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We consider multiple partners matching games (G, b, w), where G is a graph with an 
integer vertex capacity function b and an edge weighting w . If G is bipartite, these games 
are called multiple partners assignment games. We give a polynomial-time algorithm that 
either finds that a given multiple partners matching game has no stable solution, or 
obtains a stable solution. We characterize the set of stable solutions of a multiple partners 
matching game in two different ways and show how this leads to simple proofs for a 
number of results of Sotomayor (1992, 1999, 2007) for multiple partners assignment games 
and to generalizations of some of these results to multiple partners matching games. We 
also perform a study on the core of multiple partners matching games. We prove that the 
problem of deciding if an allocation belongs to the core jumps from being polynomial-time 
solvable for b ≤ 2 to NP-complete for b ≡ 3.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Consider a group of soccer teams participating in a series of friendly games with each other off-season. Suppose each 
team has some specific target number of games it wants to play. For logistic reasons, not every two teams can play against 
each other. Each game brings in some revenue, which is to be shared by the two teams involved. The revenue of a game 
may depend on several factors, such as the popularity of the two teams involved or the soccer stadium in which the game 
is played. In particular, at the time when the schedule for these games is prepared, the expected gain may well depend on 
future outcomes in the current season (which are in general difficult to predict (Kern and Paulusma, 2001)). In this paper, 
we assume for simplicity that the revenues are known. Is it possible to construct a stable fixture of games, that is, a schedule 
such that there exist no two unmatched teams that are both better off by playing against each other? Note that if teams 
decide to play against each other, they may first need to cancel one of their other games in order not to exceed their targets.

The above example describes the problem introduced in this paper (see Section 4 for another example). In the next 
section we explain how we model this problem.

✩ An extended abstract of this paper has appeared in the proceedings of WG 2015 (Biró et al., 2015). Part of the work was conducted when Kern and 
Paulusma visited Biró at Corvinus University of Budapest sponsored by COST Action IC1205 on Computational Social Choice.
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1.1. Our model

We model the above example in two settings, namely as a matching problem and as a cooperative game. As we will 
show these two settings are deeply interwoven.

Matching problem. A multiple partners matching game is a triple (G, b, w), where G = (N, E) is a finite undirected graph 
on n vertices and m edges with no self-loops and no multiple edges, b : N → Z+ is a vertex capacity function, which is a 
nonnegative integer function, and w : E → R+ is a nonnegative edge weighting. The set N is called the player set. There 
exists an edge i j ∈ E if and only if players i, j can form a 2-player coalition. A set M ⊆ E is a b-matching if every player i is 
incident to at most b(i) edges of M . So, a b-matching is a set of 2-player coalitions, in which no player is involved in more 
2-player coalitions than described by her capacity. If i j ∈ M then i and j are matched by M; we also say that i and j are 
partners under M . The value of a 2-player coalition i, j with i j ∈ E is given by w(i j).

A nonnegative function p : N × N → R+ is a payoff vector with respect to a b-matching M if the following two conditions 
hold:

• p(i, j) + p( j, i) = w(i j) for all i j ∈ M;
• p(i, j) = p( j, i) = 0 for all i j /∈ M .

Here, p(i, j) and p( j, i) represent payoffs that i and respectively j obtain when they are matched to each other. If the two 
conditions above hold, then we say that M and p are compatible.3 Note that p prescribes how the value w(i j) of a 2-player 
coalition {i, j} is distributed amongst i and j, ensuring that non-coalitions between two players yield a zero payoff. A pair 
(M, p), where M is a b-matching and p is a payoff compatible with M , is a solution for (G, b, w). We view p as a vector 
with entries p(i, j), which we call payoffs.

Let (M, p) be a solution. Two players i, j with i j ∈ E \ M may decide to form a new 2-player coalition if they are “better 
off”, even if one or both of them must first leave an existing 2-player coalition in M (in order not to exceed their individual 
capacity). To describe this formally we define a utility function up : N → R+ , related to a payoff vector p. If i is saturated by 
M , that is, if i is incident with b(i) edges in M , then we let up(i) = min{p(i, j) : i j ∈ M} be the worst payoff p(i, j) of any 
2-player coalition i is involved in. Otherwise, i is unsaturated by M and we define up(i) = 0. Alternatively, we could define 
up(i) as the b(i)th largest payoff p(i, j) to i. Note that the second definition shows that utilities are independent of M and 
determined by p only (recall1 that this is because p in fact determines M).

A pair i, j with i j ∈ E \ M blocks (M, p) if up(i) + up( j) < w(i j). We say that (M, p) is stable if it has no blocking pairs, 
or equivalently, if every edge i j ∈ E \ M satisfies the stability condition, that is, if

up(i) + up( j) ≥ w(i j) for all i j ∈ E \ M.

Note that the stability condition only needs to be verified for edges not in M .

Remark 1. Let (G, b, w) be a multiple partners matching game with b ≡ 1. Then any b-matching is a 1-matching, i.e, a 
matching, as for each i ∈ N , we have p(i, j) > 0 for at most one player j 	= i, which must be matched to i. In that case we 
will sometimes assume, with slight abuse of notation, that p is a nonnegative function defined on N . Then we can write 
up(i) = p(i) for every i ∈ N . Checking whether a pair (M, p) is a solution for (G, 1, w) comes down to verifying whether 
p(i) + p( j) = w(i j) holds for every edge i j ∈ M . Checking whether a solution (M, p) is stable comes down to verifying 
whether p(i) + p( j) ≥ w(i j) holds for every edge i j ∈ E \ M .

We can now define our problem formally:

Stable Fixtures with Payments (SFP)
Instance: a multiple partners matching game (G, b, w)

Question: does (G, b, w) have a stable solution?

Example 1. Let G be the 4-vertex cycle u1 v1u2 v2u1 displayed in Fig. 1. Let b ≡ 1 and w ≡ 1. Then G has two maxi-
mum weight matchings, namely M = {u1 v1, u2 v2} and M̂ = {u1 v2, u2 v1}. Let p be given by p(u1, v1) = 7

10 , p(v1, u1) = 3
10 , 

p(u2, v2) = 7
10 , p(v2, u2) = 3

10 and p(u1, v2) = p(v2, u1) = p(u2, v1) = p(v1, u2) = 0. Then p is compatible with M and 
(M, p) is a stable solution for (G, 1, 1). We also observe that p is not compatible with M̂ . However, there exists a stable 
solution (M̂, p̂), where p̂ can be obtained from p by permuting the entries p(i, j) for every fixed i. Namely, let p̂ be defined 
as p̂(u1, v2) = 7

10 , p̂(v2, u1) = 3
10 , p̂(u2, v1) = 7

10 , p̂(v1, u2) = 3
10 and p̂(u1, v1) = p̂(v1, u1) = p̂(u2, v2) = p̂(v2, u2) = 0.

3 Assume that b and w are strictly positive functions. If p and M are compatible, then p is not compatible with any other b-matching, that is, p uniquely 
determines M . However, for our purposes it is more convenient to follow the literature and define p with respect to M .
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Fig. 1. The 4-vertex cycle from Example 1 with unit vertex capacities and edge weights.

Being a bit more specific than in the above example, let (M, p) and (M̂, p̂) be two stable solutions for a multiple partners 
matching game (G, b, w). Then we say that p and p̂ are equivalent if the following four conditions hold:

– up(i) = up̂(i) for every i ∈ N ,

– p(i, j) = p̂(i, j) and p( j, i) = p̂( j, i) for every i j ∈ M ∩ M̂ ,
– p(i, j) = up(i) = up̂(i) and p( j, i) = up( j) = up̂( j) for every i j ∈ M \ M̂ , and

– p̂(i, j) = up̂(i) = up(i) and p̂( j, i) = up̂( j) = up( j) for every i j ∈ M̂ \ M .

If p and p̂ are equivalent, then the multisets {p(i, j) | j ∈ N with i j ∈ E} and {p̂(i, j) | j ∈ N with i j ∈ E} are the same for 
every i ∈ N .

For a payoff vector p, the total payoff vector pt ∈ R
N is defined by pt(i) = ∑

j:i j∈E p(i, j) for every i ∈ N . Note that if two 
payoff vectors p and p̂ are equivalent, then their total payoff vectors are the same, that is, pt = p̂t .4 Moreover, for b ≡ 1
two payoff vectors p and p̂ are equivalent if and only if pt = p̂t . We illustrate the definition of two payoff vectors being 
equivalent with another example.

Example 2. Let G be the bipartite graph displayed in Fig. 2 that has six vertices u1, u2, u3, v1, v2, v3 and edges u1 v1, 
u1 v2, u1 v3, u2 v1, u2 v2, u3 v1, u3 v2 and u3 v3 (that is, all edges between the two partition classes exist except u2 v3). Let 
b(u1) = b(u2) = b(v1) = 2 and b(u3) = b(u3) = b(v3) = 1, and define w(u1 v1) = 4, w(u1 v2) = 6, w(u1 v3) = 5, w(u2 v1) = 4, 
w(u2 v2) = 1, w(u3 v1) = 1, w(u3 v2) = 3 and w(u3 v3) = 2. Then G has two maximum weight b-matchings, namely M =
{u1 v1, u1 v2, u2 v1, u3 v3} and M̂ = {u1 v1, u1 v3, u2 v1, u3 v2}. Let p be given by p(u1, v1) = 3, p(v1, u1) = 1, p(u1, v2) = 3, 
p(v2, u1) = 3, p(u2, v1) = 2, p(v1, u2) = 2, p(u3, v3) = 0, p(v3, u3) = 2 and p(u1, v3) = p(v3, u1) = p(u2, v2) = p(v2, u2) =
p(u3, v1) = p(v1, u3) = p(u3, v2) = p(v2, u3) = 0. Then p is compatible with M and (M, p) is a stable solution for (G, b, w). 
We also observe that p is not compatible with M̂ . However, there exists a payoff vector p̂ that is equivalent with p such 
that (M̂, p̂) is a stable solution. Namely, let p̂ be defined as p̂(u1, v1) = 3, p̂(v1, u1) = 1, p̂(u1, v3) = 3, p̂(v3, u1) = 2, 
p̂(u2, v1) = 2, p̂(v1, u2) = 2, p̂(u3, v2) = 0, p̂(v2, u3) = 3 and p̂(u1, v2) = p̂(v2, u1) = p̂(u2, v2) = p̂(v2, u2) = p̂(u3, v1) =
p̂(v1, u3) = p̂(u3, v3) = p̂(v3, u3) = 0.

Cooperative game. So far, we modeled only situations in which 2-player coalitions can be formed. Allowing coalitions of 
any size is a natural and well-studied setting in the area of Cooperative Game Theory. Moreover, as we will discuss, there 
exist close relationships between stable solutions and their counterpart in the second setting, the so-called core allocations, 
which we define below.

A cooperative game with transferable utilities (TU-game) is a pair (N, v) consisting of a set N of n players and a value 
function v : 2N → R+ with v(∅) = 0. It is usually assumed that the grand coalition N is formed. Then the central problem is 
how to allocate the total value v(N) to the individual players in N . In this context, a payoff vector (or allocation) is a vector 
p ∈ R

N with p(N) = v(N), where we write p(S) = ∑
i∈S p(i) for S ⊆ N . The core of a TU-game consists of all allocations 

p ∈R
N satisfying

p(S) ≥ v(S), ∅ 	= S ⊆ N. (1)

A core allocation is seen as reasonable, because it offers no incentive for a subset of players to leave the grand coalition and 
form a coalition on their own. However, a TU-game may have an empty core. Hence, the most interesting computational 
complexity problems (given an input game (N, v)) are:

4 In fact, Sotomayor (1992), calls two payoff vectors p and p̂ equivalent if pt = p̂t and the multisets {p(i, j) | | j ∈ N with i j ∈ E} and 
{p̂(i, j) | j ∈ N with i j ∈ E} are the same for every i ∈ N . Our definition implies hers and enables us to prove our results in a stronger form. However, 
in the proof of her results, Sotomayer uses in fact our definition as well.
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Fig. 2. The bipartite graph G from Example 2 with the given vertex capacities and edge weights.

P1. Determine if the core is non-empty;
P2. Exhibit a vector in the core (provided there is any);
P3. Determine if a given p ∈ R

N is in the core or find a coalition S with p(S) < v(S).

In the literature both polynomial-time and (co-)NP-hardness results are known for each of these three problems (see e.g. 
Deng et al., 1999). An efficient algorithm for answering P3 implies that P1 and P2 can be solved in polynomial time as 
well. This follows from the work of Grötschel et al. (1981, 1993) who proved, by refining the ellipsoid method of Khachiyan
(1979), that an efficient algorithm for solving the separation problem for a polyhedron P implies a polynomial-time algo-
rithm that either finds that P is empty, or obtains a vector of P .

