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REACHING CONSENSUS THROUGH APPROVAL BARGAINING∗

JEAN-FRANÇOIS LASLIERa, MATÍAS NÚÑEZb, AND CARLOS PIMIENTAc

ABSTRACT. In the Approval Bargaining game, two players bargain over a finite set

of alternatives. To this end, each one simultaneously submits a utility function u

jointly with a real number α; by doing so she approves the lotteries whose expected

utility according to u is at least α. The lottery to be implemented is randomly

selected among the most approved ones. We first prove that there is an equilibrium

where players truthfully reveal their utility function. We also show that, in any

equilibrium, the equilibrium outcome is approved by both players. Finally, every

equilibrium is sincere and Pareto efficient as long as both players are partially

honest.

KEY WORDS. Approval voting, bargaining, partial honesty, consensual equilibrium.

JEL CLASSIFICATION. C70, C72.

1. INTRODUCTION

An elementary version of the bargaining problem involves two players with com-

plete information who have to decide on the terms of a possible cooperation. The

outcome is either an agreement about such terms, or else a conflict, in the case that

no agreement is reached. While dynamic bargaining has been extensively explored

and often leads to desirable outcomes (in models à la Rubinstein, 1982), the litera-

ture on simultaneous bargaining is scant. It has been argued (see, e.g., Osborne and

Rubinstein, 1990) that, not to leave room for renegotiation, the bargaining outcome
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should be Pareto optimal. Furthermore, if both players are to participate in the

bargaining mechanism, then the outcome should not be worse than disagreement.

We design a two-player simultaneous model of bargaining such that, in equilib-

rium, parties always reach an agreement. Moreover, as long as agents are partially

honest (Dutta and Sen, 2012) every equilibrium outcome is Pareto efficient. Par-

tial honesty has been recently analyzed by the mechanism design literature and

it captures a mild form of preference for honesty. A partially honest agent prefers

being sincere over lying whenever sincerity does not lead to a worse outcome.1 In

our model, each player simultaneously approves of a set of lotteries over the pure

alternatives. A player does so announcing a utility function u and a real number α;

by doing so she approves of the lotteries whose expected utility according to u is at

least α. A player’s announcement is sincere if its utility component coincides with

her true utility function.2 And a partially honest player prefers a sincere announce-

ment if she cannot do better by lying.

The outcome induced by a strategy profiles is determined as follows. If some

lotteries are approved by both players, then the two approved sets intersect. We

define the winning set to be such an intersection and we say that the winning set

is consensual. If no lottery is approved by both players, then we define the winning

set to be the set of lotteries that are approved by at least one agent. In this case,

we say that the winning set is non-consensual. Finally, the mechanism selects a

lottery at random using the uniform probability over the winning set. The alter-

native to be implemented is decided by this selected lottery.3 Thus, in the same

vein as Babichenko and Schulman (2015) and Núñez and Laslier (2015), one can

think of our model as a reinterpretation of approval voting (Brams and Fishburn,

1983; Laslier and Sanver, 2010) as a bargaining mechanism when there are just two

voters.4 Hence, in the sequel, we refer to our bargaining mechanism as approval

bargaining.

In some sense, our approval bargaining game is similar to Nash’s (1953) demand

game. In the demand game, two players make simultaneous demands and each one

1 We discuss how our paper relates to the mechanism design literature at the end of the Introduc-

tion. We do not attempt to give a review on the bargaining literature and simply refer the reader to

Serrano (2008).
2 Thus, sincerity in this context implies the sincerity notion used in the approval voting literature

in which a strategy is sincere if, whenever it contains an alternative, it also contains the other

alternatives that the player prefers to it. See Merill and Nagel (1987), Brams (2008), and Núñez

(2014) for works dealing with sincerity under approval voting.
3 Núñez (2015) analyzes a voting rule in this fashion and shows that it leads to type-revelation

with many voters.
4 The difference is that in Babichenko and Schulman (2015) and Núñez and Laslier (2015) agents

approve alternatives while, in the current model, agents approve lotteries over alternatives. This is

the main driving force behind of the efficiency properties of our model.
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FIGURE 1. Strategy profiles in the approval bargaining game.

receives the payoff she requests if both payoffs are jointly feasible and nothing oth-

erwise. Our model is more complex since strategies are not unidimensional and the

threat point is decided endogenously. Figure 1 illustrates this in a bargaining situa-

tion with three alternatives, each one represented at the corresponding vertex of the

simplex. Figure 1a depicts the non-consensual and sincere strategy profile (s1, s2)

while Figure 1b shows the consensual and sincere strategy profile (s′1, s′2). Under

(s1, s2), player 1 (resp. player 2) approves every lottery in the closed subset labeled

s1 (resp. s2). The outcome induced by (s1, s2) is the uniform probability measure

over s1 ∪ s2 and the expectation of such a measure is the barycenter b(s1 ∪ s2). In

Figure 1b, the strategies s′1 and s′2 intersect so that the induced outcome is b(s′1∩s′2).

Note that either players can deviate to some non-consensual strategy that induces

an outcome arbitrarily close to b(s′1∪ s′2). Hence, b(s′1∪ s′2) is the endogenous threat

point that sustains the equilibrium outcome b(s′1∩ s′2).

This example suggests that, under a non-consensual strategy profile, players

have two joint incentives: (1) approving a large subset of lotteries so that the in-

duced expected outcome is as close as possible to it and, consequently, (2) playing

some sincere strategy that approves every lottery in the upper contour set of some

indifference curve. These two incentives work together so that both players approve

bigger and bigger sets. The consequence is that a non-consensual strategy profile

cannot be an equilibrium. In Section 3, we prove that every equilibrium strategy

profile has a nonempty intersection in the same way as in Figure 1b. Finally, note

that in this figure either player can deviate to a non-sincere consensual strategy and

still induce outcome b(s′1∩ s′2) as long as the resulting intersection is also b(s′1∩ s′2).

But partial honesty guarantees that players would rather play the sincere strategy.

Building on these observations, we prove that the approval bargaining game has

the following properties.

