
INDEXING GAMBLE DESIRABILITY BY EXTENDING
PROPORTIONAL STOCHASTIC DOMINANCE

ZIV HELLMAN AND AMNON SCHREIBER

ABSTRACT. We axiomatically characterise two new orders of desirabil-
ity of gambles (risky assets) that are natural extensions of the propor-
tional stochastic dominance order to complete orders. These orders are
represented by indices with parallels to the recently introduced Aumann-
Serrano index of riskiness and the Foster-Hart measure of riskiness. The
new indices are shown to be related to the concept of coherent measures
of risk and to the Sharpe ratio.

1. INTRODUCTION

Given a choice between two gambles (or risky assets, or securities), which
one is more desirable? On which should one put one’s money, and how
much? The answer to such questions is often: it depends. That is, the an-
swer is subjective and depends on the utility function for money of the agent
charged with choosing.

There are many cases, however, in which a subjective answer is unsatis-
factory. A pension management firm that pools funds from a broad range
of clients, for example, needs in a sense to consider itself acting as a rep-
resentative agent with an ‘objective’ capacity to sort potential gambles by
desirability. But how is an objective ranking obtained?

In recent years, two numerical objective measures of riskiness introduced
into the literature have garnered much attention: the Aumann–Serrano in-
dex (Aumann and Serrano (2008)) and the Foster–Hart measure (Foster and
Hart (2009)). Both of these are based on the paradigm of acceptance or
rejection of gambles; in other words agents are asked with respect to each

Date: August 16, 2016.
The authors thank Sergiu Hart for useful discussions and suggestions, as well as

seminar participants at the Hebrew University of Jerusalem, Bar Ilan University, the
University of Oxford and the Paris Game Theory Seminar.

Department of Economics, Bar Ilan University, Ramat Gan, 52900, Israel.
Email: amnonschr@gmail.com.

1



Indexing Gamble Desirability 2

gamble g whether they are willing to accept the terms of the gamble or pre-
fer to avoid it. Gambles g and h are then ranked, in a general sense, by
asking whether gamble g is accepted more, and thus rejected less, than h.

In many realistic situations, however, a ‘take it or leave it’ approach to
risky assets is not the norm; investors may instead select a proportion of
an offered asset, with an attendant scaling of both positive and negative
payoffs. This significantly shifts the perspective on the matter. For example,
instead of asking about the certainty equivalent of a gamble g of an agent
with utility u and wealth w, one inquires about the certainty equivalent of
the optimal proportion of g taken by an agent with utility u at wealth w.

In effect, an agent is now not being asked to compare a gamble g directly
with another gamble h. Instead, the focus changes to two families of gam-
bles, namely positive scalar multiples of g versus positive scalar multiples
of h, and the agent is in effect asked to select his or her optimal gamble in
each of these two families and to compare those optimal gambles to each
other.

Starting from this observation, we study here the topic of ranking gam-
bles when agents may choose optimal proportions of gambles offered to
them. Many of the same issues that are involved in comparing gambles
in the non-proportional case arise in the proportional setting, namely find-
ing an ordering that is both objective and complete, in the precise sense of
enabling comparison of any pair of gambles.

Completeness is conspicuously lacking in several broadly used indices
of gamble desirability. The Sharpe ratio, for example, fails to extend as
an index for gambles that are not normally distributed. Similarly, the most
widely accepted orderings on gambles, the n-th degree stochastic domi-
nance orders (Hadar and Russell (1969), Hanoch and Levy (1969)), are
objective but none of them are complete, in any degree. Stochastic domi-
nance was long ago extended to the proportional gamble setting (see Levy
(2006)), but this extended ordering is, again, not complete for comparing
all gambles.

In Section 5, we propose two complete gamble desirability indices, de-
noted S and G, that are of homogeneity zero and extend stochastic dom-
inance. The motivation is a list of axiomatic desiderata that one would
reasonably want such desirability indices to satisfy. The S index, when
suitably extended to continuum state spaces, extends the Sharpe ratio; the
G index ranks gambles according to their optimal growth path.

The two indices are by their definitions naturally ‘dual’ to each other,
with S a CARA-based index and G a CRRA-based index, but they are also
dual in another, more interesting way. There are many possible complete
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indices on gambles that extend stochastic dominance, but S and G do so
‘uniformly’, as we now explain. Stochastic dominance, by design, ranks a
gamble g higher than h if every agent with a utility function located within
a specified class of utilities prefers g to h. One may regard this as almost
defining a voting mechanism: g ranks higher than h if and only if every
agent in a specified class ‘votes’ for g over h in preference.

Unfortunately, the broader the class of participating agents, the more dif-
ficult it is to attain unanimity. Denote by CE∗(u,w, g) the certainty equiv-
alence an agent with utility u and wealth w ascribes to his or her optimal
proportion of g. Then if one were to try to rank gamble g over h by asking
each agent to point to the optimal proportions of g and h and then checking
whether CE∗(u,w, g) > CE∗(u,w, h), uniformity of voting preferences
will almost certainly not be attained; even worse, a particular agent may
rank g above h and then h above g, depending on the wealth w.

To remedy this, in Section 6.1 we rank g and h under a much more restric-
tive condition. Suppose that an agent with utility u states that he considers
a gamble g worthy of consideration if and only if it meets some minimum
criterion, for example if and only if CE∗(u,w, g) > c, for some fixed c.
The gamble g is then regarded as uniformly undesirable by the agent if it
never meets that criterion, at any wealth, i.e., CE∗(u,w, g) ≤ c for all w.

Given a pair of gambles g and h we can then ask: is it the case that
for any agent, with any utility u, if g is uniformly undesirable then h must
also be uniformly undesirable? If so, then we say that g wealth uniformly
dominates h. We thus define a new order on gambles. It is immediately
clear that it is a partial order, but somewhat surprisingly it turns out that
wealth uniform dominance is not only a complete order, it defines the same
order as the S index and hence monotonically extends stochastic dominance
to all orders.

This brings us back to the Aumann–Serrano index and the Foster–Hart
measure. The Aumann–Serrano index is based on CARA utilities and the
Foster–Hart measure on logarithmic utilities. Both indices, in the standard
paradigm of acceptance or rejection of gambles, define complete orders
on gambles that extend the stochastic dominance order. Moreover, Hart
(2011) shows that the two orders are related to each other in a ‘dual’ type
of relation, with Aumann–Serrano following from ‘wealth uniformity’ and
Foster–Hart from ‘utility uniformity’.

The S-index of this paper bears a similarity to the Aumann–Serrano in-
dex. Both indices are related to CARA utility functions, and both are related
to concepts involving ‘wealth uniformity’. This then leads to the following
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question: if the S index is the proportional gambles parallel to the Aumann–
Serrano index, via a wealth uniformity concept, what is the index that paral-
lels the Foster–Hart measure, via an appropriately defined utility uniformity
concept? In Section 6.3, we define such a utility uniformity concept within
our framework and show that it does indeed lead to a complete order ex-
tending stochastic dominance – which, it turns out, is representable by our
G index, completing the parallelism.

We have been careful to describe what the S and G indices measure as
‘gamble desirability’ and not ‘risk’. In this we take inspiration from the
elementary CAPM model, in which an index such as the Sharpe ratio takes
into account various factors, including but not exclusively limited to ele-
ments of risk, to identify an optimal portfolio, with our indices intended to
play a similar role.

However, it is possible to use these indices to define coherent risk indices,
in the sense of Artzner et al (1999). In Section 7 we introduce the con-
cept of risk compensator, which intuitively measures the minimal amount
of money that an agent would require to be uniformly added to the payoff of
a particular gamble at each state of the world to compensate him or her for
accepting an optimal proportion of the gamble in lieu of surely obtaining
instead a risk free return. The risk compensators that are naturally defined
using the S and G indices turn out to be coherent measures of risk that may
be used to identify ‘purely’ risk elements of gambles, in complement to the
desirability measurements of S and G themselves. We expand more on risk
compensators in a companion paper.

2. PRELIMINARIES

2.1. Gambles. As in Aumann and Serrano (2008), a gamble g is a real-
valued random variable over a finite state space that satisfies:

(1) P[g < 0] > 0 (losses are possible);
(2) E[g] > 0 (has positive expectation).

This is motivated by considering that: i) an agent offered a gamble with
no possible losses can be expected to prefer an unbounded share of such
a gamble, hence we limit attention to gambles with some negative values;
ii) similarly, an agent offered a gamble with negative expectation will op-
timally take zero shares of such a gamble. Let G denote the collection of
all gambles, i.e., random variables satisfying conditions (1) and (2) listed
above.
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Unless otherwise stated, we assume that each gamble g takes finitely
many values, x1, x2, . . . , xm with respective probabilities p1, p2, . . . , pm,
such that pi > 0 for all i and

∑m
i=1 pi = 1.

2.2. Utilities and Risk Aversion. A utility function is understood to refer a
von Neumann-Morgenstern utility function for money that is strictly mono-
tonicly decreasing, strictly concave, and twice continuously differentiable.