We define the TU-game (N, v) that corresponds to a multiple partners matching game (G, b, w) by setting, for every 
S ⊆ N ,

v(S) = w(M S) =
∑

e∈MS

w(e),

where M S is a b-matching with maximum weight 
∑

e∈MS
w(e) in the graph G[S], that is, the subgraph of G induced by S; 

we also say that M S is a maximum weight b-matching of G[S]. We define v(S) = 0 if S induces an edgeless graph. We say 
that (N, v) is defined on (G, b, w) but, unless confusion is possible, we may also call (N, v) a multiple partners matching 
game. If we say that a payoff vector p involved in a stable solution (M, p) of SFP is a core allocation, we mean in fact that 
the total payoff vector pt is a core allocation.

Example 3. Let G be the 4-vertex cycle v1 v2 v3 v4 v1. Define a vertex capacity function b by b(v1) = b(v2) = 1 and b(v3) =
b(v4) = 2, and an edge weighting w by w(v1 v2) = 3 and w(v2 v3) = w(v3 v4) = w(v4 v1) = 1. The pair (M, p) with M =
{v1 v2, v3 v4} and p(v1, v2) = p(v2, v1) = 3

2 , p(v3, v4) = p(v4, v3) = 1
2 and p(v2, v3) = p(v3, v2) = p(v4, v1) = p(v1, v4) =

0 is a solution for the multiple partners matching game (G, b, w). Note that up(v1) = up(v2) = 3
2 and up(v3) = up(v4) = 0. 

We find that (M, p) is even a stable solution, because up(v2) + up(v3) = 3
2 ≥ 1 = w(v2 v3) and up(v4) + up(v1) = 3

2 ≥ 1 =
w(v4 v1) (note that we only need to verify the stability condition for edges outside the matching). Moreover, the total payoff 
vector pt given by pt(v1) = pt(v2) = 3

2 and pt(v3) = pt(v4) = 1
2 is readily seen to be a core allocation of the corresponding 

TU-game. In Section 5 we will give an example of a multiple partners matching game with no stable solutions for which 
the corresponding TU-game has a non-empty core.

Before stating our results for multiple partners matching games in both settings we first discuss some existing work. As 
we will see, our model in both settings generalizes (or relaxes) several well-known models.

1.2. Known results

The first model that we discuss is the most basic model related to the famous stable marriage problem (SM), defined as 
follows. Given two disjoint sets I and J of men and women, respectively, let each player have a strict preference ordering 
over a subset of players from the opposite set. A set of marriages is a matching in the underlying bipartite graph with 
partition classes I and J . Such a matching is stable if there is no unmarried pair, who would prefer to marry each other 
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Table 1
The eight different models; “mp” stands for “multiple partners”. The highlighted case is the new model introduced and considered in this paper. As 
discussed in Section 1.2, for all models, the results on the (non-)existence of a stable solution or core allocation were known already or can be readily 
deduced from known results. Moreover, as discussed in Section 1.2 as well, it was already known that for all models, except for the highlighted model, 
a stable solution can be found in polynomial time (if it exists) and that for all the models with payments, except for the highlighted model, a core 
allocation can be computed in polynomial time (if the core is non-empty). As explained in Section 1.3, we give a polynomial-time algorithm for finding a 
stable solution (if it exists) for the highlighted model. We also prove that every stable solution corresponds to a core allocation. However, in contrast to 
the correspondence between the existence of stable solutions for SRP and core allocations for matching games, we show that there exist multiple partners 
matching games with a non-empty core, while the corresponding instance of SFP has no stable solution.

Opposite-sex (bipartite graphs) Same-sex allowed (general graphs)

Monogamy (1-matching) No dowry SM (stable marriage) always a stable solution SR (stable roommates) not always a stable 
solution

Dowry (payments) SMP/assignment game always a stable solution 
core always non-empty

SRP/matching game not always a stable solution 
core may be empty

Polygamy allowed No dowry Many-to-many stable matching always a stable 
solution

SF (stable fixtures) not always a stable solution

Dowry MPA/mp assignment game always a stable 
solution, core always non-empty

SFP/mp matching game not always a stable 
solution, core may be empty

instead of a possible other partner. Gale and Shapley (1962) proved that every instance of this problem has a stable matching 
and gave a linear-time algorithm that finds one.5

The main assumptions in the basic model are

(i) monogamy: each player is matched to at most one other player (1-matching);
(ii) opposite-sex: every match is between players from I and J (bipartiteness);

(iii) no dowry: only cardinal preferences are considered (no payments).

Dropping one or more of these three conditions leads to seven other models, one of which corresponds to our new model 
of multiple partner matching games, namely the one, in which none of the three conditions (i)–(iii) is imposed. Below we 
briefly survey the other six models (see also Table 1).

In the first three models that we discuss, payments are not allowed. Hence, the notion of a (core) allocation defined for 
TU-games is meaningless for these three models.

Remove (i). If we allow polygamy, that is, if we allow general b-matchings instead of only 1-matchings, we obtain the 
many-to-many stable matching problem, which generalizes the stable marriage problem. The problem variant, in which we 
demand that b(i) = 1 for each player i ∈ I , is called the college admission problem (Gale and Shapley, 1962), which is also 
known as the many-to-one stable matching problem (Roth and Sotomayor, 1990) and as the hospital/residents problem (Manlove, 
2013). Gale and Shapley (1962) proved that every instance of the college admission problem has a stable b-matching and 
gave a linear-time algorithm that finds one. Baïou and Balinski (2000) proved these two results for the (more general) 
many-to-many stable matching problem.

Remove (ii). If we allow same-sex marriages, so the underlying graph may be an arbitrary graph that is not necessarily 
bipartite, then we get the stable roommates problem (SR), also defined by Gale and Shapley (1962). They proved that, unlike 
the previously discussed models, in this model a stable matching does not always exist. Irving (1985) gave a linear-time 
algorithm that finds a stable matching if there exists one.6

Remove (i) & (ii). Allowing polygamy and same-sex marriages leads to the stable fixtures problem (SF), which generalizes the 
stable roommates problem. Hence, a stable matching does not always exist. Irving and Scott (2007) gave a linear-time 
algorithm for finding a stable b-matching (if there exists one). Cechlárová and Fleiner (2005) defined the more general 
multiple activities problem, in which the underlying graph may have multiple edges. They proved that even in this setting a 
stable b-matching can be found in polynomial time (if there exists one). Moreover, they also showed that this problem can 
be reduced to SR by a polynomial size graph construction.

In the remaining three models we allow payments to individual players.

Remove (iii). If we allow dowry then we obtain an assignment game, which is a multiple partners matching game (G, b, w)

where G is bipartite and b ≡ 1. In this case the SFP problem is known as the stable marriage problem with payments (SMP). 
Koopmans and Beckmann (1957) proved the following result.

5 Gale and Shapley assumed that the underlying bipartite graph is complete, but in fact their algorithm can also be used for arbitrary graphs; see Gusfield 
and Irving (1989).

6 Irving showed that a stable matching may not exist even if the underlying graph is complete. His algorithm was designed for complete graphs, but can 
be used for arbitrary graphs (Gusfield and Irving, 1989).
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Theorem 1 (Koopmans and Beckmann, 1957). Every instance (G, 1, w) of SMP has a stable solution, which can be found in polynomial 
time. If (M, p) is a stable solution, then M is a maximum weight matching. Moreover, for every other maximum weight matching M̂ of 
G there exists an equivalent payoff vector p̂ of p, such that (M̂, p̂) is a stable solution of (G, b, w).

Shapley and Shubik (1972) proved that every core allocation of an assignment game is a payoff vector in a stable solution 
for the corresponding instance of SMP and vice versa. Combining their result with Theorem 1 implies that every assignment 
game has a non-empty core. It is possible to obtain a stable solution in polynomial time and also to give affirmative answers 
to problems P1–P3 about the core of an assignment game; in the next paragraph we explain that this holds even if we allow 
same-sex marriages.

Remove (ii) & (iii). If we allow dowry and same-sex marriages then we obtain a matching game, which is a multiple partners 
matching game (G, b, w) where b ≡ 1. In this case the SFP problem is called the stable roommates problem with payments
(SRP). The following two observations are well-known (Biró et al., 2012; Eriksson and Karlander, 2001) and easy to verify.

First, a payoff vector p is a core allocation of a matching game if and only if there exists a matching M such that (M, p)

is a stable solution for the corresponding instance of SRP. Note that the core may be empty (take a triangle with unit edge 
weights). Hence, a stable solution may not always exist.

Second, for matching games, the coalitions in the system of inequalities (1) may be restricted to 2-player coalitions. This 
means that problem P3, on core membership, can be answered in linear time. As explained, a polynomial-time algorithm for 
P3 also leads to polynomial-time algorithms for solving P1 and P2, about core non-emptiness, and finding a core allocation, 
and thus finding a stable solution. The restriction to 2-player coalitions even allows one to use the ellipsoid method of 
Khachiyan (1979) directly. In a previous paper (Biró et al., 2012), we circumvented the ellipsoid method and presented an 
O (nm + n2 log n)-time algorithm that either finds that the core is empty, or obtains a core allocation.

Remove (i) & (iii). If we allow dowry and polygamy then we obtain a multiple partners assignment game, which is a multiple 
partners matching game (G, b, w) where G is bipartite. In this case the SFP problem is called the multiple partners assign-
ment problem (MPA). Just as matching games, multiple partners assignment games generalize assignment games. Sotomayor 
generalized Theorem 1.

Theorem 2 (Sotomayor, 1992). Every instance (G, b, w) of MPA has a stable solution, which can be found in polynomial time. If 
(M, p) is a stable solution, then M is a maximum weight b-matching and pt is a core allocation of the corresponding multiple partners 
assignment game. Moreover, for every other maximum weight b-matching M̂ of G there exists an equivalent payoff vector p̂ of p, such 
that (M̂, p̂) is a stable solution of (G, b, w).

Theorem 2 gives affirmative answers for problems P1 and P2 for multiple partners assignment games. The answer to P3 
was still open for multiple partners assignment games and is settled in this paper, as we will discuss in Section 1.3. We 
refer to Table 1 for a survey of known results and related new results that we show in this paper. In Section 1.3 we describe 
all our new results.

1.3. Our results

In Section 3, after stating some known results that we need as lemmas in Section 2, we will prove that SFP is polynomial-
time solvable. This generalizes the aforementioned corresponding results for SRP and MPA, respectively. In particular we 
prove that also for multiple partners matching games, the payoff vectors in stable solutions are always core allocations and 
the compatibility result of Theorem 2 for maximum weight b-matchings of bipartite graphs can be generalized to arbitrary 
graphs (in fact we generalize the whole of Theorem 2 from MPA to SFP apart from the opening claim that every instance of 
MPA has a stable solution, which does not hold for SFP). Our technique for proving all these results is based on a reduction 
to MPA. Moreover, we characterize the set of stable solutions for a given instance of SFP via a reduction to SRP. We do this 
via linear programming techniques that show a close relationship between optimal solutions in the dual LP for SFP and 
stable solutions in the reduced instance of SRP.

In Section 4 we illustrate the power of our characterization of the set of stable solutions for an instance of SFP by proving 
that this characterization, which obviously holds for instances of MPA as well, immediately leads to simple alternative proofs 
of the three main results of Sotomayor for MPA, namely Theorem 2 of Sotomayor (1992) (the whole theorem) and two 
theorems of Sotomayor (1999) and Sotomayor (2007), respectively.

In Section 5 we aim to increase our understanding of the core of a multiple partners matching game. To that end 
we first prove that every core allocation of a multiple partners matchings game equals the total payoff vector of some 
suitable payoff vector, which we can find in polynomial time. We then show that there exist multiple partners matching 
games with a non-empty core for which the corresponding instance of SFP has no stable solutions. Afterwards we focus on 
core membership, which corresponds to problem P3. We first show that core membership is polynomial-time solvable for 
multiple partner matching games defined on a triple (G, b, w) with b ≤ 2, that is, with b(i) ≤ 2 for all i ∈ N . Due to the 
aforementioned result of Grötschel et al. (1981, 1993) this leads to efficient answers to P1 and P2 as well (for b ≤ 2). In our 
proof, we make a connection to the tramp steamer problem (Lawler, 1976). We complement this result by showing that it 
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is tight, namely that already for b ≡ 3 and w ≡ 1, testing core membership is co-NP-complete even for multiple partners 
assignment games (whose core is always non-empty and for which a core allocation can be found in polynomial time due 
to Theorem 2).

Finally, in Section 6, we give some directions for future work.

2. Preliminaries

In order to prove our results we will need two known lemmas. The first lemma is used in Section 3 and generalizes the 
last two statements of Theorem 1 from SMP to SRP and is implicitly used in the literature (see, for example, Biró et al., 
2014); we give its proof for completeness. The second lemma, which we will use in Sections 3 and 5, is due to Letchford et 
al. (2008).

Lemma 1. If (M, p) is a stable solution for an instance (G, 1, w) of SRP, then M is a maximum weight matching and pt is a core 
allocation of the corresponding matching game. Moreover, for every other maximum weight matching M̂ of G there exists an equivalent 
payoff vector p̂ of p, such that (M̂, p̂) is a stable solution of (G, b, w).

Proof. Let (M, p) be a stable solution for an instance (G, 1, w) of SRP. Then the total payoff vector pt is readily seen 
to be in the core of the corresponding matching game (see also Biró et al., 2012; Eriksson and Karlander, 2001). Hence 
w(M) = pt(N) = v(N) holds, which means that M must be a maximum weight matching.