(1) Existence of equilibrium: Every game has an equilibrium in sincere strategies.
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(2) Consensual equilibria: In every equilibrium, players agree on some subset of

lotteries.

(3) Sincerity and Pareto efficiency: If players are partially honest, every equilibrium

outcome is in sincere strategies and Pareto efficient.

(4) Balanced equilibrium outcomes: If p is an equilibrium outcome then a player’s

upper contour set of p cannot be “too small” unless both players agree on what

the best alternative is.

More precisely, the last property takes the relative size of the upper contour sets

as a measure of how much the equilibrium outcome favors one player over the other.

The smaller a player’s upper contour set, the closer the corresponding outcome is to

the player’s most preferred alternative. Every equilibrium outcome of the game is

balanced in the following sense: If p is an equilibrium outcome and Ci is the set of

lotteries that player i prefers to p, then both players prefer p to selecting a lottery

uniformly from the set C1 ∪C2. Furthermore, Properties (3) and (4) characterize

the set of equilibrium payoffs (and, therefore, the set of equilibria): If p is Pareto

efficient and balanced, then u1(p) and u2(p) are equilibrium payoffs.

The rest of the paper is structured as follows. After providing a brief account of

relevant known results in mechanism design, Section 2 presents the model. Equi-

librium properties are derived in Section 3 and the characterization of equilibria is

presented in Section 4. The Appendix proves two lemmata needed to establish the

results, briefly considers the game without assuming partial honesty, and contains

the proof of existence of equilibria.

Relationship with the mechanism design literature

Maskin (1999) proves that a two-player, Pareto optimal rule defined on the do-

main of all strong orderings is Nash implementable if and only if it is dictatorial.

In view of this result, Moore and Repullo (1990) and Dutta and Sen (1991) char-

acterize Nash implementation with two agents and use such a characterization to

find domain restrictions that yield positive results (see also Busetto and Colognato,

2009). In particular, Dutta and Sen (1991) show that if the set of outcomes is the

probability simplex over finitely many alternatives and players have von Neumann-

Morgenstern utility functions satisfying suitable conditions, then the correspon-

dence that selects the set of Pareto efficient and individually rational lotteries can

be implemented.5

Bagnoli and Lipman (1989) argue that most games introduced by the implemen-

tation literature are built to be applicable to very general settings rather than for

their plausibility. For this reason, these mechanisms are often quite complex. For

5 Dutta and Sen assume that no agent is indifferent between two pure alternatives, and that

there is no affine transformation u1, u2 of their utility functions that satisfies either u1 = u2 or

u1 =−u2. Apart from Proposition 3 in Appendix B, we do not impose any such restriction.
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example, the generalized mechanism used to prove the sufficiency result of the char-

acterization mentioned above uses an “integer game”. The unappealing features of

integer games (Jackson, 1992), among other reasons, has stimulated researchers to

investigate the implementation problem using different approaches. A recent one

explores the scope for implementation when players are partially honest (see Mat-

sushima, 2008b; Ortner, 2015). Under partial honesty, a player prefers a truthful

message when it does not lead to a strictly worse outcome than what she would

obtain otherwise. Dutta and Sen (2012) find necessary and sufficient conditions for

implementation under partial honesty when there are two players. However, the

existing results do not apply to our setting for different reasons. Some need more

than two players (Matsushima, 2008b), some use monetary transfers (Matsushima,

2008a; Kartik et al., 2014) and some propose mechanisms that do not seem suitable

to be understood as bargaining protocols (for example Dutta and Sen, 2012 and

Kartik and Tercieux, 2012 also use integer games).

2. THE GAME

Consider two players indexed by i = 1,2 and a set of alternatives X := {x1, . . . , xK }

with at least two elements. Let ∆ := {p ∈ RK
+ |

∑

pi = 1} denote the probability sim-

plex over X . We identify an alternative x ∈ X with the degenerate lottery that

assigns probability one to x. Each player i has preferences over ∆ represented by

a von Neumann-Morgenstern utility function ui. Let U be the set of all linear

functions defined on ∆. We assume that a player’s best and worst alternatives are

associated to different utility values. Utilities are normalized so that, for each i,

maxx∈X ui(x)= 1 and minx∈X ui(x)= 0.

A player’s strategy is an announcement of a function in U together with a real

number in [0,1]. Hence, players have the common strategy set S :=U × [0,1]. For-

mally, a strategy si := {ωi,αi} is the subset of lotteries {p ∈ ∆ : ωi(p) ≥ αi}. That is,

si is the subset of lotteries in ∆ that give a player with utility function ωi a level

of utility larger or equal to αi. We interpret a strategy as the set of lotteries that

a player “approves”. A strategy si = {ωi,αi} ∈ S is sincere for player i if ωi is equal

to player i’s true utility function ui. Player i’s set of sincere strategies is denoted

S i ⊂ S.

We introduce some preliminary facts to describe the outcome induced by a strat-

egy profile (s1, s2). Recall that, given a convex subset A ∈∆, its affine hull aff(A) is

the smallest affine set containing A. The dimension of a nonempty convex subset

A, denoted by dim(A), is the dimension of its affine hull (see Rockafellar, 1997).

The dimension of a finite union of convex sets
⋃

z∈Z Az is equal to maxz∈Z dim(Az).

Let λn be the Lebesgue measure in R
n. Since we work in the probability simplex

over X , we often refer to λK−1. For simplicity, we simply write λ instead of λK−1.

For any n-dimensional set A ∈ ∆ that can be written as the finite union of convex
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sets, the uniform measure with support A is given by µ(· | A)= λn(·)/λn(A). For any

n-dimensional set A ∈∆, its barycenter b(A) is

b(A) :=
∫

A
pdµ(p | A).

By convention, we let b(∅) = b(∆). The strategy profile s = (s1, s2) ∈ S induces the

outcome θ(s1, s2) defined as:

θ(s1, s2) :=







b(s1 ∩ s2) if s1 ∩ s2 ,∅,

b(s1 ∪ s2) otherwise.