The Arrow–Pratt coefficient of absolute risk aversion (ARA), ρ of a util-
ity function u at wealth w is defined

ρu(w) = −
u′′(w)

u′(w)
.

The Arrow–Pratt coefficient of relative risk aversion (RRA),

%u(w) = −w
u′′(w)

u′(w)
= wρu(w).

Both ρu(·) and %u(·) are utility specific attributes, and both ρ and % yield
complete orders on utility-wealth pairs.

We will henceforth assume that all utility functions satisfy the condition
that their coefficients of risk aversion are bounded away from zero, i.e., for
each utility function u there exists an ε > 0 such that ρu(w) > ε for all w.

A utility function that satisfies ρ(w) = ρ(w′) (respectively, %(w) =
%(w′)) for all pairs of wealth w and w′ is said to satisfy CARA, or con-
stant absolute risk aversion (respectively, CRRA, or constant relative risk
aversion). A utility function that satisfies ρ(w′) ≤ ρ(w′) (respectively,
%(w) ≥ %(w′)) for all pairs of wealth w and w′ such that w′ > w is said to
satisfy DARA, or decreasing absolute risk aversion (respectively, IRRA, or
increasing relative risk aversion).

2.3. Certainty Equivalence. The certainty equivalent of a gamble g for an
agent with utility u and wealth w, denoted CE(u,w, g) is the real number
implicitly defined by the solution to

(1) E[u(w + g)] = u(w + CE(u,w, g)).

Note that by the presumed concavity of u, the function CE(u,w, g) is
also concave.

The importance of the certainty equivalence of a gamble in the study
of risk aversion is underscored by the well-known Arrow–Pratt Theorem,
which asserts that for any pair u and v of utility functions, ρv(w) > ρu(w)
for all w if and only if CE(u,w, g) > CE(v, w, g) for all gambles g and all
wealth levels w.
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3. RISK ADJUSTED DESIRABILITY INDICES

3.1. Indices of Gamble Desirability. In greatest generality, an index of
desirability of gambles is a function from the collection of gambles to the
positive reals, Q : G → R+, with the intended intuitive interpretation that g
is ‘more desirable’ than h if Q(g) > Q(h). We will sometimes refer simply
to an ‘index’ as opposed to an index of desirability for the sake of brevity.

The most immediate and naı̈ve index of desirability ranks gambles by
the first moments of their distributions, i.e., simply determines that Q(g) >
Q(h) if and only if E[g] > E[h]. Such an index clearly ignores any aspect
of a gamble that might plausibly be termed the gamble’s ‘riskiness’, and it
is for this reason that ‘risk adjusted’ indices were invented.

The concept of a risk adjusted index encompasses too broad a range of
possibilities to be pinned down formally, but one can say that a risk adjusted
index ideally strikes some balance between aspects that are considered to
make a gamble desirable (often expected value, although maximum gain
or any of several other attributes may be used) and a gamble’s risk, which
reduces desirability. One would roughly posit that, ‘all else being equal’,
a risk averse agent will find a more risky gamble less desirable than a less
risky gamble.

3.2. The Mean-Variance Approach. The mean-variance approach has been
the most prominent approach in the literature to constructing an objective
risk adjusted index for several decades. In this view, desirability of a gam-
ble is given by the first moment of the distribution (i.e., the mean), and risk
adjustment is accomplished by taking into account the second moment (i.e.,
the variance,or in practice, the square root of the variance). Objectivity is at-
tained by postulating that risk is objectively measured by way of a gamble’s
variance.

The ‘gold standard’ index in this class is the Sharpe ratio. It often, how-
ever, yields satisfactory results only when distributions are normal, or util-
ity functions are quadratic. Furthermore, the Sharpe ratio fails the test of
monotonicity with respect to stochastic dominance, as detailed in the next
section. There is a vast literature of attempts to expand on the Sharpe ra-
tio indexing by taking into consideration higher order moments, such as
skewness, kurtosis, hyperskewness, hyperflatness, etc.

3.3. Stochastic Dominance. An entirely different approach to risk rank-
ing, the stochastic dominance ordering, takes the view that in order to take
risk into account one naturally needs to ask how agents with risk averse
utility functions would order gambles. This reflects the dictum that ‘risk is
that to which risk averse agents are averse’. Essentially, the idea is that if all
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risk averse agents find one gamble more preferable than another, then one
has constructed a desirability ranking that implicitly takes risk preferences
into account, without reference to any moments of distribution. Objectivity
is attained by seeking the broadest common denominator amongst all utility
functions within particular classes.

Stochastic dominance has been an enormously influential concept; as Au-
mann and Serrano (2008) and Hart (2011) note, stochastic dominance may
be considered ‘the most uncontroversial, widely accepted’ order on gam-
bles. Its main drawback is that it provides only a partial ordering on G.

There are several equivalent ways to define stochastic dominance. The
definition that arises most straight-forwardly from the idea of considering
the preferences over gambles of risk averse agents proceeds as follows.

Denote by U1 the collection of all strictly increasing utility functions, i.e.,
utilities u satisfying u′(w) > 0 for all w. Then g first order stochastically
dominates h, denoted g SD1 h, if the expected utility that g yields is always
at least as large as that of h, i.e.,

(2) E[u(w + g)] ≥ E[u(w + h)]

for all w and all u ∈ U1. This does intuitively capture the arguably weakest
possible requirement for a desirability index: if all agents who prefer more
wealth to less wealth agree to rank g higher than h, then g is objectively
more desirable than h.

By Equation (1), under the assumption of strictly increasing utility func-
tions, Equation (2) holds if and only if u(w + CE(u,w, g)) ≥ u(w +
CE(u,w, h)), if and only if

(3) CE(u,w, g) ≥ CE(u,w, h).

We may therefore alternatively use Equation (3) as the definition of g SD1 h.
Continuing in this vein, denote by U2 the collection of all strictly increas-

ing risk averse utility functions, i.e., utilities u satisfying u′(w) > 0 and
u′′(w) < 0 for all w. Then g second order stochastically dominates h, de-
noted g SD2 h, if and only if Equation (2), i.e., E[u(w+g)] ≥ E[u(w+h)],
holds for all w and all u ∈ U2, alternatively, if and only if (3) holds for all
w and all u ∈ U2. This captures the arguably weakest requirement for a risk
adjusted desirability index: if all risk averse agents agree to rank g higher
than h, then g is objectively more desirable than h, even after adjusting for
risk aversion.

Although first and second order stochastic dominance are by far the two
orders of stochastic dominance that are used most often, there is no inherent
reason to stop at the second order. In fullest generality, denote by Un the
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collection of all utility functions u that satisfy

(4) (−1)mu(m)(w) ≥ 0

for all w and all 0 < m ≤ n, where u(m)(w) is the m-th order derivative of
u at w. Then g n-th order stochastically dominates h, denoted g SDn h, if
Equation (3), holds for all w and all u ∈ Un.

The SDn relation, for any n, is a partial order of G, that is, it is always
possible to find a pair g, h ∈ G such that neither g SDn h nor hSDn g
holds. The collections of utility functions {Un} are monotonically ordered
by reverse set inclusion, that is, U1 ⊃ U2 ⊃ . . . ⊃ Un ⊃ . . .. Hence
if g SDn h then g SDm h for all m ≥ n. In this sense the SDn relation
becomes ‘less partial’ as n increases, but a complete order is never attained.

Letting n go to infinity, one defines infinite degree stochastic dominance.
Denote by D∞ the collection of all completely monotone utility functions,
i.e. utility functions u that satisfy Equation (4) for all m > 0 and all w.
Then g infinite order stochastically dominates h, denoted g SD∞ h, if and
only if Equation (2), i.e., E[u(w + g)] ≥ E[u(w + h)], holds for all w and
all u ∈ U∞. As is the case for SDn for any n, the SD∞ relation is a partial
order on G. Thistle (1993) shows that g SD∞ h if and only if g SDn h for
some n.

We note here that a well-known critique of the Sharpe ratio is that it
may violate first order stochastic dominance. A simple example1 is the
following: let g yield −1 with probability 0.02 and 1 with probability 0.98,
and h yield −1 with probability 0.02, 1 with probability 0.49 and 2 with
probability 0.49. Then hSD1 g but the Sharpe ratio of g, which is 0.28/0.96
is higher than that of h, which is (7

√
3/20)/1.45. When a gamble g has a

normal distribution this cannot happen: in that case, the ordering of the
Sharpe ratio is identical to that of first order stochastic dominance.

4. THE PROPORTIONAL APPROACH

As noted above, in many cases an agent is not required either to accept
or reject a gamble in a binary manner. Instead any proportion α > 0 of
the gamble may be chosen. Several indices of gambles in the literature (cf.
Aumann and Serrano (2008) and Hart (2011)) are based on the ‘accept or
reject a gamble’ paradigm. Our goal here is to construct a risk adjusted
index of gambles in a context in which agents may choose proportions of
gambles. In other words, it is not a gamble g that is compared to a gamble
h directly by an agent for ordering gambles; rather, the optimal proportion
of g is compared to the optimal proportion of h.