Let M̂ be another maximum weight matching. As pt is in the core, we find that pt
i + pt

j ≥ w(i j) for every edge i j. As 
w(M̂) = v(N) = pt(N), this means that pt

i + pt
j = w(i j) for every i j ∈ M̂ , and moreover pt

i = 0 if i is not incident to an edge 
of M̂ . Consequently, the vector p̂, defined by p̂(i, j) = pt

i if i j ∈ M̂ and p̂(i, j) = 0 if i j /∈ M̂ , is equivalent to p and forms 
together with M̂ a stable solution of (G, 1, w). �
Lemma 2 (Letchford et al., 2008). For a graph G with vertex capacity function b and edge weighting w, it is possible to find a maximum 
weight b-matching of G in O (n2m log(n2/m)) time.

3. Stable fixtures with payments

We start with the following useful lemma. This lemma shows that a matching M in a stable solution (M, p) for an 
instance (G, b, w) of SFP is always a maximum weight b-matching. Moreover it implies that the core of a multiple partners 
matching game is nonempty if the corresponding instance (G, b, w) of SFP has a stable solution (the reverse does not hold 
as we will prove in Section 5).

Lemma 3. Let (G, b, w) be an instance of SFP. If (M, p) is a stable solution for (G, b, w), then M is a maximum weight b-matching 
and pt is a core allocation of the corresponding multiple partners matching game.

Proof. Let (M, p) be a stable solution for an instance (G, b, w) of SFP, where G = (N, E). Before we prove that M is a 
maximum weight b-matching, we will first show that pt is a core allocation of the multiple partners matching game (N, v)

defined on (G, b, w). Recall that pt is defined as pt(i) = ∑
j:i j∈E p(i, j) for every i ∈ N . Let S ⊆ N be an arbitrary coalition, 

and let M ′ be a maximum weight b-matching in the subgraph of G induced by S . Then we have that

pt(S) =
∑
i∈S

pt(i)

=
∑
i∈S

( ∑
j:i j∈M∩M ′

p(i, j) +
∑

j:i j∈M\M ′
p(i, j)

)

=
∑

i j∈M∩M ′
(p(i, j) + p( j, i)) +

∑
i∈S

∑
j:i j∈M\M ′

p(i, j)

=
∑

i j∈M∩M ′
w(i j) +

∑
i∈S

∑
j:i j∈M\M ′

p(i, j)

≥
∑

i j∈M∩M ′
w(i j) +

∑
i∈S

∑
j:i j∈M ′\M

up(i)

=
∑

i j∈M∩M ′
w(i j) +

∑
i j∈M ′\M

(up(i) + up( j))

≥
∑

′
w(i j) +

∑
′

w(i j) = w(M ′) = v(S).
i j∈M∩M ij∈M \M



252 P. Biró et al. / Games and Economic Behavior 108 (2018) 245–268
Fig. 3. An example of the construction of an SRP instance (G ′,1, w ′) from a SFP instance (G,b, w), where b(i) = 2 and b( j) = 3.

The first inequality is valid because of the following reason. If i is unsaturated by M then up(i) = 0 by definition. If i is 
saturated by M then |{ j : i j ∈ M \ M ′}| ≥ |{ j : i j ∈ M ′ \ M}| and p(i, j) ≥ up(i) holds for every j 	= i by definition. The last 
inequality follows from the stability condition for the pairs not matched by M . We conclude that pt is in the core. In 
particular this means that w(M) = ∑

i pt(i) = v(N). Hence, M is a maximum weight b-matching of G . �
The remainder of the section is organized as follows. In Section 3.1 we present our characterizations of the set of stable 

solutions for a given instance of SFP in terms of stable solutions for some corresponding instance of SRP and in terms of 
integral optimal solutions of some appropriate LP relaxation. In Section 3.2 we first observe that our characterization of the 
set of stable solutions directly leads to a polynomial-time algorithm for solving SFP and then we present an alternative but 
asymptotically faster algorithm (in order to do so we use Lemma 2). In Section 3.3 we generalize Lemma 1 from SRP to 
SFP and simultaneously Theorem 2 from MPA to SFP (apart from one statement of Theorem 2 that we observe cannot be 
generalized in this way).

3.1. Characterizing stable solutions of SFP

In this subsection we show how stable solutions of an instance (G, b, w) of SFP correspond to both stable solutions of 
an instance (G ′, 1, w ′) of SRP, where G ′ is a graph of size O (n3), and to integral optimal solutions of an LP relaxation.

Reducing to SRP. We first explain how to construct the instance (G ′, 1, w ′) of SRP from an instance (G, b, w) of SFP; see 
also Fig. 3. Our construction is based on a well-known construction, which was introduced by Tutte (1954) for nonbipar-
tite graphs with no edge weights. We write G ′ = (N ′, E ′). For each player i ∈ N with capacity b(i) we create b(i) copies, 
i1, i2, . . . , ib(i) in N ′ . For each edge i j ∈ E we create four players, i j , i j , ji , ji , with edges isi j for s = 1, . . . , b(i), i j i j , i j ji , ji ji

and ji jt for t = 1, . . . , b( j), each with weight w(i j). This completes the construction. Note that G ′ is bipartite if and only 
if G is bipartite. Hence, our construction also reduces an instance of MPA to an instance of SMP. We say that (G ′, 1, w ′) is 
reduced from (G, b, w).

Given a solution (M, p) for (G, b, w), we define a solution (M ′, p′) for (G ′, 1, w ′) as follows; see also Figs. 4 and 5. As 
b ≡ 1 in the instance (G ′, 1, w ′), we define p′ as a function on N ′ for simplicity, that is, with slight abuse of notation we 
define p′ as a total payoff vector.

– The payoffs of the copies will be the same as the minimum payoffs of the original players, that is, for each i ∈ N , let 
p′(is) = up(i) for every s = 1, . . . , b(i).

– For each i ∈ N , we order its partners under M .
• For each i j ∈ M , if j is the s-th partner of i for some s ∈ {1, . . . , b(i)}, and i is the t-th partner of j for some 

t ∈ {1, . . . , b( j)} then let isi j ∈ M ′ , i j ji ∈ M ′ and ji jt ∈ M ′ with the following payoffs: p′(i j) = p(i, j) and p′(i j) =
w(i j) − up(i), and similarly p′( ji) = p( j, i) and p′( ji) = w(i j) − up( j).

• For each i j ∈ E \ M , let i j i j , ji ji ∈ M ′ with p′(i j) = min{up(i), w(i j)} and p′(i j) = w(i j) − min{up(i), w(i j)}, and 
similarly p′( ji) = min{up( j), w(i j)} and p′( ji) = w(i j) − min{up( j), w(i j)}.

We say that (M ′, p′) is reduced from (M, p) and prove in our next lemma that (M ′, p′) is a solution for (G ′, 1, w). Note 
that (M ′, p′) may not be the unique solution reduced from (M, p), as it might be possible to order the partners of a player 
differently and we used this order in the construction of M ′ . We may also define a matching M ′ in the above way, without 
defining any payoff vector p′ , and say that M ′ is reduced from M . In our next lemma we also show that our reduction 
preserves the “maximum weight property” of a matching.

Lemma 4. Let (G, b, w) be an instance of SFP and let (G ′, b′, w ′) be its reduced instance. Then the following two statements hold:

(i) every matching M ′ reduced from a maximum weight b-matching M is a maximum weight matching of G ′;
(ii) every pair (M ′, p′) reduced from a solution (M, p) for (G, b, w) is a solution for (G ′, 1, w).
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Fig. 4. Reducing a solution (M ′, p′) from a solution (M, p): the case when i j ∈ M (here b(i) = 3, b( j) = 5 and w(i, j) = 7). The thick edges represent 
matching edges.

Fig. 5. Reducing a solution (M ′, p′) from a solution (M, p): the case when i j /∈ M (here b(i) = 3, b( j) = 5 and w(i, j) = 7). The thick edges represent 
matching edges.

Proof. Let (G, b, w) be an instance of SFP and let (G ′, b′, w ′) be its reduced instance. We first prove (i) and then (ii).

(i) Let M be a maximum weight b-matching of G , and let M ′ be a matching in G ′ reduced from M . Note that

w ′(M ′) = 3
∑
i j∈M

w(i j) + 2
∑

i j∈E\M

w(i j) = 3w(M) + 2w(E \ M) = w(M) + 2w(E).

Consider a maximum weight matching M∗ of G ′ . Let Eij denote all the edges in G ′ that are incident with at least one vertex 
in {i j, i j, ji, ji}. As M∗ has maximum weight, each Eij contains at least two edges of M∗ . By construction of G ′ , each Eij

contains at most three edges of M∗ . If |Eij ∩ M∗| = 2, then we replace the edges of Eij ∩ M∗ by the edges i j i j and ji ji if 
necessary. If |Eij ∩ M∗| = 3, then M∗ must contain the edge i j ji together with the edges isi j for some s ∈ {1, . . . , b(i)} and 
ji jt for some t ∈ {1, . . . , b( j)}. Hence the resulting matching M̂ ′ is a maximum weight matching of G ′ , which we can reduce 
from some b-matching M̂ of G by construction. In particular, we have that w ′(M̂ ′) = w(M̂) + 2w(E). As M is a maximum 
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weight b-matching of G , we find that w(M) ≥ w(M̂). Hence, we deduce that w ′(M̂ ′) = w(M̂) + 2w(E) ≤ w(M) + 2w(E) =
w ′(M ′). As M̂ ′ is a maximum weight matching of G ′ , this implies that M ′ is a maximum weight matching of G ′ .

(ii) Let (M, p) be a solution for (G, b, w), and let (M ′, p′) be a pair reduced from (M, p). Every edge in G ′ is obtained from 
an edge i j of G . We consider all cases (cf. Remark 1). If isi j ∈ M ′ then p′(is) + p′(i j) = up(i) + w(i j) − up(i) = w(i j) =
w ′(is ī j). If i j i j ∈ M ′ then p′(i j) + p′(i j) = w(i j) − min{up(i), w(i j)} + min{up(i), w(i j)} = w(i j) = w ′(i j i j). If i j ji ∈ M ′ then 
p′(i j) + p′( ji) = p(i, j) + p( j, i) = w(i j) = w ′(i j ji), where the one-but-last equality follows from the assumption that (M, p)

is a solution for (G, b, w). Hence, we have shown statement (ii). �
Our next result shows that reduced solutions preserve stability. In fact, we prove a stronger statement, as we characterize 

stable solutions for instances of SFP in terms of stable solutions for instances of SRP. In particular, Theorems 3 (ii) and (iii) 
specify properties of stable solutions of reduced instances that we will need later on. We note that the restriction in 
statements (ii) and (iii) of Theorem 3 to maximum weight b-matchings does not make these statements weaker due to 
Lemma 3.

Theorem 3. Let (G, b, w) be an instance of SFP and (G ′, 1, w ′) be the instance of SRP reduced from (G, b, w). Then the following 
three statements hold:

(i) (G, b, w) has a stable solution if and only if (G ′, 1, w ′) has a stable solution;
(ii) (G, b, w) has a stable solution (M, p) for some maximum weight b-matching M of G if and only if (G ′, 1, w ′) has a stable solution 

(M ′, p′), where M ′ is reduced from M and p′(i j) = p(i, j) and p′( ji) = p( j, i) for every i j ∈ M;
(iii) a solution (M, p) for (G, b, w), where M is a maximum weight b-matching of G, is stable if and only if every solution (M ′, p′) for 

(G ′, 1, w ′) reduced from (M, p) is stable.

Proof. Let (G, b, w) be an instance of SFP and (G ′, 1, w ′) be the instance of SRP reduced from (G, b, w).

We first prove the “⇒”-direction of statement (iii), namely that if (G, b, w) has a stable solution (M, p), then every (M ′, p′)
for (G ′, 1, w ′) that is reduced from (M, p) is stable. Note that this immediately implies the “⇒”-direction of statements (i) 
and (ii) as well.

Let (M ′, p′) be reduced from (M, p). By Lemma 4 (ii) we find that (M ′, p′) is a solution for (G ′, 1, w ′). We will show that 
(M ′, p′) is a stable solution for (G ′, 1, w ′). Throughout the proof we assume that p′ is a total payoff vector defined on N ′ .

In order to prove that (M ′, p′) is stable we must check whether the stability condition for each edge not in M ′ is 
satisfied, that is, whether up′ (i′) + up′ ( j′) ≥ w ′(i′ j′) holds for all i′ j′ ∈ E ′ \ M ′ . As up′ (i′) = p′(i′) for every i′ ∈ N ′ , this comes 
down to checking whether

p′(i′) + p′( j′) ≥ w ′(i′ j′) for all i′ j′ ∈ E ′ \ M ′.

