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Abstract

We investigate the implications of welfare lower bounds together with queue-efficiency
and strategyproofness in the context of the queueing problem. As a consequence, we pro-
vide alternative characterizations of the k-pivotal mechanisms (Mitra and Mutuswami [13]).
First, we introduce the k-welfare lower bound, which ensures that no agent is worse off
than the case where she is assigned to the kth position in the queue without any monetary
transfer. For each k, we show that the k-pivotal mechanisms generate the minimal budget
deficit in each queueing problem among all mechanisms satisfying queue-efficiency, strate-
gyproofness and the k-welfare lower bound. Next, we consider a well-known welfare lower
bound, the identical preferences lower bound and show that when there are odd number of
agents, the k-pivotal mechanisms with k = n+1

2 generate the minimal budget deficit in each
queueing problem among all mechanisms satisfying queue-efficiency, strategyproofness and
the identical preferences lower bound.

JEL Classification: C72, D63, D71, D82.

Keywords: Queueing problem, queue-efficiency, strategyproofness, k-pivotal mechanisms,
k-welfare lower bound, identical preferences lower bound.

1 Introduction

A queueing problem concerns the following situation. A group of agents must be served in a
facility (for example, a machine, a supercomputer or an expensive software in a university. See
Maniquet [10], for more examples). The facility can handle only one agent at a time and agents
incur waiting costs. We are interested in deciding the order to serve agents and the monetary
transfers they should pay for the service. We assume that an agent’s waiting cost is constant
per unit of time, but that agents differ in their waiting costs. Furthermore, we assume that the
utility of an agent is the amount of her monetary transfer minus her waiting costs. A mechanism
assigns to each agent a position in the queue and a monetary transfer.

Queueing problems have been extensively analyzed both from a normative viewpoint (Chun
[2], [3]; Maniquet [10]) as well as from a strategic viewpoint (Mitra [11]; Mitra and Mutuswami

∗We are grateful to William Thomson for his comments. Chun’s work was supported by the National Research
Foundation of Korea Grant funded by the Korean Government (NRF-2013S1A3A2055391).
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‡School of Economics, University of Adelaide, Adelaide, SA, 5000, Australia. E-mail:
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[13]). Also, several studies have analyzed the problem by combining the two approaches.1

They are interested in mechanisms satisfying queue-efficiency and strategyproofness together
with additional distributional requirements: queue-efficiency requires to minimize the aggregate
waiting cost and strategyproofness induces each agent to report her waiting costs truthfully. The
classic result of Holmström [8] implies in the context of queueing problems that a mechanism
satisfies queue-efficiency and strategyproofness if and only if it is a VCG mechanism.2 Imposing
an additional distributional requirement gives us a subclass of VCG mechanisms.

Chun, Mitra and Mutuswami [4] additionally impose egalitarian equivalence (Pazner and
Schmeidler [17]), which requires that there should be a reference bundle such that each agent
enjoys the same utility between her consumption bundle and that reference bundle, and char-
acterize a subfamily of VCG mechanisms. Also, a mechanism satisfying no-envy (Foley [6])
together with queue-efficiency and strategyproofness is characterized in Kayi and Ramaekers [9].
No-envy requires that no agent should end up with a higher utility by consuming what any other
agent consumes. Our normative distributional requirements of welfare lower bounds provide a
safety net to each agent. They play an important role in the fairness literature (Thomson [20])
and have been analyzed for several other economic problems3; however, in the queueing problem,
they have not been investigated in depth.

From an agent’s point of view, when there is no monetary transfer, the best queue position
is obviously the first one and the worst is the last one. Consider a situation where all agents
have equal rights over the use of the server and no agent is responsible for the existence of other
agents. Then, each agent’s “stand-alone utility” is the one where she is assigned the first queue
position and no monetary transfer. A mechanism which guarantees each agent a welfare level
at least as much as her stand-alone utility is said to meet the 1-welfare lower bound. Thus, the
1-welfare lower bound protects agents from the negative effects of circumstance for which they
are not responsible, namely, the existence of other agents.

Since the total monetary transfer is not restricted in this problem, mechanisms that satisfy
queue-efficiency, strategyproofness and the 1-welfare lower bound exist. However, if one requires
that the mechanism does not generate a budget deficit in any queueing problem, then there is
no queue-efficient and strategyproof mechanism meeting the 1-welfare lower bound. To obtain
compatibility, we weaken the 1-welfare lower bound and introduce a family of welfare lower
bounds, the k-welfare lower bound where k ∈ {1, 2, ..., n}. A mechanism that meets the k-
welfare lower bound ensures each agent to enjoy a utility level at least as much as the one at
which she is assigned to the kth position in the queue without any monetary transfer. That is,
the k-welfare lower bound guarantees each agent a utility no smaller than her worst utility for
the problem with k agents (see Subsection 3.1 for more details). Fortunately, queue-efficiency,
strategyproofness, the k-welfare lower bound and no-deficit are compatible if k ≥ n+1

2 . As k
increases, the lower bound on the utility decreases together with the minimum possible budget
deficit compatible with the k-welfare lower bound (i.e., the maximum possible budget surplus
compatible with the k-welfare lower bound increases). Hence, we face the usual trade-off between
the level of fairness and the size of the budget surplus generated.

Our main result is the characterization, for each k ∈ {1, 2, ..., n}, of the parameterized family

1Such a combined analysis of strategic and fairness properties has also been done by Atlamaz and Yengin [1],
Pápai [16], Mukherjee [15] and Yengin [22]- [26] in the larger class of problems of allocating heterogenous indivisible
goods with monetary transfers.

2The family of VCG mechanisms is due to Vickrey [21], Clarke [5] and Groves [7].
3See, for instance, Atlamaz and Yengin [1], Moulin [14], Porter et al [18], and Yengin [24], [25], [26]. In the

queueing problem, see Mitra [13] and Maniquet [10].
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of mechanisms that generate the minimal deficit in each queueing problem among all queue-
efficient and strategyproof mechanisms meeting the k-welfare lower bound. As it turns out, it is
the family of k-pivotal mechanisms introduced and characterized by Mitra and Mutuswami [13].
For a given integer k ∈ {1, 2, ..., n}, a k-pivotal mechanism chooses an efficient queue and assigns
the following transfers: An agent whose queue position is r < k pays the sum of the waiting
costs of all agents occupying queue positions r+1 to k. An agent whose queue position is s > k
receives the sum of the waiting costs of all agents occupying queue positions k to s−1. The agent
at the kth position in the queue pays and receives nothing. For k = n, we have the well-known
“pivotal” mechanisms where each agent pays the sum of waiting costs of those served after him.

Mitra and Mutuswami [13] characterized the k-pivotal mechanisms with queue-efficiency,
equal treatment of equals, pairwise strategyproofness, and weak linearity. They also showed that
these mechanisms are weakly group strategyproof.4 Here, we provide an alternative character-
ization of the k-pivotal mechanisms without relying on the technical axiom of weak linearity.
Thus, our characterization of the k-pivotal mechanisms which uses only normative and strategic
axioms provides an appealing justification for these mechanisms.