1 This example is taken from Aumann and Serrano (2008).
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4.1. Optimal Proportions of Gambles. An agent with utility function u
and wealth w offered the opportunity to take any proportion α of a gamble g
can be expected to choose the proportion α∗ that optimises expected utility.
In other words, the agent solves α∗g,w := argmaxαE[u(w + αg)] ∈ R+

and then takes the gamble α∗g,wg. This optimal proportion is given by the
solution to the first order condition E[u′(w+αg)g] = 0. In what follows we
will write α∗g when w is clear from context and furthermore allow ourselves
to write α∗ when both g and w are clearly identified by context.

One may regard the space of gambles G as being partitioned into equiv-
alence classes for our purposes. That is, a gamble h is included in [g], the
equivalence class of g, if and only if h = βg for some β > 0. An agent with
utility u and wealth w makes a well-defined choice of an optimal represen-
tative g∗ of [g] for each equivalence class in the following sense: if [g] = [h]
then, denoting g∗ = α∗gg and h∗ = α∗hh, one has g∗ = h∗. Obviously, if
[g] 6= [h] then g∗ 6= h∗.

It is tempting to express everything here in terms of the equivalence
classes, which would mean that the focus would be on seeking a complete
and objective ordering that would enable one to state that one equivalence
class [g] is more desirable than another class [h]. We will not fully adopt
this approach because the optimal representative g∗ of [g] depends on u and
w; different agents, and even the same agent at different wealth levels, may
choose different representatives in each equivalence class, and their calcu-
lations will depend on the identity of their chosen optimal representative.
Hence, although our ultimate goal is to find an ordering that can be consid-
ered an ordering of the equivalence classes, we will find it more convenient
along the way to work with individual gambles g as the focus rather than
[g], while throughout keeping in mind the fact that agents are choosing rep-
resentatives of equivalence classes.

4.2. Proportional Certainty Equivalence. Continuing in the vein of an
agent regarding a gamble g as the equivalence class [g] of all its possible
positive scalar multiples, the certainty equivalence, as defined in Equation
(1), needs to be reinterpreted accordingly.

We define the proportional certainty equivalence of g at u and w, de-
noted CE∗(u,w, g), by CE∗(u,w, g) := CE(u,w, α∗g), where α∗ is the
optimal proportion of g according to u.2 In parallel to Equation (1), CE∗

can equivalently be defined implictly as the solution to

(5) max
α

E[u(w + αg)] = u(w + CE∗(u,w, g)).

2 Given the assumption that risk aversion coefficients are bounded away from zero, it is
easy to see that α∗ is always well defined and finite.
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The interpretation is straight-forward: CE∗(u,w, g) is the certainty equiv-
alence of the optimal representative of [g] that is chosen by an agent with
utility u and wealth w.

We say that agent i with utility ui is uniformly no less risk averse than
agent j with utility uj , written i � j, if CE∗(uj, wj, g) ≥ CE∗(ui, wi, g)
for any value of wi and wj and any gamble g. We say that i is uniformly
more risk averse than j, written i � j, if i � j but not j � i.

In words, i is uniformly more risk averse than j if for any gamble g and
any pair of wealth levelswi andwj , even after i and j choose their respective
optimal representatives from [g], i always perceives lower certainty equiv-
alence than j. Lemma 1 relates this proportional gamble concept to the
Arrow–Pratt measure of local risk aversion.

Lemma 1. i � j if and only if ρi(wi) > ρj(wj) for all wi and wj .

4.3. Proportional Stochastic Dominance. The concept of stochastic dom-
inance similarly needs to be extended to take into account the freedom an
agent has to take proportions of gambles. Working in analogy with Equation
(3), we define a gamble g n-th order proportionally stochastically dominat-
ing a gamble h, denoted g PSDn h, if

(6) CE∗(u,w, g) ≥ CE∗(u,w, h).

for all w and all u ∈ Un.
Haim Levy introduced (see Levy (2006)) the concept of stochastic domi-

nance with a riskless asset: a gamble g n-th order stochastically dominates
with a riskless asset a gamble h, if for each β > 0 there is an α > 0 such
that αg n-th order stochastically dominates βh. It turns out that proportional
stochastic dominance extends Levy’s dominance concept:

Lemma 2. Proportional stochastic dominance extends stochastic domi-
nance with a riskless asset.

As the next lemma, Lemma 3, shows (by setting α = 1), stochastic dom-
inance with a riskless asset extends stochastic dominance, to all orders.
(Lemma 3 is proved in Levy (2006) for n = 1 and n = 2). This is then
used to show that proportional stochastic dominance extends the standard
stochastic dominance concept.

Lemma 3. If, for two gambles f and g there exists α > 0 such that αf n-th
order stochastic dominates g, then for every β > 0, there is a γ such that
γf n-th order stochastic dominates βg.

Proposition 1. Proportional stochastic dominance extends stochastic dom-
inance to all orders.
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5. TWO INDICES

With the preliminaries in place, we can now specify a list of desiderata
that we would like to see in a general proportional risk adjusted index Q.

(1) Obviously, the index should be proportional, that is, the desirability
of a gamble g should be uniform for all h ∈ [g]. Another way of
saying the same thing is to require that Q(xg) = Q(g) for all x > 0.

(2) As a risk adjusted index,Q should consistently relate both to agents’
subjective perceived desirability of gambles, as measured by CE∗,
and to agents’ subjective risk aversions, at least in cases where
agents can unambiguously be compared in their risk aversions, as
measured by the i � j partial ordering of agents.

(3) The index Q ought to relate to both of the major approaches to
risk adjusted indices adopted in the literature, stochastic dominance
and the mean-variance approach. Thus we want Q to be monotonic
with respect to proportional stochastic dominance and to extend the
Sharpe ratio beyond gambles with normal distributions.

(4) Finally, we want the index Q to be a complete, not a partial order
on G.

5.1. Axioms. Motivated by the above list of desiderata, we present the fol-
lowing formal axioms that we expect a complete index Q on G to satisfy.

Positive Homogeneity Zero. Q(xg) = Q(g), for all real x > 0 .

Continuity. If gn are uniformly bounded and converge to g in probabil-
ity3 then Q(gn)→ Q(g).

Monotonicity. If g stochastically dominates h, to any order, then Q(g) >
Q(h).

Duality. If i � j and Q(g) > Q(h), then CE∗(uj, wj, g) > CE∗(ui, wi, h)
for all wi and wj .

While the interpretation of the initial three axioms is self-evident, the
duality axiom requires some more explanation: duality starts from the ob-
servation (by definition) that if i � j then CE∗(uj, wj, g) ≥ CE∗(ui, wi, g)
and CE∗(uj, wj, h) ≥ CE∗(ui, wi, h), for all wealth levels wi, wj ∈ R.

3 As standard, we say that gn converges to g in probability if for every ε > 0, there is
an N such that Prob(|gn − g| > ε) < ε for all n > N .
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It then goes on to posit that if the less risk averse agent values h more
than the more risk averse agent does (as witnessed by CE∗(uj, wj, h) ≥
CE∗(ui, wi, h)) then a fortiori the less risk averse agent should value the
more desirable gamble g (as witnessed by Q(g) > Q(h)) all the more,
hence CE∗(uj, wj, g) > CE∗(ui, wi, h). 4

5.2. The S Index. For every gamble g ∈ G we define the S index of g by

(7) S(g) = − logE[e−α
∗g]

where α∗ is the optimal proportion of g taken by an agent with CARA utility
of parameter 1. More formally, α∗ is implicitly defined by

(8) E(e−αgg) = 0.

The most immediate interpretation of S is that S(g) is the certainty equiv-
alent that a CARA utility agent of parameter 1 ascribes to g when taking his
or her optimal proportion, α∗, of g. That is, S(g) = CE∗(u1, w, g) where
u1(g) = −e−g, i.e., the CARA utility with ARA parameter one.5

The reader might object that restricting to the ARA parameter 1 is com-
pletely arbitrary, which is true: in fact, the same ordering of gambles de-
termined by S obtains for any CARA utility parameter, as Lemma 7 (in the
appendix) shows.

It might furthermore be objected that restricting to representative agents
with CARA utilities for determining an index of desirability is overly lim-
iting as well, but it turns out that this is sufficient for our goals: the S index
satisfies all the desiderata listed above for such an index:

Proposition 2. The order imposed by S is well defined and is a complete
order on G that extends proportional stochastic dominance to all orders.

Theorem 1. The S index satisfies the axioms of continuity, monotonicity
and duality, and any index Q satisfying these axioms is ordinally equivalent
to S.

The S index, when applied to continuous distributions, also extends the
Sharpe ratio. We have hitherto defined gambles only with respect to finitely
many possible states. We can straightforwardly extend the definition of
gamble to a random variable with a continuous probability measure for
which there exists a positive value of α∗ satisfying E[eα

∗gg] = 0. We also

4 A similar concept of duality appears in Aumann and Serrano (2008).
5 To see this, note that by Equation 5, the definition of u1, and the fact that the

CARA utility is wealth-independent, E[e−αg] = −u1(CE∗) = e−CE
∗
. Hence S(g) =

− logE[e−α
∗g] = − log(e−CE

∗
) = CE∗.
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define the function Sharpe(g) for such a gamble as the ratio of the expec-
tation of g divided by the standard deviation of g. We can then state the
following result for normally distributed gambles.

