329 sellers offering a money-back guarantee, 

representing 75% of art auctions.  

Return policies are sometimes observed in traditional auctions as well. For example, 

deposits required in auctions for valuable objects such as spectrum licenses, oil field 

leases, and mineral and gas rights can be treated as fixed-fee return policies. If an auction 

winner fails to pay his/her full bid upon winning, then the deposit is not refunded. For 

example, shortly after the conclusion of the 1996 “C-block” radio frequency spectrum 

auction in the U.S., the bidders re-evaluated the market values of the licenses they had 

just won and determined that the values were far less than the 10-billion-dollar winning 

bids that they were required to pay. As a result, several bidders declined to make their 

payments to the Federal Communications Commission, and thus forfeited their deposits. 
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How would a return policy affect bidders’ behavior and what kind of return policy 

would most benefit them? What kind of return policy would most benefit sellers? How 

should a revenue-maximizing seller select the optimal return policy? These are some of 

the issues we will investigate in this paper. We focus on the common-value model in 

Wilson [20], which fits reasonably well with auctions for oil field leases, gas and mineral 

rights, and spectrum licenses. Our model should also be informative for auctions of 

objects with a major common-value component, such as art and antiques.1 

We analyze the behavior of bidders in second-price auctions and focus on linear 

return policies where the seller can charge a percentage fee in addition to a fixed fee. 

Linear return policies are very popular because they are, like linear pricing, easy to 

implement in practice. We provide a closed-form solution for the unique equilibrium 

when returns are not completely free. When returns are free, there exist multiple 

equilibria, all of which yield zero payoffs for the bidders, but have different implications 

for the seller.  

Results from the literature on return policies offered by retail stores, such as Che [3], 

predict that consumers will be better off with a more generous return policy. However, 

perhaps surprisingly, it turns out that a more generous return policy actually hurts 

consumers in auctions. This counterintuitive result arises from the fact that a more 

generous return policy not only protects consumers from bad shocks, but also induces 

                                                        
1Resale can introduce a common-value component to a private-value good. (See Haile [9], for an example.)  
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them to bid more aggressively in the auction, resulting in higher bids and lower consumer 

surplus. 

We also examine how return policies affect the seller’s revenue. On the one hand, 

with a more generous return policy, bidders bid more aggressively, which enhances the 

seller’s revenue. On the other hand, a more generous return policy makes it more likely 

that the winner will return the object. By selecting an appropriate return policy, the seller 

can achieve higher revenue by balancing the trade-off between higher bids and fewer 

returns.  

We find that the optimal (linear) return policy should always be in the form of a fixed 

fee (or subsidy), implying that the seller should not charge a percentage fee. This 

resembles many return policies in reality: deposits in oil field leases, mineral and gas 

rights, and spectrum auctions are usually specified in fixed amounts, and many sellers on 

eBay provide money-back guarantees with fixed shipping subsidies or shipping and 

handling fees.  

We conduct an experiment to test the predictions of our theory. In the experimental 

setting, items may have a high value of 100 or a low value of 0, with an a priori 50% 

probability of each outcome. We focus on return polices with fixed fees since our theory 

predicts that proportional fees are suboptimal for seller revenue maximization. There are 

four experimental treatments: No Return (NR), High Fee (HF), Low Fee (LF) and Free 

Return (FR). We observe that bids increase and bidders’ earnings decrease when return 
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policies are more generous as predicted by theory. Correspondingly, sellers’ revenues 

increase with more generous return policies as long as some positive fee is charged for a 

return. However, when returns are free, many bidders bid above the highest possible 

value for the good, and subsequently return the item regardless of the revealed value. 

While this is consistent with theoretical equilibrium behavior, it is not an equilibrium that 

is optimal for the seller who receives zero revenue when such an outcome occurs.  

This paper is related to the literature on theory of public ex-post information. When 

ex-post information is public and can be contracted on, its effect has long been 

recognized in the auction literature pioneered by Hansen [10]. In general, it has been 

shown that ignoring such information is sub-optimal, and adopting a mechanism 

conditional on the realization of the information is revenue improving. Riley [19] 

demonstrates that royalty bidding is better than cash bidding. Abhishek et al. [1] show 

that by charging an initial amount plus requiring a profit-sharing contract, the seller can 

generate more revenue. Demarzo et al. [5] examine bidding with securities and show that 

it can enhance revenue. However, all these mechanisms require the seller to track down 

the realized value implied by the ex-post information, which could be quite costly. In 

addition, sometimes the ex-post information may be unobservable, and this is common 

for objects sold through online auctions. In such cases, mechanisms conditional on 

ex-post information may not be feasible. In contrast, return policies do not require the 

seller to observe any ex-post information; it is solely up to the winning bidder to decide 
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whether or not to return the object. 

There is a huge literature on auctions. However, few papers consider return policies. 

Zhang [21] considers independent private values that are subject to shocks after the 

transaction, and illustrates how return policies can be part of an optimal mechanism. 

Hafalir and Yektas [8] consider second-price auctions and compare the revenues among 

spot auctions, forward auctions, and forward auctions with a full return policy. The 

information structure in their model is a special case of Zhang [21]. Our current paper 

considers common-value auctions with a full range of linear return policies. Huang et al. 

[11] recently considered an algorithm for multi-unit auctions with a partial refund for bid 

withdrawals that occur for exogenous reasons. That paper provides an analysis from the 

perspective of artificial intelligence, and thus the strategic behavior of bidders is not its 

focus. 

In the related experimental literature, bidding in common-value auctions is well 

documented in laboratory settings (see Kagel and Levin [14] for a survey). Assuming 

symmetric bidding behavior in common-value auctions, bidders only win when they have 

the highest signal. Unless this is accounted for when formulating bids, the winner of the 

auction will receive below normal or even negative profits. Such a judgmental failure is 

known as the “winner’s curse.” Previous experimental studies show that inexperienced 

bidders are vulnerable to the winner’s curse (Kagel and Levin [13]), while experienced 

bidders have learned to avoid the winner’s curse by the time they appear for subsequent 
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sessions (examples include Casari et al. [2], Garvin and Kagel [6] and Goertz [7]). In our 

study, a return policy acts as insurance against overbids and thus mitigates the winner’s 

curse. Nonetheless, we follow the earlier experiments by introducing the factor of 

experience to minimize any possible impact of the winner’s curse on our results.    

The rest of this paper is organized as follows. In Section 2, we set up the model. In 

Section 3, we characterize the bidders’ equilibrium strategies in second-price auctions 

and perform some preliminary analysis. In Section 4, we illustrate the effect of return 

policies on consumer surplus, social welfare and seller’s revenue. In Section 5, we 

describe the experimental design using a simplified version of the general model. In 

Section 6, we discuss the experimental results. In Section 7, we conclude. All proofs are 

relegated to appendices. 

 

2. The Model 

Suppose that there are ݊ bidders bidding for one object. The object value is the same 

for all bidders. Let ܸ denote this common value. Assume that ܸ =  ு with probabilityݒ

ܸ ு, andߤ = ߤ  with probabilityݒ = 1 െ ுݒ ு, whereߤ >  ܸ . The distribution forݒ

is common knowledge. Before bidding starts, bidder ݅ א ڮ,1} ,݊} receives a private 

signal ݔ , which is correlated with ܸ . However, conditional on ܸ , this signal is 

independently distributed across the bidders. If ܸ =   follows the distributionݔ ு, thenݒ

with c.d.f. ܨு(ڄ) and p.d.f. ு݂(ڄ). If ܸ =  . follows the distribution with c.d.fݔ , thenݒ
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,ݔ] have a common support (ڄ)ܨ and (ڄ)ுܨ Assume that .(ڄ)and p.d.f. ݂ (ڄ)ܨ  .[ݔ

The object in the auction can be returned by the winning bidder for a refund. We 

assume that there is a shipping cost for the winning bidder to return the object. This cost 

is denoted by ܿ. It could include the time and effort taken by the winning bidder to ship 

back the object as well as the actual shipping charges. Let  be the transaction price (i.e., 

the price the winning bidder paid) in the auction. A return policy is denoted by (ߙ,  if ;(ߛ

the winning bidder returns the object, s/he gets back the price s/he paid (i.e., ), minus 

the return fees ߙ +  is a prespecified proportion of the price p, which may ߛ ,Here 2.ߛ

correspond to a proportional restocking fee in the real world. Meanwhile, ߙ is simply a 

fixed fee or subsidy as explained below. 

We place some restrictions on the return policy to simplify the analysis. We assume 

that 0  ߛ  1 and that ߙ  െܿ. The former ensures that a bidder cannot make money 

by simply using the win-and-return strategy. The latter ensures that the winning bidder’s 

shipping cost is not overcompensated. If ߙ  is positive, then it is a fixed fee, 

corresponding to a handling charge or a service charge in reality; if ߙ is negative, it is a 

subsidy, corresponding to a refund or partial refund of the winning bidder’s shipping cost. 

The difference between the shipping cost ܿ and the fixed fee ߙ is that the former is 

paid to a third party (to cover the actual cost of shipping) while the latter is a pure transfer 

                                                        
2Here, we restrict our analysis to linear return fees. This simplifies the calculations significantly. Moreover, we are not 

aware of any other type of return policy in reality. 
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from the winning bidder to the seller. 

The game proceeds in three stages: 

1.  Nature selects ܸ = ுݒ  or ܸ = ݒ . Conditional on ܸ , each bidder receives an 

independent signal (ݔ). 

2.  A second-price auction with return policy (ߙ, (ߛ  is held. The winner pays 

accordingly and receives the object. 

3.  The winner learns the true ܸ and decides whether or not to return the object to the 

seller for a refund.  

We assume that the winning bidder learns costlessly the true value of ܸ after s/he 

wins and obtains the object. (The analysis is similar if s/he learns more but imperfect 

information about ܸ.) In auctions for oil field leases and gas and mineral rights, for 

example, the winning bidders usually learn more information by doing more geological 

testing and analysis after winning the auction. Another example is online auctions where, 

once the winning bidder receives the object, s/he usually learns more about its value. 

