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Abstract

We consider the problem of distributing the proceeds generated from a joint venture in

which the participating agents are hierarchically organized. We introduce and characterize

a family of allocation rules where revenue ‘bubbles up’ in the hierarchy. The family is

flexible enough to accommodate the no-transfer rule (where no revenue bubbles up) and

the full-transfer rule (where all the revenues bubble up to the top of the hierarchy).

Intermediate rules within the family are reminiscent of popular incentive mechanisms for

social mobilization or multi-level marketing.
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1 Introduction

Agents often organize themselves into hierarchies when involved in joint ventures (e.g., Mookher-

jee, 2006). There exist numerous reasons to explain this fact. The hierarchical form, in which

workers deal with the routine problems and managers deal with the exceptions, arises as an

optimal way to structure the organization of knowledge (e.g., Garicano, 2000). Ownership or

power structures generate natural hierarchies with related chains of command and responsibil-

ity (e.g., Ichniowski and Shaw, 2003). It is also argued that workplace structures that are rich

in sequentiality are desirable from the point of view of incentives (e.g., Winter, 2010). Fur-

thermore, hierarchies yield stable cooperation structures when it comes to allocating resources

(e.g., Demange, 2004). Hierarchies may also relate to crowdsourcing and social mobilization

systems (e.g., Pickard et al., 2011), as well as multi-level marketing (e.g., Emek et al., 2011),

task solving systems such as Amazon Mechanical Turk (e.g., Rand, 2012), or financial systems

such as BitCoin (Babaioff et al. 2012).

In this paper, we are concerned with the problem of sharing the collective proceeds generated

from hierarchical ventures. To analyze this problem, we consider a stylized model in which a

group of agents are involved in a joint venture. The group is structured in layers, each reflecting

a different degree of responsibility, command, or even seniority. Thus, an agent located at a

given layer is in command of (or, at least, held accountable for) all agents located at any lower

layer. In such a hierarchy, agents are characterized by their degree of responsibility (location

in the hierarchy), and the individual revenue they produce for the joint venture. Based on

that information, the issue is how to allocate the overall produced revenue among the agents.

Our stylized model is flexible enough to accommodate various forms of organizations that

are frequent in different professional sectors. Instances are law firms (e.g., Galanter and Palay,

1990), physicians’ practices (e.g., Kletke et al., 1996) as well as renowned architectural practices

(e.g., Winch and Schneider, 1993).

Two focal, and somewhat polar, allocation rules can be considered for the setting described

above. On the one hand, the no-transfer rule, in which each agent keeps her revenue (thus,

ignoring the hierarchy). On the other hand, the full-transfer rule, in which the agent at the top

of the hierarchy gets all the proceeds (thus, ignoring individual contributions). A compromise

between these two polar rules, in which certain upward transfers are allowed, can be formalized,

and we do so in this paper. The resulting family of geometric rules is close in spirit to the MIT

strategy (e.g., Pickard et al., 2011), the winning strategy for the so-called DARPA Network
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Challenge.1 It is also reminiscent of multi-level marketing strategies (e.g., Emek et al., 2011)

in which individuals are compensated not only for the sales they generate, but also for the

sales of those they recruited.2 These strategies can be seen as specific geometric (incentive

tree) mechanisms (e.g., Lv and Moscibroda, 2013) that are usually considered in the computer

science literature.3 An incentive tree models the participation of people in crowdsourcing or

human tasking systems. An incentive tree mechanism is an algorithm that determines how

much each individual participant shall receive based on all the participants’ contributions, as

well as the structure of the solicitation tree. In geometric incentive tree mechanisms, a certain

fraction α ‘bubbles up’ from one agent to the immediate superior, a fraction α2 bubbles up

to the immediate superior of the immediate superior, and so forth. In our case, a geometric

rule states that the lowest-ranked agent gets a share λ of her revenue, her immediate superior

gets a share λ of her revenue, and of any remaining ‘surplus’ from the lowest-ranked agent,

etc. Thus, there is an obvious connection between the geometric rules we consider here and

geometric incentive tree mechanisms. It is worth emphasizing, nevertheless, that the latter are

typically not budget balanced and, thus, cannot be considered as sharing rules.

We provide normative foundations for the family of geometric rules described above. In the

benchmark case of linear hierarchies, we show that the family is characterized by four simple

and intuitive axioms (Lowest Rank Consistency, Highest Rank Revenue Independence, Highest

Rank Splitting Neutrality, and Scale Invariance). If we add an additional axiom, referring

to two-agent problems in which the highest-ranked agent is not productive, the intermediate

geometric rule for which λ = 0.5 is singled out within the family. If, instead, axioms modeling

order preservation (with respect to either individual revenues, or hierarchy positions) are added,

the two polar rules are obtained.

The member of the family arising when λ = 0.5, which translates to our context the MIT

strategy mentioned above, is also singled out as an optimal rule, when we enrich our framework

to deal with endogenous hierarchies. More precisely, suppose the aim is to maximize the

expected revenues of the agent at the top of the hierarchy (the highest-ranked agent), when the

1This is a social network mobilization experiment, conducted by the Defense Advanced Research Projects

Agency, to identify distributed mobilization strategies and demonstrate how quickly a challenging geolocation

problem could be solved by crowdsourcing.
2Famous cases include companies such as Avon Products, Inc., or Herbalife International.
3Computer scientists have been concerned with mechanisms that are immune to sybil attacks in which a

reputation system is subverted by forging identities in peer-to-peer networks (e.g., Drucker and Fleischer, 2012).

This is actually a type of manipulation to which the mechanism arising from the MIT strategy is susceptible.
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process to get subordinates is probabilistic and based on the upward transfers the rules allow.

The highest-ranked agent, while selecting a geometric rule, would face a tradeoff: high upward

transfers vs. weak incentives for subordinates to join the hierarchy voluntarily. We show that

the optimal rule to deal with such a tradeoff is precisely the intermediate geometric rule for

which λ = 0.5. This occurs, not only when (possible) subordinates are myopic, but also when

they are farsighted and take into account their ability to hire further subordinates themselves.

Our contribution is also related to the sizable literature on fair division in networks. This

literature mostly organizes itself into two strands.