First consider each edge isi j /∈ M ′ . Then p′(i j) = w(i j) − min{up(i), w(i j)}. Hence we find that p′(is) + p′(i j) = up(i) +
w(i j) − min{up(i), w(i j)} ≥ w(i j) = w ′(isi j). Now consider each edge i j i j /∈ M ′ . Then p′(i j) = w(i j) − up(i) and p′(i j) =
p(i, j). As up(i) ≤ p(i, j), we obtain p′(i j) + p′(i j) = w(i j) − up(i) + p(i, j) ≥ w(i j) = w ′(i j i j). Finally, consider each edge 
i j ji /∈ M ′ . Then p′(i j) = min{up(i), w(i j)} and p′( ji) = min{up( j), w(i j)}. If w(i j) ≤ up(i) or w(i j) ≤ up( j), then p′(i j) +
p′( ji) ≥ w(i j) = w ′(i j ji). Now suppose that w(i j) > up(i) and w(i j) > up( j). Then p′(i j) + p′( ji) = up(i) + up( j) ≥ w(i j) =
w ′(i j ji), where the inequality follows from the fact that (M, p) is a stable solution for (G, b, w). Hence the “⇒”-directions 
of statements (i) and (ii) have been proven.

We will now prove the “⇐”-directions of statements (i) and (ii). We do this as follows. First we assume that (G ′, 1, w ′)
has a stable solution. We then show that this stable solution can be changed into a stable solution for (G ′, 1, w ′) as pre-
scribed by statement (ii), followed by a proof of the “⇐”-direction of statement (ii).

Let (M ′′, p′′) be a stable solution for (G ′, 1, w ′). Let M ′ be a matching of G ′ that can be reduced from a maximum weight 
b-matching M of G . By Lemma 4 (i), we find that M ′ is a maximum weight matching of G ′ By Lemma 1, (G ′, 1, w ′) has 
a stable solution (M ′, p′), where p′ is equivalent to p′′ . We define p(i, j) = p′(i j) and p( j, i) = p′( ji) for every i j ∈ M and 
p(i, j) = p( j, i) = 0 for every i j ∈ E \ M . We claim that (M, p) is a stable solution for (G, b, w).

First we show that (M, p) is a solution for (G, b, w). Let i j ∈ E . If i j ∈ E \ M , then p(i, j) = p( j, i) = 0 by definition of p. If 
i j ∈ M , then i j ji ∈ M ′ by construction. As (M ′, p′) is a solution, this means that p(i, j) + p(i, j) = p′(i j) + p′( ji) = w ′(i j ji) =
w(i j).

Now we show that (M, p) is stable. For contradiction, assume that G has an edge i j ∈ E \ M that blocks (M, p), that is,

up(i) + up( j) < w(i j).

Note that i j ji ∈ E ′ \ M ′ by construction. We claim that p′(i j) ≤ up(i) and p′( ji) ≤ up( j) hold. Then p′(i j) + p′( ji) ≤ up(i) +
up( j) < w(i j) = w ′(i j ji), which means, together with i j ji ∈ E ′ \ M ′ , that we have obtained a contradiction with the stability 
of (M ′, p′).
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Fig. 6. The two stable solutions (M ′, p′) and (M ′, p′′) for the instance (G ′, 1, w ′) reduced from the instance (G, b, w) from Example 4; the stable solution 
(M ′, p′′) cannot be reduced from a stable solution for (G, b, w).

In order to prove that p′(i j) ≤ up(i) and p′( ji) ≤ up( j), we distinguish between two cases. First suppose that i is not 
saturated by M . Then G ′ contains a copy of i, say is , that is not matched by M ′ , which means that p′(is) = 0. As (M ′, p′)
is stable and isi j ∈ E \ M ′ , we find that up′ (is) + up′ (i j) = p′(is) + p′(i j) ≥ w ′(isi j). Hence, p′(i j) ≥ w(i j). As i j i j ∈ M ′ by 
construction and (M ′, p′) is a solution for (G ′, 1, w), we obtain p′(i j) + p′(i j) = w ′(i j i j). As p′(i j) ≥ w(i j) and p′ ≥ 0, this 
means that p′(i j) = 0. Hence, p′(i j) ≤ up(i).

Now suppose that i is saturated by M . Then all b(i) copies ih of i in (G ′, 1, w ′) are matched by M ′ . Let k be the partner 
of i for which p(i, k) is minimal, so up(i) = p(i, k) = p′(ik). As isik ∈ M ′ and (M ′, p′) is a solution for (G ′, 1, w ′), we find that 
p′(is) + p′(ik) = w(ik). From the stability of (M ′, p′) it follows that p′(ik) + p′(ik) ≥ w(ik). Hence p′(ik) ≥ p′(is) holds. From 
the stability of (M ′, p′) it also follows that p′(is) ≥ w(i j) − p′(i j). As (M ′, p′) is a solution for (G ′, 1, w ′) and i j i j ∈ M ′ , we 
find that w(i j) − p′(i j) = p′(i j). Putting the last three conditions together yields p′(i j) ≤ p′(ik) = up(i), just as we claimed. 
We can show p′( ji) ≤ up( j) by exactly the same arguments. Hence the two “⇐”-directions of statements (i) and (ii) have 
been proven.

We are left to prove the “⇐”-direction of statement (iii). This direction can be seen as follows. Let (M, p) be a solution 
for (G, b, w), where M is a maximum weight b-matching of G . If the starting stable solution (M ′′, p′′) is reduced from a 
solution (M, p) of (G, b, w) (instead of being an arbitrary stable solution for (G ′, 1, w)) then the above argument shows 
that (M, p) is stable. This completes the proof of the theorem. �

Note that not all stable solutions for (G ′, 1, w ′) can be reduced from stable solutions for (G, b, w), as up(i) > p′(is) is 
possible for some s ∈ 1 . . .b(i). This might be the case even for very small instances (G, b, w), as the following example 
shows.

Example 4. Let G consist of only two adjacent players i and j with b(i) = b( j) = 1 and w(i j) = 7. Then the pair (M, p) with 
M = {i j} and p(i, j) = 3, p( j, i) = 4 is a stable solution, which has only one reduced solution (M ′, p′) (see Fig. 6) given by 
M ′ = {i1i j, i j ji, ji j1} and payoffs p′(i1) = 3, p′(i j) = 4, p′(i j) = 3, p′( ji) = 4, p′( ji) = 3 and p′( j1) = 4. An alternative stable 
solution for (G ′, 1, w ′), depicted in Fig. 6 as well, is the pair (M ′, p′′), where p′′(i1) = 1, p′′(i j) = 6, p′′(i j) = 3, p′′( ji) = 4, 
p′′( ji) = 4, p′′( j1) = 3.

Remark 2. In the proof of Theorem 3 we could have used a simpler construction, namely the one where each 4-player path 
in the reduced instance, i j, i j, ji, ji is replaced with a 2-player path i j, ji . However, this reduction would not give us the 
one-to-one correspondence described in Theorem 3 (ii), and this correspondence is crucial for some of our other results.

The LP relaxation. Let (G, b, w) be an instance of SFP. Let M be a matching of G . With M we associate a binary vector 
xM : E → {0, 1} called the characteristic function of M , which is defined by xM(i j) = 1 for all i j ∈ M and xM(i j) = 0 for all 
i j ∈ E \ M . Then we can write 

∑
j:i j∈E xM(i j) ≤ b(i) for each i ∈ N as an alternative way to state the capacity condition. This 

leads to the following LP relaxation, which we call Primal-(G, b, w):

max
∑
i j∈E

w(i j)x(i j) (P-obj)

subject to
∑

j:i j∈E

x(i j) ≤ b(i) for each i ∈ N, (a)

0 ≤ x(i j) ≤ 1 for each i j ∈ E. (b)

We make the following observation.

Lemma 5. The (optimal) solutions of the integer linear program corresponding to Primal-(G, b, w) correspond to the (maximum 
weight) b-matchings of G and vice versa.
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We now formulate the dual LP Dual-(G, b, w) of Primal-(G, b, w):

min
∑
i∈N

b(i)y(i) +
∑
i j∈E

d(i j) (D-obj)

subject to y(i) + y( j) + d(i j) ≥ w(i j) for each i j ∈ E, (a’)

0 ≤ y(i) for all i ∈ N, (b’)

0 ≤ d(i j) for all i j ∈ E. (c’)

Note that for an optimal dual solution (y, d), it holds that d(i j) = [w(i j) − y(i) − y( j)]+ (where the latter notation means 
max{w(i j) − y(i) − y( j), 0}).

We now characterize stable solutions of instances of SFP in terms of integral optimal solutions of Primal-(G, b, w).

Theorem 4. An instance (G, b, w) of SFP has a stable solution if and only if the LP Primal-(G, b, w) has an integral optimal solution.

Proof. Let (G, b, w) be an instance of SFP. By Theorem 3 (i) it suffices to show that the instance (G ′, 1, w ′) of SRP reduced 
from SFP has a stable solution if and only if Primal-(G, b, w) has an integral optimal solution. We show this below.7

(⇒) Suppose that (M ′′, p′′) is a stable solution for (G ′, 1, w ′), where we again assume that p′′ is a total payoff vector 
(defined on N ′). Let M ′ be a maximum weight matching of G ′ that can be reduced from a maximum weight b-matching M
of G . By Lemma 1, (G ′, 1, w ′) has a stable solution (M ′, p′), where p′ is equivalent to p′′ .

Before we define a feasible solution (y, d) of Dual-(G, b, w), we will first show that p′(is) = p′(it) for every player 
i ∈ N and every two indices s, t ∈ {1, . . . , b(i)}. For contradiction, suppose that p′(is) > p′(ir) for some i ∈ N and indices 
r, s ∈ {1, . . . , b(i)}. Then, as p′(ir) ≥ 0, we have that p′(is) > 0. This means that is i j ∈ M ′ for some j ∈ N \ {i}, which implies 
that p′(is) + p′(i j) = w ′(isi j) = w(i j). Consequently, p′(ir) + p′(i j) < p′(is) + p′(i j) = w(i j) = w ′(ir i j), thus ir i j would block 
(M ′, p′). This contradicts the fact that (M ′, p′) is a stable solution for (G ′, 1, w). Hence we may set

y(i) = p′(is) for every copy is of every i ∈ N, (2)

as this is well-defined. We also define

d(i j) = [w(i j) − y(i) − y( j)]+ for every i j ∈ E. (3)

In this way we have obtained our feasible solution (y, d) of Dual-(G, b, w).
We define an integral solution x of Primal-(G, b, w) as follows. For each i j ∈ E , let x(i j) = 1 if i j ji ∈ M ′ and x(i j) = 0

otherwise. Recall that isi j ∈ M ′ for exactly one index s ∈ {1, . . . , b(i)} if and only if i j ji ∈ M ′ . Hence, as each is is incident to 
at most one edge of M ′ , we find that 

∑
j:i j∈E x(i j) = ∑

j:i j ji∈M′ 1 ≤ b(i). As 0 ≤ x(i j) ≤ 1 for every i j ∈ E , we find that x is a 
feasible solution.

It remains to prove that x is an optimal solution of Primal-(G, b, w). In fact we will show that x and (y, d) are both 
optimal, as they satisfy the complementary slackness conditions:

– For every i ∈ N , if 
∑

j:i j∈E x(i j) < b(i) then (as isi j ∈ M ′ for exactly one index s ∈ {1, . . . , b(i)} if and only if i j ji ∈ M ′) 
some copy of i, say ir , is unmatched in M ′ . Therefore y(i) = p′(ir) = 0. This means that dual condition (b’) is binding.

– For every i j ∈ E , if x(i j) < 1, then x(i j) = 0 and thus i j ji /∈ M ′ . Then, by construction of M ′ , we have that is i j /∈ M ′ for 
any s ∈ {1, . . . , b(i)}, i j i j ∈ M ′ , ji ji ∈ M ′ and ji jt /∈ M ′ for any t ∈ {1, . . . , b( j)}. These facts, together with the stability 
conditions for isi j and ji jt and the fact that y(i) = p′(is) holds by definition, imply that

y(i) + p′(i j) = p′(is) + p′(i j) ≥ w ′(isi j) = w(i j) = w(i j i j) = p′(i j) + p′(i j),

and thus y(i) ≥ p′(i j), and similarly, y( j) ≥ p′( ji), which means that y(i) + y( j) ≥ p′(i j) + p′( ji) ≥ w ′(i j ji) = w(i j), 
where the second inequality is implied by the stability condition for i j ji . As a consequence, d(i j) = [w(i j) − y(i) −
y( j)]+ = 0 holds. This means that dual condition (c’) is binding.

– For every i j ∈ E , if x(i j) > 0, then x(i j) = 1 and thus i j ji ∈ M ′ and therefore, by construction of M ′ , we have that 
isi j ∈ M ′ for some s ∈ {1, . . . , b(i)}, i j i j /∈ M ′ , ji ji /∈ M ′ and ji jt ∈ M ′ for some t ∈ {1, . . . , b( j)}. These facts, together 
with the stability conditions for i j i j and ji ji and the fact that y(i) = p′(is) holds by definition, imply that

y(i) + p′(i j) = p′(is) + p′(i j) = w ′(isi j) = w(i j) = w(i j i j) ≤ p′(i j) + p′(i j),

and thus y(i) ≤ p′(i j), and similarly, y( j) ≤ p′( ji), which means that y(i) + y( j) ≤ p′(i j) + p′( ji) = w ′(i j ji) = w(i j); as 
a consequence, d(i j) = [w(i j) − y(i) − y( j)]+ = w(i j) − y(i) − y( j) holds. This means that dual condition (a’) is binding.