If s1 ∩ s2 , ∅ there are lotteries that both players approve and we say that the

strategy profile (s1, s2) and the induced outcome b(s1∩s2) are consensual. If s1 ∩ s2 =

∅ we say that the strategy profile (s1, s2) and the induced outcome b(s1 ∪ s2) are

non-consensual. In either case, the relevant set has a well-defined dimension so

that θ(s1, s2) is always well-defined.

We assume that players are partially honest, that is, they prefer playing sincere

strategies as long as they cannot obtain a better outcome by not doing so. We follow

the formal definition of partial honesty given by Dutta and Sen (2012). We denote

by ºi player i’s ordering over the set of strategy profiles S×S when she is partially

honest. Its asymmetric component is denoted by ≻i.6

Definition 1. Player i is partially honest if for each si, s′i, s j ∈ S,

(1) If ui(θ(si, s j))≥ ui(θ(s′
i
, s j)), si ∈S i, and s′

i
∉S i, then (si, s j)≻i (s′

i
, s j).

(2) In all other cases, (si, s j)ºi (s′
i
, s j) if and only if ui(si, s j)≥ ui(s′i, s j).

The first part of the definition represents the player’s partial preference for hon-

esty. She strictly prefers the strategy profile (si, s j) to (s′
i
, s j) when si is a sincere

strategy and s′
i

is not, provided that the outcome θ(si, s j) is at least as good as

θ(s′
i
, s j). The second part of the definition implies that, in every other case, the

player’s preference ordering over strategy profiles is the same as the one induced

by her preference ordering over lotteries.

These rules describe the simultaneous approval bargaining game Φ= (S,S,u1,u2).

We focus on equilibrium in pure strategies.

Definition 2. A strategy profile (s1, s2) is an equilibrium if for every player i and

every s′
i
∈ S we have (si, s j)ºi (s′

i
, s j).

Our first result is about equilibrium existence. In the Appendix, we prove that

the game admits an equilibrium in sincere strategies for any specification of the

players’ utilities. Note that the outcome function is discontinuous so that existence

does not follow from standard fixed-point theorems. Indeed, the outcome θ(s1, s2)

might “jump” discontinuously whenever the limit of a sequence of non-consensual

6 Hereinafter, once we introduce player i we let player j be the other player so that i , j.
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strategy profiles is a consensual strategy profile. (See, for instance, Figure 1b. The

outcome induced by any non-consensual strategy profile close to (s′1, s′2) is close to

b(s′1 ∪ s′2), far away from θ(s′1, s′2)= b(s′1 ∩ s′2).)

Theorem 1. Every approval bargaining game Φ has an equilibrium in sincere

strategies.

3. CONSENSUS, SINCERITY AND PARETO EFFICIENCY

Consider some strategy s j of player j and let α∗
i

:= maxp∈s j
ui(p) be the utility

associated to the best lottery in s j from player i’s viewpoint. Player i’s sincere

strategy s∗
i
= {ui,α∗

i
} induces outcome b(s∗

i
∩ s j) and yields utility ui(b(s∗

i
∩ s j))=α∗

i

to player i. Therefore, s∗
i

is player i’s best consensual response to s j, i.e., no other

consensual response to s j does better than s∗
i
. Every other consensual and sincere

response to s j does strictly worse because it approves an open subset of lotteries in

s j that yield player i a payoff strictly lower than α∗
i
. And every other consensual

and non-sincere response to s j can only induce an outcome no better than b(s∗
i
∩s j).

Since players are partially honest we conclude that s∗
i

is the unique best consensual

response to s j.

But even if s∗
i

is player i’s best consensual response to s j, it may not be the best

response overall. Hence assume that si is player i’s best response to s j and that

the strategy profile (s1, s2) is non-consensual. If s j is full dimensional (that is, of

dimension K −1), then si is the unique best response to s j. To see why, note that,

provided that both si and s j are full dimensional, the induced outcome is a convex

combination between b(si) and b(s j). Such a convex combination depends on the

relative measures of s1 and s2. Therefore, player i’s best response si must be “big”

relative to s j so that the induced outcome is as close as possible to b(si). It must

also contain only lotteries that give player i a sufficiently high payoff so that player

i’s payoff from b(si) is as high as possible. More precisely, if si is player i’s best

response to s j, then si must coincide with the lotteries she prefers to b(si ∪ s j).

Lemma 1. Let s j ∈ S be a full dimensional strategy and let si ∈ S be a non-consensual

best response to s j. Then si = {ui,ui(b(si ∪ s j))}.

The proof is in the Appendix. It is important that strategy s j be full dimensional.

Otherwise, player i need not have a best response, as the next example shows.

Example 1. Let X := {x, y, z} and let x and y be, respectively, player 1’s and player 2’s

unique most preferred alternatives. In particular, we have u1(x) = u2(y) = 1 and

u1(y) < 1. Consider player 2’s strategy s2 = {u2,1} and note that it is not full

dimensional. No consensual strategy of player 1 is a best response to s2 since

any such strategy gives her utility u1(y), whereas strategy {u1,1} gives her utility
1
2 +

1
2 u1(y) > u1(y). In turn, take ε > 0 small enough and consider player 1’s strat-

egy sε1 = {u1,1− ε}. Since λ(s2) = 0 and sε1 ∩ s2 = ; for ε small enough, u1(sε1, s2) =
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u1(b(sε1 ∪ s2)) = u1(b(sε1)). Therefore, u1(sε1, s2) converges to 1 as ε decreases. But

u1(s0
1, s2)= 1

2 +
1
2 u1(y)< 1. That is, player 1 has no best response to s2.

If both players agree on what the best alternative is, it is easy to construct a con-

sensual strategy profile such that both players coordinate to implement this alter-

native. If players do not have a common best alternative and play a non-consensual

strategy profile, then they would want to approve a large set relative to the other

player to “attract” the outcome in the direction where their utility increase as much

as possible. The end result is that both strategies would be large enough to inter-

sect. Therefore, we obtain:

Proposition 1. Every equilibrium is consensual.

Proof. Suppose to the contrary that there is a non-consensual equilibrium (s1, s2).