On the one hand, the strand in which the networks give rise to cooperative games and

where the structure of the network is exploited in order to define fair allocation among agents

connected in the graph. The canonical case is that of cost sharing within a rooted tree, which

can be traced back to Claus and Kleitman (1973) and Bird (1976). For fixed trees, the so-called

Bird rule, which can be seen as a counterpart to the no-transfer rule, and the so-called serial

rules, which convey a different form of transfers to the ones described above, are prominent.

This is, for instance, the case in the problem of sharing a polluted river (e.g., Ni and Wang, 2007;

Dong et al., 2012) which is reminiscent of the problem considered here (with the modification of

considering negative revenues, and thus interpreting them as costs). Another specific (and well-

known) instance of this strand of the literature is the so-called airport problem (e.g., Littlechild

and Owen, 1973), in which the runway cost has to be shared among different types of airplanes

with a linear graph representing the runway. The rules (and some of the axioms) highlighted

in our work will also be reminiscent of some of the rules considered for airport problems.

A common feature for the models within this strand of the literature is that the cheapest

connection (minimal distance) to the root becomes a crucial parameter, as it represents the

stand-alone option for the agents. This is not the case in our model, where the crucial feature

is the combination of the agents’ revenues and the position in the hierarchy. Consequently,

stand-alone options are not naturally specified.

Another strand of the literature considers networks that restrict cooperation. Myerson

(1977, 1980) pioneered this approach by using graphs to represent communication structures

in cooperative games. A central result within this approach is that if agents are allowed to

cooperate in tree structures, the original TU-game need only be superadditive to guarantee that

the graph-restricted game has a non-empty core (e.g., Le Breton et al., 1992, Demange, 1994).

In particular, our analysis can be related to the case of TU-games restricted by a permission

structure (e.g., Gilles et al., 1992, van den Brink and Gilles, 1996), precedence structure (e.g.,
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Faigle and Kern, 1992, Grabisch and Sudhölter, 2016) or peer groups (e.g., Branzei et al., 2002).

For instance, if hierarchies are interpreted as permission structures, and these are restricting a

predefined additive game where the worth of a coalition equals the sum of revenues for agents

in that coalition, our revenue sharing problem can be construed as a game with permission

structure (Gilles et al., 1992) where agents need permission from all their superiors before they

can cooperate (the conjunctive approach). For such restricted games, a generalization of the

Shapley value, dubbed the permission value (characterized in van den Brink and Gilles, 1996,

and van den Brink, 1997), coincides with the serial rule on our models for linear and branch

hierarchies. In other words, it shares the revenue of each agent equally among this agent and

all of her superiors. As we shall see later, this is a radically different solution from the family

of geometric rules presented here.

It is important to stress that, in our model, there is no predefined cooperative game where

the hierarchies are restricting cooperation. Instead, we relate fairness requirements directly to

the hierarchical network structure.

The rest of the paper is organized as follows. In Section 2, we analyze the basic model in

which the hierarchy can be expressed as a line. We introduce and characterize our family of

geometric rules for such a setting. We also consider a setting of endogenous hierarchies, which

allows us to link further the geometric rules to incentive tree mechanisms, as well as to single

out the intermediate rule of the family as optimal. In Section 3, we generalize the analysis

to the case of branch hierarchies (not necessarily linear) and show how the results from the

linear case generalize to such a setting with minimal adjustments. In Section 4, we extend the

analysis further to account for general hierarchies. We conclude in Section 5.

2 Linear hierarchies

We present in this section our benchmark model dealing with linear hierarchies. Suppose there

exists a set of potential agents, identified with the set of natural numbers. Let M be the

class of finite subsets of the natural numbers, with generic element M . Each set M ∈ M will

represent a linear hierarchy, with the convention that lower numbers in M refer to lower

positions in the hierarchy. For instance, if M = {1, . . . ,m}, then 1 is representing the agent

with the lowest rank in the hierarchy, whereas m is representing the agent with the highest

rank.

Agents in each linear hierarchy will be involved in a joint venture to which all of them
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contribute. Formally, for each i ∈ M , let ri ∈ R+ be the revenue that agent i generates,

and r = (ri)i∈M the profile of revenues.4 We assume the hierarchical structure is a chain of

command in the sense that every agent i refers to her direct superior in the hierarchy.

A linear hierarchy revenue sharing problem, or simply, a problem is a duplet consisting of

a linear hierarchy M ∈ M and a profile of revenues r ∈ R|M |+ . Let RM be the set of problems

involving the hierarchy M and R =
⋃
M∈MRM .

Given a problem (M, r) ∈ R, an allocation is a vector x ∈ R|M |+ satisfying balance, i.e.,∑
i∈M xi =

∑
i∈M ri.

An allocation rule is a mapping φ assigning to each problem (M, r) ∈ R an allocation

φ(M, r). We assume from the outset that rules are anonymous, i.e., for each problem (M, r) ∈

R, and for each strictly monotonic function g : M → M ′, φg(i)(M
′, r′) = φi(M, r), where

r′g(i) = ri, for each i ∈ M . Thus, in what follows for this section, we assume, without loss of

generality, that M = {1, . . . ,m}.

2.1 Geometric rules

Two (polar) examples of rules are those capturing the minimal and maximal possible revenue

transfers from subordinates to their superiors in the hierarchy.

More precisely, for the first one, each agent in the hierarchy transfers nothing to her supe-

riors. Formally,

No-Transfer rule, NT: For each (M, r) ∈ R,

NT (M, r) = r.

For the second one, the highest-ranked agent receives all revenues. Formally,

Full-Transfer rule, FT: For each (M, r) ∈ R,

FT (M, r) =

(
0, . . . , 0,

∑
i∈M

ri

)
.

Between the two rules, a vast number of rules can be imagined. Instead of endorsing a

specific rule directly, we take an axiomatic approach and propose first several axioms reflecting

principles that we find normatively appealing in the context of these problems.

We start with the principle of consistency, an operational notion that has played an instru-

mental role in axiomatic analyses of diverse problems, and for which normative underpinnings

4For each M ∈M, each S ⊆M , and each z ∈ Rm, let zS = (zi)i∈S . For each i ∈M , let z−i = zM\{i}.
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have also been provided (e.g., Thomson, 2012). Here we concentrate on a minimalistic version

of the principle referring only to the case in which the agent with the lowest rank leaves the

hierarchy after the allocation took place. It seems natural to assume that the lowest-ranked

agent refers to his immediate superior in the linear hierarchy to terminate his relationship.