In our analysis, the likelihood ratio for bidders’ signals plays an important role. Let  

(ݔ)ߩ ؠ ݇ ு݂(ݔ)ܨு(ݔ)ିଵ

݇ ݂(ݔ)ܨ(ݔ)ିଵ  

denote the likelihood ratio of ܸ = ܸ ு versusݒ =  ݇  for the highest signal amongݒ

bidders. Then ߩଵ(ݔ) = ಹ(௫)
ಽ(௫)

. Assume that ߩଵ(ݔ) is increasing in ݔ, i.e., ܨு dominates 

  in likelihood ratio. This ensures that a higher signal implies a higher probability ofܨ

ܸ =  .ுݒ
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3. Equilibrium Analysis 
 

In this section, we characterize the bidders’ equilibrium bidding function. We will 

focus on the symmetric perfect Bayesian equilibrium with a strictly increasing bidding 

function ܤ(ή) in the auction. We restrict our attention to bidding functions taking values 

in [ݒ ,  .ݒ ு or less thanݒ ு]. We do so because a bidder should not bid more thanݒ

Bidding more than ݒு sometimes gives the bidder a negative surplus and is dominated 

by bidding ݒு. Moreover, if the bidder with the lowest possible signal bids less than ݒ 

in a proposed equilibrium, then it is a profitable deviation for that bidder to bid ݒ 

instead given that all other bidders follow the proposed equilibrium strategy. Doing 

so means s/he wins with positive probability and thus receives a positive expected 

surplus, while in the proposed equilibrium, the expected surplus was zero. 

Therefore bidding less than ݒ cannot be part of an equilibrium. 

We will choose bidder 1 as the representative bidder in our analysis. Let ݕ denote 

the second highest signal among all bidders, and ݖ denote the highest signal among 

bidders 2, …, n. If ܸ = ுݒ , then ݕ and ݖ follow distributions with c.d.f. ܩு(ݕ) =

ିଵ(ݕ)ுܨ݊ െ (݊ െ (ݖ)ுܬ  and(ݕ)ுܨ(1 = (ݕ)ିଵ, respectively. Let ݃ு(ڄ)ுܨ = ݊(݊ െ

1) ு݂(ݕ)ܨு(ݕ)ିଶ[1 െ [(ݕ)ுܨ  and ݆ு(ݖ) = (݊ െ 1) ு݂(ݕ)ܨு(ݕ)ିଶ  denote their 

respective p.d.f.s. Furthermore, ܩ(ݕ), ܬ(ݖ), ݃(ݕ) and ݆(ݖ) represent similar c.d.f.s 

and p.d.f.s when ܸ =  .ݒ
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We begin with the return stage. Suppose that bidder 1 receives signal ݔ, bids ܤ(ݔ), 

and wins the object. Since it is a second-price auction, s/he pays (ݖ)ܤ. After winning, if 

s/he learns that ܸ =  ு, s/he will not return the object since his/her payment is less thanݒ

ுݒ . If s/he learns that ܸ = ݒ , s/he returns the object for a refund if and only if 

ݒ െ (ݖ)ܤ < െ[ߙ + [(ݖ)ܤߛ െ ܿ.3 The left-hand side of the inequality is the payoff s/he 

receives if s/he keeps the object, while the right-hand side is the payoff s/he receives if 

s/he returns the object for a refund. 

Given the winning bidder’s return decision in the return stage, we can examine the 

symmetric equilibrium bidding function in the auction stage. Let us first consider two 

hypothetical auctions. The first is a second-price auction in which no return is allowed, 

while the other is a second-price auction in which the winner is required to return the 

object when ܸ =  denote the equilibrium bidding functions in (ݔ)ଶܤ and (ݔ)ଵܤ . Letݒ

the two hypothetical auctions. The first hypothetical auction is a standard second-price 

auction and a special case of Milgrom and Weber [18]. A bidder with signal ݔ bids 

ଵݔ|ܸ)ܧ = ,ݔ ݖ =  ݔ the expected object value conditional on his/her own signal being ,(ݔ

and the highest signal among other bidders being ݖ =  ,Thus .(ݔ)߁ Define this value as .ݔ

(ݔ)ଵܤ = (ݔ)߁ = ଵݔ|ܸ)ܧ = ,ݔ ݖ = (ݔ =
(ݔ)ିଵߩ(ݔ)ଵߩுݒுߤ + ݒߤ
(ݔ)ିଵߩ(ݔ)ଵߩுߤ + ߤ

. 

For the second hypothetical auction, we know bidders will bid up to the amount 

where s/he earns zero surplus conditional on winning and paying that price (i.e., 

                                                        
3Here we assume that if a winner is indifferent between keeping and returning the object, s/he will keep the object. 
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conditional on the highest signal from the other bidders also being x). In this case, if 

ܸ = ܸ ு; ifݒ ு, s/he receivesݒ =  of ߛ , s/he receives nothing but pays the proportionݒ

the price plus ߙ + ܿ. As a result, the bid is the solution to  

ுݒ)               െ ுߤ(ܤ ு݂(ݔ)(݊ െ 1) ு݂(ݔ)ܨு(ݔ)ିଶ 

+(െܤߛ െ ߙ െ ܿ)ߤ ݂(ݔ)(݊ െ 1) ݂(ݔ)ܨ(ݔ)ିଶ = 0. 

Therefore,  

(ݔ)ଶܤ ؠ (ݔ)ିଵߩ(ݔ)ଵߩுݒுߤ െ ߙ) + ܿ)ߤ
(ݔ)ିଵߩ(ݔ)ଵߩுߤ + ߤߛ

. 

Note that ܤଵ(ݔ) and ܤଶ(ݔ) are both strictly increasing. It is useful to discuss their 

relationship to each other. If ఈା௩ಽାಳଵିఊ < if ఈା௩ಽାಳଵିఊ ;(ݔ)ଶܤ is always below (ݔ)ଵܤ ,ݔ >

 from above (ݔ)ଶܤ single crosses (ݔ)ଵܤ ,otherwise ;(ݔ)ଶܤ is always above (ݔ)ଵܤ ,ݔ

at ି߁ଵ(ఈା௩ಽାಳଵିఊ ). Denote כݔ as follows:  

כݔ             =

ەۖ
۔

,ݔۓۖ ݂݅ ఈା௩ಽାಳଵିఊ < ;ݔ

ଵି߁ ቀఈା௩ಽାಳଵିఊ ቁ , ݔ ݂݅  ఈା௩ಽାಳ
ଵିఊ  ݔ

,ݔ ݂݅ ఈା௩ಽାಳଵିఊ > .ݔ

;             (1) 

Now, we are ready to characterize the equilibrium of our model. Let (ڄ)ܤ denote the 

bidding function in this case. Suppose that bidder 1’s signal is ݔ and s/he pretends to 

have signal ݔ and bids ܤ(ݔ). Given that s/he acts optimal in the return stage, his/her 

expected surplus in the auction is given by:  

 ȫ(ݔ, (ݔ = ܸ)ݎܲ = ଵݔ|ுݒ = ܸ]}ܧ(ݔ െ ݖ}ܫ[(ݖ)ܤ < ଵݔ|{ݔ = ܸ,ݔ =  {ுݒ

     +Pr (ܸ = ଵݔ|ݒ = ܸ} max]}ܧ(ݔ െ ܤߛെ,(ݖ)ܤ െ ߙ െ ܿ}] 
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ݖ}ܫ                              < ଵݔ|{ݔ = ܸ,ݔ =  {ݒ

  = (ݔ)ுߤ  ௫௫ ுݒ] െ  (ݖ)ுܬ݀[(ݕ)ܤ

(ݔ)ߤ+           ௫௫ [max {ݒ െ (ݖ)ܤെɀ,(ݖ)ܤ െ ߙ െ ܿ}]݀ܬ(ݖ),  

where  

(ݔ)ுߤ           ؠ Pr(ܸ = ଵݔ|ுݒ =  (ݔ

 = ୰(௫భୀ௫|ୀ௩ಹ)୰(ୀ௩ಹ)
୰(௫భୀ௫|ୀ௩ಹ)୰(ୀ௩ಹ)ା୰(௫భୀ௫|ୀ௩ಽ)୰(ୀ௩ಽ)

 

 = ಹ(௫)ఓಹ
ಹ(௫)ఓಹାಽ(௫)ఓಽ

,  

and where ߤ(ݔ) = Pr(ܸ = ଵݔ|ݒ = (ݔ = 1 െ  .(ݔ)ுߤ

In equilibrium, it is optimal for bidder 1 to report truthfully and the first order 

condition yields: 

ுݒ](ݔ)ுߤ െ (ݔ)ு݆[(ݔ)ܤ + ݒ}max](ݔ)ߤ െ (ݔ)ܤെɀ,(ݔ)ܤ െ ߙ െ ܿ}]݆(ݔ) = 0. 

The FOC can be simplied to  

(ݔ)ܤ =  .{(ݔ)ଶܤ,(ݔ)ଵܤ}ݔܽ݉

It can also be verified that the FOC is also sufficient for the equilibrium. The proof is 

standard but tedious and is available in an online appendix. 

We thus have the following proposition.  

Proposition 1:  In a second-price common-value auction with return policy (ߙ,  there ,(ߛ

exists a symmetric monotone perfect Bayesian equilibrium characterized as follows. In 

the auction stage, bidders bid according to the strictly increasing function (ݔ)ܤ =

  and in the return stage, the winner returns the object if and only if ;{(ݔ)ଶܤ,(ݔ)ଵܤ}ݔܽ݉
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ܸ =  This equilibrium is unique .כݔ  and the second highest signal is higher thanݒ

unless ߛ = 0 and ߙ = െܿ.  