If both s1 and s2 are full dimensional then, by Lemma 1, θ(s1, s2) belongs to both s1

and s2. Hence, (s1, s2) is a consensual strategy profile.

Assume now that player j’s strategy s j is lower dimensional. Player i’s payoff

under (s1, s2) is 1 because she can obtain a payoff as close to 1 as she wants by

choosing ε > 0 and playing sε
i

:= {ui,1− ε}. But then, player i’s strategy is lower-

dimensional as well because otherwise ui(θ(s1, s2)) = ui(b(si)) , 1 (recall that there

is a best and a worst alternative so preferences are locally nonsatiated). Repeating

the argument, player j’s equilibrium utility is also 1. Now, if s j has the same dimen-

sion as si ∪ s j then every lottery approved in s j is among player i’s best lotteries.

Therefore, player i’s payoff cannot decrease if she plays the sincere strategy {ui,1}

against s j. Thus, by partial honesty, si is also sincere and satisfies {ui,1} ⊂ si. But

then (s1, s2) is a consensual strategy profile as we wanted. �

Since every every equilibrium is consensual, in equilibrium, players play their

best consensual response against each other. As noticed above, partial honesty

implies that the unique best consensual response to the opponent’s strategy is a

sincere strategy. Thus, players only play sincere strategies in equilibrium. In turn,

this implies that only Pareto efficient lotteries are equilibrium outcomes. Of course,

in our setting, a lottery p ∈∆ is Pareto efficient if there is no other lottery q ∈∆ such

that ui(q)≥ ui(p) for i = 1,2 with at least one being a strict inequality.

Theorem 2. Every equilibrium is sincere and Pareto efficient.

Proof. Let (s1, s2) be an equilibrium. From Theorem 1 we have s1∩ s2 ,∅. Further-

more, such an intersection only contains player i’s most preferred lotteries in s j.

Since player i can induce such an outcome playing a sincere strategy, partial hon-

esty implies that every equilibrium is in sincere strategies.

To prove Pareto Efficiency, let α∗
i

:= maxp∈s j
ui(p) so that we can write si =

{ui,α∗
i
}. Suppose that there is q ∈ ∆ such that ui(q) ≥ α∗

i
for i = 1,2, with strict

inequality for at least one player. Then q belong to both s1 and s2 because they are
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sincere strategies. But this contradicts the definition of α∗
i

for at least one i = 1,2.

Therefore, every lottery in the winning set of an equilibrium is Pareto efficient. �

Since only Pareto efficient lotteries are equilibrium outcomes, only Pareto effi-

cient alternatives are in the support of such outcomes. If, say, alternative x1 is

Pareto dominated by alternative x2, a lottery p with p1 > 0 is Pareto dominated by

the lottery q defined by:

q′
1 = 0,

q′
2 = p1 + p2, and

q′
k = pk for k = 3, . . . ,K .

This shows that any lottery that assigns positive probability to inefficient alter-

natives is inefficient. Since only efficient lotteries are equilibrium outcomes of the

game then, ex-post, players never have a common incentive to renegotiate once the

equilibrium outcome has been realized into some alternative in X .

4. A CHARACTERIZATION OF EQUILIBRIUM OUTCOMES

As we have seen so far, the approval bargaining game only admits sincere and

consensual equilibria, which lead to efficient outcomes. If players have a common

best alternative, then there is a unique efficient outcome and all equilibria select

this outcome. However, when players do not share their most preferred alternative,

not every Pareto efficient outcome can be sustained in equilibrium. Hence, from now

on, we focus on the case where players do not agree on what the best alternative is.

This section characterizes equilibrium outcomes in this scenario by providing the

maximum and minimum payoffs that are possible in equilibrium.

To show that a given strategy profile is an equilibrium we need to prove that

(1) both players are playing their best consensual response, and that (2) they do

not gain by deviating to their best non-consensual response. We now study how the

best consensual and non-consensual responses of a player behave as the opponent

changes her strategy.

For each player i, Theorem 2 allows us to focus on her set of sincere strategies

S i ⊂ S. For each αi ∈ [0,1] we associate the sincere strategy {ui,αi}. And for each

α j ∈ [0,1], we let CUi(α j) denote player i’s utility value to the outcome induced

by her best sincere consensual response to {u j,α j}. Instead of working with the

analogous expression for player i’s best sincere non-consensual response (which,

as argued before, might not exist), we introduce the following function defined on

U × (0,1)×U × (0,1),

f i(si, s j) :=
λ(si)

λ(si)+λ(s j)
ui(b(si))+

λ(s j)

λ(si)+λ(s j)
ui(b(s j)).
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Let NUi(α j) denote player i’s maximal value of f i(·, {u j,α j}). The value of this func-

tion coincides with ui(b(s1 ∪ s2)) whenever s1 ∩ s2 =∅. Using the same arguments

as in the proof of Lemma 1, one can prove that the maximizer s′
i

of f i(·, {u j,α j}) ex-

ists and satisfies s′
i
= {ui, f i(s′i, s j)}. This fact means that the inequality CUi(α j) <

NUi(α j) is equivalent to saying that the best response to {u j,α j} is non-consensual

and, furthermore, equal to s′
i
. Similarly, the inequality CUi(α j)≥NUi(α j) is equiv-

alent to saying that the best response to {u j,α j} is consensual.

The next Lemma describes, for each player i, her best response to any sincere

strategy of her opponent. Given utility functions (ui,u j), there is a real number ηi

such that if player j plays some sincere strategy {u j,α j} with α j ≤ ηi then player i’s

best response is consensual (i.e. CUi(α j)≥NUi(α j)). On the other hand, if player j

plays some sincere strategy {u j,α j} with α j > ηi then player i’s best response is

non-consensual (i.e. CUi(α j)<NUi(α j)).

Lemma 2. If players do not have a common best alternative, for each player i, there

exists a unique ηi ∈ (0,1) such that:

CUi(α j)≥NUi(α j) if and only if α j ≤ ηi.

We can now complete the full characterization of equilibria of the approval bar-

gaining game.