Thus, we assume that, after leaving, a new problem arises in which the agent with the second-

lowest rank in the original problem becomes the lowest-ranked agent, but now also generating

the eventual revenue that the leaving agent generated in the original problem, and did not take

in the allocation. The axiom then states that the solution of the new problem agrees with the

solution of the original problem for all the standing agents in the hierarchy.5 Formally,

Lowest Rank Consistency: For |M | ≥ 2, where (M, r) ∈ R, and (M \ {1}, (r2 + r1 −

φ1(M, r), rM\{1,2})) ∈ R, we have,

φM\{1}(M, r) = φ
(
M \ {1}, (r2 + r1 − φ1(M, r), rM\{1,2})

)
.

The next two properties focus on the opposite end of the hierarchy. As we imagine that the

highest-ranked agent can monitor and veto changes in generation of revenue and changes in the

hierarchy we need conditions that protect the subordinates from changes and manipulation of

revenues beyond their control.

The first one says that the size of the revenue generated by the highest-ranked agent is

irrelevant for the assignments to the subordinates: A plausible rationale for this axiom is that,

in a linear hierarchy, subordinates have no influence on the revenue generated by the highest-

ranked agent and, thus, should not be affected by its size. Formally,

Highest Rank Revenue Independence: For each (M, r) ∈ R, and each r̂m ∈ R+,

φM\{m}(M, r) = φM\{m} (M, (r−m, r̂m)) .

The second one avoids certain strategic manipulations by the highest-ranked agent. More

precisely, it says that if the highest-ranked agent splits her revenue into two amounts, repre-

sented by two agents ranked highest in the new hierarchy, the remaining agents should not be

affected.6 Formally,

5This axiom is actually reminiscent of the so-called “first agent consistency” axiom proposed by Potters and

Sudhölter (1999) for airport problems.
6Axioms of this sort have been widely explored in various models of resource allocation (e.g., Ju, 2013).

Note that our axiom only requires “splitting-proofness” in a specific situation, which makes it weaker than the

standard counterpart axioms in such a literature.
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Highest Rank Splitting Neutrality: For each (M, r) ∈ R, let (M ′, r′) ∈ R be such that

M ′ = M ∪ {k}, k > m, rm = r′k + r′m, and r′M\{m} = rM\{m}. Then,

φM\{m}(M
′, r′) = φM\{m} (M, r) .

In a sense, the previous two axioms convey certain rights and obligations for the highest-

ranked agent, as well as for the remaining members of the hierarchy. On the one hand, Highest

Rank Revenue Independence says that the highest-ranked agent is entitled to the entire revenue

she generated, whereas the remaining agents must respect that. On the other hand, Highest

Rank Splitting Neutrality says that the highest-ranked agent is entitled to bring a newcomer to

the top of the hierarchy with whom to split her revenue, but the remaining agents are entitled

to preserve their allocations intact after such a move.

Finally, we consider a property stating that if revenues are scaled by a factor α, so is the

solution.7

Scale Invariance: For each (M, r) ∈ R, and each α > 0,

φ(M,αr) = αφ(M, r).

The no-transfer rule and the full-transfer rule presented above satisfy the previous four

axioms. Both rules are extreme in an obvious sense, which suggests that the set of all rules

satisfying the axioms should consist of those resulting from a compromise between them. It

turns out that this compromise can be described as follows:

Suppose the lowest-ranked agent gets a share λ ∈ [0, 1] of her revenue, her immediate

superior gets a share λ of her revenue, as well as any ‘surplus’ from the lowest-ranked agent,

etc., and the highest-ranked agent gets the residual. Hence, if M = {1, . . . ,m}, payment shares

are determined recursively as

xλi = λri + (1− λ)xλi−1, (1)

for each i ∈M \ {m}, with the notational convention that xλ0 = 0. Furthermore,

xλm =
m∑
i=1

ri −
m−1∑
i=1

xλi . (2)

Note that (1) and (2) can be given the closed-form expressions

xλi = λ
(
ri + (1− λ)ri−1 + · · ·+ (1− λ)i−1r1

)
,

7This axiom appears frequently in axiomatic studies (e.g., Aumann and Serrano, 2008).
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for i = 1, . . . ,m− 1 and

xλm = rm + (1− λ)rm−1 + · · ·+ (1− λ)m−1r1.

Denote the corresponding family of rules so defined, which we call geometric rules, by

{φλ}λ∈[0,1]. Note that φ1 corresponds to the no-transfer rule, whereas φ0 corresponds to the

full-transfer rule.

Example 1: Consider the problem ({1, 2, 3}, (12, 6, 12)), i.e., the linear hierarchy made of three

agents, 1, 2, and 3, in which agent 1 generates a revenue of 12, agent 2 a revenue of 6, and

agent 3 a revenue of 12. Figure 1 below illustrates the situation.

6

12

2

3

121

?

?

Figure 1: A linear hierarchy.

It is straightforward to see that the no-transfer rule selects the allocation (12, 6, 12), whereas

the full-transfer rule selects the allocation (0, 0, 30). In general, the geometric rules select the

allocation

(12λ, (18− 12λ)λ, 30(1− λ) + 12λ2),

for each λ ∈ [0, 1]. In particular, for λ = 0.5, the corresponding geometric rule selects the

allocation (6, 6, 18). Thus, in such a case, agent 2 receives the same amount as agent 1, despite

the fact that agent 1 is generating twice the revenue.

When agents generate equal revenues, the geometric rules can be fully ranked by means of

the Lorenz criterion %L, according to the parameter describing the family.8 More precisely, for

8Given two vectors, we say that the former Lorenz dominates the latter if its smallest coordinate is at least

as large as the smallest coordinate of the second vector, the sum of its two smallest coordinates is at least as

large as the corresponding sum for the second vector, and so on.
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each (M, r) ∈ R, such that ri = rj for each pair i, j ∈ N , it follows that φλ(M, r) %L φ
λ′(M, r)

if and only if λ ≥ λ′.

Our main result, stated next, shows that the family of geometric rules is characterized by

the combination of the axioms introduced above.