Hence x is an integral optimal solution of Primal-(G, b, w), as required.

7 Note that we could have proven Theorem 4 directly, without reducing to an instance of SRP. However, as a byproduct of our proof we obtain an 
alternative description of the set of stable solutions of the reduced instance (Corollary 1), which we think is worth noting.



P. Biró et al. / Games and Economic Behavior 108 (2018) 245–268 257
(⇐) Let x be an integral optimal solution for Primal-(G, b, w) and let (y, d) be an optimal solution of Dual-(G, b, w). From 
x and (y, d) we create a stable solution (M ′, p′) for (G ′, 1, w ′) as follows.

As x is an integral optimal solution, x is a characteristic function of some maximum weight b-matching M by Lemma 5. 
Let M ′ be a maximum weight matching in G ′ reduced from M . For every i ∈ N , let p′(is) = y(i) for each s ∈ {1, . . . , b(i)}. 
For each i j /∈ M we define p′(i j) = y(i) and p′(i j) = w(i j) − y(i). For each i j ∈ M we choose ξ(i, j) ≥ 0 and ξ( j, i) ≥ 0 with 
ξ(i, j) + ξ( j, i) = d(i j) and define p′(i j) = y(i) + ξ(i, j) and p′(i j) = w(i j) − y(i).

We will first show that (M ′, p′) is a solution for (G ′, 1, w ′), that is, p′(i′) + p′( j′) = w ′(i′ j′) for every i′ j′ ∈ M ′ . Suppose 
i j ∈ M . Then isi j ∈ M ′ for some s = 1, . . . , b(i) and jt ji ∈ M ′ for some t = 1, . . . , b( j). By symmetry, we only need to consider 
the edge isi j . We find that p′(is) + p′(i j) = y(i) + w(i j) − y(i) = w(i j) = w ′(isi j). We also have i j ji ∈ M ′ and find that

p′(i j) + p′( ji) = y(i) + ξ(i, j) + y( j) + ξ( j, i) = y(i) + y( j) + d(i j) = w(i j) = w ′(i j ji),

where the one-but-last equality follows from the fact that dual condition (a’) is binding for i j ∈ M , as x(i j) = 1 > 0.
Now suppose i j /∈ M . Then i j i j ∈ M ′ and ji ji ∈ M ′ . By symmetry we only need to consider the edge i j i j . We find that 

p′(i j) + p′(i j) = w(i j) − y(i) + y(i) = w(i j) = w ′(i j i j). Hence, p′(i′) + p′( j′) = w ′(i′ j′) for every i′ j′ ∈ M ′ , which means that 
(M ′, p′) is a solution for (G ′, 1, w ′).

Now we show that (M ′, p′) is stable, that is, we show that p′(i′) + p′( j′) ≥ w ′(i′ j′) for every i′ j′ ∈ E ′ \ M ′ . First suppose 
i j ∈ M . Then i j i j ∈ E ′ \ M ′ and p′(i j) + p′(i j) = w(i j) − y(i) + y(i) = w(i j) = w ′(i j i j), as required. We also have ji ji ∈ E ′ \ M ′
and can show that the stability condition is satisfied for ji ji in the same way.

Now suppose i j ∈ E \ M . Then i j ji ∈ E ′ \ M ′ . As x(i j) = 0 < 1, dual condition (c’) is binding for i j, so d(i j) = 0. Conse-
quently, we deduce that

p′(i j) + p′( ji) = y(i) + y( j) = y(i) + y( j) + d(i j) ≥ w(i j) = w ′(i j ji),

where the last inequality follows from the fact that (y, d) is a solution of Dual-(G, b, w). We also have isi j /∈ E ′ \ M ′ for 
s = 1, . . . , b(i) and jt ji /∈ E ′ \ M ′ for t = 1, . . . , b( j). By symmetry it suffices to consider an edge is i j for some s ∈ {1, . . . , b(i)}. 
Then we obtain p′(is) + p′(i j) = y(i) + w(i j) − y(i) = w(i j) = w ′(isi j). We conclude that the stability condition is satisfied 
for every i′ j′ ∈ E ′ \ M ′ . This completes our proof. �

The following corollary is obtained directly from the proof of Theorem 4. It gives a full description of the set of stable 
solutions of every instance of SFP that is reduced from some instance of SRP. In particular, this explains why this set may 
contain stable solutions that cannot be reduced from stable solutions for (G, b, w) (recall that we gave an explicit example 
of such a stable solution in the paragraph after the proof of Theorem 3).

Corollary 1. Let (G ′, 1, w ′) be an instance of SRP reduced from an instance (G, b, w) of SFP that has a stable solution. Then (G ′, 1, w ′)
has a stable solution (M ′, p′) if and only if Dual-(G, b, w) has an optimal solution (y, d) with y(i) = p′(is) for every i ∈ N and 
s ∈ {1, . . . , b(i)} (and d(i j) = [w(i j) − y(i) − y( j)]+ for every i j ∈ E).

Proof. Let (G ′, 1, w ′) be an instance of SRP reduced from an instance (G, b, w) of SFP that has a stable solution.

(⇒) Suppose that (G ′, 1, w ′) has a stable solution (M ′, p′). Then Dual-(G, b, w) has an optimal solution (y, d) with y(i) =
p′(is) for every i ∈ N and s ∈ {1, . . . , b(i)} and d(i j) = [w(i j) − y(i) − y( j)]+ for every i j ∈ E due to equations (2) and (3) in 
the proof of Theorem 4.

(⇐) Suppose that Dual-(G, b, w) has an optimal solution (y, d) with y(i) = p′(is) for every i ∈ N and s ∈ {1, . . . , b(i)}. Recall 
that the equalities d(i j) = [w(i j) − y(i) − y( j)]+ (i j ∈ E) follow directly from the optimality of (y, d). As (G, b, w) has a 
stable solution, Theorem 4 tells us that Primal-(G, b, w) has an integer optimal solution x. In the proof of Theorem 4 we 
created a stable solution (M ′, p′) from x and (y, d). �

We finish Section 3.1 by summarizing our main results in the following corollary (the 1 ⇔ 2 proof follows directly from 
Theorem 3 (i), whereas 2 ⇔ 3 follows directly from Theorem 4).

Corollary 2. Let (G, b, w) be an instance of SFP and (G ′, 1, w ′) be the instance of SRP reduced from (G, b, w). The following state-
ments are equivalent:

1. (G, b, w) has a stable solution.
2. (G ′, 1, w ′) has a stable solution.
3. Primal-(G, b, w) has an integral optimal solution.
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3.2. Solving SFP efficiently

We first show how to solve SFP on an instance (G, b, w) by using the results from Section 3.1. We construct the instance 
(G ′, 1, w ′) of SRP. This takes O (n3) time as we may assume without loss of generality that b(i) ≤ n for all i ∈ N and thus 
|N ′| = ∑

i∈N b(i) + 4m = O (n2) and |E ′| ≤ ∑
i∈N b(i)n + 3m ≤ n3 + 3m = O (n3). We then use the aforementioned algorithm 

of Biró et al. (2012) to compute in O (n′m′ + n′ 2 log n′) = O (n5) time a stable solution for (G ′, 1, w ′) or else conclude that 
(G ′, 1, w ′) has no stable solution. In the first case we can modify the stable solution into a stable solution for (G, b, w) in 
O (n3) time, as described in the proof of Theorem 4. In the second case, Theorem 4 tells us that (G, b, w) has no stable 
solution. The total running time is O (n5). Below we present an algorithm that solves SFP in O (n2m log(n2/m)) time.

A half-b-matching in a graph G = (N, E) with an integer vertex capacity function b and an edge weighting w is an edge 
mapping f that maps each edge e to a value in {0, 12 , 1}, such that 

∑
e:v∈e f (e) ≤ b(v) for each v ∈ N . The weight of f is 

w( f ) = ∑
e∈E w(e) f (e).

Let (G, b, w) be an instance of SFP. We define its duplicated instance (Ĝ, ̂b, ŵ) of MPA as follows. We replace each player 
i of G by two players i′ and i′′ in Ĝ with the same capacities, that is, we set b̂(i′) = b̂(i′′) = b(i). Moreover, we replace each 
edge i j by two edges i′ j′′ and i′′ j′ with half-weights, that is, we set ŵ(i′ j′′) = ŵ(i′′ j′) = 1

2 w(i j).
In a previous paper (Biró et al., 2012), three of us proved the following statement for instances of SRP only. By using the 

technique of instance duplication, we now generalize it for instances of SFP by using similar arguments.

Theorem 5. An instance (G, b, w) of SFP admits a stable solution if and only if the maximum weight of a b-matching in G is equal to 
the maximum weight of a half-b-matching in G.

Proof. Suppose that (Ĝ, ̂b, ŵ) is the duplicated MPA instance of (G, b, w). From Theorem 2 we know that (Ĝ, ̂b, ŵ) admits 
a stable solution (M̂, p̂), where M̂ is a maximum weight b-matching in Ĝ .

Let x̂ be the characteristic function of M̂ . Let ( ŷ, ̂d) denote a dual optimal solution, which has the same objective function 
value as x̂ by Theorem 4. We define a half-b-matching f for (G, b, w) by setting f (i j) = x̂(i′ j′′)+x̂(i′′ j′)

2 for each i j ∈ E(G). We 
observe that

w( f ) =
∑

i j∈E(G)

w(i j) f (i j) =
∑

i j∈E(G)

ŵ(i′ j′′)x̂(i′ j′′) + ŵ(i′′ j′)x̂(i′′ j′) = ŵ(x̂).

Therefore f is a feasible solution for Primal-(G, b, w) with the same value as x̂. We create a feasible dual solution (y, d) for 
Dual-(G, b, w) from ( ŷ, ̂d) with the same objective function value, namely ŵ(x̂), as follows. Let y(i) = ŷ(i′) + ŷ(i′′) for every 
player i of G and let d(i j) = d̂(i′ j′′) + d̂(i′′ j′) for every edge i j in E(G). Let us verify that (y, d) is a feasible dual solution, 
i.e. that for every edge i j ∈ E(G) we have

y(i) + y( j) + d(i j) = ( ŷ(i′) + ŷ(i′′)) + ( ŷ( j′) + ŷ( j′′)) + (d̂(i′ j′′) + d̂(i′′ j′))
= ( ŷ(i′) + ŷ( j′′) + d̂(i′ j′′)) + ( ŷ(i′′) + ŷ( j′) + d̂(i′′ j′))
≥ ŵ(i′ j′′) + ŵ(i′′ j′)

= w(i j).

Therefore f is a feasible solution for Primal-(G, b, w) and (y, d) is a feasible solution for Dual-(G, b, w) with the same value, 
namely ŵ(x̂), so by the Weak Duality theorem both f and (y, d) are optimal solutions. Hence we get that f is indeed a 
maximum weight half-b-matching with total weight equal to the primal–dual optimum for both (G, b, w) and (Ĝ, ̂b, ŵ). It 
is now readily seen that (G, b, w) has a stable solution if and only if the maximum weight of a b-matching is equal to the 
maximum weight of a half-b-matching of (G, b, w). �

We observe that the maximum weight of a b-matching can be computed in time O (n2m log(n2/m)), as described in 
Lemma 2. The maximum weight of a half-b-matching can be computed in the same time, since the maximum weight of a 
half-b-matching in (G, b, w) is the same as the maximum weight of a b-matching in the duplicated instance (Ĝ, ̂b, ŵ), as 
explained in the proof of Theorem 5. This leads to the following result.

Theorem 6. SFP can be solved in O (n2m log(n2/m)) time.

3.3. Generalizing Lemma 1 and Theorem 2 to SFP

We will now completely generalize Lemma 1 from SRP to SFP. In this way we will also extend corresponding statements 
in Theorem 2 from MPA to SFP (see also Section 4.1). Note that there exist instances of SRP (for instance, take a triangle) and 
thus of SFP with no stable solution. Hence, it is not possible to give a full generalization of Theorem 2, as the statement that 
each instance of MPA has a stable solution cannot be generalized. For proving our result we need one additional lemma.
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Lemma 6. Let (G, b, w) be an instance of SFP that has a stable solution (M, p), and let (G ′, 1, w ′) be the instance of SRP reduced 
from (G, b, w). Let (M ′, p′) be a solution for (G ′, 1, w ′) reduced from (M, p). Then for every maximum weight b-matching M̂ of G, 
the pair (M̂, p̂), where

– p̂(i, j) = p′(i j) and p̂( j, i) = p′( ji) for i j ∈ M̂

– p̂(i, j) = p̂( j, i) = 0 for i j ∈ E \ M̂,

is a stable solution for (G, b, w). Moreover, p̂ is equivalent to p.