Proposition 3. For any two normally distributed random variables g and
h, S(g) > S(h) if and only if Sharpe(g) > Sharpe(h).

An index very similar to the S index appears in Zakamouline and Koeke-
bakker (2009), where it shown that it is an index within the family of Gen-
eralised Sharpe Indices, as defined in Hodges (1998). Zakamouline and
Koekebakker (2009), however, does not include an axiomatic development
of the index, nor comparisons to the stochastic dominance order.

5.3. TheG Index. Recalling the interpretation S(g) = CE∗(u1, w, g) where
u1 is u1(w) = −e−w, we seek a naturally ‘dual’ index in the following
sense: the mathematical dual to the exponential function is the logarith-
mic function, and similarly the dual to the CARA utilities are the log-based
utilities. This motivates us to seek an index that essentially measures the
certainty equivalent of a gamble according to an agent with log utility.

In this context, we interpret the value of a gamble in terms of multiplica-
tive as opposed to additive returns. For example, rather than saying that a
gamble returns fixed prizes, we suppose that a gamble returns, say, +20%
of the wealth placed on it with 0.5 probability and −10% of wealth on the
gamble with 0.5 probability.6

In multiplicative terms, the maximisation problem encountered by an
agent with utility u and wealth w is:

(9) max
α

u(w + αwg)

In other words α here indicates an optimal fraction of wealth to place on
the gamble (in multiplicative returns), as opposed to optimal proportion of
gamble.

Definition 1. Let g be a gamble. Let K(g) be defined implictly as the
solution to

E[(1 +K(g)g)−1] = 1.

Then define

(10) G(g) := eE[log(1+K(g)g)] − 1

�

6 Since we are concentrating on multiplicative returns, we need to restrict attention to
gambles whose maximal possible loss for an agent is less than 100 percent of the wealth
placed on the gamble.
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The indexG can be interpreted asG(g) = CE∗(ul, w, g)/w where ul(w) =
log(w). Operationally, the G index ranks gambles according to their opti-
mal growth path, with K(g) none other than the well known Kelly index of
g (Kelly (1956)). Further details on the operational interpretation of the G
index are in Appendix B.

Proposition 4. G is a complete, homogeneity zero ordering on G that ex-
tends proportional stochastic dominance.

6. WEALTH UNIFORM AND UTILITY UNIFORM DOMINANCE

Both the S and G indices extend the proportional stochastic dominance
order to a complete order, in line with one of our central desiderata. How-
ever, S and G are definitely not the only indices of gambles that have this
property. In fact, the certainty equivalence of any utility function that has
positive derivatives to all odd orders and negative derivatives to all even
orders extends the proportional stochastic order.

In this section we show what makes S andG unique. A gamble g stochas-
tically dominates h to order n if every agent with utility in Un prefers g to
h. Even if we let n increase to infinity, however, we do not get a complete
order. If we try to correct this by extending dominance by declaring that g
dominates h if every agent with a risk averse utility function prefers g to h
then we again fail to attain a complete order: we have gone too far in the
other direction, with an ‘electorate’ that is too broad to agree on preferences.

To get a complete order we need to make the comparison between the
gambles only when the certainty equivalence preferences of the agents are
expressed ‘uniformly’ in an appropriately defined manner, as detailed in
this section. Since certainty equivalence preference depends on both a util-
ity function and a wealth level, there are two main ways to impose unifor-
mity: wealth uniformity (uniform preference at all wealth levels) or utility
uniformity (uniform preference at a fixed wealth level by all utilities). We
can then show that S is the only index7 that satisfies wealth-uniform pro-
portional dominance and G is the only index that satisfies utility uniform
proportional dominance.

6.1. Wealth Uniform Dominance. Stochastic dominance, by design, ranks
a gamble g higher than h if every agent with a utility function located within
a specified class of utilities prefers g to h, in other words, CE(u,w, g) ≥
CE(u,w, h) for all u ∈ Un and all w ∈ Un if g SDn h. A theorem in
Levy (2006) extends exactly the same property to the PSDn ordering:
CE∗(u,w, g) ≥ CE∗(u,w, h) for all u ∈ Un and all w ∈ Un if g PSDn h.

7 Up to ordinal equivalence.
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Metaphorically, one may say that g dominates h to order n if one were to
conduct a vote amongst all agents with utility in Un and they unanimously
vote to prefer g to h.

It is tempting to try to extend this conception of dominance to a com-
plete order on G. The relative ranking of g and h would then in a sense be
determined by ‘unanimous voting’ with the electorate extended to all risk
averse agents: each agent i, with utility function ui, would be asked his or
her opinion on the g and h by way of the relative values of CE∗(ui, w, g)
versus CE∗(ui, w, h) for all w. Then g would be declared objectively more
desirable than h if CE∗(u,w, g) ≥ CE∗(u,w, h) unanimously for all w by
all the risk averse utility agents casting ballots in this election.

This is asking for too much. The gambles g and h may have different
ranges with different probabilities and payoff values. Uniformity in order-
ing the proportional certainty equivalences of g and h among all utilities and
wealth levels may be difficult to attain. And even the vote of a particular
agent i may be ambiguous; as the wealth w changes, the utility function ui
might sometimes rank the certainty equivalent of g higher and sometimes
that of h higher.

We therefore change the criteria of which voters will count and how we
require that they order gambles. Suppose that an agent with utility u states
that he considers a gamble g worthy of consideration if and only if it meets
some minimum criterion, for example if and only if CE∗(u,w, g) > c, for
some fixed c. We can then ascertain whether g fails this criterion uniformly,
for all wealth levels w, i.e., CE∗(u,w, g) ≤ c for all w. If so, g can be
regarded as uniformly undesirable by the agent.

We can then say that g wealth uniformly dominates h if whenever g is
uniformly undesirable then h is also uniformly undesirable. Note that this
does allow for some w such that CE∗(u,w, h) > CE∗(u,w, g), but from
the perspective of the agent with utility u this does not make a difference:
since both g and h are uniformly undesirable when g wealth uniformly dom-
inates h, that is, CE∗(u,w, h) ≤ c at all wealth levels, h is rejected along
with g in any event.

Restricting our electorate to voters with wealth uniform preferences with
respect to g and h is still insufficient if we work with the entire collection
of all risk averse utility functions. Unanimity may fail to obtain in some
cases, hence the goal of a complete order on G may not be available. Some
regularity in the utility functions needs to be required.

Following Hart (2011), let UIR denote the collection of utility functions
that satisfy IRRA and let UDA denote the collection of utility functions that
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satisfy DARA. Let USR be the collection of utilities that satisfy ‘some re-
jection’, meaning that for each u ∈ USR no gamble will always be accepted
by u, i.e. for each g there is some wealth level w at which CE(u, g, w) < 0.
Perhaps more intuitively, this postulates that for each agent there is some
level of ‘poverty’, or small enough wealth, below which he or she become
so risk averse that he will reject g. Finally, denote U∗ = UDA ∩UIR ∩USR.

The formal definition of wealth uniform dominance is then:

Definition 2. A gamble g wealth uniformly dominates h, denoted g >WUD

h, if for every constant real number c

if CE∗(u,w, g) ≤ c for all wealth levels w(11)

then CE∗(u,w, h) ≤ c for all wealth levels w

for every utility u ∈ U∗.

It is immediate that the relation defined in Definition 2 satisfies transitiv-
ity and relexivity, hence is a partial order. It is far from immediate whether
this order is complete, and whether it extends stochastic dominance to all
orders, but somewhat surprisingly it turns out that these properties are sat-
isfied and that the WUD order is equivalent to the order defined by S index.

Theorem 2. Wealth-uniform dominance is a complete order on risky gam-
bles that extends proportional stochastic dominance. Indeed, g >WUD h if
and only if S(g) > S(h).

6.2. Wealth Bounded Dominance. We can provide an alternative charac-
terisation of the S index, based on a concept similar to wealth bounded dom-
ination as in Hart (2011). The advantage of this concept for our purposes
is that in relation to wealth uniform domination it expands the collection of
utility functions that can meet the conditions of the characterisation.

In this section, for a gamble g, denote by Mg := max g the maximal gain
of g and by Lg := max(−g) the maximal loss of g. Definition 2 posits
that for a number c, CE∗(u,w, g) ≤ c for all wealth levels w. But for any
specific w, the fact that CE∗(u,w, g) ≤ c contains little information on u
outside the interval [w + minα∗g,wg, w + maxα∗g,wg] = [w − α∗g,wLg, w +
α∗g,wMg]. A similar statement can be made about h. This motivates the
following definition.

Definition 3. A gamble g wealth boundedly dominates h, denoted g >WBD

h, if for every constant real number c, every utility u ∈ U∗, and every wealth
level w, there is a positive number b such that

if CE∗(u,w′, g) ≤ c for all wealth levels w′ with |w′ − w| ≤ b(12)

then CE∗(u,w′, h) ≤ c.
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Note that the number b in Definition 3 depends on the utility function u
and on the wealth levelw under consideration, not only on g and h (compare
with Hart (2011)). This is inevitable in the context of optimal proportions
of gambles, as the optimal proportion of h is itself a function of u and w.
(Interestingly however, as the proof of Theorem 3 shows, the dependence
on u and w is only with respect to h, not g).