Next, we investigate one of the oldest fairness notion: guaranteeing each agent her utility
from the equal split of the resources. Equal division is not well-defined in problems of allocating
indivisible goods (such as queue positions). However, in such problems, an adaptation of the
“equal-split lower bound,” namely, the identical preferences lower bound (Moulin [14]), can be
used. This bound requires that no agent is worse off than her utility at the Pareto-efficient and
egalitarian allocation in the hypothetical economy where all agents have the same preferences
as hers. Note that in classical fair division problems where equal division is well-defined, the
equal-split lower-bound coincides with the identical preferences lower bound. Obviously, the
identical preferences lower bound and the k-welfare lower bound are based on different fairness
motivations. However, we show that in queueing problems, the two bounds are closely related.
In particular, the identical preferences lower bound is equal to the expectation of k bounds. We
also show that when there is an odd number of agents, the k-pivotal mechanisms with k = n+1

2
generate the minimal deficit in each queueing problem among all mechanisms satisfying queue-
efficiency, strategyproofness and the identical preferences lower bound.

Given our characterizations together with the results in Mitra and Mutuswami [13], the k-
pivotal mechanisms appear to be a prominent class of mechanisms satisfying several equity and
strategic properties in queueing problems.

In what follows, the model and mechanisms are presented in Section 2. The results regarding
k-welfare lower bound, the identical preferences lower bound, and budget properties are presented
in Section 3. We conclude in Section 4.

2 The model

Let N = {1, . . . , n}, n ≥ 2, be the set of agents. Each agent has one job to process and the
server can process only one job at a time. Each job requires the same processing time, which
without loss of generality, we normalize to one. A queue is an onto function σ : N → {1, . . . , n}.

4Pairwise strategy-proofness requires that there does not exist a deviation for a coalition of size at most two
making all deviating agents strictly better-off. Weak group strategy-proofness requires that there does not exist
a deviation which makes all deviating agents strictly better-off. Weak linearity is a technical condition requiring
that transfers vary in a linear fashion whenever an agent changes her announcement in a manner which does not
change the efficient queue. Equal treatment of equals requires that agents with the same waiting costs should end
up with the same utilities.
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Agent i’s position in the queue is denoted by σi. The predecessors of i in the queue σ, denoted
by Pi(σ), is the set {j ∈ N |σj < σi}. Similarly, the followers of i in the queue σ, denoted by
Fi(σ), is the set {j ∈ N |σj > σi}. The set of all possible queues is denoted by Σ(N).

Each agent is identified with her waiting cost per unit of time, θi ∈ R+.
5 A queueing problem

is the profile of waiting costs of all agents θ = (θi)i∈N . Let QN be the class of all problems for
N . An allocation for θ ∈ QN is a pair (σ, t), where σ = (σi)i∈N is the queue and t = (ti)i∈N
the vector of monetary transfer to agents. If agent i’s queue position is σi, then she incurs a
waiting cost of (σi − 1)θi. An agent’s net utility depends on her waiting cost and the transfer
she receives. We assume that each agent i ∈ N has a quasi-linear utility function, so that her
utility from consuming the bundle (σi, ti) is given by ui(σi, ti; θi) = −(σi − 1)θi + ti. For each
θ ∈ QN and each i ∈ N , let θ−i = (θj)j∈N\{i} be the profile of waiting costs of all agents except

agent i. For each θ ∈ QN and each k ∈ {1, 2, ..., n}, let θ[k] be the kth highest waiting cost in
the problem θ.6

A queue σ is efficient for the profile θ if it minimizes the aggregate waiting cost of the agents,
that is,

σ ∈ argmin
σ′∈Σ(N)

∑
i∈N

(σ′
i − 1)θi.

The efficient queue is unique if θi ̸= θj for all i, j ∈ N, i ̸= j. It is straightforward to check that
a queue is efficient if and only if agents are served in the non-increasing order of their waiting
costs. Let E(θ) be the set of all efficient queues for the profile θ.

A mechanism µ = (σ, t) associates with each problem θ ∈ QN , an allocation µ(θ) = (σ, t) ∈
Σ(N) × Rn. In this paper, we fix the set of agents and change the profile of waiting costs. To
indicate the dependence on the problem θ, we denote the allocation as µ(θ) = (σ(θ), t(θ)). For
each i ∈ N, µi(θ) = (σi(θ), ti(θ)) represents agent i’s position in the queue and her transfer.

For each θ ∈ QN , the total transfer
∑

i∈N ti(θ) measures the budget deficit generated in the
problem θ. If

∑
i∈N ti(θ) > 0, then the budget deficit equals

∑
i∈N ti(θ). If

∑
i∈N ti(θ) < 0, then

the budget surplus equals −
∑

i∈N ti(θ). If
∑

i∈N ti(θ) = 0, then the budget is balanced.

2.1 The Mechanisms

We begin with two important properties of mechanisms. First, a mechanism should choose an
efficient queue for each queueing problem.

Queue-efficiency: For each θ ∈ QN , σ(θ) ∈ E(θ).

Remark 1. Our definition of a mechanism associates a unique queue to each queueing problem.
Since E(θ) can contain more than one element, a tie-breaking rule is used to select a unique
efficient queue whenever there is more than one such queue. We assume that there is an order
of the agents according to which ties are broken. The same order is also used when we have to
deal with subsets of the set of agents. Let T be the set of all possible tie-breaking rules for N
and τ be a typical element of T .

Our second property requires that an agent cannot strictly gain by misrepresenting her
waiting cost, no matter what waiting costs other agents report.7 Let ui(µi(θ

′); θi) = −(σi(θ
′)−

5Here, R+ denotes the non-negative orthant of the real line and R++ the positive orthant.
6All ties are taken into account in this order. For instance, if there are two agents whose waiting costs are the

highest for θ, then θ[1] = θ[2].
7See Thomson [20] for an extensive survey on strategyproofness.
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1)θi + ti(θ
′) be the utility of agent i when the announced profile is θ′ and her own waiting cost

is θi.

Strategyproofness: For each θ ∈ QN , each i ∈ N and each θ′i ∈ R+, ui(µi(θ); θi) ≥
ui(µi(θ

′
i, θ−i); θi).

We need the following notation. For each θ ∈ QN , suppose that there is an initial queue
σ(θ) and agent i leaves the queue. The “induced” queue σ(θ−i) (of length n− 1) for N \ {i} is
defined as follows:

σj(θ−i) =

{
σj(θ) if j ∈ Pi(σ(θ)),
σj(θ)− 1 if j ∈ Fi(σ(θ)).

(1)

In words, σ(θ−i) is the queue formed by removing agent i and moving all agents behind her up
by one position. It is easy to see that σ(θ−i) is efficient for the profile θ−i if σ(θ) is efficient for
the profile θ.