Theorem 1 A rule φ satisfies Lowest Rank Consistency, Highest Rank Revenue Independence,

Highest Rank Splitting Neutrality, and Scale Invariance if and only if it is a geometric rule,

i.e., φ ∈ {φλ}λ∈[0,1].

Proof: It is not difficult to see that the geometric rules satisfy all the axioms in the state-

ment of the theorem. As an illustration, we show that they satisfy lowest rank consistency.

To do so, let λ ∈ [0, 1]. Let (M, r) ∈ R. For each i ∈ M , let xi = φλi (M, r) and x̃i =

φλi
(
M \ {1}, (r2 + r1 − x1, rM\{1,2})

)
. Then, x̃2 = λ(r2 + r1 − x1) = x2. For each j 6= m,

x̃j = λrj + (1−λ)x̃j−1. Thus, by induction, x̃j = xj and x̃m = rm + rm−1−x1−
∑n−1

k=2 x̃k = xm.

Now, let φ be a rule satisfying all the axioms in the statement of the theorem. First, let

M = {1} and r = r1. By balance, φ1(M, r) = r1 = φλ1(M, r), for each λ ∈ [0, 1]. Next, add

a superior agent 2 with revenue r2. Let M ′ = {1, 2} and r′ = (r1, r2). Now we claim that

φ1(M
′, r′) ∈ [0, r1], so φ1(M

′, r′) = λr1 = φλ1(M ′, r′) for some λ ∈ [0, 1]. Indeed, assume that

φ1(M
′, r′) > r1; then by highest rank revenue independence φ1(M

′, r′) = φ1(M
′, (r′1, 0)) so by

balance φ1(M
′, r′) ≤ r1 - a contradiction.

By highest rank revenue independence, λ is independent of r2. Moreover, λ is independent

of r1. To see this, suppose, by contradiction, that we have r̃ = (r̃1, r̃2) with r2 = r̃2 and

φ1(M
′, r′) = λr1 and φ1(M

′, r̃) = λ̃r̃1 with λ 6= λ̃. Then, by Scale Invariance, φ1(M
′, r̃1
r1
r) =

r̃1
r1
λr1 = λr̃1 6= λ̃r̃1, contradicting our previous conclusion that λ is independent of r2. Now, by

balance, φ2(M
′, r′) = r2 − r1 − φ1(M

′, r′) = φλ2(M ′, r′).

Next, suppose there is λ such that φ = φλ for all problems with up to k agents, k ≥ 2.

Now, consider the problem (Mk, rk) with Mk = {1, . . . , k} and rk = (r1, . . . , rk) and add

an agent k + 1. By highest rank revenue independence, and highest rank splitting neutrality,

φi(M
k+1, rk+1) = φi(M

k, rk) = φλi (M
k, rk) for all i ≤ k − 1. By lowest rank consistency,

φk(M
k+1, rk+1) = φk(M

k+1\{1}, rk+1
2 +rk+1

1 −φ1(M
k+1, rk+1), rMk+1\{1,2}). As, by the induction

hypothesis, φ1(M
k+1, rk+1) = φλ1(Mk, rk) = λr1, it follows by lowest rank consistency that

φk(M
k+1, rk+1) = φλk(M

k+1, rk+1). Finally, by balance,

φk+1(M
k+1, rk+1) = rk+1 −

k∑
i=1

φλi (M
k+1, rk+1) = φλk+1(M

k+1, rk+1).
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The axioms of Theorem 1 are logically independent:

• The classical serial rule (e.g., Moulin and Shenker, 1992) states that each agent’s revenue

is split equally among her superiors and herself. In Example 1, it would yield the allo-

cation (4, 7, 19). The serial rule violates highest rank splitting neutrality, but satisfies the

remaining axioms in Theorem 1.

• Another natural rule is the one in which all agents keep a fraction λ of their own revenue

and the highest-ranked agent receives the residual. In Example 1, it would yield the

allocation (6, 3, 21), for the case with λ = 0.5. This rule violates lowest rank consistency,

but satisfies the remaining axioms in Theorem 1.

• Consider the rule in which agents from the bottom of the hierarchy keep their revenues,

provided these are not higher than the aggregate revenue of their superiors. As soon

as there is an agent with a higher revenue than the aggregate revenue of her superiors

the rule states this agent, and all her superiors, should transfer their revenues to the

highest-ranked agent. This rule violates highest rank revenue independence, but satisfies

the remaining axioms in Theorem 1.

• Finally, consider the rule in which agents from the bottom of the hierarchy keep their

revenues, provided these are not higher than 1. As soon as there is an agent with a higher

revenue than 1, the rule states this agent, and all her superiors, should transfer their

revenues to the highest-ranked agent. This rule violates scale invariance, but satisfies the

remaining axioms in Theorem 1.

In what follows, we complement the above characterization by adding several new axioms,

which will single out focal members of our family.

We start with an axiom referring to canonical two-agent problems in which the highest-

ranked agent is not productive. For those settings, one might find appealing to allocate revenues

equally. A plausible rationale is that, although the lowest-ranked agent is the only productive

one, the highest-ranked agent is also necessary for production to take place. Formally,9

Canonical Fairness: For each x ∈ R+, φ({1, 2}, (x, 0)) = (x
2
, x
2
).

9In two-player games with permission structures (e.g., van den Brink and Gilles, 1996), canonical fairness

would follow from the combination of the so-called structural monotonicity axiom and the necessary player

property.
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The geometric rule for which λ = 0.5 is the only geometric rule satisfying this axiom. In

fact, and as shown by the next result, the rule is characterized when replacing scale invariance

in Theorem 1 by this new axiom.10

Theorem 2 A rule φ satisfies Lowest Rank Consistency, Highest Rank Revenue Independence,

Highest Rank Splitting Neutrality, and Canonical Fairness if and only if it is the intermediate

geometric rule for which λ = 0.5, i.e., φ ≡ φ0.5.

Proof: By Theorem 1, we know that φ0.5 satisfies the first three axioms of the theorem. It

is straightforward to see that it also satisfies canonical fairness. Conversely, let φ be a rule

satisfying the axioms of the theorem. First, let M = {1, 2} and r = (r1, r2). By highest rank

revenue independence, φ1(M, r) = φ1(M, (r1, 0)). By canonical fairness, φ1(M, (r1, 0)) = r1
2

.