Theorem 3. Wealth-uniform dominance and wealth-bounded dominance
are equivalent, i.e., g >WBD h if and only if S(g) > S(h).

6.3. Utility Uniform Dominance. Hart (2011) shows that the wealth uni-
formity concept of that paper is related to the Aumann–Serrano index, which
is CARA based. That paper also contrasts wealth uniformity with a utility
uniformity concept, which is shown to be related to the Foster–Hart index,
a log based index.

Wealth uniform dominance here, as presented in Definition 2, was shown
in the previous section to lead to an equivalent ordering as the S index,
which is also CARA based. To complete the parallels, we work here with
utility uniformity in the context of taking optimal proportions of gambles,
and show that this is related to the G index, which is a log based propor-
tional gamble index.

For wealth uniform dominance, a gamble g was regarded as uniformly
undesirable, with respect to some fixed constant c and utility u, ifCE∗(u,w, g) ≤
c for all w. For utility uniformity, we switch the roles of u and w, that
is, c is again fixed, but now w is fixed while u ranges over all U∗, i.e.,
CE∗(u,w, g) ≤ c for all u ∈ U∗. Then g utility uniformly dominates h at w
if the utility uniform undesirability of g, as witnessed by CE∗(u,w, g) ≤ c
for all u ∈ U∗, implies the utility uniform undesirability of h, as witnessed
by CE∗(u,w, h) ≤ c for all u ∈ U∗.

Formally:

Definition 4. A gamble g utility uniformly dominates h, denoted g >UUD h,
if for every constant real number c > 0

if CE∗(u,w, g) ≤ c for all u ∈ U∗ at w(13)

then CE∗(u,w, h) ≤ c for all u ∈ U∗ at w

for every wealth level w > 0.

Theorem 4. Utility-uniform dominance is a complete order on risky gam-
bles that extends proportional stochastic dominance. Indeed, g >UUD h if
and only if G(g) > G(h).
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7. INDICES OF ACCEPTABILITY AND COHERENT RISK MEASURES

As emphasised above, our two indices, S and G, are indices of gamble
desirability. They do not measure risk, although an element of risk can
detract from the desirability of a gamble.

The relationship between indices of risk and indices of gamble desirabil-
ity has been studied in the literature. In a seminal work, Artzner et al (1999)
presented a set of four properties that an index of risk ought to satisfy. In
contrast, Cherny and Madan (2008) put forward a set of properties that an
index of gamble desirability should satisfy; indices that satisfy these prop-
erties are termed ‘acceptability measures’. We show in this section that the
S and G indices are indeed acceptability measures but not coherent risk
measures. We can, however, use insights from Cherny and Madan (2008)
to produce yet another interestingly motivated derivation of the S and G
indices and along the way to identify two new coherent risk measures.

7.1. Acceptability Indices. Let L denote the class of all bounded random
variables over a finite probability space. Note that L extends G, which is the
subclass of elements of L that satisfy the two conditions listed in Section
2.1.

Cherny and Madan (2008) identify, using an axiomatic approach, a class
of mappings from L to the real numbers that they term ‘acceptability in-
dices’. An index α : L → R+ is an acceptability index if it satisfies:

(1) Quasi-concavity: For every x ∈ R+, if α(g1) ≥ x and α(g2) ≥ x
then α(λg1 + (1− λ)g2) ≥ x for all λ ∈ [0, 1].

(2) Monotonicity: if g1 ≤ g2 a.s. then α(g1) ≤ α(g2).
(3) Homogeneity zero: α(λg1) = α(g1) for all λ > 0.
(4) Fatou continuity: if (gn) is a sequence of gambles satisfying gn ≤ 1

and α(gn) ≥ x for all n, and the sequence gn converges in probabil-
ity to g ∈ G, then α(g) ≥ x.

(5) Law invariance: if g1 and g2 share the same probability distribution,
then α(g1) = α(g2).

(6) Consistency with second-order stochastic dominance: if g1 second
order stochastically dominates g2, then α(g1) ≥ α(g2).

(7) Arbitrage consistency: g ≥ 0 a.s. iff α(g) =∞.
(8) Expectation consistency: if E[g] < 0 then α(g) = 0; if E[g] > 0

then α(g) > 0.

If we expand the domain of S andG from G to L by setting S(g) = 0 (re-
spectively, G(g) = 0) if E[g] < 0 and S(g) =∞ (respectively, G(g) =∞)
if g ≥ 0, then the S and the G indices satisfy all the criteria for desirability
indices: arbitrage consistency, expectation consistency, and homogeneity
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zero hold by definition, law invariance and monotonicity are obvious, con-
tinuity follows from the continuity of the exponential and logarithmic func-
tions along with the continuity of the first-order conditions for the optimal
proportions of a gamble, and consistency with stochastic dominance (to all
orders) is proven in Propositions 2 and 4.

What remains is showing8 compatibility with the axiom of quasi-concavity,
which is the content of Proposition 5.

Proposition 5. The indices S and G both satisfy quasi-concavity.

One of the implications of an index α : L → R+ satisfying quasi-
concavity, together with the homogeneity zero property, is that the follow-
ing set forms a convex cone for any x ∈ R+:

Cx = {g | α(g) ≥ x}.
Hence if one chooses a minimal level x for S or G which one demands gam-
bles to clear before one accepts them, then any linear combination of such
gambles will also clear the minimal level. This has obvious significance for
the composition of portfolios and the measurement of the index levels of
portfolios.

There are still further implications. Concentrating specifically on the S
index, denote the convex cone defined by S and any x by

CSx = {g | S(g) ≥ x}.
From this, for any gamble g ∈ G define

(14) ASx(g) := inf(y ∈ R | (g + y) ∈ CSx ).
Equivalently,

(15) ASx(g) = inf(y ∈ R | {S(g + y) ≥ x).

Finally, we may interpret ASx(g) by: ASx(g) = y such that y is the unique
real number such that S(g+ y) = x, or in other words, the minimal amount
of money that one would need to add to (or subtract from) g in every state
such that the newly created gamble g + y satisfies S(g + y) = x.

The same reasoning can be applied to define

CGx = {g | G(g) ≥ x}.
and then for any gamble g, to define

(16) AGx (g) := inf(y ∈ R | (g + y) ∈ CAx ),
where y = AGx (g) would be the unique real number such thatG(g+y) = x.

8 The authors thank their colleague Ron Peretz for his assistance in composing the proof
of Propostion 5.
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This idea of measuring the minimal constant amount of money to be
added to a gamble g in every state to attain a particular target can be gener-
alised beyond the operators S and G. Section 7.2 explores this concept.

7.2. Absolute Risk Compensator. LetAu,wx be a set of indices, parametrized
by x, defined as follows. Given a utility function u, a wealth level w, and a
positive number x > 0, the value of the function Au,wx (g) is the real number
y that solves

sup
α

E[u(w + α(g + y))] = u(w + x).(17)

Using the α∗ notation introduced earlier to denote α∗ := argmaxαE[u(w+
α(g+y))], Equation (17) can be rewritten as E[u(w+α∗(g+y))] = u(w+
x).

We may interpret y as the minimal amount of money that an agent with
utility function u and wealth level w would require to be uniformly added
to the payoff of g at each state of the world to compensate him or her for
accepting an optimal proportion of the modified gamble g + y in lieu of
taking instead the sure sum of money x.9 For this reason, we may call
Au,wx (g) the absolute risk compensator of g (with respect to u and x).

What Au,wx (g) measures is, we argue, a natural candidate for a measure
of ‘risk’. If we interpret x as an absolute risk-free return, then Au,wx (g)
as defined in Equation (17) is in a sense what an agent would demand as
payment to ‘neutralise’ the gamble g by making the expected utility equal
to the utility of the risk free return. The greater Au,wx (g), the more is needed
to compensate for the risk of g, and hence the greater the risk inherent in
the gamble.

Compare and contrast this to certainty equivalence, i.e., the solution to
E[u(w + g)] = u(w + CE(u,w, g)), which is inherently a measure of
gamble desirability, measuring the expected utility of the gamble g (relative
to current wealth). The greater CE(u,w, g), the greater the expected utility
of g, hence the greater the desirability of g.

Note that Au,wx (g) is not necessarily positive. If Au,wx (g) is negative, this
may be interpreted as a situation in which the gamble g is sufficiently at-
tractive (relative to x) to induce an agent to pay money for the privilege of
taking on g.

This brings us close in spirit to the accept/reject criterion of Aumann and
Serrano (2008) and Hart (2011). Under the accept/reject criterion, an agent

9 Alternatively, Au,wx (g) can be interpreted as the negative value of the price of g that
would make the decision maker indifferent between investing optimally in g or receiving
x. We choose to present it as ‘compensation’ rather than ‘price’ to emphasise the aspect of
risk that it measures.
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with utility u accepts g if E[u(w + g)] > u(w) and rejects g if E[u(w +
g)] ≤ u(w). Under the risk compensator approach, we attain a proportional
version of accept/reject by setting x = 0 and determining that the agent
should accept g if Au,w0 (g) ≤ 0 (i.e., if the agent would be willing to pay for
taking g) and reject g if if Au,w0 (g) > 0 (i.e., if the agent would need to be
compensated for the risk in g).