A VCG mechanism chooses for each queueing problem an efficient queue and then, the
transfer of each agent is determined in two parts. First, each agent pays the total waiting
cost incurred by all other agents at the efficient queue chosen by the mechanism. Second, each
agent receives an amount that only depends on the waiting costs of the other agents. For each
i ∈ N, let hi be a real-valued function such that for each θ ∈ QN , hi depends only on θ−i. Let
h = (hi)i∈N and H be the set of all h’s.

The VCG mechanism associated with h ∈ H and τ ∈ T , µh,τ : Let µh,τ ≡ (στ , th,τ ) be
such that for each θ ∈ QN , στ (θ) ∈ E(θ), and each i ∈ N,

th,τi (θ) = −
∑

j∈N\{i}

(στ
j (θ)− 1)θj + hi(θ−i). (2)

Without loss of generality, we can write for each θ ∈ QN and each i ∈ N,

hi(θ−i) =
∑

j∈N\{i}

(στ
j (θ−i)− 1)θj + gi(θ−i) (3)

where gi is a real-valued function which depends only on θ−i.
By substituting (3) in (2), together with (1), for each θ ∈ QN and each i ∈ N,

tg,τi (θ) = −
∑

j∈Fi(στ (θ))

θj + gi(θ−i). (4)

Hence, for each τ ∈ T , µg,τ = (στ , tg,τ ) is a VCG mechanism if for each θ ∈ QN , στ (θ) ∈ E(θ),
and for each i ∈ N, the transfer is specified as in (4).

Remark 2. Holmström [8] showed that when preferences are quasi-linear and the domain of
types is convex, a mechanism satisfies queue-efficiency and strategyproofness if and only if it is
a VCG mechanism. In the queueing problem, since the type of each agent is her waiting cost,
and moreover, the domain of waiting costs, Rn

+, is convex, Holmström’s result can be applied.

We are interested in a subclass of the VCG mechanisms, namely, the class of k-pivotal
mechanisms introduced and characterized by Mitra and Mutuswami [13] on the basis of group
strategyproofness. Let k ∈ {1, 2, ..., n}, τ ∈ T and P k,τ ≡ (στ , tk,τ ) be such that for each θ ∈ QN ,
στ (θ) ∈ E(θ) and for each i ∈ N,
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tk,τi (θ) =


−
∑

j∈N :στ
i (θ)<στ

j (θ)≤k θj if στ
i (θ) < k,

0 if στ
i (θ) = k,∑

j∈N :k≤στ
j (θ)<στ

i (θ)
θj if στ

i (θ) > k.
(5)

For each k ∈ {1, 2, ..., n}, a k-pivotal mechanism assigns to each agent the following transfer:
An agent whose queue position is στ

i (θ) = r < k pays the sum of the waiting costs of all agents
occupying queue positions r + 1 to k. The agent whose queue position is στ

i (θ) = k pays and
receives nothing. An agent whose queue position is στ

i (θ) = s > k receives the sum of the
waiting costs of all agents occupying queue positions k to s− 1.

For our characterizations, we introduce an alternative specification of the transfers for the
k-pivotal mechanism.

The k-pivotal mechanism associated with τ ∈ T , Pk,τ : Let P k,τ = (στ , tk,τ ) be such that
for each θ ∈ QN , στ (θ) ∈ E(θ) and for each i ∈ N,

tk,τi (θ) =


−

∑
j∈Fi(στ (θ))

θj +
n−1∑
l=k

(θ−i)[l] if k ∈ {1, 2, ..., n− 1},

−
∑

j∈Fi(στ (θ))

θj if k = n.
(6)

For each k ∈ {1, 2, ..., n}, let Pk = {P k,τ}τ∈T be the class of all k-pivotal mechanisms. By
(6), for each P k,τ = (στ , tk,τ ) ∈ Pk, P k,τ = µg,τ where for each θ ∈ QN and each i ∈ N,
if k ∈ {1, 2, ..., n − 1}, then gi(θ−i) =

∑n−1
l=k (θ−i)[l], and if k = n, then gi(θ−i) = 0. For a

k-pivotal mechanism, each agent first pays the sum of the waiting costs of her followers and
then, she receives the amount

∑n−1
l=k (θ−i)[l] ≥ 0. Thus, for each θ ∈ QN and each i ∈ N,

tk,τi (θ) ≥ −
∑

j∈Fi(στ (θ)) θj .

Note that Pn,τ = µh,τ where for each θ ∈ QN and each i ∈ N, hi(θ−i) =
∑

j∈N\{i}(σ
τ
j (θ−i)−

1)θj . From (2), for each θ ∈ QN , the transfer of each agent is equal to the externality she exerts.
Thus, n-pivotal mechanisms are the well-known “pivotal” mechanisms.

It is easy to see that when k = n, the transfers specified in (6) are identical to the ones
specified in (5). We also show that the transfers specified in (5) and (6) coincide for k =
1, . . . , n− 1.

Proposition 1. Let k ∈ {1, 2, ..., n− 1} and P k,τ = (στ , tk,τ ) ∈ Pk. For each θ ∈ QN and each
i ∈ N,

−
∑

j∈Fi(στ (θ))

θj +
n−1∑
l=k

(θ−i)[l] =


−
∑

j∈N :στ
i (θ)<στ

j (θ)≤k θj if στ
i (θ) < k,

0 if στ
i (θ) = k,∑

j∈N :k≤στ
j (θ)<στ

i (θ)
θj if στ

i (θ) > k.

(7)

Proof : Let k ∈ {1, 2, ..., n − 1}, P k,τ = (στ , tk,τ ) ∈ Pk, and θ ∈ QN . Note that for each
l ∈ {1, 2, ..., n− 1} and each i ∈ N,

(θ−i)[l] =

{
θ[l+1] if στ

i (θ) ≤ l,

θ[l] if στ
i (θ) > l.

(8)
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Let i ∈ N . The proof is divided into 3 cases.

Case 1: στ
i (θ) = r < k. Then, θi = θ[r] and

∑
j∈Fi(στ (θ)) θj =

∑n−1
l=r θ[l+1]. Since r < k, for each

l ∈ {k, ..., n− 1}, στ
i (θ) < l. By (8),

∑n−1
l=k (θ−i)[l] =

∑n−1
l=k θ[l+1]. Altogether,

tk,τi (θ) = −
∑

j∈Fi(στ (θ))

θj +
n−1∑
l=k

(θ−i)[l] = −
n−1∑
l=r

θ[l+1] +
n−1∑
l=k

θ[l+1] = −
k−1∑
l=r

θ[l+1] = −
∑

j∈N :r<στ
j (θ)≤k

θj ,

(9)
as claimed.