Theorem 3. Suppose that players do not have a common best alternative and let

(α1,α2) be a utility profile derived from some Pareto efficient lottery. The profile

({u1,α1}, {u2,α2}) is an equilibrium if and only if α j ≤ ηi for both i = 1,2.

Proof. Let p ∈ ∆ be Pareto efficient and let αi = ui(p) for i = 1,2. Consider the

strategy profile ({u1,α1}, {u2,α2}). The lottery p is approved by both {u1,α1} and

{u2,α2} and, because p is Pareto efficient, such an intersection has an empty interior

relative to ∆. Thus, no player has an incentive to deviate to a different consensual

strategy. Furthermore, since α1 ≤ η2 and α2 ≤ η1, the previous lemma implies that

no player has an incentive to deviate to a non-consensual strategy.

On the other hand, let (α1,α2) be an equilibrium payoff. From Theorem 2 we

know that players are playing ({u1,α1}, {u2,α2}) which, by Proposition 1, is a con-

sensual strategy profile. Because players do not have an incentive to deviate to a

non-consensual strategy we have α1 ≤ η2 and α2 ≤ η1. �

Thus, a player’s set of equilibrium payoffs (as well as the set of equilibrium strate-

gies) is a closed interval. Another implication of this theorem is that a player’s up-

per contour set of an equilibrium outcome cannot be “too small” relative to that of

the other player. To formalize this idea we introduce the following definition:

Definition 3. Let Ci(p) be player i’s upper contour set of the lottery p. We say that

p is a balanced lottery if ui(p)≥ ui(b(C1(p)∪C2(p))) for i = 1,2.
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That is, a lottery p is balanced if both players prefer that lottery to the expected

outcome of the uniform measure over the set of lotteries that at least one agent

prefers to p. Theorem 3 implies that, if players do not have a common best alterna-

tive, a payoff vector is an equilibrium payoff vector if and only if it is generated by

an efficient and balanced outcome. Of course, almost trivially, if players have a com-

mon best alternative then the equilibrium outcome is also efficient and balanced.

We have also assumed from the outset that a player’s best and worst alternative are

associated to different utility levels. If this is not the case for player i then partial

honesty implies that player i can only play si =∆ or si =∅. In either case, it follows

that the resulting equilibrium outcome is again efficient and balanced. Hence, we

obtain the following characterization of equilibrium payoffs.

Corollary 1. A payoff vector is an equilibrium payoff vector if and only if it is

generated by an efficient and balanced lottery.

The last result of this section specifies a lower bound on the utility level that a

player can obtain in equilibrium.

Proposition 2. If u1 ,−u2, each player i’s equilibrium payoff is strictly larger than

ui(b(∆)). If u1 =−u2, the unique equilibrium payoff is ui(b(∆)).

Proof. The sincere strategy ŝi = {ui,ui(b(∆))} guarantees player i a payoff of at least

ui(b(∆)) regardless of player j’s strategy. Any equilibrium outcome is, then, at least

as good as b(∆) for both players. This fact readily implies that if u1 =−u2 then the

unique equilibrium outcome is b(∆). Note that if u1 ,−u2 then an efficient lottery

p satisfying ui(p) = ui(b(∆)) cannot be balanced. Indeed, player i strictly prefers

b(ŝi ∪ {u j,u j(p)}) to p. Thus, in equilibrium, each player’s payoff is strictly larger

than the one associated to the barycenter of the simplex. �

Theorem 3 and Proposition 2 jointly imply that, unless u1 =−u2, the set of equi-

libria of the approval bargaining game consist of a continuum such that both play-

ers obtain strictly more than their utility to b(∆). We conclude this section with an

example that illustrates this result. The example also shows that we can easily use

the equilibrium characterization in Theorem 3 to compute the relevant bounds of

the set of equilibria of any given game.

Example 2. Consider a bargaining situation with set of alternatives X = {x, y, z}.

Players 1 and 2 have utility functions u1 = (1,δ,0) and u2 = (0,µ,1). We consider the

family of games where δ=µ. If δ= .5, then b(∆) is the unique equilibrium outcome.

If δ< .5, then the set of Pareto efficient lotteries only includes lotteries that assign

zero weight to the inefficient alternative y. This implies that if player i obtains

the equilibrium payoff α∗
i

then player j obtains the equilibrium payoff α∗
j
= 1−α∗

i
.

If δ > .5, then lotteries that assign strictly positive probability to both x and z are
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TABLE 1. Player 1’s uniform benchmark (u1(b(∆))), minimum (α1), and maxi-

mum (ᾱ1) equilibrium payoffs for utility profiles u1 = (1,δ,0) and u2 = (0,µ,1). Val-

ues are rounded up to three decimal places.

δ=µ 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1

u1(b(∆)) .333 .367 .4 .433 .467 .5 .533 .567 .6 .633 .667

α1 .442 .447 .454 .462 .476 .5 .543 .600 .671 .764 1

ᾱ1 .558 .553 .447 .538 .524 .5 .638 .743 .832 .915 1

Pareto dominated. In this case, if player i obtains the equilibrium payoff α∗
i
, then

player j obtains the equilibrium payoff

α∗
j =







α∗
i
+ (δ−α∗

i
)/δ if α∗

i
≤ δ, or

(1−α∗
i
)δ/(1−δ) if α∗

i
≥ δ.

Table 1 shows player i’s minimum αi and maximum ᾱi equilibrium payoffs for

any given δ = µ ∈ {0, .1, .2, . . . ,1} together with her utility to the barycenter of the

simplex. Of course, in an equilibrium where player i’s payoff is at its maximum,

player j’s equilibrium payoff must be at its minimum and vice versa.

5. CONCLUSION

This paper develops a simultaneous bargaining mechanism between two players.

It analyzes its equilibrium properties assuming that players are partially honest.

The approval bargaining game triggers an agreement between the players in every

equilibrium. In equilibrium, the players’ best responses are sincere which, in turn,

implies that any equilibrium outcome is Pareto efficient. Moreover, partial honesty

allows us to derive a characterization of equilibrium payoffs: a payoff profile is an

equilibrium one if and only if it is induced by a Pareto efficient and balanced lottery.