Proof. Let (G, b, w) be an instance of SFP that has a stable solution (M, p). Let (G ′, 1, w ′) be the instance of SRP reduced 
from (G, b, w). Moreover, let (M ′, p′) be a solution for (G ′, 1, w ′) reduced from (M, p). Now let M̂ be a maximum weight 
b-matching of G , and let p̂ be the pay-off vector defined by p̂(i, j) = p′(i j) and p̂( j, i) = p′( ji) for i j ∈ M̂ and p̂(i, j) =
p̂( j, i) = 0 for i j ∈ E \ M̂ . We must prove that (M̂, p̂) is a stable solution for (G, b, w). Consider a matching M̂ ′ of G ′ that 
is reduced from M̂ . By Lemma 4 (i), we find that M̂ ′ is a maximum weight matching of G ′ . As (M ′, p′) is a stable solution 
of (G ′, 1, w ′) by Theorem 3 (iii), we may apply Lemma 1 to find that (M̂ ′, p′) is a stable solution for (G ′, 1, w ′) as well 
(recall that we view p′ as a total payoff vector defined on N ′). By Theorem 3 (ii) we find that (M̂, p̂) is a stable solution for 
(G, b, w). We are left to prove that p and p̂ are equivalent, that is, we show the following four conditions:

– up(i) = up̂(i) for every i ∈ N ,

– p(i, j) = p̂(i, j) and p( j, i) = p̂( j, i) for every i j ∈ M ∩ M̂ ,
– p(i, j) = up(i) = up̂(i) and p( j, i) = up( j) = up̂( j) for every i j ∈ M \ M̂ , and

– p̂(i, j) = up̂(i) = up(i) and p̂( j, i) = up̂( j) = up( j) for every i j ∈ M̂ \ M .

First suppose that i j ∈ M ∩ M̂ . Then p(i, j) = p′(i j) = p̂(i, j). Now suppose that i j ∈ M̂ \ M . Then i j ∈ E \ M . By definition, 
this means that i j i j ∈ M ′ . As (M ′, p′) is a solution for (G ′, 1, w ′), we find that p′(i j) + p′(i j) = w ′(i j i j). As i j ∈ M̂ and M̂ ′ is 
reduced from M̂ , we also find by definition that is i j ∈ M̂ ′ for some s ∈ {1, . . . , b(i)}. As (M̂ ′, p′) is a solution for (G ′, 1, w ′), 
this means that p′(is) + p′(i j) = w(i j). We conclude that p̂(i, j) = p′(i j) = p′(is) = up(i), where the last equality follows 
from the definition of p′(is). The same arguments show that for i j ∈ M \ M̂ we have p(i, j) = p′(i j) = p′(is) = up(i). Also, 
for every i ∈ N we deduce that

up̂(i) = min
ik∈M̂

p̂(i,k)

= min
ik∈M̂

p′(ik)

= min
{

min
ik∈M̂∩M

p′(ik), min
ik∈M̂\M

p′(ik)
}

≥ min
{

min
ik∈M

p′(ik), min
ik∈M̂\M

p′(ik)
}

= min
{

min
ik∈M

p(i,k), min
ik∈M̂\M

p′(ik)
}

= min
{

up(i), min
ik∈M̂\M

p′(ik)
}

= min
{

up(i), up(i)
}

= up(i),

where the one-but-last equality uses the fact that p′(ik) = up(i) for every ik ∈ M̂ \ M . If up(i) = 0, then the facts that 
p(i, j) = p̂(i, j) for every i j ∈ M ∩ M̂ and p̂(i, j) = up(i) for every i j ∈ M̂ \ M imply that up(i) = up̂(i) = 0. If up(i) > 0, then 
up̂(i) ≥ up(i) > 0. Hence, i is saturated by M̂ , which implies that up(i) = up̂(i) as well. Consequently, for i j ∈ M \ M̂ we find 
that p(i, j) = up(i) = up̂(i). Hence, for all i ∈ N , we find that up(i) = min j:i j∈E p(i, j) = min j:i j∈E p̂(i, j) = up̂(i). We conclude 
that p and p̂ are indeed equivalent. This completes the proof of the lemma. �

We are now ready to present the generalization of Lemma 1 from SRP to SFP and appropriate parts of Theorem 2 from 
MPA to SFP.

Theorem 7. Let (G, b, w) be an instance of SFP. If (M, p) is a stable solution for (G, b, w), then M is a maximum weight b-matching 
and pt is a core allocation of the corresponding multiple partners matching game. Moreover, for every other maximum weight 
b-matching M̂ of G there exists an equivalent payoff vector p̂ of p that is compatible with M̂.

Proof. The first statement follows immediately from Lemma 3. The second statement follows immediately from Lemma 6. �
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4. Connecting MPA with SMP

In this section we show how Theorem 3 readily implies the three main results of Sotomayor for MPA in Sotomayor
(1992, 1999, 2007), respectively. Essentially what we do in each of our three alternative proofs is reducing MPA to SMP, that 
is, to the one-to-one case, which then enables us to apply classical results for SMP. These alternative proofs are therefore 
not just simpler than the originals, but also shed light on the connection between MPA and SMP.

Sotomayor obtained her results for MPA in the context of economic markets. Consider a two-sided market, consisting of 
two disjoint groups, namely a group I of sellers and a group J of buyers (I and J are also called the buyer and seller side
of the market, respectively). The set E consists of pairs (i, j) with i ∈ I and j ∈ J that may go in business with each other. 
Hence, we can define a bipartite graph G = (I ∪ J , E) where I and J are the two partition classes. Each seller i ∈ I has b(i)
identical objects (and hence can sell at most b(i) objects). Each buyer j ∈ J may purchase at most one object from each 
seller and can buy at most b( j) objects in total. So, the vector b can be seen as a vertex capacity vector. For each (i, j) ∈ E , 
we denote the gain of a transaction between seller i and buyer j by w(i j). This yields an instance (G, b, w) of MPA.

4.1. The existence of a stable solution

First we provide an alternative proof for Theorem 2, which we restate below.

Theorem 2 (Sotomayor, 1992). Every instance (G, b, w) of MPA has a stable solution, which can be found in polynomial time. If 
(M, p) is a stable solution then M is a maximum weight b-matching and pt is a core allocation of the corresponding multiple partners 
assignment game. Moreover, for every other maximum weight b-matching M̂ of G there exists an equivalent payoff vector p̂ of p that 
is compatible with M̂.

Proof. Combining Theorems 1 and 3 immediately implies the existence of a stable solution for every instance of MPA. 
The other parts of the theorem are covered by Theorem 6 (the polynomial-time result on finding a stable solution) and 
Theorem 7 (the remaining part). �
4.2. The lattice structure of stable solutions

A complete lattice is a partially ordered set in which every subset has a supremum (obtained via join operations) and an 
infimum (obtained via meet operations). Sotomayor (1999) proved the following result on the lattice structure of the payoff 
vectors of stable solutions of an instance of MPA, for which we give a simple alternative proof. Here, a stable solution (M, p)

of an instance (G, b, w) is optimal for a set S if there is no stable solution (M ′, p′) with 
∑

j:i j∈E p′(i, j) >
∑

j:i j∈E p(i, j) for 
some i ∈ S .

Theorem 8 (Sotomayor, 1999). The payoff vectors of stable solutions of an instance of MPA form a complete lattice with unique optimal 
outcomes for each side of the market.

Proof. Shapley and Shubik (1972) proved that the payoff vectors of stable solutions of an instance of SMP form a complete 
lattice with unique optimal outcomes for each side of the market. They defined the meet and joint operations for two 
payoff vectors p and q by setting [p ∨ q](i) = min{p(i), q(i)} and [p ∧ q](i) = max{p(i), q(i)} for every i ∈ I , and [p ∨ q]( j) =
max{p( j), q( j)} and [p ∧ q](i) = min{p( j), q( j)} for every j ∈ J .

We combine the result of Shapley and Shubik with Theorem 3 after making the following additional remarks. By Theo-
rem 3 (ii) there is a one-to-one correspondence between the stable solutions for an instance (G, b, w) of SFP and the payoffs 
of some of the players in its reduced instance (G ′, 1, w ′) of SRP. Namely, a pair (M, p) is a stable solution for (G, b, w) if 
and only if there exists a stable solution (M ′, p′) for (G ′, 1, w ′) with p′(i j) = p(i, j) and p′( ji) = p( j, i) for every i j ∈ M .

We define meet and joint operations for the set of stable payoff vectors for (G, b, w). Let p and q be two payoff vectors 
of two stable solutions for (G, b, w) and let p′ and q′ be the payoff vectors of the reduced stable solutions for (G ′, 1, w ′), 
respectively. For each edge i j ∈ M , where i ∈ I and j ∈ J , let

– [p ∨ q](i, j) = min{p(i, j), q(i, j)} = min{p′(i j), q′(i j)} = [p′ ∨ q′](i j),
– [p ∧ q](i, j) = max{p(i, j), q(i, j)} = max{p′(i j), q′(i j)} = [p′ ∧ q′](i j),
– [p ∨ q]( j, i) = max{p( j, i), q( j, i)} = max{p′( ji), q′( ji)} = [p′ ∨ q′]( ji),
– [p ∧ q]( j, i) = min{p( j, i), q( j, i)} = min{p′( ji), q′( ji)} = [p′ ∧ q′]( ji).

We need to show that ∨ and ∧ are well defined operators on the set of stable payoff vectors for (G, b, w). Let us consider 
operation ∨ (operation ∧ can be treated in the same way). By Theorem 3 (ii) we can transform p and q to p′ and q′ , 
respectively, where p′ and q′ are stable payoffs for (G ′, 1, w ′). Then we create p′ ∨ q′ as Shapley and Shubik defined, which 
is a stable payoff vector for (G ′, 1, w ′). Finally we construct p ∨ q as defined above for (G, b, w). This is a payoff vector of a 
stable solution for (G, b, w) by Theorem 3 (ii).
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Let S ′ ⊂ N ′ be the set of players of form i j and ji in G ′ . Shapley and Shubik (1972) proved that the payoff vectors of the 
stable solutions for (G ′, 1, w ′) form a lattice, therefore the restrictions of the stable payoff vectors on S ′ also form a lattice. 
This lattice is equivalent to the lattice of the payoff vectors of the stable solutions for (G, b, w), as we explained above. This 
also implies the existence of unique optimal outcomes for each side of the market for (G, b, w). �
4.3. Competitive equilibrium outcomes

In economic theory, competitive equilibrium outcomes in MPA form a well studied solution concept. For instance they 
are used in multi-unit auction mechanisms (see, for example, Milgrom, 2000). Course allocation, where students bid for 
courses with virtual money, is another interesting application; such a system has been recently introduced at Wharton 
University (Budish and Kessler, 2014). In order to explain competitive equilibrium outcomes, we first need to extend our 
terminology.

Let (G, b, w) be an instance of MPA. Recall that G = (I ∪ J , E) is a bipartite graph with partition classes I (the set of 
sellers) and J (the set of buyers). Each player i is endowed with b(i) identical, player-specific goods. Let q(is) denote the 
price of the sth item of seller i ∈ I . This yields a price vector q. Recall that every buyer and seller can only make one 
transaction of a single item between them and that they may only do so if they are connected by an edge. For i j ∈ E , the 
weight w(i j) expresses the mutual benefit when seller i and buyer j make such a transaction: if j buys the sth item of i
then the payoff for i is p(i, j, s) = q(is) and the payoff for j is p( j, i, s) = w(i j) − q(is). This leads to a vector p, which is 
called the payoff vector with respect to q.

For a buyer j ∈ J , a bundle B( j) is a set of items that can be bought by j and that satisfies the following conditions:

(i) B( j) contains at most one item of every seller;
(ii) B( j) contains at most b( j) items.

For a bundle B( j) and a price vector q, the total payoff for j is the sum of the payoffs p( j, i, s) over all items in B( j). The 
demand set Dq( j) of buyer j is the set of all bundles of B( j) that maximize the total payoff for j over all bundles of j.

Let B = (B(1), . . . , B(| J |)) be a vector, where B( j) is a bundle for buyer j for j = 1, . . . , | J |, and let q be a price vector. 
Then (B, q) is called a competitive equilibrium outcome for (G, b, w) if the following three conditions hold:

(i) for every buyer j ∈ J , B( j) ∈ Dq( j) holds;
(ii) every unsold copy of an item has zero price, that is, q(is) = 0 if the sth item of buyer i is not in some B( j);

(iii) the sets B(1), . . . , B(| J |) are pairwise disjoint.

Note that this definition implies that for every competitive equilibrium outcome (B, q), we must have that q(is) = q(it) for 
every i, s, t , that is, prices of (identical) items of each seller must be the same: if two items of the same seller would have 
different prices, that is, if for some i, j, s, t , q(is) > q(it), then in particular, q(is) > 0, so is must be sold due to condition (ii). 
However, if j buys the sth item of i, that is, is ∈ B( j), then B( j) /∈ Dq( j) violating condition (i). Hence (B, q) would not be 
a competitive equilibrium outcome for (G, b, w).