Case 2: στ
i (θ) = k. Then, θi = θ[k] and

∑
j∈Fi(στ (θ)) θj =

∑n−1
l=k θ[l+1]. By (8),

∑n−1
l=k (θ−i)[l] =∑n−1

l=k θ[l+1]. Altogether,

tk,τi (θ) = −
∑

j∈Fi(στ (θ))

θj +

n−1∑
l=k

(θ−i)[l] = −
n−1∑
l=k

θ[l+1] +

n−1∑
l=k

θ[l+1] = 0, (10)

as claimed.

Case 3: στ
i (θ) = s > k. Then, θi = θ[s] and

∑
j∈Fi(στ (θ))

θj =


n−1∑
l=s

θ[l+1] if n > στ
i (θ) > k,

0 if n = στ
i (θ) > k.

(11)

By (8),

n−1∑
l=k

(θ−i)[l] =


s−1∑
l=k

θ[l] +
n−1∑
l=s

θ[l+1] if n > στ
i (θ) = s > k,

n−1∑
l=k

θ[l] if n = στ
i (θ) = s > k.

(12)

Altogether,

tk,τi (θ) = −
∑

j∈Fi(στ (θ))

θj +
n−1∑
l=k

(θ−i)[l] =
s−1∑
l=k

θ[l] =
∑

j∈N :k≤στ
j (θ)<s

θj , (13)

as claimed.

3 Results

3.1 The k-Welfare Lower Bound

Imagine that there is only one agent in the society. Since she is the only agent, she would
occupy the first position in the queue and incur no waiting cost. Hence, there is no need to give
her a (positive or negative) monetary compensation. Her utility in this one-agent problem is
called her stand-alone utility. Since no agent is responsible for the existence of other agents in
the queueing problem, it may be fair to guarantee each agent her stand-alone utility. Our next
axiom requires that each agent should be guaranteed her stand-alone utility.

7



Stand-alone lower bound: For each θ ∈ QN and each i ∈ N, ui(µi(θ); θi) ≥ 0.

A mechanism µ = (σ, t) meets the stand-alone lower-bound if for each θ ∈ QN and each
i ∈ N, ti(θ) ≥ (σi(θ)− 1)θi, which implies that

∑
i∈N ti(θ) ≥

∑
i∈N (σi(θ)− 1)θi ≥ 0. Moreover,

if θ[2] > 0, then
∑

i∈N ti(θ) > 0. Thus, if a mechanism meets the stand-alone lower bound, then
it causes a budget deficit: the following axiom is violated.

No budget deficit: For each θ ∈ QN ,
∑

i∈N ti(θ) ≤ 0.

To satisfy no budget deficit, we need to weaken the stand-alone lower-bound. For k ∈
{1, 2, ..., n}, the k-welfare lower bound requires that no agent be worse off than if she is as-
signed to the kth position in the queue with a zero transfer. Since the stand-alone lower bound
is the same thing as the 1-welfare lower bound, the k-welfare lower bound can be regarded as
generalizing the idea of the stand-alone lower bound with k ∈ {1, 2, ..., n}. As k increases, the
lower bound on the utility decreases. For each k ∈ {1, 2, ..., n− 1}, if a mechanism satisfies the
k-welfare lower bound, then it satisfies the (k + 1)-welfare lower bound. Let k ∈ {1, 2, ..., n}.

k-welfare lower bound: For each θ ∈ QN and each i ∈ N, ui(µi(θ); θi) ≥ −(k − 1)θi.

A welfare lower bound in the fairness literature is typically determined by considering a particular
“reference” allocation in a hypothetical problem and taking the welfare levels at this allocation
as a benchmark for the utilities in the actual problem. Thus, an alternative motivation for the
k-welfare lower bound can be given as follows. The 1-welfare lower bound guarantees each agent
the utility obtained when she is the only agent in the problem. Now suppose that there are 2
agents. Without any transfer, the worst-case for an agent is if she is assigned to the last queue
position. Taking this utility in the hypothetical 2-agent problem as the welfare lower bound in
the actual problem leads to the 2-welfare lower bound. Similarly, for each k ∈ {1, 2, ..., n}, the
k-welfare lower bound ensures that no agent is worse off than if she were assigned the worst
position and a zero transfer in the hypothetical k-agent problem.

We are searching for the mechanisms that generate the minimal budget deficit in each queue-
ing problem among the class of VCG mechanisms meeting the k-welfare lower bound. In general,
there is no reason to expect the existence of a rule that dominates all others with respect to
the budget deficit. As it turns out, for each k, the k-pivotal mechanism achieves our objec-
tive. Hence, our next characterization provides an alternative normative justification for these
mechanisms.

Theorem 1. Let k ∈ {1, 2, ..., n}. A mechanism minimizes the budget deficit in each queueing
problem among all mechanisms satisfying queue-efficiency, strategyproofness and the k-welfare
lower bound if and only if it is a k-pivotal mechanism.

Proof : Let k ∈ {1, 2, ..., n} and P k,τ = (στ , tk,τ ) ∈ Pk. By Remark 2, P k,τ satisfies queue-
efficiency and strategyproofness. By (7), for each θ ∈ QN and each i ∈ N,

ui(P
k,τ
i (θ); θi) =



−(στ
i (θ)− 1)θi −

k∑
l=r+1

θ[l] if στ
i (θ) = r < k,

−(στ
i (θ)− 1)θi if στ

i (θ) = k,

−(στ
i (θ)− 1)θi +

s−1∑
l=k

θ[l] if στ
i (θ) = s > k.

(14)

Let i ∈ N .
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(i) If στ
i (θ) = r < k, then for each l ∈ {r + 1, r + 2, ..., k}, θi ≥ θ[l]. By (14),

ui(P
k,τ
i (θ); θi) = −(στ

i (θ)− 1)θi −
k∑

l=r+1

θ[l] ≥ −(r − 1)θi −
k∑

l=r+1

θi = −(k − 1)θi.

(ii) If στ
i (θ) = k, then by (14), ui(P

k,τ
i (θ); θi) = −(στ

i (θ)− 1)θi = −(k − 1)θi.

(iii) If στ
i (θ) = s > k, then for each l ∈ {k, k + 1, ..., s− 1}, θi ≤ θ[l]. By (14),

ui(P
k,τ
i (θ); θi) = −(στ

i (θ)− 1)θi +
s−1∑
l=k

θ[l] ≥ −(s− 1)θi +
s−1∑
l=k

θi = −(k − 1)θi.

Therefore, for each θ ∈ QN , each i ∈ N, and each possible queue position for agent i,
ui(P

k,τ
i (θ); θi) ≥ −(k − 1)θi, which implies that P k,τ meets the k-welfare lower bound.