 When ߛ = 0  and ߙ = െܿ , in the equilibrium characterized above, we have 

(ݔ)ܤ = ுݒ  However, this equilibrium is not unique. For example, all bidders .ݔ ,

bidding more than ݒு regardless of their signals with the winner returning the object 

regardless of the revealed value of ܸ is also an equilibrium. Obviously, bidding more 

than ݒு is weakly dominated by bidding ݒு. For simplicity and continuity, when ߛ = 0 

and ߙ = െܿ, we focus in the theory on the equilibrium where (ݔ)ܤ = ுݒ  with the 

winning bidder always returning the object when ܸ = ܸ  and keeping it whenݒ =  ு.4ݒ

When the seller puts in place a no-return policy, bidders anticipate the winner’s curse 

and adjust their bids downward from their estimates of the object’s value using their own 

signals. When a return policy is in place, they bid more aggressively as they are 

somewhat protected from overbidding. In this sense, return policies mitigate the winner’s 

curse. In fact, return policies can overdo this mitigating effect. When the return policy is 

generous enough, bidders may bid more than their estimates of the object’s value. For 

example, when ߙ = െܿ and ߛ = 0, players will bid ݒு, the highest possible value of 

the object. This leads to the possibility of enhancing the seller’s revenue by providing a 

return policy. Of course, return policies can negatively impact the seller’s revenue as well 

                                                        
4Note that our experimental result shows that if ߛ = 0 and ߙ = െܿ, bidders actually do not follow this equilibrium 

prediction, but instead often play one of the weakly dominated equilibria. However, as long as there is even a very 

small amount of cost to return an item, the data are qualitatively consistent with our equilibrium prediction. 
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as the efficiency of trading as the seller usually has a lower reservation value than the 

bidders. By selecting an appropriate return policy, the seller can achieve more revenue by 

balancing the tradeoff between higher bids and efficiency losses. In the following section, 

we will investigate this tradeoff in detail. 

 

4. The effects of return policies on consumer surplus, social welfare and seller’s 

revenue 

 In this section, we first study how return policies affect bidders’ expected surplus 

(i.e., consumer surplus) and the expected gains from trade (i.e., social welfare). We then 

examine the effects of return policies on the seller’s revenue (i.e., producer surplus) and 

characterize the optimal return policy for the seller.  

 

4.1  Consumer surplus and social welfare 

 Denote the consumer surplus as ߙ)ܵܥ, (ߛ , and the total surplus as ܹ(ߙ, (ߛ , 

respectively. Let ݒ be the seller’s value of the object.  

Consumer surplus is given by:  

,ߙ)ܵܥ    (ߛ

 = }ுߤ  ௫כ
௫ ுݒ] െ ݕ݀(ݕ)ு݃[(ݕ)ଵܤ +   ௫

௫כ ுݒ] െ  {ݕ݀(ݕ)ு݃[(ݕ)ଶܤ

}ߤ+    ௫כ
௫ ݒ] െ ݕ݀(ݕ)݃[(ݕ)ଵܤ +   ௫

௫כ [െܽ െ (ݕ)ଶܤߛ െ ܿ]݃(ݕ)݀(2)       .{ݕ 

Note that כݔ is a function of ߙ and ߛ. The following proposition illustrates how 

return policies affect consumers’ surplus. 
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Proposition 2: With a more generous return policy (a lower ߙ or ߛ), the consumer 

surplus is lower.  

This result is somewhat counter-intuitive. In the case of return policies in retail stores, 

a more generous return policy protects consumers better when bad shocks occur, making 

them better off. This effect is also present in an auction. However, in an auction bidders 

are competing with each other. A more generous return policy thus induces bidders to bid 

more aggressively and this effect lowers consumer surplus. In our model, the second 

effect always dominates the first one. This is because bidders always have a higher 

estimate of the probability of returns in their equilibrium strategy calculation than what 

actually occurs. In his/her equilibrium calculation, because it is a second-price auction, a 

bidder assumes (correctly) that the other bidder has the same signal as him/herself when 

calculating his/her break-even bid. However, this bid is paid to the seller only when the 

other bidder has a higher signal and wins. This higher signal reduces the probability that 

ܸ =   and thus correspondingly reduces the probability that the winner will actuallyݒ

return the object relative to the probability correctly used in the equilibrium strategy 

calculation. 

If we examine the above result from the perspective of the linkage principle, it would 

appear less surprising and relatively intuitive: since the return policy links bidders’ 

payments to additional information (the true value of the object), it erases bidders’ 

informational rents. However, the intuition is less transparent than it appears. The 
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traditional linkage principal following Milgrom and Weber [18] applies only when the 

final allocations of the object are the same across the comparison. However, different 

return policies will, in general, induce different final allocations of the object. Our result 

suggests that the linkage principal sometimes applies even when the final allocation 

changes. 

We can also consider how return policies would affect social welfare:  

,ߙ)ܹ  =(ߛ ுݒ)ுߤ െ (ݒ + ߤ ቂ  ௫
௫כ (െܿ)݀ܩ(ݕ) +   ௫כ

௫ ݒ) െ  ቃ.      (3)(ݕ)ܩ݀(ݒ

Proposition 3:  With a more generous return policy (a lower ߙ or ߛ), social welfare is 

higher if and only if ݒ + ܿ    .ݒ

 A more generous return policy induces more returns: this is more efficient if the 

seller values the returned object highly enough. 

 
4.2  Seller’s revenue 

 We will now examine the effect of the return policy on the seller’s revenue and 

characterize the optimal linear return policy for the seller. Denote the seller’s revenue as 

,ߙ)ܴ ,ߙ)ܴ It is obvious that .(ߛ (ߛ = ,ߙ)ܹ (ߛ െ ,ߙ)ܵܥ ݒ If .(ߛ + ܿ  ݒ , a more 

generous return policy (a lower ߙ  or ߛ ) increases social welfare and decreases  

consumer surplus, therefore unambiguously increasing the seller’s revenue. Note that we 

restrict the return policy to ߙ  െܿ and 0  ߛ  1. Thus, the unique optimal return 

policy is ߙ = െܿ and ߛ = 0. This is summarized in the following proposition. 
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Proposition 4:  If ݒ + ܿ   ,(ߛ or ߙ a lower) , a more generous return policyݒ

means that the seller’s revenue is higher, implying that the optimal return policy is 

ߙ = െܿ and ߛ = 0.  

The condition ݒ + ܿ    requires that the seller values the object more thanݒ

bidders do when the common bidder value is low. This could be true if ݒ represents a 

situation where some fixable problem occurs, and it is easier for the seller than for the 

bidder to fix the problem. However, in general such condition could be violated. 

For the rest of the analysis in this section, we will focus on the case where ݒ + ܿ >

ݒ . Since ܴ(ߙ, (ߛ = ,ߙ)ܹ (ߛ െ ,ߙ)ܵܥ (ߛ , the seller’s revenue may not change 

monotonically with the return policy. There is no clear conclusion about how ߙ and ߛ 

would affect the seller’s revenue.5 We proceed as follows using an indirect method. The 

seller can choose ߙ and ߛ, which then uniquely determine the cutoff כݔ. Alternatively, 

if we allow the seller to choose ߛ and כݔ directly, it is equivalent to allowing the seller 

to choose ߛ and ߙ  indirectly. Therefore, we can rewrite the seller’s revenue as a 

function of ߛ and כݔ:  

,ߛ)ܴ  (כݔ = ுߤ ቄ  ௫כ
௫ ݕ݀(ݕ)ு݃(ݕ)ଵܤ +   ௫

௫כ  ቅݕ݀(ݕ)ு݃(ݕ)ଶܤ

ߤ+           ቄ  ௫כ
௫ ݕ݀(ݕ)݃(ݕ)ଵܤ +   ௫

௫כ [ܽ +  ቅݕ݀(ݕ)݃[(ݕ)ଶܤߛ

ߤ+             ௫
௫כ  (4)                                       .ݕ݀(ݕ)݃ݒ

The following proposition summarizes how return policies affect the seller’s revenue 

                                                        
5This can be shown by examining Equations (6), (7), (8), and (9) in Appendix A. 
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in this case.  

Proposition 5:  When ݒ + ܿ > ݒ , given כݔ , the seller’s revenue is strictly 

decreasing in ߛ, implying that ߛ = 0 (i.e., no proportional fee) is optimal.  

The intuition behind this proposition is as follows. Given the cutoff כݔ, the seller can 

choose a combination of a fixed fee and a proportional fee consistent with this cutoff. 

However, using a proportional fee diminishes the seller’ revenue since it incentivizes 

bidders to reduce their bids relative to the fixed-fee case consistent with the same cutoff. 

This is because higher winning bids imply a higher cost of returning the object in the 

proportional fee case. In contrast, a fixed fee is a lump sum transfer and does not have 

this distortion. Therefore, to maximize the seller’s revenue, a proportional fee is inferior. 

Now we examine the optimal cutoff level of כݔ.  

     డோ(ఊ,௫כ)
డ௫כ  

 = ுߤ (כݔ)ଵܤ] െ ᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ[(כݔ)ଶܤ
ୀ

݃ு(כݔ) ௗ௫
כ

ௗఊ + ுߤ   ௫
௫כ

డమ(௬)
డ

డ
డ௫כ ݃ு(ݕ)݀ݕ 

ߤ+        ௫
௫כ ቂ1 + ߛ డమ(௬)

డ ቃ డడ௫כ ݃(ݕ)݀ݕ + ߤ (כݔ)ଵܤ] െ ܽ െ ᇣᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇥ[(כݔ)ଶܤߛ
ୀ௩ಽାಳ

݃(כݔ) 

     െߤݒ݃(כݔ)    

   = ݒ)ߤ + ܿ െ  (כݔ))݃ݒ

  െ  ௫
௫כ

ఓಹఓಽ
[ఓಹఘభ(௬)ఘషభ(௬)ାఊఓಽ] 

{݃ு(ݕ) െ {(ݕ)݃(ݕ)ିଵߩ(ݕ)ଵߩ డ
డ௫כ  ݕ݀

 = ݒ)ߤ + ܿ െ ᇣᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇥ(כݔ))݃ݒ
 ௦  ௪  ௧ஹ   

 

     െ  ௫
௫כ

(௩ಹି௩ಽ)ఓಹఓಽ
[ఓಹఘభ(௫כ)ఘషభ(௫כ)ାఊఓಽ]మ

{݃ு(ݕ) െ {(ݕ)݃(ݕ)ିଵߩ(ݕ)ଵߩ ௗ[ఘభ(௫כ)ఘషభ(௫כ)]
ௗ௫כ ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥݕ݀

 ௦௨  ௦௨௨௦  ௧ஹ   
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In the above expression, either the consumer surplus effect or the social welfare effect 

could dominate. One observation is that if ݒு െ   is very small, then the overall sign isݒ

positive and it is optimal to induce no return in equilibrium. However, the following 

example shows that the seller’s revenue is not necessarily monotonic in x* in general. 