A natural research question is whether this mechanism can be extended to many

players. The answer to this question seems far from obvious. With two players,

they either agree or they do not. However, this duality is lost with three or more

players. The main problem seems to be what the rules of the game should specify

to determine the outcome when some but not all players agree on some subset of

lotteries. While one might think of several possible extensions, none of them seems

to conveniently extend the properties of the current two-player approval bargaining

game.

APPENDIX A. PROOFS OF THE LEMMATA

Proof of Lemma 1. For some full dimensional s j ∈ S, let s′
i
= {ωi,βi} be a non-consensual

best response to s j for player i. Define αi := ui(b(s′
i
∪ s j)) and si := {ui,αi}. Assume
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that s′
i
, si so that at least one of the following two open sets is nonempty:

A = {p :ωi(p)>βi and ui(p)<αi},

B = {p : ui(p)>αi and ωi(p)<βi}.

The set A contains lotteries that belong to s′
i

but not to si and B contains lotteries

that belong to si but not to s′
i
. Also, since s′

i
is a best response to s j, the intersection

si ∩ s j has zero λ-measure because s j cannot contain lotteries p that satisfy ui(p)>

αi. We can now estimate

ui(b(si ∪ s j))=

∫

s′
i
ui(p)dλ−

∫

A ui(p)dλ+
∫

B ui(p)dλ+
∫

s j
ui(p)dλ

λ(s′
i
)−λ(A)+λ(B)+λ(s j)

=

[

λ(s′
i
)+λ(s j)

]

αi −
∫

A ui(p)dλ+
∫

B ui(p)dλ

λ(s′
i
)−λ(A)+λ(B)+λ(s j)

>

[

λ(s′
i
)+λ(s j)

]

αi −λ(A)αi +λ(B)αi

λ(s′
i
)−λ(A)+λ(B)+λ(s j)

=αi = ui(b(s′i ∪ s j)).

If si ∩ s j =∅ then the previous inequality implies that player i can do better than

s′
i

by deviating to the non-consensual strategy si. On the other hand, if si ∩ s j ,∅

then si is a consensual best response to s j that satisfies ui(b(si ∩ s j)) = αi. But

the previous equality implies that, for ǫ small enough, the sincere strategy sε
i
=

{ui,αi−ε} is a non-consensual response to s j that still satisfies ui(b(sε
i
∪s j))>αi. In

either case, s′
i

is not a best response to s j. We have reached a contradiction. �

Proof of Lemma 2. We start by noting that CUi and NUi are continuous functions

on (0,1). Furthermore, CUi is non-increasing in α j because, as α j increases, the set

of lotteries approved by the sincere strategy {u j,α j} decreases in size.

If α j is close enough to 0, player i can obtain a payoff close to 1 by playing a

consensual best response, while she can only get a payoff close to ui(∆) by playing

a non-consensual response, hence, CUi(α j)≥NUi(α j). In turn, if α j is close enough

to 1 then player i’s best response to {u j,α j} is non-consensual. Indeed, player i

can obtain a utility close to 1 by playing a non-consensual strategy whereas she

can only get, at most, a utility close to the one corresponding to her second most

preferred alternative if she plays a consensual best response (because players do

not have a common best alternative). Thus, CUi(α j) < NUi(α j). The continuity of

CUi and NUi as functions of α j implies the existence of some ηi ∈ (0,1) for which

CUi(ηi)=NUi(ηi).

To prove uniqueness, suppose that CUi(α j)=NUi(α j) for some α j > ηi. Since the

lotteries approved by {u j,α j} are a subset of the lotteries approved by {u j,ηi} and

the difference between the two sets has positive measure and only contains lotteries

that give player i utility less than ηi we have NUi(α j) > NUi(ηi). Moreover CUi is

nonincreasing in α j so that CUi(ηi) ≥ CUi(α j). Hence, for any α j > ηi, we have

NUi(α j)>CUi(α j). �
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b(s1 ∩ s2)

FIGURE 2

APPENDIX B. THE APPROVAL BARGAINING GAME WITHOUT PARTIAL HONESTY

In this appendix we investigate the consequences of dropping the partial honesty

assumption so that the players’ preference ordering over strategy profiles is the one

induced by their preference over the outcomes that they produce. In this version of

the game, it is still true that every game has an equilibrium in sincere strategies

(the proof of Theorem 1 does not use partial honesty). It is, in general, also true that

every equilibrium is consensual.7 Nonetheless, without partial honesty, players do

not necessarily play sincere strategies if there is a strategy that is not sincere and

does just as well. This can cause players to coordinate on inefficient outcomes in

equilibrium as illustrated in the next example.

Example 3. Figure 2 represents a bargaining game with alternatives x, y, and z.

Player 1 has preferences x ∼1 y ≻1 z and player 2 has preferences x ≻2 z ≻2 y. That

is, the unique efficient outcome is x.

But the consensual strategy profile (s1, s2) indicated in the figure is an equilib-

rium that generates an inefficient outcome. To see that it is an equilibrium note that

player 1 cannot do better because she already obtains her highest possible payoff.

Player 2 is clearly playing her best consensual response and, moreover, the non-

sincere strategy s1 has been chosen so that player 2 prefers the outcome b(s1 ∩ s2)

to b(s1 ∪ s2). Thus, player 2 does not have a profitable deviation either.

To construct an example with three alternatives with an inefficient equilibrium

one player must be indifferent between her two top alternatives. Otherwise, the

next Proposition establishes that every equilibrium is efficient. Unfortunately, this

result does not extend to approval bargaining games with at least four alternatives.

7 For example, if both players rank x and y first and they are both indifferent between x and

y, then there is a non-consensual equilibrium where one player approves {x} and the other player

approves {y}. This is the only type of equilibrium ruled out by partial honesty in the proof of Propo-

sition 1.
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Proposition 3. Suppose that the set of alternatives is X = {x, y, z} and that players

have a strict ordering over alternatives. Every equilibrium outcome is efficient.