Conversely, let µ = (σ, t) be a mechanism satisfying queue-efficiency, strategyproofness and
the k-welfare lower bound. By Remark 2, µ is a VCG mechanism, that is, there is a real-valued
function g : Rn−1

+ → R and τ ∈ T such that µ = µg,τ = (στ , tg,τ ) where tg,τ is specified as in
(4). By the k-welfare lower bound, for each θ ∈ QN and each i ∈ N,

ui(µ
g,τ
i (θ); θi) = −(στ

i (θ)− 1)θi −
∑

j∈Fi(στ (θ))

θj + gi(θ−i) ≥ −(k − 1)θi,

which implies that

gi(θ−i) ≥ (στ
i (θ)− k)θi +

∑
j∈Fi(στ (θ))

θj . (15)

The proof is divided into two cases:

Case 1: k ∈ {1, 2, ..., n− 1}. Then, for each θ ∈ QN and each i ∈ N,

gi(θ−i) ≥
n−1∑
l=k

(θ−i)[l]. (16)

Proof for Case 1 : Suppose, by contradiction, that there is θ ∈ QN and i ∈ N such that

gi(θ−i) <

n−1∑
l=k

(θ−i)[l]. (17)

Let θ∗i = (θ−i)[k] and θ∗ = (θ∗i , θ−i). Then, for each l ∈ {k, ..., n − 1}, (θ∗)[l+1] = (θ−i)[l].
Therefore,8

(στ
i (θ

∗)− k)θ∗i +
∑

j∈Fi(στ (θ∗))

θ∗j = (θ−i)[k] + (θ−i)[k+1] + . . .+ (θ−i)[n−1]

=

n−1∑
l=k

(θ−i)[l]. (18)

8If στ
i (θ

∗) < k, then for all i′ ∈ N such that σi′ ∈ [στ
i (θ

∗), k], θi′ = θ∗i . Therefore, (18) holds. A similar
observation can be made for the case when στ

i (θ
∗) > k.
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Since θ∗−i = θ−i, by (17) and (18), gi(θ
∗
−i) < (στ

i (θ
∗) − k)θ∗i +

∑
j∈Fi(στ (θ∗)) θ

∗
j , a contradiction

to (15). Therefore, (16) holds. �

Case 2: k = n. Then, for each θ ∈ QN and each i ∈ N,

gi(θ−i) ≥ 0. (19)

Proof for Case 2 : Suppose, by contradiction, that there is θ ∈ QN and i ∈ N such that

gi(θ−i) < 0. (20)

Let θ∗i = (θ−i)[n−1] and θ∗ = (θ∗i , θ−i). Note that either στ
i (θ

∗) = n or for each j ∈ Fi(σ
τ (θ∗)),

we have θ∗j = (θ−i)[n−1]. Hence,

(στ
i (θ

∗)− n)θ∗i +
∑

j∈Fi(στ (θ∗))

θ∗j = (στ
i (θ

∗)− n)(θ−i)[n−1] + (n− στ
i (θ

∗))(θ−i)[n−1] = 0. (21)

Since θ∗−i = θ−i, by (20) and (21), gi(θ
∗
−i) < (στ

i (θ
∗) − n)θ∗i +

∑
j∈Fi(στ (θ∗)) θ

∗
j , a contradiction

to (15). Therefore, (19) holds. �

For each θ ∈ QN , since∑
i∈N

tg,τi (θ) = −
∑

i∈N

∑
j∈Fi(στ (θ))

θj +
∑
i∈N

gi(θ−i)

= −
n∑

l=2

(l − 1)(θ)[l] +
∑
i∈N

gi(θ−i),

to minimize the budget deficit, we need to minimize
∑

i∈N gi(θ−i). Therefore, for each θ ∈ QN

and each i ∈ N, (16) should hold as an equality for k ∈ {1, 2, ..., n − 1} and (19) for k = n.
Therefore, by (4) and (6), we conclude that µg,τ is a k-pivotal mechanism. �

The next result follows from the proof of Theorem 1.

Corollary 1. Let k ∈ {1, 2, ..., n}. A mechanism satisfies queue-efficiency, strategyproofness and
the k-welfare lower bound if and only if it is a VCG mechanism µg,τ = (στ , tg,τ ) such that for
each θ ∈ QN and each i ∈ N,

gi(θ−i) ≥
n−1∑
l=k

(θ−i)[l] if k ∈ {1, 2, ..., n− 1}, and

gi(θ−i) ≥ 0 if k = n.

From Corollary 1, for each k ∈ {1, 2, ..., n}, if µg,τ = (στ , tg,τ ) is a VCG mechanism meeting the

k-welfare lower bound, then for each θ ∈ QN and each i ∈ N, tg,τi (θ) ≥ tk,τi (θ).
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3.2 The Identical Preferences Lower Bound

For agent i ∈ N, consider a hypothetical “reference problem” θi ∈ QN where all agents have
preferences (in the queueing problem, waiting costs) identical to hers, that is, for each j ∈ N,
θij = θi. Since all agents have equal rights and identical preferences, they should enjoy the same
utility. The identical preferences lower bound (Moulin [14]) requires that each agent should be
at least as well off as she would be, under queue-efficiency, budget balance and equal treatment
of equals, if all other agents had preferences identical to hers. Note that if a mechanism satisfies
queue-efficiency, budget balance and equal treatment of equals, then for each i ∈ N, in θi, each
agent’s utility is an equal share of

∑
j∈N uj(µj(θ

i); θij) = −
∑

j∈N (σj(θ
i)− 1)θi, that is, −n−1

2 θi.

Identical preferences lower bound: For each θ ∈ QN and each i ∈ N,

ui(µi(θ); θi) ≥ −n− 1

2
θi.

Even though the k-welfare lower bound and the identical preferences lower bound are based
on entirely different fairness considerations, they are closely related in the context of queueing
problems. Suppose that agents do not know the size of the population. They expect to face
one of the hypothetical problems with k ∈ {1, 2, . . . , n} agents. Remember that for each k ∈
{1, 2, . . . , n}, the k-welfare lower bound guarantees each agent at least as much as her worst-case
utility in the hypothetical k-agent problem without any transfer. One can take the expectation
of these worst-case utilities of an agent over all hypothetical problems with k agents as a welfare
lower bound. Call this bound as the “expected k-welfare lower bound.”

The expected k-welfare lower bound can also be thought of as a welfare lower bound from
random arrival: assume that agents arrive randomly to join a queue, the server starts once all
n agents arrive, and no monetary transfer is carried out. Hence, agent i who arrives in the kth
position has a utility equal to −(k− 1)θi. To remove the unfairness associated with a particular
arrival order, we can take the expectation of the utilities over all arrival orders and each agent
would be guaranteed a utility at least as much as − 1

n

∑n
k=1(k − 1)θi.

A mechanism meets the expected k-welfare lower bound if for each θ ∈ QN and each i ∈ N,

ui(µi(θ); θi) ≥ − 1

n

n∑
k=1

(k − 1)θi = −n− 1

2
θi.

Therefore, the expected k-welfare lower bound coincides with the identical preferences lower
bound.