 

Example 1: Consider two players. Suppose that ݒ = ுݒ ,0 = 100 +   to beݒ , withݒ

specified later, and ߤு = ߤ = 0.5, ܿ = 0. We set ߛ = 0 as this is always optimal for 

the seller, and examine how the seller’s revenue is affected by the return policy by 

changing כݔ , which then uniquely determines the value of ߙ . For ݔ א (0,10] , 

(ݔ)ுܨ = ௫మ
ଵ, ܨ(ݔ) = ௫(ଶି௫)

ଵ , ு݂(ݔ) = ௫
ହ, ݂(ݔ) = ଵି௫

ହ . Then (ݔ)ߩ = ಹ(௫)
ಽ(௫)

= ௫
ଵି௫. 

Note that ಹ(௫)
ಽ(௫)

 is indeed strictly increasing as previously assumed. We will vary the 

value of ݒ and let it take the values of 0, 30, 50 and 80, respectively. 

The results are shown in Figure 1. When ݒ = 0, the seller’s revenue is decreasing in 

כݔ the optimal return policy is ;כݔ = 0, i.e., the full-refund with full-cost-reimbursement 

policy ߙ = െܿ = 0. When ݒ = 30, the seller’s revenue first increases, then decreases, 

and then increases in כݔ ; the optimal return policy is a partial-refund policy with 

כݔ = 1.2. When ݒ = 50, the seller’s revenue first increases, then decreases, and then 

increases in xכ; the optimal return policy is the no-refund policy. When ݒ = 80, the 

seller’s revenue is increasing in כݔ; the no refund policy is optimal again. Note that as 

ݒ  increases, the optimal return policy becomes less generous. This example also 
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illustrates the difficulties in determining the condition for an interior optimal return 

policy as the revenue function is not well behaved.  

Figure 1: Plots of Revenue against x* 
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5. Experimental Design 

Our experiments adopt parameters from Example 1 in the previous section with 

ݒ = 0. We implement second-price auctions with two bidders.6 The auctioned item has 

either the common value ܸ = 100 or the common value ܸ = 0 in experimental dollars 

with equal probability. To make the experiments transparent, the signal generating 

procedure in practice is a discrete approximation to the continuous distributions in 

Example 1. In our experiments, the bidder receives a partially informative signal by 

drawing a numbered chip from an urn containing numbered chips. If ܸ = 100, the urn 

contains one 1, two 2’s, …, nine 9’s. Alternatively, if ܸ = 0, the urn contains one 9, two 

8’s, …, nine 1’s. The number on the chip is the bidder’s signal. 

We consider a return policy with a fixed handling fee: if the winning bidder returns 

the item, s/he gets back the price paid minus the handling fee Į. Our experimental 

treatments differ by setting Į at four different levels. (1) In the No-Return (NR) treatment, 

ߙ = +λ, implying that the winning bidder cannot return the item. (2) In the High-Fee 

(HF) treatment, ߙ = 20 . (3) In the Low-Fee (LF) treatment ߙ = 5 . (4) In the 

Free-Return (FR) treatment ߙ = 0.  

Proposition 2 and Proposition 4 in section 4 predict that bidders’ expected earnings 

fall while the seller’s expected revenues rise as Į decreases toward zero. However, when 

ߙ = 0, there are multiple equilibria. One equilibrium involves all bidders bidding 100 
                                                        
6We used two bidders in each auction since as the number of bidders increases, the bidding function becomes flatter, 
making it more difficult to test the impact of signals on bids. 
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with the winner returning the item when ܸ = 0. This equilibrium is efficient, creating the 

maximum possible surplus. If weakly dominated strategies are allowed, there are other 

inefficient equilibria that involve bids above 100 with the winner returning the item 

regardless of whether ܸ = 0  or ܸ = 100 . These equilibria have very different 

implications for a seller selecting a free-return policy. In the case of the efficient 

equilibrium, the seller extracts the maximum possible revenue from the bidder. However, 

in the case of the inefficient equilibria, the seller receives no revenue at all. One goal of 

this study is to test empirically which equilibrium arises when ߙ = 0.  

Treatments were implemented in two-day sequences of one-hour sessions. On day 

one of the two-day sequence, the recruited participants first participated in two rounds of 

practice auctions. The first round of practice auctions was hand-run and real urns with 

numbered chips were presented to participants. Starting from the second practice round 

and throughout the rest of the session, the auctions and the signal-generating procedure 

were computerized in a manner analogous to the hand-run method used during the first 

practice round. After the practice rounds, the participants began the 15 monetary-payoff 

rounds with 225 experimental dollars of capital endowment. In each round, participants 

were randomly and anonymously matched into markets of two bidders. Participants were 

informed that if their net balance dropped to zero or below, they would no longer be 

permitted to continue playing.7 Day two of the two-day sequence took place one week 

                                                        
7No participant went bankrupt in any of our experiments. 
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later, and the same participants were invited back. On day two, procedures were the same 

as on day one except that there was no hand-run practice round. To give participants an 

incentive to return on day two, their earnings on day one were retained until the 

completion of the day-two session. 

There were four two-day sequences for each of the NR, HF, LF and FR treatments. 

No participant was allowed to participate in more than one two-day sequence. There were 

8-12 participants in each sequence. Table 1 presents details on the number of participants 

on days one and two of each sequence. 

Table 1: Number of Participants in Each Two-Day Sequence 

NR Day 1 Day 2 HF Day 1 Day 2 LF Day 1 Day 2 FR Day 1 Day 2 
1 
2 
3 
4 

12 12 1 
2 
3 
4 

10 10 1 
2 
3 
4 

12 12 1 
2 
3 
4 

12 10 
12 10 10 8 12 12 12 10 
12 8 12 12 12 12 12 12 
10 8 12 10 12 12 12 10 

We conducted our experiments at the Experimental Economics Laboratory, Shanghai 

University of Finance and Economics (SUFE). The participants were recruited from a 

campus-wide list of undergraduate students who had previously responded to an 

announcement in a campus-wide required first-year undergraduate course. None of the 

participants had any experience with common-value auction experiments. All laboratory 

sessions were computerized using Visual Basic 6.0. Both the instructions and the 

information shown on the computer screen were in Chinese. The average payment was 

44.07 RMB (15 experimental dollars were equivalent to 1 RMB and the exchange rate 
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was US$1 = 6.23 RMB) for the two one-hour sessions making up a two-day sequence. 

Since the average hourly wage in Shanghai for a college graduate is about 15–20 RMB, 

44.07 RMB is a considerable amount for undergraduate students. 

 

6. Results 

This section reports experimental results in the monetary-payoff rounds. 

6.1  Bids 

Figure 2 shows the bidders’ average bids for each treatment, conditional on the signal 

received. Figure 2 suggests that a more generous return policy is associated with higher 

bids as predicted by theory. 

Figure 2: Treatment Difference in Bids 

 

 Treating each session’s average bid as one independent observation, the 

Wilcoxon-Mann-Whitney rank-sum tests show that for inexperienced bidders (sessions 
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on day 1), bids in the NR treatment were significantly lower than those in the HF 

treatment ( = 0.043), while bids in the HF treatment were significantly lower than those 

in the LF treatment ( = 0.043). However, the difference in bids was not significant 

between the LF and FR treatments ( = 0.149). For experienced bidders (sessions on day 

2), the pattern was similar, but not identical: while bids in the NR treatment were not 

significantly different from those in the HF treatment ( = 0.248), bids in the HF 

treatment were significantly lower than those in the LF treatment ( = 0.021), and bids 

in the LF treatment were lower than in the FR treatment with marginal significance 

) = 0.083). 

Next we examine whether experienced bidders bid closer than inexperienced bidders 

to the theoretically predicted bids. For the multiple-equilibrium FR treatment, we use the 

efficient equilibrium in which all bidders bid 100 regardless of the signal received as our 

theoretical benchmark. Figure 3 suggests that experience does not help bring bids closer 

to the theoretical prediction in any of the four treatments. The mean squared deviation 

(MSD) between the actual bids in the experimental market and the value predicted by the 

model is measured as follows: 

 

where b is the actual bid, b*(x) is the predicted bid conditional on the signal x received by 

the bidder, and T is the total number of bids in the monetary-payoff rounds within a 

* * 2

1

1MSD[ , ( )] ( ( ))
T

i
b b x b b x

T  

 �¦
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session. Comparing the MSD in the inexperienced sessions with the MSD in the 

experienced sessions, the Wilcoxon signed-ranks test yields no significant difference in 

any of the four treatments ( = 0.715 in NR,  = 1.000 in HF,  = 0.715 in LF and 

 = 0.144 in FR). Moreover, in the FR treatment, many bidders bid higher than 100, 

behavior consistent with the equilibria involving weakly dominated strategies. 

Figure 3: Actual Bids vs. Predictions 
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 In Table 2 we report a random-effects regression (with random effects both at the 

session level and at the individual level) for the determinants of bids over all 

monetary-payoff rounds. The regression shows that in the NR treatment bids increased 

significantly as the signal increased (the coefficient for Signal was positive with 

 = 0.000). In both the LF and HF treatments, the relationship between bids and signals 

was close to the NR relationship (neither the coefficient of Signal*LF nor that of 

Signal*HF was significantly different from zero with  = 0.368  and  = 0.995 , 

respectively). However, in the FR treatment, the empirical bidding function was much 

flatter than in the NR treatment (the coefficient of Signal*FR is negative with  =

0.000), though the relationship between bids and signals was still positive (the Wald Ȥ2 

test shows that the sum of the coefficients of Signal and Signal*FR is positive with 

 = 0.000). The regression also indicates that bidders tended to bid higher during the 

later rounds of the FR treatment (the coefficient of Round*FR is positive with  =

0.000), while round had no significant impact on bids in the other treatments. The 

empirical bidding function for the FR treatment reflects the fact that many bidders placed 

bids greater than 100 regardless of the signal received. Such behavior creates no surplus 

for either the bidder or the seller. In this treatment, bidders generally earned nothing since, 

as predicted by theory, the seller captured any surplus created by trade. We conjecture 

that as the experiment proceeded the fun of winning the auctioned item and then 

returning it began to dominate concern with monetary payoffs, which were always zero in 
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any case. Thus, bids rose as bidders competed to win (and then return) the item. As 

mentioned previously, bidding above 100 is consistent with the inefficient equilibria 

involving weakly dominated strategies.  