Then, by balance, φ(M, r) = ( r1
2
, r2 + r1

2
) = φ0.5(M, r).

Next, suppose that φ ≡ φ0.5 for all problems with up to k agents, k ≥ 2. Now, consider

the problem (Mk, rk) with Mk = {1, . . . , k} and rk = {r1, . . . , rk} and add an agent k + 1.

By highest rank revenue independence, and highest rank splitting neutrality, φi(M
k+1, rk+1) =

φi(M
k, rk) = φ0.5

i (Mk, rk) for all i ≤ k − 1. By lowest rank consistency, φk(M
k+1, rk+1) =

φk(M
k+1 \{1}, rk+1

2 + rk+1
1 −φ1(M

k+1, rk+1), rMk+1\{1,2}) and thus, by the induction hypothesis,

φk(M
k+1, rk+1) = φ0.5

k (Mk+1, rk+1). Finally, by balance,

φk+1(M
k+1, rk+1) = rk+1 −

k∑
i=1

φ0.5
i (Mk+1, rk+1) = φ0.5

k+1(M
k+1, rk+1).

The rule φ0.5 satisfies a stronger version of canonical fairness, which indicates that in a

hierarchy in which only the lowest-ranked agent is productive, each agent gets one half of

the incoming revenue and transfers the remainder. More precisely, if the revenue of the lowest-

ranked agent is x, this agent keeps x/2, her immediate superior gets x/4, the immediate superior

to the latter gets x/8, etc. This is precisely the rationale behind the so-called MIT strategy,

which is described in more detail below.

We now consider two new axioms formalizing two polar forms of order preservation.

The first axiom states that agents producing higher revenues should be awarded more. The

second states that agents located higher in the hierarchy should be awarded more. Formally,

10If instead of canonical fairness, one considers the axiom stating that those (canonical) two-agent problems

are solved in a specific (inegalitarian) way, say (λx, (1−λ)x), then the corresponding geometric rule (φλ) would

be characterized.
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Revenue Order Preservation: For each (M, r) ∈ R, and each pair i, j ∈ M such that

ri ≥ rj, φi(M, r) ≥ φj(M, r).

Hierarchical Order Preservation: For each (M, r) ∈ R, and each pair i, j ∈ M , where

i ≥ j, φi(M, r) ≥ φj(M, r).11

The full-transfer rule is the only geometric rule satisfying the first axiom, whereas the no-

transfer rule is the only geometric rule satisfying the second axiom. More interestingly, and

as shown by the next result, each of the rules is characterized by the corresponding axiom, in

combination with either highest rank splitting neutrality or highest rank revenue independence.

Theorem 3 The following statements hold:

• A rule satisfies Highest Rank Revenue Independence and Revenue Order Preservation if

and only if it is the no-transfer rule.

• A rule satisfies Highest Rank Splitting Neutrality and Hierarchical Order Preservation if

and only if it is the full-transfer rule.

Proof: We concentrate on the non-trivial implication of each statement. First, let φ be a rule

satisfying highest rank revenue independence and revenue order preservation. Let (M, r) ∈ R

be given. We claim first that
∑m−1

j=1 φj(M, r) ≤
∑m−1

j=1 rj. By contradiction, assume other-

wise. Then, by highest rank revenue independence we can vary rm without affecting the shares

of the other agents (i = 1, . . . ,m − 1). Thus, let rm = 0, which contradicts balance. As∑m−1
j=1 φj(M, r) ≤

∑m−1
j=1 rj, balance implies that φm(M, r) ≥ rm. Now, for each i 6= m letting

rm = ri we get, by revenue order preservation, that φi(M, r) = φm(M, r) ≥ ri. Now, balance

gives φi(M, r) = ri for all i ∈M .

Now, let φ be a rule satisfying highest rank splitting neutrality and hierarchical order preser-

vation. By contradiction, suppose that there exists a problem (M, r) ∈ R and an agent i 6= m,

such that φi(M, r) = ε > 0. Let (M ′, r′) be defined by setting M ′ = {1, . . . ,m+ x}, r′i = ri for

all i < m, and
∑m+x

j=m r
′
j = rm. By highest rank splitting neutrality φi(M

′, r′) = φi(M, r) for all

i < m. Now, choose x >
∑m+x

j=1 φj(M
′,r′)

ε
. By hierarchical order preservation, φj(M

′, r′) ≥ ε for

all j = m, . . . ,m+ x, which contradicts balance.

11Hierarchical order preservation corresponds to structural monotonicity when applied to additive games with

a linear permission structure (e.g., van den Brink and Gilles, 1996).
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2.2 Optimal geometric rules

Our approach so far has been entirely normative. We singled out the parametric family of

geometric rules satisfying compelling incentive and fairness constraints. Now, let us assume

that the highest-ranked agent has the power to implement a member of this family, and the

question is which one would maximize the highest-ranked agent’s payoff. It is clear that, for a

given fixed hierarchy, the highest-ranked agent will maximize her payoff by choosing the full-

transfer rule. However, a full-transfer rule provides no incentive to join the hierarchy in the first

place. So, what if the highest-ranked agent starts on her own and needs to build a hierarchy

from the start? It is natural to expect that the probability of recruiting a (revenue-generating)

subordinate is connected to her potential earnings.

A dilemma thus emerges: a geometric rule associated with a low λ yields a high upward

transfer, but also reduces the subordinates’ (expected) payoff and, thus, the incentive to join

the hierarchy voluntarily. We aim to address such a dilemma in this subsection. For ease of

exposition, we assume in what follows that all revenues are normalized to unity.

One approach is to assume that agents are somewhat myopic, which would translate into

stating that the probability of getting a subordinate is equal to λ itself. Another approach is to

assume that subordinates are farsighted, which would imply that they take into account their

ability to hire further subordinates from whom revenues will bubble up. In this latter case, the

probability of getting a subordinate would be represented by the payoff of the subordinate. In

what follows, we analyze both cases.