Moreover, the k-welfare lower bound and the identical preferences lower bound are related
in a more direct way. Since − (n−1)

2 = −(n+1
2 − 1), the k-welfare lower bound and the identical

preferences lower bound coincide whenever k = n+1
2 . Also, for each k ≤ n+1

2 , the k-welfare lower
bound implies the identical preferences lower bound,9 and the k-pivotal mechanisms meets the
identical preferences lower bound. On the other hand, if k > n+1

2 , then for each θ ∈ QN and

each i ∈ N such that στ
i (θ) = k, by (14), ui(P

k,τ
i (θ); θi) = −(k− 1)θi < − (n−1)θi

2 , implying that
the k-pivotal mechanism with k > n+1

2 does not meet the identical preferences lower bound.
Hence, we have the following result.

Proposition 2. Let k ∈ {1, 2, ..., n}. A k-pivotal mechanism meets the identical preferences
lower bound if and only if k ≤ n+1

2 .

9Note that this implication is true in general even without imposing queue-efficiency and strategyproofness.
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In queueing problems, Mitra [12] showed the existence of a VCG mechanism meeting the
identical preferences lower bound (together with budget balance). Here, we provide the full
characterization of the class of VCG mechanisms meeting the identical preferences lower bound
in queueing problems. For each x ∈ R++, let ⟨x⟩+ denote the smallest integer greater than or
equal to x and ⟨x⟩− denote the largest integer smaller than or equal to x.

Proposition 3. (a) If a mechanism satisfies queue-efficiency, strategyproofness and the identical
preferences lower bound, then it is a VCG mechanism µg,τ = (στ , tg,τ ) such that for each θ ∈ QN

and each i ∈ N,

gi(θ−i) ≥
n−1∑

l=⟨n+1
2 ⟩

+

(θ−i)[l]. (22)

(b) If a VCG mechanism µg,τ = (στ , tg,τ ) is such that for each θ ∈ QN and each i ∈ N,

gi(θ−i) ≥
n−1∑

l=⟨n+1
2 ⟩−

(θ−i)[l], (23)

then it meets the identical preferences lower bound.

We omit the proof of Proposition 3, which is in line with the proof of Theorem 1.10 Since the
symmetrically balanced VCG mechanisms (Suijs [19]; Mitra [12]; Kayi and Raemaekers [9]11)
satisfy the three axioms of Proposition 3(a), they also satisfy (22).

If n is an odd number, then
⟨
n+1
2

⟩
− =

⟨
n+1
2

⟩
+
= n+1

2 . Hence, for problems with odd number
of agents, the following characterization follows from Theorem 1 and Proposition 3.

Corollary 2. Let n be an odd number.

(a) A mechanism satisfies queue-efficiency, strategyproofness and the identical preferences lower
bound if and only if it is a VCG mechanism µg,τ = (στ , tg,τ ) such that for each θ ∈ QN and
each i ∈ N,

gi(θ−i) ≥
n−1∑

l=n+1
2

(θ−i)[l].

(b) A mechanism minimizes the budget deficit in each queueing problem among all mechanisms
satisfying queue-efficiency, strategyproofness and the identical preferences lower bound if and
only if it is a k-pivotal mechanism with k = n+1

2 .

3.3 Budget Properties

It is well-known that the VCG mechanisms in general do not balance the budget. However, in
queueing problems, the symmetrically balanced VCG mechanisms satisfy budget balance. On
the other hand, the k-pivotal mechanisms do not satisfy budget balance except for the special
case in which n = 3 and k = n+1

2 (see equality (26) and also Mitra and Mutuswami [13]). When
n = 3, the 2-pivotal mechanisms coincide with the symmetrically balanced VCG mechanisms.
The next result follows from Proposition 4 in Mitra [12].

10See the working paper version of our paper for the proof.
11Under the name of the largest equally distributed pairwise pivotal rule.
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Proposition 4. Let n = 3. A mechanism minimizes the budget deficit in each queueing problem
among all VCG mechanisms meeting the 2-welfare lower bound if and only if it is a VCG
mechanism that satisfies the identical preferences lower bound and budget balance.

Since budget balance cannot be guaranteed, one can ask whether there are VCG mechanisms
satisfying the k-welfare lower bound and no budget deficit. For k = 1, the answer is negative.
When there are more than 3 agents, the negative result remains even if the 1-welfare lower bound
is weakened to the 2-welfare lower bound. This negative result is generalized as follows.

Proposition 5. If k < n+1
2 , then no VCG mechanism satisfies the k-welfare lower bound and

no budget deficit.

Proof : Let k ∈ {1, 2, ..., n}, P k,τ ≡ (στ , tk,τ ) ∈ Pk, and µg,τ = (στ , tg,τ ) be a VCG mechanism
satisfying the k-welfare lower bound. By Corollary 1, for each θ ∈ QN and each i ∈ N, tg,τi (θ) ≥
tk,τi (θ), which implies that ∑

i∈N
tg,τi (θ) ≥

∑
i∈N

tk,τi (θ). (24)

Note that for each θ ∈ QN ,

−
∑

i∈N

∑
j∈Fi(στ (θ))

θj = −
n∑

l=2

(l − 1)θ[l], and

∑
i∈N

n−1∑
l=k

(θ−i)[l] =

(
(n− 1)

n∑
l=k+1

θ[l] + (n− k)θ[k]

)
for k = 1, . . . , n− 1,

(25)

where the second equality follows from (8). By (6) and (25), the budget deficit generated by
P k,τ is

∑
i∈N

tk,τi (θ) =


n∑

l=1

(n− l)θ[l] if k = 1, (a)

−
k∑

l=2

(l − 1)θ[l] +
n∑

l=k

(n− l)θ[l] if k = 2, . . . , n. (b)

(26)

If k = 1, by (26a), for each θ ∈ Rn
++,

∑
i∈N tk,τi (θ) > 0 and by (24),

∑
i∈N tg,τi (θ) > 0.

If 2 ≤ k < n+1
2 , let θ ∈ QN be such that for each i ∈ N, θi = θ′ > 0. By (24) and (26b),∑

i∈N tg,τi (θ) ≥
∑

i∈N tk,τi (θ) =
(
−
∑k

l=2(l − 1) +
∑n

l=k(n− l)
)
θ′ = n(n−2k+1)

2 θ′ > 0. Hence, for

k < n+1
2 , both P k,τ and µg,τ violate no budget deficit. �

Let P k,τ ∈ Pk. By (26), if k = 1, then P k,τ generates a non-negative budget deficit at
all profiles and if 2 ≤ k < n+1

2 , then P k,τ does not necessarily generate a budget deficit:∑
i∈N tk,τi (θ) may be positive, negative, or zero depending on θ. For instance,

∑
i∈N tk,τi (θ) ≤ 0

if for each l ≥ k, θ[l] = 0. On the other hand, by Proposition 5.10 in Mitra and Mutuswami [13],

if k ≥ n+1
2 , then P k,τ generates a budget surplus for all profiles θ (i.e., P k,τ satisfies no budget

deficit). Hence, by Proposition 5, we have the following result.