 

Table 2: Determinants of Bids 

 Coef. Std. Err.  
Constant -9.737 26.11 

FR dummy 53.847 36.81  
LF dummy 37.272 36.77  
HF dummy 9.333 37.07  

Signal 10.612***  0.77  
Signal*FR -4.575*** 1.06 
Signal*LF 0.935 1.04 
Signal*HF -0.007 1.08 

Experience dummy 10.151 36.75  
Experience*FR 88.613* 51.62  
Experience*LF -4.050 51.32  
Experience*HF -2.053 51.94  

Round 0.510 0.44  
Round*FR 5.984*** 0.61  
Round*LF -0.065 0.60  
Round*HF 0.383 0.62  

Obs. 5310  
Wald Chi2 991.84 

Log likelihood -30467.167  
* indicates significance at p = 0.10 (two-tailed tests); *** indicate significance at p = 
0.01 (two-tailed tests). 

 

6.2  Earnings 

Proposition 2 in section 4.1 predicts that consumer surplus is lower with a more 

generous return policy. Figure 4 suggests that this is true empirically. A bidder’s total 
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payoff (in experimental currency) in a session decreases as the handling fee for returning 

the auctioned item goes down. Compared with payoffs to inexperienced bidders on day 1, 

the average total payoffs for experienced bidders on day 2 were closer to the theoretical 

prediction (i.e., the ex ante expected total payoff in 15 monetary-payoff rounds plus 225).  

 

Figure 4: Average Total Payoff 

 

 

Treating each session’s average total payoff as one independent observation, the 

Wilcoxon-Mann-Whitney rank-sum tests show that for inexperienced bidders (sessions 

on day 1), while total payoffs in the NR treatment were not significantly different from 

those in the HF treatment ( = 0.248 ), total payoffs in the HF treatment were 

significantly higher than in the LF treatment ( = 0.083) and total payoffs in the LF 

treatment were also significantly higher than in the FR treatment ( = 0.043). For 
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experienced bidders (sessions on day 2), the pattern is similar: while total payoffs in the 

NR treatment were not significantly different from those in the HF treatment ( = 0.387), 

total payoffs in the HF treatment were significantly higher than those in the LF treatment 

) = 0.043) and total payoffs in the LF treatment were also significantly higher than in 

the FR treatment ( = 0.021).   

A random-effects regression (with random effects both at the session and at the 

individual level) for treatment differences in bidders’ payoffs in each auction in Table 3 

confirms the observation in Figure 4. Bidders’ payoffs are higher in the NR treatment, 

compared with the FR and the LF (the signs of the coefficients of the FR and LF 

dummies are significantly negative). Compared with day 1, bidders earn less on day 2 

when they have more experience but simultaneously bid against more experienced 

opponents (the sign of the experience dummy is significantly negative). A Wald Ȥ2 tests 

indicate that the coefficient of the FR dummy is significantly lower than that of the LF 

dummy ( = 0.009), and the coefficient of LF is significantly lower than that of HF 

) = 0.026). The Wald Ȥ2 test also shows that we cannot reject the joint hypothesis that 

all three interactions of treatment dummies with experience equal zero ( = 0.608). This 

confirms that the treatment effects hold both with and without experience.  
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Table 3: Comparing Bidders’ Payoffs  

 Coef.  Std. Err.  
Constant 13.351*** 1.15 

FR dummy -10.218*** 1.61 
LF dummy -6.069*** 1.61 
HF dummy -2.459 1.64 

Experience dummy -4.304** 1.69 
Experience*FR 3.024 2.35 
Experience*LF 0.803 2.32 
Experience*HF 0.931 2.38 

Obs. 5310 
Wald Chi2 83.33 

** indicates significance at p = 0.05 (two-tailed tests); *** indicates significance at p = 
0.01 (two-tailed tests). 

 

Figure 5 examines the efficiency loss associated with return policies. Setting the 

seller’s value for the auctioned item at zero, there is a loss in aggregate surplus if the 

winner of the auction chooses to return the item when ܸ = 100. In the HF and LF 

treatments, winners rarely return the item when ܸ = 100. However, in the FR treatment, 

the frequency of returning the item when ܸ = 100 is 0.266 for inexperienced bidders, 

and 0.497 for experienced bidders. We observe significant efficiency loss associated with 

the FR treatment. To compare the frequency of returning the high quality V = 100 items 

across treatments, we run Wilcoxon-Mann-Whitney rank-sum tests with the following 

results: HF < LF  (  = 0.047 ), LF < FR  (  = 0.021 ) for inexperienced bidders; 

HF = LF )  = 0.850), LF < FR )  = 0.018 ) for experienced bidders (treating the 

session average return frequency as one independent observation). 
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Figure 5: Choice of Return when V = 100 (in Percentage) 

 

 

Proposition 4 in section 4.2, predicted that given our experimental parameters (in 

particular ݒ = ܿ = 0) if the seller’s value of the item is zero, seller revenue should 

increase with the generosity of the return policy and the free return policy should be 

optimal for the sellers. However, this proposition was derived under the assumption that 

the efficient equilibrium would prevail in the FR case. Figure 6 compares the bidders’ 

payments to the sellers across treatments. In general, the bidders’ average payment to the 

sellers increases as the handling fee for returning the auctioned item decreases as 

predicted. However, the payments are not highest in the FR treatment because many 

winning bids exceed 100 with the winners choosing to return the item when ܸ = 100. 

Thus, the efficient equilibrium did not prevail in the FR case as was assumed in the 

theoretical derivation, and this was detrimental to seller revenues. The payments are 
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actually highest in the LF rather than in the FR treatment.  

 

Figure 6: Bidders’ Average Payment to the Sellers 

 

 

Treating the average payment in each session as one independent observation, 

Wilcoxon-Mann-Whitney rank-sum tests yield the following results: NR = HF 

) = 0.564), HF < LF ( = 0.083), LF > FR ( = 0.083), LF > NR ( = 0.043) for 

inexperienced bidders; NR = HF  (  = 0.248 ), HF < LF  (  = 0.043 ), LF > FR 

) = 0.021), LF > NR ( = 0.021) for experienced bidders. 

A random-effects regression (with random effects both at the session and at the 

individual level) for treatment differences in bidders’ payments to sellers in each auction 

in Table 4 confirms this observation. Notice that in the FR treatment, bidders transfer less 

money to the sellers in the day-2-sessions compared with the day-1-sessions (the 
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coefficient of Experience*FR is negative with  = 0.014). We conjecture that this is 

because after experiencing low payoffs during the day-1-sessions, the fun of winning 

becomes paramount, driving more bidders to bid above 100 and subsequently return the 

auctioned item for a full refund in the day-2-sessions.  

 

Table 4: Comparing Bidders’ Payments to Sellers 

 Coef.  Std. Err.  
Constant 16.199*** 1.76 

FR dummy 0.946 2.46 
LF dummy 5.408** 2.46 
HF dummy 1.868 2.51 

Experience dummy 3.423 2.61 
Experience*FR -8.942** 3.63 
Experience*LF -0.060 3.57 
Experience*HF 0.252 3.69 

Obs. 5310 
Wald Chi2 36.55 

** indicates significance at p = 0.05 (two-tailed tests); *** indicates significance at p = 
0.01 (two-tailed tests). 
 

7. Conclusions 

This paper investigates the role of linear return policies in second-price auctions. The 

equilibrium is unique unless returns are free. With a more generous return policy, bidders 

act more aggressively. Since the winning bidder pays more, the consumer surplus is 

lower in such auctions. For sellers, we demonstrate that a revenue-maximizing seller 

should never use a return fee that is proportional to the price paid for an item. Rather a 

fixed return fee should be used. Furthermore, since the winning bidder may return the 
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object when s/he obtains more information regarding its value, a higher bid induced by a 

more generous return policy, while hurting bidders, may not always be beneficial to the 

seller. Only when the efficiency losses from returns are relatively small will a more 

generous return policy help the seller. 

Our laboratory observations support the theoretical prediction that the seller’s revenue 

increases as the handling fee for returning the auctioned item decreases, but remains 

positive. When returning the item is free, many bidders bid above the highest possible 

value and subsequently return the item regardless of the revealed value. While this is 

consistent with equilibrium behavior, it is an inefficient equilibrium that is not optimal for 

the seller.  

In theory, there exist optimal mechanisms for sellers to maximize revenue. For our 

case of common values, a seller can extract the full surplus from bidders.8 However, 

those optimal mechanisms are not commonly observed in reality, partly because too 

much detail regarding the underlining environment is required for the seller to design an 

optimal mechanism. The discrepancy between theory and common practice prompts the 

claim that a set of simplicity and robustness criteria should be imposed on the trading 

mechanisms.9 Our auctions with return policies are the sort of simple and familiar 

                                                        
8See Cremer and Mclean [4] and McAfee and Reny [17]. 
9Hurwicz [12] illustrates the need for mechanisms that are independent of the parameters of the model. Wilson [20] 

points out that a desirable property of a trading rule is that it “does not rely on features of the agents”. Lopomo [15] [16] 

requires mechanisms to exhibit “simplicity” and “ robustness”. 
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trading procedures that Hurwicz [12], Lopomo [15] [16], and Wilson [20] advocate. 

Furthermore, as we have shown in this paper, return policies, while being “simple” 

instruments, can be effective at increasing seller revenue under certain circumstances.  
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Appendix A: Proofs 

We will make use of the following lemma repeatedly in our analysis. The proof is 
standard and is thus omitted. 

 
Lemma 1  Suppose that ܨு dominates ܨ in likelihood ratio, i.e., ߩଵ(ݔ) is increasing 
in ݔ. Then 

  

 in hazard rate, i.e. ಹ(௫)ܨ ு dominatesܨ  .1    
ଵିிಹ(௫)

 ಽ(௫)
ଵିிಽ(௫)

  .ݔ ,

 

 in reversed hazard rate, i.e. ಹ(௫)ܨ ு dominatesܨ  .2    
ிಹ(௫)

 ಽ(௫)
ிಽ(௫)

 .ݔ ,

 

    3.  ிಹ(௫)
ிಽ(௫)

 is increasing in ݔ. 

 
  .݇ ,ݔ is increasing in (ݔ)ߩ  .4    
  
 
This lemma also implies another property of our likelihood ratio dominance 

assumption.  
 