We first consider the case in which λ is the probability that any agent in the hierarchy gets

a subordinate. That is, if the highest-ranked agent selects the full-transfer rule, the probability

of having agents to join the hierarchy as subordinates is 0, as all their revenues are transferred

to the highest-ranked agent. Likewise, using the no-transfer rule the probability is 1, as agents

keep their own revenue. In general, using a geometric rule, the highest-ranked agent’ expected

revenue is given by
∞∑
t=0

(1− λ)t.

Now, if the highest-ranked agent aims to maximize total revenue in expected terms, when λ

denotes the probability that an agent within a linear hierarchy gets a subordinate, the following

problem should be solved:

max
λ

∞∑
t=1

((1− λ)λ)t.
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It is straightforward to see that the last problem is equivalent to the following one:

max
λ

(1− λ)λ,

with solution λ = 0.5.

As an illustration, note that the expected transfer from subordinates to the highest-ranked

agent at (optimal) λ = 0.5 is
∑∞

t=1(1/4)t = 1/3.

We now assume that (possible) subordinates are farsighted and, thus, take into account

their ability to hire further subordinates (once in the hierarchy) from whom revenues would

bubble up.

Let δ denote the probability of getting a subordinate. In this (farsighted) case, the highest-

ranked agent would solve the problem

sup
λ,δ

∞∑
t=1

((1− λ)δ)t, (3)

under the constraint that the probability δ equals the payoff of any non-highest-ranked agent,

δ = λ+ λ
∞∑
t=1

((1− λ)δ)t. (4)

It is not difficult to show that the only two possible solutions of (4) are δ = 1 and λ > 0, or

δ = λ
1−λ .

In the former case it is therefore profit maximizing for the highest-ranked agent to set λ as

close as possible to 0. In the latter case, it follows that (3) is solved when λ = 0.5 and δ = 1.

As shown above, λ = 0.5 crops up in different settings of endogenous hierarchies as the

optimal parameter choice for the highest-ranked agent. Thus, the geometric rule with λ = 0.5

has a close relation to the so-called MIT strategy (e.g., Pickard et al., 2011), a specific mechanism

for solving a task via linear recruitment graphs. More precisely, suppose solving the task

amounts to a benefit of B dollars. Then, the MIT strategy states the following payment scheme:

the agent who solves the task keeps B/2, then her recruiter gets B/4, the recruiter’s recruiter

gets B/8, and, so forth.12 Such a strategy corresponds exactly to the geometric rule with

λ = 0.5, in a situation where the revenue of the lowest-ranked agent is B and all other agents

have revenue 0, provided the highest-ranked agent gets to keep the residual (due to the balance

condition of our rules).

12Note that this mechanism is never in deficit, i.e., the residual from B, after obeying this payment scheme,

is always non-negative.
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3 Branch hierarchies

In this section, we extend the linear-hierarchy case considered above to account for branch hier-

archies, i.e., situations in which a given agent can have more than one immediate subordinate.

We represent a branch hierarchy as a graph where each agent is connected to the (unique)

highest-ranked agent via a unique rank path consisting of all her superiors (see Figure 2).

A branch hierarchy revenue sharing problem, or simply, a b-problem is a triple (N, r, s),

where N is a non-empty finite set of agents, r is a revenue profile specifying the revenue of each

agent in N , and s is a function mapping each agent i ∈ N to her immediate superior agent

j = s(i) (with the convention that s(i) = ∅ if i is the highest-ranked agent), such that the

graph induced by s has no cycles.13 Let B denote the set of b-problems.
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Figure 2: A branch hierarchy. This figure illustrates a branch hierarchy involving five agents, with agent

5 denoting the highest-ranked agent, agents 3 and 4 her direct subordinates and agents 1 and 2 being the

subordinates of agent 4. Each of the two agents at the bottom generate a revenue of 1. Agent 3 yields a revenue

of 16, whereas agent 4 yields a revenue of 6. Finally, agent 5 yields a revenue of 10. In summary, the hierarchy

so illustrated is (N, r, s) = ({1, 2, 3, 4, 5}, (1, 1, 16, 6, 10), s), where s(1) = s(2) = 4, s(3) = s(4) = 5 and s(5) = ∅.

Given a b-problem (N, r, s), a b-allocation is a vector x ∈ R|N |+ satisfying balance, i.e.,∑
i∈N xi =

∑
i∈N ri. A b-allocation rule is a mapping β assigning to each problem (N, r, s)

13Note the deliberate change in notation from M (in the linear case) to N , as “places” in the hierarchy do

not make sense for non-linear hierarchies.
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an allocation β(N, r, s) = x. We also require, as in the linear case, that rules be anonymous,

i.e., for each bijective function g : N → N ′, βg(i)(N
′, r′, s′) = βi(N, r, s), where r′g(i) = ri, and

s′(g(i)) = g(s(i)) for each i ∈ N .

The geometric rules have a simple generalization to branch hierarchies. Formally, let i be

an agent at the bottom of the hierarchy, somewhere in the tree. Then,

xλi = λri.

Her immediate superior k = s(i) gets

xλk = λ

rk +
∑

j∈N : k=s(j)

(1− λ)rj

 ,

and so forth. Denote the corresponding family of b-allocation rules by {βλ}λ∈[0,1].

Our axioms for the linear hierarchy model also have a natural extension to the branch

hierarchy model. Formally,

b-Lowest Rank Consistency: For each (N, r, s) ∈ B, with |N | ≥ 2, and each i ∈ N without

subordinates, such that (N \ {i}, (rs(i) + ri − βi(N, r, s), rN\{i,s(i)}), sN\{i}) ∈ B,14

βN\{i}(N, r, s) = β
(
N \ {i}, (rs(i) + ri − βi(N, r, s), rN\{i,s(i)}), sN\{i}

)
.

b-Highest Rank Revenue Independence: For each (N, r, s) ∈ B, each i ∈ N such that

s(i) = ∅, and each r̂i ∈ R+

βN\{i}(N, r, s) = βN\{i} (N, (r−i, r̂i), s) .

b-Highest Rank Splitting Neutrality: For each (N, r, s) ∈ B, and each i ∈ N such that

s(i) = ∅, let (N ′, r′, s′), be such that N ′ = N ∪ {k}, s′(i) = k, s = s′ otherwise, ri = r′k + r′i,

and r′N\{i,k} = rN\{i}. Then,

βN\{i,k}(N
′, r′, s′) = βN\{i} (N, r, s) .

b-Scale Invariance: For each (N, r, s) ∈ B, and each α > 0,

β(N,αr, s) = αβ(N, r, s).