Corollary 3. There exists a VCG mechanism satisfying the k-welfare lower bound and no budget
deficit if and only if k ≥ n+1

2 .
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Now we further weaken the requirement of no budget deficit by setting an upper bound on the
budget deficit (or budget surplus). If the upper bound is equal to 0, then it is the requirement
of no budget deficit. Let T ∈ R+ be given. Can we find VCG mechanisms meeting the k-welfare
lower bound and generate a budget deficit or a budget surplus which never exceeds the given
constant T? If this bound is satisfied, then the center knows that the largest amount of budget
deficit or budget surplus it may face in any queueing problem, no matter what the waiting costs
of the agents are, is the fixed amount T .

T-bounded budget deficit: For each θ ∈ QN ,
∑
i∈N

ti(θ) ≤ T .

T-bounded budget surplus: For each θ ∈ QN , −
∑
i∈N

ti(θ) ≤ T .

Note that T -bounded budget deficit implies that the budget surplus is bounded below by −T
and T -bounded budget surplus implies that the budget deficit is bounded below by −T

On the domain of profiles Rn
+, there is no upper bound on waiting costs. Hence, by (26),

for 2 ≤ k < n+1
2 , positive budget deficits or surpluses generated by mechanisms in Pk can

be arbitrarily large. Therefore, for 2 ≤ k < n+1
2 , the k-pivotal mechanisms satisfy neither

T -bounded budget deficit nor T -bounded budget surplus.
On the other hand, by (26), for k = 1, the budget deficit

∑
i∈N tk,τi (θ) is not bounded above

but it is bounded below by minθ∈QN

∑
i∈N tk,τi (θ) =

∑
i∈N tk,τi (θ0) = 0 where θ0 is such that for

each i ∈ N, θ0i = 0 (i.e., the maximal budget surplus is 0). Thus, 1-pivotal mechanisms satisfy
T -bounded budget surplus (with T = 0) but not T -bounded budget deficit. Similarly, for k ≥ n+1

2 ,∑
i∈N tk,τi (θ) is bounded above by maxθ∈QN

∑
i∈N tk,τi (θ) =

∑
i∈N tk,τi (θ0) = 0, which implies

that for k ≥ n+1
2 , the k-pivotal mechanisms satisfy T -bounded budget deficit (with T = 0) but

not T -bounded budget surplus.
Next we ask whether we can pin down the bounds on budget deficits and surpluses if we

restrict ourselves to the class of problems in which the waiting costs are bounded above. For
each a ∈ R+, let QN (a) = {θ ∈ Rn

+ : ∀i ∈ N, 0 ≤ θi ≤ a}. Note that all our previous results
hold on QN (a) for each a ∈ R+. Moreover, we show that for any k ∈ {1, 2, ..., n}, the k-pivotal
mechanisms satisfy T -bounded budget deficit as well as T -bounded budget surplus on this domain.

Proposition 6. (a) If k < n+1
2 , then for each P k,τ ∈ Pk, each a ∈ R+ and each θ ∈ QN (a),

−(k − 1)(k − 2)

2
a ≤

∑
i∈N

tk,τi (θ) ≤ n(n− 2k + 1)

2
a. (27)

(b) If k ≥ n+1
2 , then for each P k,τ ∈ Pk, each a ∈ R+ and each θ ∈ QN (a),

−(k2 + k − 2n)

2
a ≤

∑
i∈N

tk,τi (θ) ≤ 0. (28)

Proof : Let k ∈ {1, 2, ..., n}, P k,τ ∈ Pk and a ∈ R+. Given θ ∈ QN (a), let θk ∈ QN (a) be such
that for each i ∈ N, θki = θ[k]. Let θ ∈ QN (a) be such that for each i ∈ N, θi = a. Note that
for each l ∈ {1, 2, ..., k}, θ[l] ≥ θ[k] and for each l ∈ {k, k + 1, ..., n}, θ[l] ≤ θ[k]. By (26), for each
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θ ∈ QN (a), ∑
i∈N

tk,τi (θk) ≥
∑
i∈N

tk,τi (θ),

∑
i∈N

tk,τi (θ) = n(n−2k+1)
2 a and

∑
i∈N

tk,τi (θk) = n(n−2k+1)
2 θ[k].

(29)

Note that (26) can also be written as, for each θ ∈ QN (a),

∑
i∈N

tk,τi (θ) =

{
(n− 2k + 1)θ[k] +

∑n
l=k+1(n− l)θ[l] if k = 1, 2,

−
∑k−1

l=2 (l − 1)θ[l] + (n− 2k + 1)θ[k] +
∑n

l=k+1(n− l)θ[l] if k = 3, . . . , n.

(30)

(a) Suppose that k < n+1
2 . Since (n− 2k + 1) > 0, by (29), for each θ ∈ QN (a),

∑
i∈N tk,τi (θ) ≥∑

i∈N tk,τi (θk) ≥
∑

i∈N tk,τi (θ), which implies that maxθ∈QN (a)

∑
i∈N tk,τi (θ) =

∑
i∈N tk,τi (θ).

Let θ′ ∈ QN (a) be such that for each l ∈ {k, k + 1, ..., n}, θ′[l] = 0 and if k ≥ 3, then for

each l ∈ {2, ..., k − 1}, θ′[l] = a. By (30), for k ∈ {1, 2},
∑

i∈N tk,τi (θ′) = 0 and for 2 < k < n+1
2 ,∑

i∈N tk,τi (θ′) = −
∑k−1

l=2 (l−1)a. That is, for each k < n+1
2 ,

∑
i∈N tk,τi (θ′) = − (k−1)(k−2)

2 a. Since

(n− 2k+1) > 0, by (30), for each θ ∈ QN (a),
∑

i∈N tk,τi (θ′) ≤
∑

i∈N tk,τi (θ), which implies that

minθ∈QN (a)

∑
i∈N tk,τi (θ) =

∑
i∈N tk,τi (θ′).

Altogether, for each θ ∈ QN (a), (27) holds.

(b) Suppose that k ≥ n+1
2 . Let θ0 ∈ QN (a) be such that for each i ∈ N, θ0i = 0. Since

(n− 2k + 1) ≤ 0, by (29), for each θ ∈ QN (a),
∑

i∈N tk,τi (θ) ≤
∑

i∈N tk,τi (θk) ≤ 0, which implies

that maxθ∈QN (a)

∑
i∈N tk,τi (θ) =

∑
i∈N tk,τi (θ0) = 0.

Let θ′′ ∈ QN (a) be such that for each l ∈ {2, 3, ..., k}, θ′′[l] = a and if k < n, then for each

l ∈ {k+1, ..., n}, θ′′[l] = 0. By (26b),
∑

i∈N tk,τi (θ′′) = (−
∑k

l=2(l− 1)+ (n− k))a = − (k2+k−2n)
2 a.