Proof. Consider first the case where both players rank x first. Assume there is an

equilibrium (s1, s2) with θ(s1, s2), {x}. If alternative x is approved by si, player j can

induce x by approving only x, a contradiction. Similarly, if si is not full dimensional,

then player j does not have a best response (see Example 1) so that (s1, s2) is not

an equilibrium. Therefore, for each i, x ∉ si and si is full dimensional. It follows

that (s1, s2) is a consensual strategy profile, repeating the arguments in the proof of

Proposition 1.

Furthermore, since players have strict preferences, s1 ∩ s2 cannot be two dimen-

sional. It cannot be one dimensional either. If this was the case, given that player

i only approves her most preferred lotteries among those in s j, players would be

playing sincere strategies and have utility functions satisfying u1 = −u2. Hence,

s1 ∩ s2 consists of a single lottery p.

Since utilities are linear, p is in the boundary of the simplex. For each player i

we have ui(x)> ui(p)≥ ui(b(∆)) (see proof of Proposition 2). Therefore, letting byz :=
1
2 y+ 1

2 z, for each player i there is γi ∈ [1
3 ,1) such that ui(γix+ (1−γi)byz) = ui(p).

For each i = 1,2, construct the sincere strategy s∗
i

:= {ui,ui(p)} and write the equi-

librium strategy as si = {wi,αi} where, of course, αi = wi(p). Strategy si can only

intersect with s∗
j

on the boundary of s∗
j

because otherwise player j would devi-

ate to s∗
j
. Hence, either there is a 0 < δ̄i ≤ γ j such that every 0 ≤ δi ≤ δ̄i satisfies

δix+ (1− δi)bzy ∈ si or every lottery q on the line connecting x and byz satisfies

wi(q) < αi. In either case, s1 ∩ s2 has points other than p. This provides a contra-

diction and implies that the unique equilibrium outcome of the game is x.

Suppose now that players do not have a common best alternative and take an

equilibrium (s1, s2). The proof of Proposition 1 implies that (s1, s2) is consensual. As

before, s1∩ s2 cannot be two dimensional. If s1∩ s2 is one dimensional then players

are indifferent between any two points in this one dimensional set. Hence, u1 =−u2

and the equilibrium outcome is efficient as implied by Proposition 2.

Finally, suppose that s1 ∩ s2 consists only of lottery p. Since utilities are linear,

p belongs to the boundary of the simplex. And since utilities are strict, if p is a

player’s best lottery then p must be efficient. So suppose otherwise and consider

player i’s lower contour set of lottery p, denoted L i(p) := {q ∈ ∆ : ui(q) ≤ ui(p)}.

We have p ∈ L i(p) and b(∆) ∈ L i(p) (see proof of Proposition 2). Since utilities are

linear, the segment ℓ(p,b(∆)) := {p−β(p−∆) : β> 0}∩∆ satisfies ℓ(p,b(∆)) ⊂ L i(p).

Moreover, ℓ(p,b(∆)) divides the simplex in two. Call ∆i the closure of the half of

the simplex that contains s j. We have ∆i ⊂ L i(p) because s j ⊂ L i(p) and, therefore,

any lottery q such that ui(q) > ui(p) belongs to ∆\∆i = int(∆ j) (where the interior

is relative to ∆). But this implies u j(q)< u j(p). That is, lottery p is efficient. �
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APPENDIX C. EXISTENCE OF EQUILIBRIUM

We build a sequence of finite games that suitably approximate our game Φ. Each

game in this sequence is an approval voting game with two players. This class

of games is analyzed by Núñez and Laslier (2015). Each player selects a subset

of the finite set of alternatives that she approves. If the intersection of these two

subsets is nonempty then the outcome is determined by a uniform lottery over the

intersection. If the intersection of the two subsets is empty then the outcome is

decided by the uniform lottery over the union. We need the following properties

proved in Núñez and Laslier (2015).

(1) Every two-player approval voting game has an equilibrium in sincere strategies.

That is, an equilibrium where if a player approves some alternative then she also

approves every alternative that she prefers to it.

(2) If an equilibrium outcome is non-consensual then each player approves every

alternative that she prefers to the equilibrium outcome.

(3) In every sincere equilibrium, each player only approves alternatives that she

prefers to the equilibrium outcome.

As we construct the sequence of finite two-player approval games we also con-

struct a sequence of measures to approximate outcomes in Φ with sequences of

outcomes of the approval games.

We embed the (K −1)-dimensional simplex ∆ in R
K−1 and consider the smallest

hypercube I ⊂RK−1 containing ∆. We construct a sequence of probability measures

{λt} on I iteratively. We first set I0 := I and let c be the barycenter of I0 and C0 := {c}.

The probability measure λ0 gives probability 1 to c ∈ I0. For each t > 0, let I t be the

set of hypercubes that one obtains by dividing each hypercube in I t−1 into 2K−1

equally sized hypercubes. Each one of the 2K−1 hypercubes h ∈ I t has a barycenter

c(h). Let Ct := {c(h) : h ∈ I t}. The probability measure λt gives probability 1/#Ct to

each c(h) such that h ∈ I t. Furthermore, the game Γ
t is defined as the approval vot-

ing game with 2-players and set of alternatives X t := Ct ∩∆. Player’s utilities over

elements in X t are computed by extending linearly their Bernoulli utility function

over the original set of alternatives X .

The next lemma is used to approximate outcomes in the game Φ with a sequence

of outcomes of the finite approval games constructed above. The proof consists in

showing that the sequence of probability measures {λt} converges weakly to the

uniform measure λ(·)/λ(I) over the hypercube I. There are several equivalent def-

initions of weak convergence but for our purposes we only need two.8 Given the

hypercube I (with its Borel σ-algebra) the bounded sequence of positive finite mea-

sures {λt} on I converges weakly to the finite positive measure λ(·)/λ(I) if any of the

following equivalent conditions is true:

8 See Theorem 25.8 in Billingsley (1986) for equivalent definitions of weak convergence.
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• limλt(E)=λ(E)/λ(I) for every set E whose boundary ∂E satisfies λ(∂E)= 0.