Lemma 2  Suppose that ܨு dominates ܨ in likelihood ratio. Then  
                   ݃ு(ݔ) െ ݃(ݔ)ߩଵ(ݔ)ߩିଵ(ݔ)   (5)  .ݔ      ,0
  
Proof for Lemma 2 

   
   ݃ு(ݔ) െ ݃(ݔ)ߩଵ(ݔ)ߩିଵ(ݔ)  

 = ݃(ݔ) ቂಹ(௫)
ಽ(௫)

െ   ቃ(ݔ)ିଵߩ(ݔ)ଵߩ

 = ݃(ݔ) ቄ(ିଵ)ಹ(௫)ிಹ(௫)షమ[ଵିிಹ(௫)]
(ିଵ)ಽ(௫)ிಽ(௫)షమ[ଵିிಽ(௫)]

െ ಹ(௫)
ಽ(௫)

ಹ(௫)ிಹ(௫)షమ

ಽ(௫)ிಽ(௫)షమ
ቅ  

 = ݃(ݔ) ಹ(௫)ிಹ(௫)షమ[ଵିிಹ(௫)]
ಽ(௫)మிಽ(௫)షమ

ቂ ಽ(௫)
ଵିிಽ(௫)

െ ಹ(௫)
ଵିிಹ(௫)

ቃ  

  0.  
The above inequality follows directly from Lemma 1. 
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Proof for Proposition 2 
 We first consider the effect of the fixed fee ܽ.  

  பௌ(,ఊ)
ப  

= ுߤ ୌݒ]} െ [(כݔ)ଵܤ െ ுݒ] െ ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ{[(כݔ)ଶܤ
ୀ

݃ு(כݔ) ݔ݀
כ

݀ܽ െ ுߤ න  
௫

௫כ

μܤଶ(ݕ)
μܽ ݃ு(ݕ)݀ݕ 

  െߤ   ௫
௫כ

பାఊమ(௬)]
ப ݃(ݕ)݀ݕ + ߤ ݒ]] െ [(כݔ)ଵܤ + ܽ + (כݔ)ଶܤߛ + ܿ]ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ

ୀ
݃(כݔ) ௗ௫

כ

ௗ  

= െߤு න  
௫

௫כ

െߤ
(ݕ)ିଵߩ(ݕ)ଵߩுߤ + ߤߛ

݃ு(ݕ)݀ݕ െ ߤ න  
௫

௫כ

(ݕ)݃(ݕ)ିଵߩ(ݕ)ଵߩுߤ
(ݕ)ିଵߩ(ݕ)ଵߩுߤ + ߤߛ

 ݕ݀

=   ௫
௫כ

ఓಽఓಹ
ఓಹఘభ(௬)ఘషభ(௬)ାఊఓಽ

{݃ு(ݕ) െ  (6) ݕ݀{(ݕ)݃(ݕ)ିଵߩ(ݕ)ଵߩ

Therefore, according to Lemma 2, the consumer surplus is increasing in ܽ. 
Now consider the effect of the percentage fee ߛ.  

  பௌ(,ఊ)
பఊ  

= ுߤ ுݒ]} െ [(כݔ)ଵܤ െ ுݒ] െ ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ{[(כݔ)ଶܤ
ୀ

݃ு(כݔ)
כݔ݀
ߛ݀  

  െߤு   ௫
௫כ

பమ(௬)
பఊ ݃ு(ݕ)݀ݕ െ ߤ   ௫

௫כ
பఊమ(௬)]

பఊ ݃(ݕ)݀ݕ 

ߤ+   ݒ]] െ [(כݔ)ଵܤ + ܽ + (כݔ)ଶܤߛ + ܿ]ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
ୀ

݃(כݔ) ௗ௫
כ

ௗఊ  

= െߤு   ௫
௫כ

ିఓಽ[ఓಹ௩ಹఘభ(௬)ఘషభ(௬)ି(ାಳ)ఓಽ]
[ఓಹఘభ(௬)ఘషభ(௬)ାఊఓಽ]మ

݃ு(ݕ)݀ݕ  

  െߤ   ௫
௫כ

ఓಹఘభ(௬)ఘషభ(௬)[ఓಹ௩ಹఘభ(௬)ఘషభ(௬)ି(ାಳ)ఓಽ]
[ఓಹఘభ(௬)ఘషభ(௬)ାఊఓಽ]మ

݃(ݕ)݀ݕ  

=   ௫
௫כ

ఓಹఓಽ[ఓಹ௩ಹఘభ(௬)ఘషభ(௬)ି(ାಳ)ఓಽ]
[ఓಹఘభ(௬)ఘషభ(௬)ାఊఓಽ]మ

{݃ு(ݕ) െ  (7) ݕ݀{(ݕ)݃(ݕ)ିଵߩ(ݕ)ଵߩ

Therefore, the consumer surplus is increasing in ߛ. 
  

Proof for Proposition 3  

 பௐ(,ఊ)
ப = ݒ)ߤ + ܿ െ (ݒ ப௫

כ

ப ݃(כݔ), (8) 

 

 பௐ(,ఊ)
பఊ = ݒ)ߤ + ܿ െ (ݒ ப௫

כ

பఊ ݃(כݔ). (9) 
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As a result, the social welfare is increasing in ܽ and ߛ if and only if ݒ + ܿ   .ݒ
  
   

Proof for Proposition 5 
 We first examine how ߛ affects the revenue.  

  போ(ఊ,௫כ)
பఊ  

= ுߤ න  
௫

௫כ
ቈμܤ

ଶ(ݕ)
μߛ +

μܤଶ(ݕ)
μܽ

μܽ
μߛ݃ு(ݕ) 
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௫כ ቄ

ப
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பఊ + ߛ பమ(௬)
ப

ப
பఊቅ ݃(ݕ)݀ݕ 
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௫

௫כ
ቈߤு

μܤଶ(ݕ)
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μߛ ݃(ݕ)  ݕ݀
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௫כ ቄߤு

பమ(௬)
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௫

௫כ
ுߤ]
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(ݔ)ିଵߩ(ݔ)ଵߩுߤ] + ]ଶߤߛ ݃ு(ݕ) 

ߤ+   ఓಹఘభ(௫)ఘషభ(௫)[ఓಹ௩ಹఘభ(௫)ఘషభ(௫)ିఓಽ(ାಳ)]
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݃(ݕ)]݀ݕ 
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௫כ ுߤ} ିఓಽ
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݃ு(ݕ) 
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௫כ
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(ݕ)݃(ݕ)ିଵߩ(ݕ)ଵߩ}       െ ݃ு(ݕ)}݀ݕ 
< 0.  
Therefore, the seller’s revenue is strictly decreasing in ߛ given כݔ, and Proposition 5 is 
proven. 

 

Appendix B: Experimental Instructions (translated from 

Chinese) 

This is an experiment in the economics of market decision making. The experiment 
consists of two parts. Now we are implementing Part I of the experiment. Part II of 
the experiment will be implemented 7 days from now (in the same time slot) at the 
same place. You are invited to participate in both Part I and Part II. Several research 
organizations have provided funds for conducting this research. The instructions are 
simple, and if you follow them carefully and make good decisions you may earn a 
CONSIDERABLE AMOUNT OF MONEY, which will be PAID TO YOU IN CASH. You will 
receive your payments for both Part I and Part II at the end of Part II of the 
experiment. 
 
In this experiment we will create a market in which you will act as a bidder of a 
fictitious commodity. There will be 17 trading periods, with the first two being 
practice periods with no monetary payoffs. In each trading period you will be paired 
with another bidder. A single unit of the commodity will be auctioned with the two 
of you as bidders. Your pairings will vary over periods and will remain anonymous. 
 
Values 
 
All values in the experiment will be in terms of experimental dollars. In each period 
the value of the auctioned item could be either 0 or 100 experimental dollars, with 
equal probability. The value of the auctioned item in one period has no impact on the 
value in the next period. 
 
Signals  
 
In each period each bidder will receive a private signal of the value of the auctioned 
item. If the value is 0, then an urn with the following 45 numbered chips will be 
presented to you:  
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1, 1, 1, 1, 1, 1, 1, 1, 1 
2, 2, 2, 2, 2, 2, 2, 2 
3, 3, 3, 3, 3, 3, 3 
4, 4, 4, 4, 4, 4 
5, 5, 5, 5, 5 
6, 6, 6, 6 
7, 7, 7 
8, 8 
9 
 
As shown, we have one 9, two 8s, three 7s, four 6s, five 5s, six 4s, seven 3s, eight 2s, 
and nine 1s, 45 chips altogether. You draw one chip from the urn and the number on 
the chip is your signal. If the value of the auctioned item is 0, then the chance of 
receiving a signal of “1” is 9/45, the chance receiving a signal of “2” is 8/45,…, the 
chance of receiving a signal of “9” is 1/45.     
 
If the value is 100, then an urn with the following 45 numbered chips will be 
presented to you:  
 
1 
2, 2 
3, 3, 3 
4, 4, 4, 4 
5, 5, 5, 5, 5 
6, 6, 6, 6, 6, 6 
7, 7, 7, 7, 7, 7, 7 
8, 8, 8, 8, 8, 8, 8, 8 
9, 9, 9, 9, 9, 9, 9, 9, 9 
 
As shown, we have nine 9s, eight 8s, seven 7s, six 6s, five 5s, four 4s, three 3s, two 2s, 
one 1, again a total of 45 chips. You draw one chip from the urn and the number on 
the chip is your signal. If the value of the auctioned item is 100, then the chance of 
receiving a signal of “1” is 1/45, the chance receiving a signal of “2” is 2/45,…, the 
chance of receiving a signal of “9” is 9/45. 
 
 
NOTE: Your signal has no impact on the other bidder’s signal, but both have been 
drawn from the same urn containing the same 45 numbered chips. Note that once 
one chip is drawn to be the signal for one bidder, it is placed back in the urn before 
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another chip is drawn to be the signal for the second bidder. In the first practice 
period, real urns will be presented to you. Starting from the second practice period 
and throughout the rest of the experiment, the signals will be generated by 
computer in exactly the same manner as described above. You should think of the 
computer as randomly selecting one of the two urns with equal probability. 
Subsequently the computer will draw one virtual chip from the selected virtual urn 
and show the number on that chip to you. This is your signal. 
 