Since (n−2k+1) ≤ 0, by (30), for each θ ∈ QN (a),
∑

i∈N tk,τi (θ′′) ≤
∑

i∈N tk,τi (θ), which implies

that minθ∈QN (a)

∑
i∈N tk,τi (θ) =

∑
i∈N tk,τi (θ′′).

Altogether, for each θ ∈ QN (a), (28) holds. �

Note that by (24), (27), and (28), on QN (a), for each k ∈ {1, 2, ..., n}, if a VCG mechanism
µg,τ = (στ , tg,τ ) meets the k-welfare lower bound, then it satisfies T -bounded budget surplus:

for each θ ∈ QN (a), the budget surplus −
∑

i∈N tg,τi (θ) is bounded above by (k−1)(k−2)
2 a ≥ 0 if

k < n+1
2 , and by (k2+k−2n)

2 a ≥ 0 if k ≥ n+1
2 .

Finally, we point out the trade off between the level of welfare and the budget surplus
generated by the k-pivotal mechanisms. As k increases, for each k ∈ {1, 2, ..., n−1} and θ ∈ QN ,
the budget deficit and the total welfare decreases by∑
i∈N

ui(P
k,τ
i (θ); θi)−

∑
i∈N

ui(P
k+1,τ
i (θ); θi) =

∑
i∈N

tk,τi (θ)−
∑
i∈N

tk+1,τ
i (θ) = (n−k)θ[k]+kθ[k+1]. (31)
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4 Concluding Remarks

The k-welfare lower bound should not be confused with k-fairness introduced by Porter et al.
[22] and characterized by Atlamaz and Yengin [1]. These authors considered the problem of
assigning a single task among n agents where monetary transfers are possible. They defined
the first best allocation as the Pareto-efficient (the task is assigned to an agent with the lowest
cost and the budget is balanced) and egalitarian one. For each k ∈ {1, 2, ..., n}, the kth best
allocation is the budget balanced and egalitarian allocation at which the task is assigned to an
agent with the kth lowest cost. For each k ∈ {1, 2, ..., n}, k-fairness requires in each problem
the utility at the kth best allocation to be a welfare lower bound.

One way to apply k-fairness to queueing problems may be the following: Define the first
best allocation for θ ∈ QN as the one where the queue is efficient, budget is balanced, and agents
have equal utilities. Then, list all possible queues for θ in the non-decreasing order of aggregate
waiting costs. Define the kth best allocation for θ as the one where the kth queue σ[k](θ) in
this list of all possible queues is selected and utilities are equalized through budget balancing
transfers. Note that σ[1](θ) ∈ E(θ). For each k ∈ {1, 2, ..., n}, k-fairness defined in this way
requires that for each θ ∈ Rn

+ and each i ∈ N,

ui(µi(θ); θi) ≥ −
∑

i∈N (σ
[k]
i (θ)− 1)θi

n
.

Clearly the k-welfare lower bound, k-fairness, and the identical preferences lower bound are
conceptually different requirements with different underlying philosophical justifications. Note
that the 1-welfare lower bound implies both k-fairness and the identical preferences lower bound.
However, further logical relations may exist between these welfare bounds under queue-efficiency
and strategyproofness. We have investigated the relationship between the k-welfare lower bound
and the identical preferences lower bound in Section 3.2. In queueing problems, obviously, the 1-
welfare lower bound and 1-fairness would coincide in the trivial scenario of n = 1. Investigating
further relations between the k-welfare lower bound and k-fairness and between the identical
preferences lower bound and k-fairness is an open question. Note that in the class of problems
of allocating a single object (or multiple objects when valuation functions are additive) and
money, under efficiency of assignment of objects and strategyproofness, the identical preferences
lower bound, 1-fairness, and 2-fairness are equivalent (Remark 1 in Yengin [22], [23]).
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Appendix: Not for Publication

Proof of Proposition 3:

(a) Let µ = (σ, t) be a mechanism satisfying queue-efficiency, strategyproofness and the identical
preferences lower bound. By Remark 2, µ = (σ, t) is a VCG mechanism, that is, there is a
real-valued function g : Rn−1

+ → R and τ ∈ T such that µ = µg,τ = (στ , tg,τ ) where tg,τ is as in
(4). By (4) and the identical preferences lower bound, for each θ ∈ QN and each i ∈ N,

ui(µ
g,τ
i (θ); θi) = −(στ

i (θ)− 1)θi −
∑

j∈Fi(στ (θ))

θj + gi(θ−i) ≥ −(
n− 1

2
)θi,

which implies that gi(θ−i) ≥ (στ
i (θ)− n+1

2 )θi +
∑

j∈Fi(στ (θ)) θj . Since
⟨
n+1
2

⟩
+
≥ n+1

2 , then

gi(θ−i) ≥
(
στ
i (θ)−

⟨
n+ 1

2

⟩
+

)
θi +

∑
j∈Fi(στ (θ))

θj . (32)

We need to show that for each θ ∈ QN and each i ∈ N,

gi(θ−i) ≥
n−1∑

l=⟨n+1
2 ⟩

+

(θ−i)[l]. (33)

Suppose, by contradiction, that there is θ ∈ QN and i ∈ N such that

gi(θ−i) <
n−1∑

l=⟨n+1
2 ⟩

+

(θ−i)[l]. (34)

Let θ∗i = (θ−i)[k] where k =
⟨
n+1
2

⟩
+

and θ∗ = (θ∗i , θ−i). For each l ∈ {k, ..., n − 1}, (θ∗)[l+1] =

(θ−i)[l]. Thus,
12 for k =

⟨
n+1
2

⟩
+
,

(στ
i (θ

∗)− k)θ∗i +
∑

j∈Fi(στ (θ∗))

θ∗j = (θ−i)[k] + (θ−i)[k+1] + · · ·+ (θ−i)[n−1],

=

n−1∑
l=⟨n+1

2 ⟩
+

(θ−i)[l]. (35)

Since θ∗−i = θ−i, by (34) and (35), gi(θ
∗
−i) < (στ

i (θ
∗) −

⟨
n+1
2

⟩
+
)θ∗i +

∑
j∈Fi(στ (θ∗)) θ

∗
j , a contra-

diction to (32). Hence, (33) holds.

12Even if στ
i (θ

∗) ̸= k, the equation holds by using an argument similar to footnote 8.
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(b) Let µg,τ = (στ , tg,τ ) be a VCG mechanism such that for each θ ∈ QN and each i ∈ N, (23)
holds. Then, by Corollary 1, µg,τ satisfies the k-welfare lower bound where k =

⟨
n+1
2

⟩
−. Note

that
⟨
n+1
2

⟩
− ≤ n+1

2 . Hence, by the k-welfare lower bound with k =
⟨
n+1
2

⟩
− , for each θ ∈ QN

and each i ∈ N, ui(µ
g,τ
i (θ); θi) ≥ −(

⟨
n+1
2

⟩
− − 1)θi ≥ −(n+1

2 − 1)θi, which implies that µg,τ

satisfies the identical preferences lower bound. �
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