7.3. Relative Risk Compensator. The right-hand side of Equation (17)
is formulated in absolute terms, i.e., x can be interpreted as the absolute
amount the agent can receive in a risk-free manner. It is sometimes more
natural to regard the risk free return as the fraction of the wealth that the
agent can gain from a risk-free investment. We can therefore reformulate
Equation (17) in relative terms, as follows.

Let Ru,w
x be a set of indices, parametrized by x. Given a utility function

u, a wealth level w, and a positive number x > 0, the value of the function
Ru,w
x is the real number y that solves

sup
α

E[u(w + αw(g + y))] = u((1 + x)w).(18)

Here, y may be interpreted as the minimal amount of money that an agent
with utility function u and wealth level w would require to be uniformly
added to the payoff of g at each state of the world to compensate him or her
for accepting an optimal proportion of the modified gamble g + y in lieu of
surely obtaining instead (1 + x)w. In this case, x represents the fraction of
current wealth that is attained by a risk-free return. For this reason, we may
call Ru,w

x (g) the relative risk compensator of g (with respect to u and x).

7.4. Risk Compensators as Coherent Risk Measures. In the absolute
case, if we choose u to be the CARA utility u1(x) = −e−x, for which
Au1,wx (g) is independent of the wealth level, Equation (17) becomes10

S(g + y) = x.(19)

In the relative case, if we choose u to be the CRRA utility u2(x) = log(1 +
x)w for Ru,w

x (g), Equation (18) becomes11

G(g + y) = x.(20)

10 The derivation of Equation (19) is as follows: by Equation (17), using the utility
u1(x) = −e−x, one has E[e−α

∗(g+y)] = u1(x) = e−x, hence log(E[e−α
∗(g+y)]) = −x,

therefore S(g + y) = − log(E[e−α
∗(g+y)]) = x.

11 The derivation of Equation (20) is as follows: by Equation (18), using the utility
u2(x) = log(1 + x)w, and recalling the definition of K(g), one has E[log(w + wK(g +
y)(g + y))] = u2(x) = log(1 + x)w, hence E[log(1 +K(g + y)(g + y))] = log(1 + x),
therefore eE[log(1+K(g+y)(g+y))] = elog(1+x), from which one concludes G(g + y) =
eE[log(1+K(g+y)(g+y))] − 1 = x.
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The measures defined in Equations (19) and (20) are exactly the same as
those of Equations (14) and (16), respectively, and we therefore denote them
by ASx and RG

x , respectively.
Artzner et al (1999) proposed an axiomatic definition of a ‘coherent risk

measure’. A measure ρ : L → R is a coherent risk measure according to
Artzner et al (1999) if it satisfies the axioms:

(1) Translation Invariance: For all g ∈ G and real numbers λ, ρ(g+λ) =
ρ(g)− λ.

(2) Positive Homogeneity: For all g ∈ G and real numbers λ > 0,
ρ(λg) = λρ(g).

(3) Monotonicity: For all g1, g2 ∈ G with g1 ≤ g2, ρ(g1) ≥ ρ(g2).
(Intuitively, )

(4) Sub-additivity: For all g1, g2 ∈ G, ρ(g1 + g2) ≤ ρ(g1) + ρ(g2).

The Artzner et al (1999) axioms have intuitive justification:

(1) Translation invariance states that adding a guaranteed amount λ to
a gamble reduces its risk by that guaranteed amount.

(2) Positive homogeneity states that scaling both the gains and losses
by the same scalar λ multiplies risk by that amount.

(3) Monotonicity states that if gamble g1 pays less in every state of the
world than g2 then g1 is riskier than g2.

(4) Sub-additivity states that a merger can never create extra risk.

Proposition 6. For all x > 0, the indices ASx and RG
x are coherent mea-

sures of risk, i.e., they satisfy translation invariance, sub-additivity, positive
homogeneity and monotonicity.

More about the collections of indicesASx andRG
x appears in a companion

paper to this one.

8. CONCLUSION

We have used recent ideas that have appeared in the recent literature on
indices of risk (initiated by Aumann and Serrano 2008)12, to define two in-
dices of gambles, representing orders of desirability (as opposed to orders
of riskiness). Specifically, we use a duality axiom (inspired by a similar ax-
iom in Aumann and Serrano (2008)) to characterise axiomatically an index
of desirability, denoted by S. We then use a variation on the concepts of
wealth and utility uniform dominance from Hart (2011) to characterise two

12 This literature includes the works of Foster and Hart (2009, 2013) and Hart (2011),
along with many others.
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indices. The first one turns to be none other than S, the index that was pre-
viously defined axiomatically. The other index, which we denote byG, is in
a sense parallel to the Foster and Hart (2009) operational index of riskiness.

The main properties of our indices S andG are: first, they are compatible
with the concept of stochastic dominance and its natural extension defined
in the present paper, which we call proportional stochastic dominance. Sec-
ond, the S index can be viewed as a generalised Sharpe ratio. The G index
is relevant for maximising the growth path of a portfolio.

Finally, both indices satisfy the axioms of acceptability indices of Cherny
and Madan (2008). As such, they define in a natural way two new indices
of riskiness which are ‘coherent’ in the sense of Artzner et al (1999). Those
new indices are the subject of a companion paper to this paper.

APPENDICES

APPENDIX A. PROPERTIES OF THE S AND G INDICES

A.1. Units. The index S is the certainty equivalent of the optimal invest-
ment in a gamble for a parameter-one CARA agent. Hence, its units are
dollars. In contrast, the index G is the certainty equivalent of the optimal
investment in a gamble for a log-utility agent, in terms of fraction of his
wealth. G is therefore a unit-less pure number.

A.2. Homogeneity zero. As one of the main motivations for our indices
is studying the relative desirability of gambles in which agents may choose
their optimal proportions of investment, homogeneity zero is a natural prop-
erty, i.e., for all β > 0:

(1) S(βg) = S(g).
(2) G(βg) = G(g).

Homogeneity zero follows directly from the definitions of the indices.

A.3. Diversification. One of the fundamental insights of the study of in-
vestments, both theoretically and practically, is that diversification often
grants investors significant advantages over investing in only one single se-
curity. This ought to be reflected in any index of desirability of gambles.

Let g and h be identically distributed gambles (not necessarily indepen-
dent), implying that S(g) = S(h). Let z = wgg + whh, where wg > 0 and
wh > 0. Then,

(1) S(z) ≥ S(g).
(2) G(z) ≥ G(g).
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Proof. Let w = wg/(wg + wh). From homogeneity zero, S(wg + (1 −
w)h) = S(wgg + whh) and S(wgg) = S(wg), therefore it suffices to show
that claim 1 holds for weights w and 1 − w. Now, let α∗ = argmaxαE −
e−αg. Since −e−x concave, it follows from Jensen’s inequality that

(21) −Eeα∗(−wg−(1−w)h) ≥ −wEe−α∗g − (1− w)Ee−α∗h.

where the RHS equals to −Ee−α∗g and by definition −Ee−α∗g = −e−S(g).
With respect to the LHS of (21), by definition E − eα

∗(−wg−(1−w)h) ≤
−e−S(wg+(1−w)h) and therefore

(22) −e−S(wg+(1−w)h) ≥ −e−S(g)

implying

(23) S(wg + (1− w)h) ≥ S(g).

The log function is concave as well and therefore the same reasoning works
for G.

A.4. Compound Gambles. Let g and h be two gambles and let z be the
compounded gamble formed by these two gambles, by which is meant the
gamble that with probability p goes on to implement gamble g with proba-
bility 1− p goes on to implement h. Then,

(1) S(z) ≤ pS(g) + (1− p)S(h).
(2) G(z) ≤ pG(g) + (1− p)G(h).

Proof. The claim is a corollary of the following lemma:

Lemma 4. For any concave function u, gambles g and h, wealth level w,
and a combined gamble z taking g with probability p and h with probability
1− p,

CE∗(u,w, z) ≤ pCE∗(u,w, g) + (1− p)CE∗(u,w, h).

Proof. For notational compactness denote Ck := CE(u,w, k) and C∗k :=
CE∗(u,w, k). Now, for all α > 0

u(w + Cαz) = Eu(w + αz)

= pEu(w + αg) + (1− p)Eu(w + αh)

= pu(w + Cαg) + (1− p)u(w + Cαh)

≤ pu(w + C∗g ) + (1− p)u(w + C∗h)(24)

Since Equation (24) is true for every α > 0 it is true also for the optimal α.
Therefore,

(25) u(w + C∗z ) ≤ pu(w + C∗g ) + (1− p)u(w + C∗h),
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and by the concavity of u

(26) pu(w + C∗g ) + (1− p)u(w + C∗h) ≤ u(w + pC∗g + (1− p)C∗h).
Since u is increasing

(27) C∗z ≤ pC∗g + (1− p)C∗h.