14By sN\{i} we denote the restriction of the function s to the domain N \ {i}.
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With these extended axioms in place we obtain a counterpart of Theorem 1 for branch

hierarchies.15

Theorem 4 A b-rule β satisfies b-Lowest Rank Consistency, b-Highest Rank Revenue Inde-

pendence, b-Highest Rank Splitting Neutrality, and b-Scale Invariance if and only if it is a b-

geometric rule, i.e., β ∈ {βλ}λ∈[0,1].

Proof: It is not difficult to see that the b-geometric rules satisfy all the axioms of the theorem.

Conversely, let β be a rule satisfying these axioms. Let (N, r, s) ∈ B. We distinguish two cases.

Case 1: (N, r, s) is a linear hierarchy.

In this case, the branch hierarchy (N, r, s) ∈ B consists of a line, and thus we use the

abbreviated notation (N, r) ∈ R. Then, by Theorem 1, there exists λ ∈ [0, 1], such that

β(N, r) = βλ(N, r).

Case 2: (N, r, s) is not a linear hierarchy.

Let i denote an agent without subordinates in the branch hierarchy (N, r, s). Then, xi =

βi(N, r, s) = δri for some δ ∈ [0, 1].

Iteratively, we can apply b-lowest rank consistency to all agents not located on the direct

path of superiors from i to the highest-ranked agent, in order to reduce the branch hierarchy

to a line. For each iteration, the payment is unchanged for agent i and we end up with a linear

hierarchy. It then follows from Case 1 that δ = λ.

The previous argument can be repeated for any agent without subordinates, which shows

that δ is not agent-specific. Thus, xj = βλj (N, r, s), for each agent j without subordinates.

Now, consider an agent h who is the immediate superior of an agent without subordinates.

By b-lowest rank consistency, for each subordinate of h, we obtain a new problem in which

agent h has no subordinates, and in which the revenue of agent h corresponds to her original

revenue, plus the surplus from all the subordinates of h. Applying the same argument as above,

it follows that xh = βλh(N, r, s). The proof easily concludes from here.

4 General hierarchies

An important limitation of the previous analysis is that hierarchies contain a single highest-

ranked agent. It is often the case that a given agent has more than one superior, in which case

15Note that adding canonical fairness to the current characterization singles out the intermediate geometric

rule for which λ = 0.5.
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we talk about general hierarchies. For instance, two firms may jointly own an entity on an

equal partnership basis and that entity may again own other entities, either alone or as joint

ventures. Similarly, for social mobilization schemes, an agent may be approached by several

recruiters and may solve tasks for all of them. The aim of this section is to extend the previous

analysis to account for the case of general hierarchies. As we shall see, a generalized version of

our family of geometric rules will also arise in this setting.

A general hierarchy revenue sharing problem, or simply, a g-problem is a triple (N, r, S),

where N is a non-empty finite set of agents, r is a revenue profile specifying the revenue of each

agent in N , and S is a correspondence mapping each agent i ∈ N to her immediate superiors

S(i) ⊂ N (with the convention that S(i) = ∅ if i is a highest-ranked agent), such that the

graph induced by S is connected and cycle free.16 Let G denote the set of g-problems.
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Figure 3: A general hierarchy. This figure illustrates a general hierarchy involving six agents, with agents 5

and 6 denoting the highest-ranked agentes, agent 4 being direct subordinate of both, agent 3 direct subordinate

of 5, and agents 1 and 2 being the subordinates of agent 4. Each of the two agents at the bottom generate

a revenue of 1. Agent 4 yields a revenue of 16, whereas agent 3 yields a revenue of 6. Finally, agent 5 yields

a revenue of 10, and agent 6 yields a revenue of 9. In summary, the problem so illustrated is (N, r, S) =

({1, 2, 3, 4, 5, 6}, (1, 1, 16, 5, 9, 10), S), where S(1) = S(2) = {4}, S(3) = {5}, S(4) = {5, 6} and S(5) = S(6) = ∅.

16We consider cycles in the undirected sense. More precisely, a situation such as S(1) = {2, 3}, S(2) =

{3}, S(3) = ∅ is considered a cycle and, thus, we exclude it from our analysis.

19



Note that, as the graph induced by S has no cycles, deleting any link ij leads to two

components of such a graph, dubbed the i- and the j-component, and denoted by Gi
ij and Gj

ij

respectively.

Given a g-problem (N, r, S), a g-allocation is a vector x ∈ R|N |+ satisfying balance, i.e.,∑
i∈N xi =

∑
i∈N ri.

A g-allocation rule is a mapping γ assigning to each problem (N, r, S) an allocation

γ(N, r, S) = x. We also impose from the outset, as in the linear case, that rules are anonymous,

i.e., for each bijective function g : N → N ′, γg(i)(N
′, r′, S ′) = γi(N, r, S), where, for each i ∈ N ,

r′g(i) = ri, and S ′(g(i)) = g(S(i)) = {g(s) : s ∈ S(i)}. Our family of geometric rules generalizes

easily to the general hierarchy setting by transferring an equal split of the accumulated surplus

of a given agent i to each of her immediate superiors.

Formally, let i be an agent at the bottom of the hierarchy, somewhere in the tree. Then,

xλi = λri.

Each of her immediate superiors k ∈ S(i) gets

xλk = λ

rk +
∑

j∈N : k∈S(j)

1

|S(j)|
(1− λ)rj

 ,

and so forth. Denote the corresponding family of g-allocation rules by {γλ}λ∈[0,1].

Three of our axioms from the linear hierarchy model have a natural extension to the general

hierarchy model. Formally,

g-Highest Rank Revenue Independence: For each (N, r, S) ∈ G, each i ∈ N such that

S(i) = ∅, and each r̂i ∈ R+,

γN\{i}(N, r, S) = γN\{i} (N, (r−i, r̂i), S) .

g-Highest Rank Splitting Neutrality: For each (N, r, S) ∈ G and each i ∈ N such that

S(i) = ∅, let (N ′, r′, S ′), be such that N ′ = N ∪{k}, S ′(i) = {k}, S ′ = S otherwise, ri = r′k+r′i,

and r′N\{i,k} = rN\{i}. Then,

γN\{i,k}(N
′, r′, S ′) = γN\{i} (N, r, S) .

g-Scale Invariance: For each (N, r, S) ∈ G, and each α > 0,

γ(N,αr, S) = αγ(N, r, S).
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The fact that a general hierarchy might involve several highest-ranked agentes, as well as

several superiors for the lowest ranked agents, calls for adjustments of the remaining axioms,

as well as for new axioms.