Auction Procedure 
 
At the beginning of each period, bidders will not be told the value of the auctioned 
item. Instead, each bidder receives a private signal as described above. Then both 
bidders submit bids for the item. The bidder with the higher bid purchases the item 
and pays the lower amount that was bid by the other bidder. This generates a profit 
of 
 
Profit = (Value of the item) – (the lower bid that the other bidder submitted). 
 
The bidder with the lower bid earns zero profit. In case the two bidders submit the 
same bid, the computer will determine who will buy the item though a random 
process that gives each bidder an equal chance of being selected. In this case, the 
bidder selected to purchase the item pays an amount equal to the identical bids 
submitted by the two bidders. 
 
After the purchase, both bidders observe the actual value of the item. 
 
(Note: The following section in {} describes the return policy in the FR (or HF/LF) 
treatment, and is not shown in the NR treatment.) 
 
{Return Policy} 
 
{In each period, after finding out the value of the item, the bidder who purchased it 
has the opportunity to return it to the experimenter. If the bidder returns the item, 
then the bidder gets back the payment for the item and forfeits the value of the item. 
(in HF/LF treatments: The bidder also needs to pay a handling fee of 20/5 
experimental dollars.) This generates a profit of 0 (or -20/-5 in HF/LF treatments) 
for the period.} 
 
Total Payoffs 
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You will be given a starting capital credit balance of 225 experimental dollars which 
includes your show-up fee. The conversion rate from experimental dollars is 1 Yuan 
= 15 experimental dollars. Any profit earned by you in the experiment will be added 
to this sum, and any losses incurred will be subtracted from this sum. The net 
balance of these transactions will be calculated and paid to you in CASH at the end of 
the experiment. The starting capital credit balance, and whatever subsequent profits 
you earn, permit you to suffer losses in one auction to be recouped in part or in total 
in later auctions. However, should your net balance at any time during the 
experiment drop to zero (or less), you will no longer be permitted to participate. 
Instead you earn zero and you’ll be free to leave the auction.  
 
IMPORTANT, your signals are strictly private information and are not to be revealed 
to anyone else. You are not to reveal your bids or profits, nor speak with other 
participants while the experiment is in progress. This is important for the validity of 
the experiment and your cooperation is required for continuing participation in the 
experiment. 
 
Do you have any questions about the instructions or procedures? If you have a 
question, please raise your hand and one of us will come to you.  
 
 



Online Appendix: page 1 
 

 

For Online Publication 

 

 

Online Appendix: Proof for Proposition 1  

 

Proof for Proposition 1 
In general, there are three different cases for an equilibrium bidding function 

regarding the winning bidder’s return decision:  NR (Never Return),  AR (Always 
Return), and PR (Partial Return): 

 Case NR: ܽ  (1 െ (ݔ)ܤ(ߛ െ ݒ െ ܿ. In this case, the winning bidder keeps 
the object all the time. This is because even if s/he pays the highest price (ݔ)ܤ and 
discovers that ܸ =  ., s/he still does not want to return the object for a refundݒ

 Case AR: ܽ  (1 െ (ݔ)ܤ(ߛ െ ݒ െ ܿ. In this case, the winning bidder returns 
the object whenever ܸ =  . This is because if s/he returns the object when paying theݒ
lowest price (ݔ)ܤ, s/he would definitely return it when s/he pays a higher price. 

 Case PR: (1 െ (ݔ)ܤ(ߛ െ ݒ െ ܿ < ܽ < (1 െ (ݔ)ܤ(ߛ െ ݒ െ ܿ. In this case, 
the winning bidder’s return decision when ܸ =   depends on the price s/he pays in theݒ
auction. If (1 െ (ݖ)ܤ(ߛ െ ݒ െ ܿ > ܽ, s/he would return the object; if (1 െ (ݖ)ܤ(ߛ െ
ݒ െ ܿ < ܽ, s/he would not return the object. 

 
Below, we analyze the three cases in turn.  
 

Case NR: Never return 
We first characterize the symmetric equilibrium bidding function in the case 

where the winning bidder never returns the object after winning. Let ܤଵ(ڄ) denote the 
bidding function in this case. Consider buyer 1. Suppose that buyer 1’s signal is ݔ and 
s/he pretends to have signal ݔ and bids ܤଵ(ݔ). Given that when the realization of the 
value is ݒ, bidder 1 will keep the object if s/he wins, his/her expected surplus in the 
auction is given by:  
          Ȇଵ(ݔ,  (ݔ
ܸ)ݎܲ =       = ଵݔ|ுݒ = ܸ]}ܧ(ݔ െ ݖ}ܫ[(ݖ)ଵܤ < ଵݔ|{ݔ = ܸ,ݔ =  {ுݒ
ܸ)ݎܲ+         = ଵݔ|ݒ = ܸ]}ܧ(ݔ െ ݖ}ܫ[(ݖ)ଵܤ < ଵݔ|{ݔ = ܸ,ݔ =  {ݒ

      = (ݔ)ுߤ  ௫௫ ுݒ] െ (ݖ)ுܬ݀[(ݕ)ଵܤ + (ݔ)ߤ  ௫௫ ݒ] െ ,(ݖ)ܬ݀[(ݕ)ଵܤ
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where  
(ݔ)ுߤ         ؠ Pr(ܸ = ଵݔ|ுݒ =  (ݔ

      = ୰(௫భୀ௫|ୀ௩ಹ)୰(ୀ௩ಹ)
୰(௫భୀ௫|ୀ௩ಹ)୰(ୀ௩ಹ)ା୰(௫భୀ௫|ୀ௩ಽ)୰(ୀ௩ಽ)

 

      = ಹ(௫)ఓಹ
ಹ(௫)ఓಹାಽ(௫)ఓಽ

,  

and where ߤ(ݔ) = Pr(ܸ = ଵݔ|ݒ = (ݔ = 1 െ  (ݔ)ுߤ It is important to note that .(ݔ)ுߤ
is increasing in ݔ and ߤ(ݔ) is decreasing in ݔ. Therefore,  

  பȆ
భ(௫,௫)
ப௫  

      = ுݒ](ݔ)ுߤ െ (ݔ)ு݆[(ݔ)ଵܤ + ݒ](ݔ)ߤ െ  (ݔ)݆[(ݔ)ଵܤ

      = (ݔ)ு݆(ݔ)ுߤ] + [(ݔ)݆(ݔ)ߤ ቂఓಹ(௫)௩ಹಹ(௫)ାఓಽ(௫)௩ಽಽ(௫)
ఓಹ(௫)ಹ(௫)ାఓಽ(௫)ಽ(௫)

െ  ቃ(ݔ)ଵܤ

      = (ݔ)ு݆(ݔ)ுߤ] + [(ݔ)݆(ݔ)ߤ ቂఓಹಹ(௫)௩ಹಹ(௫)ାఓಽ(௫)௩ಽಽ(௫)
ఓಹಹ(௫)ಹ(௫)ାఓಽಽ(௫)ಽ(௫)

െ  ቃ(ݔ)ଵܤ

= (ݔ)ு݆(ݔ)ுߤ] + [(ݔ)݆(ݔ)ߤ ቂఓಹ௩ಹఘభ(௫)ఘషభ(௫)ାఓಽ௩ಽ
ఓಹఘభ(௫)ఘషభ(௫)ାఓಽ

െ   .ቃ(ݔ)ଵܤ

The first order condition (FOC) for this bidder’s surplus maximization problem gives:  

μȆଵ(ݔ, (ݔ
μݔ ቤ

௫ୀ௫
= 0. 

Solving for ܤଵ(ݔ), we have  

(ݔ)ଵܤ             = ఓಹ௩ಹఘభ(௫)ఘషభ(௫)ାఓಽ௩ಽ
ఓಹఘభ(௫)ఘషభ(௫)ାఓಽ

. (10) 

 
The FOC is usually only a necessary condition. We shall show below that the 

FOC is also a sufficient condition for the above maximization problem. It is easy to check 

that ఓಹ௩ಹఘభ(௫)ఘషభ(௫)ାఓಽ௩ಽ
ఓಹఘభ(௫)ఘషభ(௫)ାఓಽ

 is increasing in ݔ . Therefore, given the bidding function 

defined in equation (10), the surplus function Ȇଵ(ݔ,  ) is a unimodal function with theݔ
maximum at ݔ = ݔ i.e., increasing for ;ݔ  ݔ and decreasing for ݔ   To see this, for .ݔ
ݔ    ,ݔ

    பȆ
భ(௫,௫)
ப௫  

  = (ݔ)ுߤ] ு݂(ݔ) + (ݔ)ߤ ݂(ݔ)] ቂఓಹ௩ಹఘభ(௫)ఘషభ(௫)ାఓಽ௩ಽ
ఓಹఘభ(௫)ఘషభ(௫)ାఓಽ

െ ఓಹ௩ಹఘభ(௫)ఘషభ(௫)ାఓಽ௩ಽ
ఓಹఘభ(௫)ఘషభ(௫)ାఓಽ

ቃ 

   (ݔ)ுߤ] ு݂(ݔ) + (ݔ)ߤ ݂(ݔ)] ቂఓಹ௩ಹఘభ(௫)ఘషభ(௫)ାఓಽ௩ಽ
ఓಹఘభ(௫)ఘషభ(௫)ାఓಽ

െ ఓಹ௩ಹఘభ(௫)ఘషభ(௫)ାఓಽ௩ಽ
ఓಹఘభ(௫)ఘషభ(௫)ାఓಽ

ቃ 
  = 0, 
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and for ݔ    ,ݔ

    பȆ
భ(௫,௫)
ப௫  

  = (ݔ)ுߤ] ு݂(ݔ) + (ݔ)ߤ ݂(ݔ)] ቂఓಹ௩ಹఘభ(௫)ఘషభ(௫)ାఓಽ௩ಽ
ఓಹఘభ(௫)ఘషభ(௫)ାఓಽ

െ ఓಹ௩ಹఘభ(௫)ఘషభ(௫)ାఓಽ௩ಽ
ఓಹఘభ(௫)ఘషభ(௫)ାఓಽ

ቃ 

   (ݔ)ுߤ] ு݂(ݔ) + (ݔ)ߤ ݂(ݔ)] ቂఓಹ௩ಹఘభ(௫)ఘషభ(௫)ାఓಽ௩ಽ
ఓಹఘ(௫)ఘ(௫)ାఓಽ

െ ఓಹ௩ಹఘభ(௫)ఘషభ(௫)ାఓಽ௩ಽ
ఓಹఘభ(௫)ఘషభ(௫)ାఓಽ

ቃ 
  = 0.  
Therefore, ݔ =  is indeed optimal and the sufficiency of the FOC for the maximization ݔ
is confirmed. Of course, for the above bidding function to be an equilibrium, we need to 
guarantee that the winner never wants to return the object. Note that the bidding function 
is increasing. The condition of no return is equivalent to  

௩ಽାାಳ
ଵିఊ  (ݔ)ଵܤ ֞ ௩ಽାାಳ

ଵିఊ  Ȟ(ݔ). 