A.5. Subadditivity of independent gambles. A diversified portfolio of
independent gambles is desirable. However its desirability is limited by
the following:

S(αg + (1− α)h) ≤ S(g) + S(h)

Proof. To see that S is subadditive, let g be a gamble that takes the value gi
with probability pi and let h be a gamble that takes the value hj with prob-
ability qj , and assume that g and h are independent. Let z be the combined
gamble z = αg + (1− α)h. For all γ > 0

E(e−γz) =
∑
i

pi
∑
j

qje
−γ(αgi+(1−α)hj)

=
∑
i

pie
−γαgi

∑
j

qje
−γ(1−α)hj

≥ e−(S(g)+S(h)).(28)

Since Equation (28) is true for all α it is also holds true for the optimal α,
therefore

e−S(z) ≥ e−(S(g)+S(h)),(29)

implying

S(z) ≤ S(g) + S(h).(30)

APPENDIX B. THE G INDEX AS AN OPTIMAL GROWTH PATH

The G index of Definition 1 can be given an operational interpretation: it
ranks gambles according to their optimal growth path.13

Following a similar definition in Foster and Hart (2009), a process G is
a sequence (gt)t≥1 of gambles such that gt ∈ G for all t. The intuitive
interpretation is of an agent offered a gamble gt at each time t. We will
assume that the gambles in a process are independent as random variables

13 K(g) is none other than the well known Kelly index of g (Kelly (1956)).



Indexing Gamble Desirability 26

but not necessarily that they have identical distributions. As a special case,
we may consider a constant process, which consists of a countably infinite
repetition of a constant gamble g, i.e., gt = g for all t. A bounded process is
a process (gt)t≥1 satisfying the condition that there exist b, a ∈ R such that
the payoffs of gt for all t are bounded from below by b and bounded from
above by a.

A rebalancing policy for a process G = (gt)t≥1 is a corresponding se-
quence A = (αt)t≥1 satisfying the condition that αt > 0 for all t. Intu-
itively, a rebalancing policy is a choice of the proportion of gamble gt that
an agent chooses at time t.

For a process G = (gt)t≥1 and rebalancing policy A = (αt)t≥1 a growth
path of length n with initial wealth w, denoted Pn(G ), is a sum w+α1g1+
α2g2 + . . . ... + αngn, where gt denotes a realization of gt. When G is a
constant process gt = g for all t, we will write Pn(g) in place of Pn(G ).

A simple rebalancing policy is a rebalancing policy A = (αt)t≥1 satis-
fying the following two conditions: (a) ‘no bankruptcy’, that is, we require
Pt(G ) ≥ 0 for all t, hence it must be that Pt−1(G )+αtmin(gt) > 0; (b) the
rebalancing multiplier αt is calculated as αt = βtPt−1(G ) where βt > 0 for
all t and βt is a function solely of the gamble at time t. As a special case, we
call the simple rebalancing policy that sets αt = K(gt)Pt−1(G ) the Kelly
policy for G

We will particularly be interested in the asymptotic growth rates of growth
paths as functions of the choices of rebalancing policies. Let G = (gt)t≥1 be
a bounded process and let A = (αt)t≥1 be a simple rebalancing policy such
that αt = βtPt−1(G ) for all t. Then for any n, Pn(G ) = w

∏n
t=1(1 + βtgt).

Applying the logarithm function,

(31) log(Pn(G )) = log(w) +
n∑
t=1

log(1 + βtgt),

hence

(32)
log(Pn(G ))− log(w)

n
=

∑n
t=1 log(1 + βtgt)

n

and therefore

(33) lim
n→∞

log(Pn(G ))

n
= lim

n→∞

∑n
t=1 log(1 + βtgt)

n
.

Every pairing of a process G and a simple rebalancing policy A in-
duces an expected asymptotic growth rate, which we denote as XG ,A :=

E

(
limn→∞

log(Pn(G ))
n

)
.
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Lemma 5. Let G = (gt)t≥1 be a bounded process. Then the Kelly policy
almost surely yields the highest expected asymptotic growth amongst all
possible simple rebalancing policies.

Proof. Denote

Xn =

∑n
t=1 log(1 + βtgt)

n
Then by the Hoeffding inequality, P(Xn−E(Xn) ≥ ε) ≤ e−2nε

2 , for every
ε > 0.

The expected value E(Xn) is given by E(Xn) = 1
n
E(
∑n

t=1 log(1 +

βtgt)) =
1
n

∑n
t=1E(log(1+βtgt)). The optimal value of E(log(1+βtgt)) at

every t is attained at β∗t := K(gt). From this one can conclude that almost
surely the highest expected asymptotic growth is attained with the Kelly
policy.

Proposition 7. Let G = (gt)t≥1 and H = (ht)t≥1 be two bounded pro-
cesses satisfying the property that G(gt) > G(ht) for all t. Then applying
the Kelly policy for G guarantees almost surely that the expected asymptotic
growth of G is greater than the expected asymptotic growth of H .

Proof. Choose the Kelly policies A and D for G and H , i.e., the rebalanc-
ing policies αt = β∗t Pt−1(G ) and δt = ϕ∗tPt−1(H ) with βt = K(gt) and
ϕ∗t = K(ht), respectively. Then by Lemma 5, with probability exponen-
tially close to 1 the expected asymptotic growthsXG ,A andXH ,D attain the
maximal possible values for G and H , respectively. Since G(gt) > G(ht),
one has E(log(1 + β∗t gt)) > E(log(1 + ϕ∗tgt)) for all t and it follows that
XG ,A > XH ,D.

We may interpret Proposition 7 in the following way: suppose that an
agent is given the option of choosing, at each time t, between gamble gt and
gamble ht, which he or she may take in any proportions. Then if the agent
always chooses the gamble with higherG-index value and follows the Kelly
policy, the agent is guaranteed to have higher expected overall wealth in the
long run than is the gamble with lower G-index value is selected.

When processes are constant, we obtain stronger results.

Theorem 5. IfG(g) > G(h) then an agent can choose a simple rebalancing
policy such that

Prob( lim
n→∞

(Pn(g) > Pn(h))) = 1,

where g and h respectively define two constant processes.

Proof. Suppose the agent chooses a simple rebalancing policy for g that is
always a constant multiple of current wealth, i.e., there is a constant αg such
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that αt = αgPt(g) for all t. Working with

Xn =

∑n
t=1 log(1 + αgg)

n
we can this time apply the strong law of large numbers, which implies that
limn→∞Xn = E(log(1 + αgg)) almost surely.

The expectation E(log(1 + αgg)) is optimised by using the Kelly pol-
icy for g, i.e., α∗g = K(g). Similarly, the expectation E(log(1 + αhh)) is
optimised by using the Kelly policy for h, i.e., α∗h = K(h).

Since G(g) > G(h), one has E(log(1+α∗gg)) > E(log(1+α∗hh)) Hence
if the agent uses the Kelly policy for g, the expected asymptotic growth of
g is almost surely greater than the expected asymptotic growth of h for any
possible policy, and the result follows.

APPENDIX C. AUXILIARY LEMMAS

In this section we prove some auxiliary lemmas that will be useful for
proving the other claims of the paper. Denote, throughout, the CARA utility
with parameter γ by uγ and the CARA utility with parameter 1 by u1.

Lemma 6. CE∗(uγ, w, g) = CE∗(u1, w, g)/γ.

Proof. CE∗(u1, w, g) = CE(u1, w, α
∗g), where α∗ is the optimal propor-

tion of g taken by an agent with CARA 1 utility at wealth w. From the
first-order condition, α∗ is determined as the solution to E(e−αgg) = 0.

Next consider uγ . We wish to find the optimal proportion of g taken by
an agent with CARA γ utility at wealth w, which we will denote here by
β∗. This is determined as the solution to E(e−γβgg) = 0.

Set β := α∗/γ. Then

E(e−γβgg) = E(e−γ(α
∗/γ)gg) = E(e−α

∗gg) = 0,

hence β∗ = α∗/γ. It follows that CE∗(uγ, w, g) = CE(uγ, w, β
∗g).

Next (recalling that we may assume that w = 0), note that

E(uγ(β
∗g)) = E(−e−γβ∗g)(34)

= E(−e−γα∗/γg)

= E(−e−α∗g)

= E(u1(α
∗g)).

Denote CE1 = CE(u1, w, α
∗g) and CEγ = CE(uγ, w, β

∗g). By the
definition of certainty equivalence,

(35) E(u1(α
∗g)) = u1(CE1) = −e−CE1 ,
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and

(36) E(uγ(β
∗g)) = uγ(CEγ) = −e−γCEγ .

Putting together Equations (34), (35), and (36) yields−e−CE1 = −e−γCEγ ,
from which one concludes that CEγ = CE1/γ.

Lemma 7. For all γ > 0

(37) S(g) > S(h) ⇐⇒ CE∗(uγ, wg, g) > CE∗(uγ, wh, h)

for all wg and wh.