A competitive equilibrium outcome (B, q) for an instance (G, b, w) of MPA is readily seen to correspond to a stable 
solution (M, p), where p is the payoff vector with respect to q, where p(i, j) = p(i, k) for every i ∈ I and j, k ∈ J , and 
p(i, j) = 0 if i is unsaturated in M . Note that we could have defined the competitive equilibrium outcomes simply as stable 
solutions where for every player on one side of the market her payoffs are identical in every pair she is involved in and 
equal to zero if she is unsaturated. However, we decided to deduce this property from the general definition of competitive 
equilibrium outcomes, just as Sotomayor did (2007), to explain why this well-known notion can be characterized by this 
simple property for MPA.

The main result of Sotomayor (2007) is the following theorem, for which we give a simple alternative proof.

Theorem 9 (Sotomayor, 2007). The set of competitive equilibrium outcomes of an instance of MPA forms a complete lattice with unique 
optimal outcomes for each side of the market. The competitive equilibrium outcomes are stable solutions. Moreover, the buyer-optimal 
stable solution is equivalent to the buyer-optimal competitive equilibrium outcome.

Proof. Again we reduce an instance (G, b, w) of MPA to an instance (G ′, 1, w ′) of SMP, as described in Theorem 3. For any 
stable solution (M, p) of (G, b, w) let (M ′, p′) be the reduced stable solution for (G ′, 1, w ′). Now we can create another 
stable solution (M ′, p̂′) for (G ′, 1, w ′), where for every i j ∈ M we set p̂′(i j) = up(i) ≤ p′(i j) = p(i, j) and p̂′( ji) = wij −
up(i) ≥ p( j, i) and keep the other payoffs the same. Since we only modified the redistribution between i j and ji (that is, ji

is now getting all the potential surplus in this pair), the only potential blocking pair for p̂′ is the pair {i j, i j}. However, this 
pair cannot be blocking since p̂′(i j) = p′(i j) = wij − up(i), so p̂′(i j) + p̂′(i j) = w(i j).

Let (M, p̂) be the solution for (G, b, w) from which (M ′, p̂′) is reduced. Here, every seller i receives identical payoffs 
from each of her buyers, that is, for every i j ∈ M we have p̂(i, j) = up(i). Therefore this solution is a competitive equilibrium 
outcome (M, q), where the price of the items of each seller i is q(i) = up(i) (and the corresponding bundles B( j) are given 
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Fig. 7. The graph from Example 5 for α = 5.

by the items matched to j in M). Moreover, the price vectors of the set of competitive equilibrium outcomes form a lattice, 
which is a sublattice of the lattice of the payoff vectors of the stable solutions. This is because the meet and joint operations 
(as defined in the proof of Theorem 8) result in price vectors of competitive equilibrium outcomes when applied to price 
vectors of competitive equilibrium outcomes (indeed, if all copies of an item have identical prices with respect to two given 
stable payoffs p and p̂, then this also holds for their meet and join).

Finally, we show that the buyer-optimal stable solution is equivalent to the buyer-optimal competitive equilibrium out-
come. Let (M, p) be a buyer-optimal solution (where p is uniquely determined). The above construction yields, via p′ and p̂, 
a stable solution (M, p̂), which is a competitive equilibrium. By construction, we have p̂′(i, j) = up(i) ≤ p(i, j). However, 
since p was buyer optimal, a strict inequality is impossible. Hence p̂ = p must hold. �
5. Core properties

To get started we recall that the core of a multiple partners matching game may be empty, as we could take for instance 
a triangle on three vertices and set b ≡ 1 and w ≡ 1. Below we show that this may also be the case for b 	= 1 by presenting 
the following example, which shows that the core of a multiple partners matching game may be empty even if b ≡ α for 
an arbitrary constant α ≥ 2.

Example 5. Let α ≥ 2. We start by taking a cycle on three vertices s1, s2 and s3. For i = 1, . . . , 3, we add α − 1 pendant 
(degree 1) vertices t1

i , . . . , tαi − 1 to si ; see also Fig. 7. We set b ≡ α and w ≡ 1. Then v(N) = 3(α − 1) + 1 = 3α − 2. We 
may assume without loss of generality that p(t j

i ) = 0 for i = 1, 2, 3 and j = 1, . . . , α − 1. Then, by symmetry, p(si) = α − 2
3

for i = 1, 2, 3. Take the coalition S = {s1, s2, t1
1, . . . , tα−1

1 , t1
2, . . . , tα−1

2 }. It holds that p(S) = 2α − 4
3 < 2α − 1 = v(S) and thus 

the core of this game is empty.

To increase our insight into the core of a multiple partners matching game, we now show that every core allocation x
of a multiple partners matchings game equals the total payoff vector pt of a suitable payoff vector p, which we can find in 
polynomial time. More precisely, we may even fix an arbitrary maximum weight b-matching M∗ to obtain suitable payoffs 
p(i, j) from the edges of M∗ . For proving this, we first present a small lemma which basically states that a corresponding 
system of equations (without any non-negativity constraints) is solvable. For a matching M of a graph G = (N, E), we let 
N(M) denote the subset of vertices of G incident with at least one edge of M .

Lemma 7. Let (N, v) be a multiple partners matching game on some triple (G, b, w). Let M∗ be a maximum weight b-matching of G, 
and let x ∈ R

N be a vector satisfying x(N(M∗
k )) = w(M∗

k ) for every connected component M∗
k of M∗ . Then it is possible to find in 

polynomial time a vector p with (not necessarily positive) entries p(i, j) such that

p(i, j) + p( j, i) = w(i j) for all i j ∈ M∗

p(i, j) = p( j, i) = 0 for all i j ∈ E\M∗

pt(i) := ∑
j:i j∈E p(i, j) = x(i) for all i ∈ N.



P. Biró et al. / Games and Economic Behavior 108 (2018) 245–268 263
Proof. Suppose M∗ contains a cycle C . We do as follows. We pick an edge i j ∈ C and define p(i, j) = p( j, i) = 1
2 w(i j). Then 

we decrease x(i) and x( j) by the same amount 1
2 w(i j). We remove the edge i j and decrease b(i) and b( j) by one each. In 

this way, M∗\{i j} is a maximum weight matching of the reduced instance. We repeat this operation on another cycle that 
contains only edges of M∗\{i j} until such cycles no longer exist. As each time we apply the operation we reduce M∗ by at 
least one edge, this procedure terminates in polynomial time.

From the above we may assume that M∗ induces a forest. If M∗ induces a tree, we do as follows. Fix a leaf i of the 
forest and let i ∈ N(M∗) be matched by i j ∈ M∗ . Set p(i, j) := x(i) and p( j, i) := w(i j) − x(i). We set x( j) := x( j) − p( j, i) =
x( j) + x(i) − w(i j) and perform the same operation on a leaf of M∗ \ {i j} until M∗ has no more edges. If M∗ induces a forest, 
we consider each connected component of M separately. Each time we apply the operation we reduce M∗ by at least one 
edge. Hence this procedure, and thus our whole algorithm, runs in polynomial time. �

Our first theorem in this section can be obtained by applying Lemma 7 to core allocations x.

Theorem 10. Let (N, v) be a multiple partners matching game on some triple (G, b, w). For every maximum weight b-matching M∗
of G and every core allocation x of (N, v), we can find in polynomial time a payoff vector p compatible with M∗ , such that x = pt .

Proof. The core constraints ensure that x satisfies the requirements x(N(M∗
k )) = w(M∗

k ) for every component M∗
k of M∗ . 

Hence we may apply Lemma 7 to obtain in polynomial time a vector p with (not necessarily positive) entries p(i, j) such 
that

p(i, j) + p( j, i) = w(i j) for all i j ∈ M∗

p(i, j) = p( j, i) = 0 for all i j ∈ E\M∗

pt(i) := ∑
j:i j∈E p(i, j) = x(i) for all i ∈ N.

If p ≥ 0 then we are done. Suppose not. Pick an arbitrary edge i j ∈ M∗ with p(i, j) < 0. Let

A := {i j | i j ∈ M∗ and p( j, i) > 0}.
Note that i j ∈ A, since p( j, i) = w(i j) − p(i, j) > w(i j) ≥ 0. We claim that there exists a directed path of arcs in A that starts 
in j and that ends in i. For contradiction, suppose that such a directed path does not exist. Let S ⊆ N denote the set of 
vertices that can be reached from j along arcs in A. Thus i /∈ S , j ∈ S , and p(k, �) ≤ 0 for all k /∈ S, � ∈ S . Note that for k = i
and � = j we get a strict inequality. Hence, for S̄ := N\S we conclude that

x( S̄) = ∑
k/∈S x(k)

= ∑
k/∈S

∑
�:k�∈E p(k, �)

= ∑
k/∈S(

∑
�∈S:k�∈E p(k, �) + ∑

�/∈S:k�∈E p(k, �))

<
∑

k/∈S

∑
�/∈S:k�∈E p(k, �)

= w(M ∗̄
S
),

where M ∗̄
S

is the restriction of M∗ to edges with both end-vertices in S̄ (recall that p(i, j) = p( j, i) = 0 if i j ∈ E \ M∗). This 
strict inequality contradicts our assumption that x is a core allocation of G .

Due to the above claim we can find (in polynomial time) a directed path P of arcs in A that starts in j and that ends 
in i. Together with arc i j ∈ A this gives us a directed cycle C ⊆ A such that for each arc i j ∈ C we can increase p(i, j) and 
decrease p( j, i) by ε = mini j∈C p( j, i) > 0. This reduces the minimal total amount of negative payoffs of p. We repeat this 
operation until p ≥ 0. Each time we do this, we reduce at least one payoff p( j, i) to zero. Hence, our algorithm runs in 
polynomial time. �

Theorem 7 tells us that if (M, p) is a stable solution for an instance (G, b, w) of SFP, then pt is a core allocation of the 
corresponding multiple partners matching game. This is in line with corresponding results for the other models and thus 
shows that the notion of stability is well defined with respect to the core definition. However, Theorem 10 seems to suggest 
that core allocations may also correspond to solutions that are not stable. Indeed the following result shows that this may 
be the case even if the corresponding instance of SFP has no stable solutions.

Theorem 11. There exist multiple partners matching games with a non-empty core but for which the corresponding instance of SFP

has no stable solutions.

Proof. Consider the following example. Take a diamond, that is, a cycle on three vertices s1, s2, s3 to which we add a 
fourth vertex u with edges s2u and s3u. We set b(si) = 2 for i = 1, 2, 3 and b(u) = 1, and w ≡ 1. Then Theorem 5 tells 
us that a stable solution does not exist, since the maximum weight of a b-matching is 3, whilst the maximum weight 
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of a half-b-matching is 3 1
2 (for the latter, take f (s1s2) = f (s1s3) = 1 and f (s2s3) = f (s2u) = f (s3u) = 1

2 ). However, the 
total payoff vector pt defined by pt(si) = 1 for i = 1, . . . , 3 and pt(u) = 0, which corresponds to, say, the b-matching 
M = {s1s2, s1s3, s2s3} with payoffs p(s1, s2) = 1, p(s2, s3) = 1 and p(s3, s1) = 1 and zero payoffs for the other edges is in the 
core. �

Due to Theorem 11, the analysis of the core cannot be reduced to the case in which we have unit vertex capacities (in 
contrast to our results in Section 3). We distinguish between the cases b ≤ 2 (which includes the known case of matching 
games, where b = 1) and b = 3.

5.1. The case b ≤ 2

We analyze the case b(i) ≤ 2 for i = 1, ..., n as follows. Note that a player i with b(i) = 0 necessarily gets 0 payoff in 
any core allocation, so the problem reduces trivially to G[N\{i}]. For this reason we assume b(i) ≥ 1 for all i ∈ N in the 
following. For b ≤ 2 we can provide a positive answer to problem P3, which implies that testing core membership can be 
done in polynomial time. Recall that a positive answer to P3 implies the existence of a polynomial-time algorithm that 
either finds that the core is empty, or else obtains a core allocation. As mentioned in Section 1, our algorithm uses an 
algorithm that solves the tramp steamer problem (which we formally define below) as a subproblem.

Let G = (N, E) be a graph with an edge weighting p : E → R+ called the profit function and an edge weighting w : E →
R+ called the cost function. Let C = (NC , EC ) be a cycle of G . The profit-to-cost ratio for a cycle C is p(C)

w(C)
where we write 

p(C) = p(EC ) and w(C) = w(EC ). The tramp steamer problem is that of finding a cycle C with maximum profit-to-cost 
ratio. This problem is well-known to be polynomial-time solvable both for directed and undirected graphs (see Lawler, 
1976, or Megiddo, 1979 for a treatment of more general “fractional optimization” problems).

Lemma 8. The tramp steamer problem can be solved in polynomial time.

We are now ready to prove the following result.

Theorem 12. The problem of deciding whether an allocation p is in the core of a multiple partners matching game can be solved in 
polynomial time if b ≤ 2. Moreover, if p is not in the core, then a coalition S with p(S) < v(S) can be found in polynomial time as well.

Proof. Let (N, v) be a multiple partners matching game defined on a triple (G, b, w), where b(i) ≤ 2 for all i ∈ N . Given 
S ⊆ N , a maximum weight b-matching in G[S] is composed of cycles and paths. Hence the core can be alternatively de-
scribed by the following (slightly smaller) set of constraints:

p(C) ≥ w(C), for all cycles C ∈ C
p(P ) ≥ w(P ), for all paths P ∈ P
p(N) = v(N).