 
Case AR: Always return when ܸ =  ݒ

In this case, the winning bidder always returns the object when ܸ =  . Givenݒ
this, buyer 1’s surplus when s/he pretends to have signal ݔ is given by  
    Ȇଶ(ݔ,  (ݔ
  = ܸ)ݎܲ = ଵݔ|ுݒ = ܸ]}ܧ(ݔ െ ݕ}ܫ[(ݖ)ଶܤ < ଵݔ|{ݔ = ܸ,ݔ =  {ுݒ
ܸ)ݎܲ+     = ଵݔ|ݒ = ݕ}ܫ(ݖ)ଶܤߛ}ܧെ](ݔ < ଵݔ|{ݔ = ܸ,ݔ = {ݒ െ ܽ െ ܿ] 

  = (ݔ)ுߤ  ௫௫ ுݒ] െ (ݖ)ுܬ݀[(ݖ)ଶܤ െ (ݔ)ߤ  ௫௫ [ܽ + (ݖ)ଶܤߛ + ܿ]݀ܬ(ݖ).  

Taking the derivative with respect to ݔ, we have  

    பȆ
మ(௫,௫)
ப௫  

  = ுݒ](ݔ)ுߤ െ (ݔ)ு݆[(ݔ)ଶܤ െ ܽ](ݔ)ߤ + ܿ +  (ݔ)݆[(ݔ)ଶܤߛ

  = (ݔ)ு݆(ݔ)ுߤ] + [(ݔ)݆(ݔ)ߤߛ ቂఓಹ(௫)௩ಹಹ(௫)ିఓಽ(௫)(ାಳ)ಽ(௫)
ఓಹ(௫)ಹ(௫)ାఊఓಽ(௫)ಽ(௫)

െ  ቃ(ݔ)ଶܤ

  = (ݔ)ு݆(ݔ)ுߤ] + [(ݔ)݆(ݔ)ߤߛ ቂఓಹಹ(௫)௩ಹಹ(௫)ିఓಽಽ(௫)(ାಳ)ಽ(௫)
ఓಹಹ(௫)ಹ(௫)ାఊఓಽಽ(௫)ಽ(௫)

െ  ቃ(ݔ)ଶܤ

  = (ݔ)ு݆(ݔ)ுߤ] + [(ݔ)݆(ݔ)ߤߛ ቂఓಹ௩ಹఘభ(௫)ఘషభ(௫)ିఓಽ(ାಳ)
ఓಹఘభ(௫)ఘషభ(௫)ାఊఓಽ

െ   .ቃ(ݔ)ଶܤ

The first order condition for bidder 1’s surplus maximization problem is  

μȆଶ(ݔ, (ݔ
μݔ ቤ

௫ୀ௫
= 0. 

Solving for ܤଶ(ݔ), we have 

(ݔ)ଶܤ               = ఓಹ௩ಹఘభ(௫)ఘషభ(௫)ିఓಽ(ାಳ)
ఓಹఘభ(௫)ఘషభ(௫)ାఊఓಽ

. (11)
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The FOC is usually only a necessary condition. It is easy to check that 
ఓಹ௩ಹఘభ(௫)ఘషభ(௫)ିఓಽ(ାಳ)

ఓಹఘభ(௫)ఘషభ(௫)ାఊఓಽ
 is increasing in ݔ. Similar to the argument in Case NR, the 

surplus function Ȇଶ(ݔ, ݔ ) is a unimodal function with maximum atݔ =  when using ݔ
the bidding function defined in equation (11). As a result, the sufficiency of the FOC for 
the maximization is confirmed. 

Again, for this bidding function to be an equilibrium, the condition for “always 
returning” has to be satisfied. Given that the bidding function is increasing, this condition 
is equivalent to  

   ௩ಽାାಳଵିఊ   (ݔ)ଶܤ

֞ ݒ + ܽ + ܿ
1 െ ߛ  (ݔ)ିଵߩ(ݔ)ଵߩுݒுߤ െ ܽ)ߤ + ܿ)

(ݔ)ିଵߩ(ݔ)ଵߩுߤ + ߤߛ
 

֞ ݒ)ߤ + ܽ + ܿ)
(1െߤ (ߛ  (ݔ)ିଵߩ(ݔ)ଵߩுݒுߤ െ ܽ)ߤ + ܿ)

(ݔ)ିଵߩ(ݔ)ଵߩுߤ + ߤߛ
 

֞ ݒ)ߤ + ܽ + ܿ)[ߤுߩଵ(ݔ)ߩିଵ(ݔ) +  [ߤߛ
     (1െߤ (ݔ)ିଵߩ(ݔ)ଵߩுݒுߤ](ߛ െ ܽ)ߤ + ܿ)] 
֞ ݒ)ߤ + ܽ + ܿ)[ߤுߩଵ(ݔ)ߩିଵ(ݔ) + [ߤߛ + ݒ)ߤ + ܽ + ܿ)[ߤ(1 െ  [(ߛ
     (1െߤ (ݔ)ିଵߩ(ݔ)ଵߩுݒுߤ](ߛ െ ܽ)ߤ + ܿ)] + ݒ)ߤ + ܽ + ܿ)[ߤ(1െ  [(ߛ
֞ ݒ)ߤ + ܽ + ܿ)[ߤுߩଵ(ݔ)ߩିଵ(ݔ) +  [ߤ
     (1െߤ (ݔ)ିଵߩ(ݔ)ଵߩுݒுߤ](ߛ + ߤ ܸ] 

֞ ௩ಽାାಳ
ଵିఊ  Ȟ(ݔ)  

 
 
Case PR: Cutoff rule when ܸ =  ݒ

In this case, there is an endogenously determined cutoff in the winning bidder’s 
return decision. We denote this cutoff as כݔ. Buyer 1’s surplus by pretending to have 
signal ݔ is given by  
  ȫ(ݔ,  (ݔ

=

ە
ۖ
۔
ۖ
Ȇۓ

ଵ(ݔ, ,(ݔ ݔ     ݂݅     ;כݔ

(ݔ)ுߤ ቄ  ௫௫ ுݒ] െ ቅ(ݖ)ு݆݀[(ݖ)ܤ
(ݔ)ߤ+ ቄ  ௫כ

௫ ݒ] െ (ݖ)݆݀[(ݖ)ܤ െ   ௫
௫כ [ܽ + (ݕ)ܤߛ + ܿ]݆݀(ݖ)ቅ , ݔ     ݂݅     .כݔ

 

Note that the above function is continuous. Taking the derivative of the above with 
respect to ݔ, we have 
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           பஈ(௫,௫)
ப௫ =

ە
۔

பȆۓ
భ(௫,௫)
ப௫ , ݔ   ݂݅     ;כݔ

பȆమ(௫,௫)
ப௫ , ݔ   ݂݅     .כݔ

 (12) 

Although ȫ(ݔ, (ݔ ് Ȇଶ(ݔ, ݔ ) whenݔ  we have பஈ(௫,௫) ,כݔ
ப௫ = பȆమ(௫,௫)

ப௫ . From the first 

order condition, we can derive the bidding function as follows:  

 B(ݔ) =

ە
۔

(ݔ)ଵܤۓ = ఓಹ௩ಹఘభ(௫)ఘషభ(௫)ାఓಽ௩ಽ
ఓಹఘభ(௫)ఘషభ(௫)ାఓಽ

, ݔ   ݂݅   ;כݔ

(ݔ)ଶܤ = ఓಹ௩ಹఘభ(௫)ఘషభ(௫)ିఓಽ(ାಳ)
ఓಹఘభ(௫)ఘషభ(௫)ାఊఓಽ

, ݔ   ݂݅   .כݔ
 (13) 

Note that כݔ is determined by 

(כݔ)ଵܤ =
ݒ + ܽ + ܿ

1 െ ߛ , 

i.e., 

Ȟ(כݔ) = ௩ಽାାಳ
ଵିఊ . 

Note that functions ܤଶ(ݔ)  and ܤଵ(ݔ)  cross each other at כݔ . Now consider the 
sufficient condition. Given the bidding function (13), from the proof in Cases 1 and 2, we 
know that Ȇଵ(ݔ, ݔ ) is a unimodal function with the maximum atݔ = ݔ when ݔ   ;כݔ
and Ȇଶ(ݔ, ݔ ) is a unimodal function with the maximum atݔ = ݔ when ݔ   We .כݔ
shall show that ȫ(ݔ, ݔ ) is also a unimodal function with maximum atݔ =  Consider .ݔ
ݔ  ݔ for example. For ,כݔ  ݔ    from the first formulaݔ the payoff is increasing in ,ݔ
of (12). For ݔ  ݔ   . from the first formula of (12)ݔ the payoff is decreasing in ,כݔ
For כݔ  ݔ  ݔ , the payoff is decreasing in ݔ  from the second formula of (12). 
Therefore, ȫ(ݔ, ݔ ) achieves its maximal value atݔ = ݔ . Similar arguments can be 
applied to the case of ݔ   Thus, the sufficient condition for the maximization is .כݔ
satisfied. 

In this equilibrium, when ܸ =  , the winning bidder returns the object if s/heݒ
pays too much, and keeps the object otherwise. For this to happen, ߛ has to satisfy the 
following condition:  

(ݔ)ଵܤ      > ௩ಽାାಳ
ଵିఊ > (ݔ)or, Ȟ ,(ݔ)ଵܤ > ௩ಽାାಳ

ଵିఊ > Ȟ(ݔ).  

Furthermore, the intervals for the above three cases do not overlap with each other and 
they cover the entire range of ܽ and ߛ. Thus we can conclude that a unique symmetric 
perfect Bayesian Nash equilibrium exists for any value of ܽ and ߛ.  
 
Proposition 1 simply summarizes all the situations. 

 