We first strengthen lowest rank consistency. To do so, consider an agent i and one of

her immediate subordinates j. It seems normatively appealing to state that deleting the j-

component, and transferring any surplus from that component to i, should leave the payoffs of

all agents in the i-component unchanged. Formally,

Component Consistency: For each (N, r, S) ∈ G, and each pair i, j ∈ N such that i ∈ S(j),

let

• N ′ = Gi
ij,

• r′i = ri +
∑

k∈Gj
ij

(rk − γk(N, r, S)),

• r′h = rh for each h ∈ Gi
ij \ {i},

• S ′(k) = S(k), for each k ∈ Gi
ij.

Then, (N ′, r′, S ′) ∈ G and, for each h ∈ N ′,

γh(N
′, r′, S ′) = γh(N, r, S).

Clearly, component consistency implies lowest rank consistency, as the j-component may

consist of agent j alone.

The following axiom is new. It refers to the case in which a given agent has several superiors

who are not superiors for any other agents. In such situations, merging the superiors will not

change the payoff of the remaining agents. Formally,

Top Merger: For each (N, r, S) ∈ G and each j ∈ N such that |S(j)| ≥ 2, S(k) = ∅ for each

k ∈ S(j), and S(h) ∩ S(j) = ∅, for each h ∈ N \ {j}, let (N ′, r′, S ′) ∈ G be such that

• N ′ = (N \ S(j)) ∪ {k′},

• r′k′ =
∑

k∈S(j) rk, and r′h = rh for each h ∈ N \ S(j),

• S ′(k′) = ∅, S ′(j) = k′, and S ′(k) = S(k), for each k ∈ N \ (S(j) ∪ {j}).
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Then, for each h ∈ N \ S(j),

γh(N
′, r′, S ′) = γh(N, r, S).

We are now ready to extend Theorem 1 to general hierarchy problems.17

Theorem 5 A g-rule γ satisfies g-Highest Rank Revenue Independence, g-Highest Rank Split-

ting Neutrality, g-Scale Invariance, Component Consistency, and Top Merger if and only if it

is a g-geometric rule, i.e., γ ∈ {γλ}λ∈[0,1].

Proof: It is not difficult to see that the g-geometric rules satisfy all the axioms of the theorem.

Conversely, let γ be a rule satisfying these axioms. We prove this implication by induction.

First, by Theorem 1, there exists λ such that γ = γλ for two-agent problems. Suppose there

is λ such that γ = γλ for all problems with up to k ≥ 2 agents and consider the subfamily of

problems with k + 1 agents. Let (N, r, S) ∈ G be one of those problems and let i ∈ N be such

that S−1(i) = ∅. We now claim that γi(N, r, S) = λri. Indeed, by repeated use of component

consistency, we can construct a new problem for which all other agents (different from i) have

a unique linear path to i, such that i’s payoff is unchanged. Now, by repeated use of top merger

and g-highest rank splitting neutrality, we obtain a new (two-agent) problem for which agent i

gets γi(N, r, S) = λri.

Now, let j ∈ S(i). We claim that
∑

h∈Gj
ij
γh(N, r, S) =

∑
h∈Gj

ij
rh + (1−λ)ri

|S(i)| . Indeed, by

repeated use of component consistency, top merger and g-highest rank splitting neutrality we

can reduce the j-components to a single agent, where this agent receives the same payoff as

the entire j-component did before. By g-highest rank revenue independence and anonymity of

γ the claim follows.

Consequently,
∑

h∈Gi
ij
γh(N, r, S) =

∑
h∈Gi

ij
γλh(N, r, S).

Now, for a given j ∈ S(i), by component consistency we can add the surplus of the i-

component, i.e.,
∑

h∈Gi
ij

(rh − γh(N, r, S)), to j and then eliminate the i-component. By our

induction hypothesis, the payoff of an arbitrary agent h ∈ Gj
ij is γh(N, r, S) = γλh(N, r, S),

which concludes the proof.

17Note that adding canonical fairness to the current characterization singles out the intermediate geometric

rule for which λ = 0.5.
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5 Conclusion

Priorities among agents is a compelling way to express asymmetric rights. We have dealt

in this paper with a resource allocation problem arising when every agent is arranged in a

priority structure and generates a collective profit. More precisely, we have considered a stylized

model in which participating agents, who are hierarchically organized, contribute with (possibly

different) individual revenues to the collective proceeds. The canonical application of our model

is the case of multi-level marketing. Another interesting application is the allocation of profit

in companies, as our model is flexible enough to accommodate several forms of professional

organizations and practices in real life.

We have introduced a family of allocation rules for our model, ranging from the rule ignoring

the command structure conveyed by the hierarchy, to the rule ignoring individual contributions

to the joint proceeds. The rules are members of a one-parameter family with an interesting

economic interpretation as a compromise between those two polar rules, allowing for certain

upward transfers in the command structure.

The intermediate member of our family, obtained when the compromise between the polar

rules is balanced, is a translation to our context of the so-called MIT strategy, a popular

mechanism for social mobilization. We also show that the rule is optimal, within our family,

if the aim is to maximize the expected revenues of the agent at the top of the hierarchy, and

the process to get subordinates is probabilistic. In general, the rules within our family also

exemplify usual practices in multi-level marketing, the marketing approach in which buyers are

encouraged to take an active role in promoting the product (offering them rewards for successful

direct or indirect referrals of the product to other prospective buyers). Our results, therefore,

provide normative foundations for such a type of strategies, formalizing the idea of ‘bubbling

up’ revenues along the hierarchy.

Our analysis not only involves the benchmark case of linear hierarchies, but also more

general hierarchical structures. Thereby, our results also provide new insights in the field of

fair allocation in networks.
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