(4)

Here, C stands for the set of cycles C ⊆ E in G with b(i) = 2 for all i ∈ V (C). Similarly, P stands for the set of paths P with 
b(i) = 2 for all inner points on P .

Given p ∈ R
N , we can check in polynomial time whether p(N) = v(N) holds by computing a maximum weight 

b-matching in G , which can be done in polynomial time by Lemma 2. Thus we are left with the inequalities for cycles 
and paths in (4).

We deal with the cycles first. Let N2 := {i ∈ N : b(i) = 2} and G2 := G[N2]. In the induced graph G2 = (N2, E2), we 
“discharge” the given allocations p(i) to the edges by setting p(i, j) := (p(i) + p( j))/2 for every edge i j in G2. This defines 
an edge weighting p : E2 → R such that the core constraints for cycles are equivalent to

max
C∈C

w(C)

p(C)
≤ 1,

where the maximum is taken over all cycles in G2. Hence we obtained an instance of the tramp steamer problem, which is 
polynomial-time solvable by Lemma 8. Note that by solving the above minimization problem we either find that all cycle 
constraints in (4) are satisfied or we end up with a particular cycle C corresponding to a violated core inequality. (The latter 
is of particular importance if we intend to use the “membership oracle” as a subroutine for the ellipsoid method.)

In what follows, we thus assume that all cycle constraints in (4) are satisfied by the given vector p ∈ R
N and turn to 

the path constraints. We process these separately for all possible endpoints i0, j0 ∈ N (with i0 	= j0) and all possible lengths 
k = 1, ..., n − 1. Let Pk(i0, j0) ⊆ P denote the set of i0 − j0-paths of length k in G . We construct a corresponding auxiliary 
graph Gk(i0, j0), a subgraph of G × Pk+1, the product of G with a path of length k. To this end, let N(1)

2 , ..., N(k−1)
2 be k − 1

copies of N2. The vertex set of Gk(i0, j0) is then {i0, j0} ∪ N(1)
1 ∪ ... ∪ N(k−1)

2 . We denote the copy of i ∈ N2 in N(r)
2 by i(r) . 

The edges of Gk(i0, j0) and their weights w̄ can then be defined as
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Fig. 8. An example of the graph G∗ constructed in the proof of Theorem 13.

0 j(1) for i0 j ∈ E with weight w̄(i0 j) := p(i0) + p( j)/2 − w(i0 j)

i(r−1) j(r) for i j ∈ E with weight w̄(i j) := (p(i) + p( j))/2 − w(i j)

i(k−1) j0 for i j0 ∈ E with weight w̄(i j0) := p(i)/2 + p( j0) − w(i j0).

We claim that p(P ) ≥ w(P ) holds for all P ∈P if and only if the (w.r.t. w̄) shortest i0 − j0-path in Gk(i0, j0) has weight ≥ 0
for all i0 	= j0 and k = 1, .., n − 1. Then what is left to do, in order to verify whether p(P ) ≥ w(P ) holds for all P ∈ P , is to 
solve O (n3) instances of the shortest path problem, each of which have size O (n2) by using the well-known Bellman–Ford 
algorithm (Bellman, 1958); as we show below, if this yields a shortest path with weight < 0 we have immediately found a 
coalition corresponding to a violated core inequality.

First suppose some P ∈ P has p(P ) < w(P ). Let i0 and j0 denote its endpoints and let k denote its length. Then 
P ∈Pk(i0, j0) corresponds to an i0 − j0-path P̄ in Gk(i0, j0) of weight w̄( P̄ ) < 0. Now we will show that p(P ) ≥ w(P ) for all 
P ∈P implies w̄( P̄ ) ≥ 0 for all i0 − j0-paths P̄ in any Gk(i0, j0). Indeed, an i0 − j0-path P̄ visiting players i0, i

(1)
1 , ..., i(k−1)

k−1 , j0
corresponds to a i0 − j0 path P ⊆ E in G plus possibly a number of cycles C1, ..., Cs ⊆ E . Furthermore, by definition of w̄ , 
we have w̄( P̄ ) = p(P ) − w(P ) + ∑

i p(Ci) − w(Ci) ≥ p(P ) − w(P ), as we assume that p(C) ≥ w(C) holds for all cycles. 
Hence, indeed, w̄( P̄ ) ≥ 0, as claimed. �
5.2. The case b = 3

To complement Theorem 12 we will prove that the case b ≡ 3 is co-NP-complete even for multiple partners assignment 
games. In order to do this we reduce from the Cubic Subgraph problem, which is that of testing whether a graph has a 
3-regular subgraph, that is, a subgraph in which every vertex has degree 3. Plesník (1984) proved that Cubic Subgraph is
NP-complete even for planar bipartite graphs of maximum degree 4.

Theorem 13. The problem of deciding whether an allocation is in the core of a multiple partners assignment game is co-NP-complete 
if b ≡ 3 and w ≡ 1.

Proof. The problem is readily seen to be in co-NP: given a “certificate” coalition S we can efficiently verify that a given 
allocation p is not in the core by checking that v(S) > p(S) holds; the latter can be done in polynomial time due to 
Lemma 2. To prove co-NP-hardness we reduce from the Cubic Subgraph problem restricted to bipartite graphs. Recall that 
this problem is NP-complete (Plesník, 1984).

Let G = (N, E) be a bipartite graph that is an instance of Cubic Subgraph. Let n = |N|. For each vertex u ∈ N we add a set 
of five new vertices au , bu , cu , xu , yu , so in total we add 5n extra vertices to G . We also add every edge between a vertex 
in {au, bu, cu} and a vertex in {u, xu, yu}, so in total we add 9n extra edges to G . We call the resulting graph G∗ = (N∗, E∗)
(see also Fig. 8). Note that each 6-tuple {au, bu, cu, u, xu, yu} induces a complete bipartite graph K3,3 in G∗ (and that u is a 
cut vertex of G∗ that separates {au, bu, cu, xu, yu} and N \ {u}). Moreover, G∗ is a bipartite graph as desired.
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Table 2
The four cooperative game models and their status with respect to problems P1 (testing core non-emptiness), P2 (finding a core allocation) and P3 (verifying 
core membership). Here “yes” means that every instance of the problem under consideration is a yes-instance, whereas “P” means polynomial time and 
“co-NP-c” means being co-NP-complete. As before,“mp” stands for “multiple partners”. Note that the rows for assignment games and matching games were 
known already (see Section 1) but can be generated from the rows for the other two models. Also the first two entries in the row for multiple partners 
assignment games were known already (Theorem 2). Except the two open cases indicated by a “?”, all other results follow from Theorems 12 and 13, which 
are proven in this paper.

P1 P2 P3

Assignment games yes P P
Matching games P P P
mp assignment games yes P P if b ≤ 2

co-NP-c if b ≡ 3
mp matching games P if b ≤ 2

? if b ≡ 3
P if b ≤ 2
? if b ≡ 3

P if b ≤ 2
co-NP-c if b ≡ 3

Let (N∗, v) be the multiple partners assignment game defined on (G∗, 3, 1), and let p be the vector, where we set, for 
every u ∈ U , p(u) = 3

2 − 1
n and p(i) = 3

2 + 1
5n for every i ∈ {au, bu, cu, xu, yu}. Then p is an allocation, as v(N∗) = 9n = p(N∗), 

where the first equality follows by taking a b-matching that consists of all nine edges in G[{au , bu, cu, u, xu, yu}] (so, 9n
edges in total). We are left to prove that G has a cubic subgraph if and only if p does not belong to the core of (N∗, v).

First suppose that G has a 3-regular subgraph H = (NH , E H ). Then the coalition NH ⊆ N∗ will not be satisfied: indeed, 
v(NH ) = 3

2 |NH | > 3
2 |NH | − 1

n |NH | = p(NH ), so p does not belong to the core of (N∗, v).
Now suppose that G has no 3-regular subgraph. For contradiction, assume there exists a coalition S ⊆ N∗ , such that 

p(S) < v(S). We choose S such that p(S) − v(S) is minimum, and moreover, we assume that S is a coalition of smallest 
size over all such coalitions.

First consider the case that S only contains vertices of N . Then, as G has no 3-regular subgraph, neither does G[S], 
implying that v(S) ≤ 3

2 |S| − 1. We use this inequality to find that p(S) = 3
2 |S| − 1

n |S| ≥ 3
2 |S| − 1 ≥ v(S), a contradiction with 

our assumption that p(S) < v(S). Hence S contains at least one vertex from a set {au, bu, cu, xu, yu} for some u ∈ N . Let 
Tu = S ∩ {au, bu, cu, xu, yu}, so we assume that |Tu | ≥ 1. If |Tu | ≤ 4, then

p(S \ Tu) − v(S \ Tu) ≤ p(S) − v(S) − |Tu|
(

3

2
+ 1

5n

)
+ |E(G[Tu ∪ {u}])| ≤ p(S) − v(S),

contradicting our choice of S . Now suppose that |Tu | = 5. If u /∈ S , then

p(S \ Tu) − v(S \ Tu) ≤ p(S) − v(S) − 5

(
3

2
+ 1

5n

)
+ 6 ≤ p(S) − v(S),

contradiction our choice of S again. If u ∈ S , then

p(S \ (Tu ∪ {u})) − v(S \ (Tu ∪ {u})) ≤ p(S) − v(S) − 5

(
3

2
+ 1

5n

)
−

(
3

2
− 1

n

)
+ 9

≤ p(S) − v(S),

another contradiction with our choice of S . Hence we conclude that a coalition S with p(S) < v(S) does not exist. In other 
words, p belongs to the core of (N∗, v). This completes the proof of Theorem 13. �
6. Future work

We finish our paper with some directions for future research. Our reduction from SFP to SRP might be used to generalize 
more known results from SRP to SFP. For instance, can we generalize the path to stability result of Biró et al. (2014) for SRP 
to be valid for SFP as well?

In contrast to multiple partners assignment games, we do not know the complexity of testing core non-emptiness (prob-
lem P1) and finding a core allocation (problem P2) for multiple partners matching games (G, b, w) when b ≡ 3. We pose 
these two problems as open problems (see also Table 2). As we showed in Theorem 12 we can decide in polynomial-
time whether the core of a multiple partners matching is nonempty if b ≤ 2. This immediately raises the question what 
to do if we find that the core is non-empty. One approach, which was recently considered for the case b ≡ 1, is that of 
verifying whether the core can become nonempty after a small modification of the graph via adding or deleting some ver-
tices or edges (Ahmadian et al., 2016; Bock et al., 2015; Ito et al., 2016) or via a fractionally increase of the edge weights 
(Chandrasekaran et al., 2016).

Theorem 11 states that there exist multiple partners matching games with a non-empty core but for which the corre-
sponding instance of SFP has no stable solutions. It would be interesting to detect necessary and sufficient conditions on 
multiple partners matching games with a non-empty core, such that the corresponding instance of SFP has a stable solu-
tion. Another direction is to consider whether it is possible to obtain axiomatic characterizations of the core of multiple 
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partners assignment games, or even for (multiple partners) matching games, similar to those that exist in the literature for 
assignment games (see, for instance, Sasaki, 1995; Toda, 2005).

Another major open problem is that of determining the complexity of computing the so-called nucleolus of a matching 
game (N, v). So far only partial results have been obtained in this direction, namely polynomial-time algorithms for assign-
ment games (Solymosi and Raghavan, 2001) and for matching games with unit edge weights (Kern and Paulusma, 2003)
or, more generally, with edge weights that can be expressed as the sum of positive weights on the incident vertices of the 
graph G = (N, E) (Paulusma, 2001), or even more generally, with arbitrary edge weights as long as a certain condition on 
the least core of a subgraph (with vertex weights) of G is satisfied (Farczadi, 2015). Can these results be generalized for 
b ≤ 2?

Aziz and de Keijzer (2014) showed that the Shapley value of a matching game can be computed in polynomial time for 
graphs of maximum degree 2, and for graphs that have a small modular decomposition into cliques or cocliques. Recently, 
Bousquet extended these results by proving that the Shapley value of a matching game can be computed in polynomial time 
for trees. Hence, another research direction would be to consider the Shapley value for multiple partners matching games 
restricted to trees, or even to trees of small maximum degree.

Chalkiadakis et al. (2010) defined cooperative games with overlapping coalitions, where players can be involved in coali-
tions with different intensities, leading to three alternative core definitions. It would be interesting to study the problem of 
finding a stable solutions and problems P1–P3 in these settings. To illustrate this, suppose that the set of soccer teams from 
the example at the start of Section 1 consists of international teams. Then it seems realistic that the home team needs to 
spend fewer days for playing the game than the visiting team, which must travel from another country. Hence, every team 
now has a number of days for playing friendly games instead of an upper limit (target) on the number of such games. As 
another example of two-player coalitions that require different intensities, consider a PhD student, who can be expected to 
spend significantly more time per week on her PhD project per than her supervisor.
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