• lim
∫

I f dλt =
1

λ(I)

∫

I f dλ for every bounded and uniformly continuous func-

tion f .

Lemma 3. Let E ⊂∆ satisfy λ(E)> 0 and λ(∂E)= 0, and define Et := X t ∩E. Then

lim
t→∞

∑

e∈Et e

#Et
=

∫

E pdλ

λ(E)
.

Proof. As we announced previously, we actually prove that the sequence of proba-

bility measures {λt} converges weakly to the uniform measure λ(·)/λ(I) over I. A

consequence is that conditional probabilities induced by members of {λt} on subsets

E ⊂ I whose boundary has zero Lebesgue measure also converge to the correspond-

ing uniform probability measures over those subsets (and, hence, also their means).

Take some hypercube h ∈ I t and note that, if c(h) is its barycenter, λt(c(h)) =

1/#Ct = λ(h)/λ(I). That is, the probability of c(h) coincides with the volume of h

normalized by the volume of I. For any bounded, uniformly continuous function

f : I →R,
∫

I
f dλt

=
1

λ(I)

∑

h∈I t

f (c(h))λ(h)
t→∞
−→

1
λ(I)

∫

I
f dλ,

which means that {λt} converges weakly to the measure λ(·)/λ(I). �

Now we can prove:

Theorem 1. Every game Φ has an equilibrium in sincere strategies.

Proof. Given Property 1 we can take a sequence {(st
1, st

2)}∞
t=1 of pairs of finite subsets

of ∆ such that (st
1, st

2) is a sincere equilibrium of Γt for every t. For i = 1,2 and for

every t define αt
i
:=minp∈st

i
ui(p). The utility to player i from every lottery in st

i
is at

least αt
i
. The sequence {(αt

1,αt
2)}∞

t=1 is contained in a compact set, therefore, it has

a subsequence that converges to some (α∗
1 ,α∗

2). For each i = 1,2 define the sincere

strategy s∗
i

:= {ui,α∗
i
}. We claim that (s∗1, s∗2) is an equilibrium of Φ. We proceed in

three steps.

Step 1: (s∗1, s∗2) induces a consensual outcome.

We prove this step by contradiction. Suppose that s∗1 ∩ s∗2 =∅. Since lim(αt
1,αt

2)=

(α∗
1 ,α∗

2) continuity of the utility functions on ∆ implies that, passing to a subse-

quence if necessary, for every t high enough we also have st
1 ∩ st

2 = ∅. Because

(st
1, st

2) is a non-consensual equilibrium of Γ
t, Property 2 above implies that the

strategy st
i

contains every lottery that player i prefers to b(st
1 ∪ bt

2). For i = 1,2,

let qt
i
:= argminpt

i
∈st

i
‖pt

i
,b(st

1 ∪ st
2)‖ be the lottery approved by player i in the strat-

egy st
i

that is closest to the outcome b(st
1 ∪ bt

2). Clearly, for i = 1,2, the sequence

‖qt
i
,b(st

1 ∪ st
2)‖∞

t=1 converges to zero. The triangular inequality implies that the se-

quence ‖qt
1, qt

2‖
∞
t=0 also converges to zero. This contradicts s∗1 ∩ s∗2 =∅ proving that

(s∗1, s∗2) induces a consensual outcome.
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Step 2: (s∗1, s∗2) generates expected payoffs (α∗
1 ,α∗

2).

To the contrary and without loss of generality, assume that player 1 gets a payoff

strictly higher than α∗
1 under the strategy profile (s∗1, s∗2) so that u1(b(s∗1 ∩ s∗2))>α∗

1 .

There is a p̂ ∈ s∗2 such that u1(p̂) > α∗
1 . Such an inequality also holds for every

point in some closed neighborhood P of p̂. Thus, for t high enough, we can choose

a p̂t ∈ St ∩P such that u1(p̂t) > α∗
1 and p̂t ∈ int(s∗2) (i.e. u2(p̂t) > α∗

2). This means

that p̂t ∈ st
2 for sufficiently high t. Therefore, u1(θ(st

1, st
2)) ≥ u1(p̂t) for any sincere

equilibrium (st
1, st

2) of Γt. But then, also for every sufficiently high t,

vt
1 ≥ u1(θ(st

1, st
2))≥ u1(p̂t)>α∗

1 , (A.1)

where the first inequality follows from Property 3. But this is impossible because

α∗
1 is the limit point of the sequence {αt

1}∞
t=1. This provides a contradiction so we can

conclude that (s∗1, s∗2) generates expected payoffs (α∗
1 ,α∗

2).

Step 3: (s∗1, s∗2) is an equilibrium.

Suppose again, on the contrary, that (s∗1, s∗2) is not an equilibrium of Φ. Without

loss of generality, let there be an ŝ1 such that u1(θ(ŝ1, s∗2))> v∗1 . The fact that (s∗1, s∗2)

induces the consensual outcome θ(s∗1, s∗2) that generates the vector of utility levels

(α∗
1 ,α∗

2), implies that player 1’s deviation to ŝ1 induces a non-consensual outcome

b(ŝ1∪ s∗2). For each t, consider the strategy ŝt
1 that approves every lottery available

in Γ
t that belongs to ŝ1. By construction, the outcome θ(ŝt

1, st
2) is non-consensual

and Lemma 3 guarantees that limb(ŝt
1 ∪ st

2) = b(ŝ1 ∪ s∗2). Hence, for every t high

enough and some ε> 0 we obtain

u1(b(ŝt
1 ∪ st

2))>α∗
1 +ε. (A.2)

Since each member of the sequence {(st
1, st

2)}∞
t=0 is an equilibrium of the corre-

sponding game Γ
t, Property 3 implies that u1(st

1 ∪ st
2)≤αt

1 for every t. It follows

that limu1(b(st
1∪st

2))≤α∗
1 and, for every t high enough, u1(st

1∪st
2)≤α∗

1+ε. But this

last inequality combined with (A.2) implies that (st
1, st

2) is not an equilibrium of Γt.

This is a contradiction so (s∗1, s∗2) is an equilibrium of Φ. �
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