Proof. By definition, S(g) > S(h) ⇐⇒ CE∗(u1, wg, g) > CE∗(u1, wh, h).
By Lemma 6, CE∗(uγ, wg, g) = CE∗(u1, wg, g)/γ and CE∗(uγ, wh, h) =
CE∗(u1, wh, h)/γ. The result follows immediately.

Lemma 8 is the statement of the well-known Arrow–Pratt Theorem, which
we need for Lemma 9.

Definition 5. Fix an interval I of the real line

(1) A gamble g is admissible for I at a wealth level w if

w + g ⊂ I.

(2) For a utility function u, a gamble g is *-admissible for I and u at a
wealth level w if w + α∗u,wg is admissible for I at w, i.e.,

w + α∗u,wg ⊂ I.

Lemma 8. Let I be an interval on the real line. Let ui and uj be a pair of
utility functions with domain that includes I . Then the following statements
are equivalent.

(1) uj = f̂ ◦ ui for some concave function f̂
(2) CE(ui, w, g) > CE(uj, w, g) for all gambles g and all wealth lev-

els w ∈ I such that g is admissible for I at w.
(3) ρj(w) > ρi(w) for all w in the interior of I

Lemma 9. Let I be an interval on the real line. Let ui and uj be a pair of
utility functions with domain that includes I . Then

ρj(w) > ρi(w)

for all w in the interior of I implies that

CE∗(ui, w, g) > CE∗(uj, w, g)

for all gambles g and wealth levels w such that g is *-admissible for I and
uj at w.
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Note that the Lemma does not asserts whether α∗i ≥ α∗j or the opposite.
Proof. Let w ∈ I satisfy that g is *-admissible for I and both ui and uj at
w. Let α∗j denote the optimal proportion of g for uj at w, and similarly α∗i
denote the optimal proportion of g for ui at w.

Then on one hand, by definition of CE∗

(38) CE∗(uj, w, g) = CE(uj, w, α
∗
jg)

and on the other hand, again by definition of CE∗

(39) CE(ui, w, α
∗
jg) ≤ CE(ui, w, α

∗
i g) = CE∗(ui, w, g)

Since by assumption α∗jg is admissible for I at w, Lemma 8 implies that

(40) CE(ui, w, α
∗
jg) > CE∗(uj, w, α

∗
jg)

Putting together Equations (38), (39), and (40) yields CE∗(ui, w, g) >
CE∗(uj, w, g).

Lemma 10. Let ui and uj be a pair of utility functions. Then

ρj(wj) > ρi(wi)

for all wj , wi implies that

CE∗(ui, wi, g) > CE∗(uj, wj, g)

for all gambles g and wealth levels wi, wj .

Proof. Define ûi(w) = ui(w + wi − wj). Hence, ûi(wj) = ui(wi). Since
for any value of g, say x, ûi(wj + x) = ui(wi + x), CE∗(ûi, wj, g) =
CE∗(ui, wi, g). In addition, it is easy to verify that ρ̂i(w) = ρi(w+wi−wj).
Now let I be an interval such that g is *-admissible for I and uj at w.
From Lemma 9 it follows that CE∗(ûi, wj, g) > CE∗(uj, wj, g) implies
that CE∗(ui, wi, g) > CE∗(uj, wj, g).

Aumann and Serrano (2008) prove that the Aumman–Serrano index ex-
tends stochastic dominance of the first and second order; similarly, Foster
and Hart (2009) prove that the Foster–Hart index extends stochastic dom-
inance of the first and second order. Both of these indices actually extend
stochastic dominance to any order n; for completeness, we present the proof
of this in the next proposition.

Proposition 8. The Aumman-Serrano index, AS(g), and the Foster–Hart
measure, FH(g), both extend stochastic dominance to every order n. In
other words, g1D∞g2 implies both AS(g2) > AS(g1) and FH(g2) >
FH(g1).
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Proof. For any gamble g, AS(g) satisfies the equation E[e−g/AS(g)] = 1.
For α > 0, let φ1(α) := E[e−αg1 ] and let φ2(α) := E[e−αg2 ]. By Proposi-
tion 4 of Thistle (1993), if g1D∞g2 then φ1(α) < φ2(α) for all α > 0.

Since both E[e−g1/AS(g1)] = 1 and E[e−g2/AS(g2)] = 1 while φ1(α) <
φ2(α) for all α > 0, it must be that 1/AS(g2) < 1/AS(g1), henceAS(g2) >
AS(g1).

For any gamble g, FH(g) satisfies the equation E[log(1 + g
FH(g)

)] = 0.
Let q := FH(g1) and define the function uq(x) := log(1 + x

q
).

Note that uq is completely monotone. Hence g1D∞g2 impliesE[uq(g1)] >
E[uq(g2)]. But since q = FH(g1), by the Foster-Hart equation one has
the identity E[uq(g1)] = 0, which immediately means that E[uq(g2)] =
E[log(1 + g2

q
)] < 0. From this one concludes that FH(g1) = q < FH(g2).

APPENDIX D. PROOFS OF PROPOSITIONS AND THEOREMS

Proof of Lemma 1. Lemma 10 claims exactly the first direction, namely,
that ρi(wi) > ρj(wj) for allwi, wj impliesCE∗(uj, wj, g) > CE∗(ui, wi, g).

In the opposite direction, assume that i � j and assume by contradiction
that there are wi and wj such that ρj(wj) > ρi(wi). Without loss of gen-
erality, assume that w∗ = wi = wj . By continuity of ρi and ρj there is an
interval I of values of w around w∗ in which ρj(w) > ρi(w) for all w ∈ I .

Suppose there is a gamble g satisfying w∗ + g ∈ I such that the optimal
proportion taken by uj atw∗ is 1. As ρj(w) > ρi(w) for allw ∈ I , it follows
from Lemma 8 that for all α such that w∗ + αg ⊂ I:

(41) CE∗(ui, w
∗, g) ≥ CE(ui, w

∗, αg) > CE(uj, w
∗, αg)

In particular, Equation (41) holds for α = 1. Hence

CE∗(ui, w
∗, g) ≥ CE(ui, w

∗, g) > CE(uj, w
∗, g) = CE∗(uj, w

∗, g),

contradicting the assumption that i � j.
It remains to show that such a g exists. Let g be a gamble (ε,−ε; p, 1−p),

with ε > 0 and 0 < p < 1 arbitrary, for the moment. The first order
condition for agent j, when selecting his or her optimal proportion of g at
w∗, is the solution for α of

(42) pu′j(w
∗ + αε)ε+ (1− p)u′j(w∗ − αε)(−ε) = 0.

If we set

p =
u′j(w

∗ − ε)
u′j(w

∗ + ε) + u′j(w
∗ − ε)

.
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and take α = 1, we satisfy Equation (42). Since this is correct for any value
of ε, it is true in particular for ε such that w∗ + g ⊂ I . This completes the
proof.
Proof of Lemma 2. Let g and h be gambles. Let u ∈ Un be chosen
arbitrarily and let β∗u be the optimal proportion of h according to u

Suppose that g n-th order stochastically dominates with a riskless asset
h. By the assumption of stochastic dominance with a riskless asset, there
is an α > 0 such that CE(u,w, αg) ≥ CE(u,w, β∗uh) = CE∗(u,w, h).
From this it follows immediately that CE∗(u,w, g) ≥ CE(u,w, αg) ≥
CE∗(u,w, h), hence CE∗(u,w, g) ≥ CE∗(u,w, h).
Proof of Lemma 3. Let f(·) and g(·) be two gambles and let F (·) and
G(·) be their respective cumulative distribution functions. Following Levy
(2006), one has that f stochastically dominates g to n-th order if Im(x) ≥ 0
for all x and all 1 ≤ m ≤ n, where In is the n− 1-fold integral defined by

In(x) :=

∫ x

a

∫ z

a

. . .

∫ v

a

G(t)− F (t)dtdv . . . dz,

(with a any point at which both G(a) = 0 and F (a) = 0, and by the
assumptions in this paper we may assume that a < 0).

Let αf(·) denote the gamble f scaled by some α > 0, and then denote
by Fα(·) the cumulative distribution function of αf . Since we are assuming
discrete gambles, both F (·) and Fα(·) are linear step functions.

For n = 2, this means that both
∫ x
a
F (t) dt and

∫ x
a
Fα(t) dt are measures

of areas under step functions, appropriately scalars of each other. From this
it is easy to see that ∫ x

a

Fα(t) dt = α

∫ α−1x

α−1a

F (t) dt.

Similarly, for n = 3, areas under triangles are being measured, and∫ x

a

∫ z

a

Fα(t) dt dv = α2

∫ α−1x

α−1a

∫ z

α−1a

F (t) dt dv.

and in general for n,∫ x

a

∫ z

a

. . .

∫ v

a

Fα(t)dt dv . . . dz =

αn−1
∫ α−1x

α−1a

∫ z

α−1a

. . .

∫ v

α−1a

F (t)dt dv . . . dz
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Now, suppose that αf SDn g. Then

(43)
∫ x

a

∫ z

a

. . .

∫ v

a

G(t)dt dv . . . dz ≥
∫ x

a

∫ z

a

. . .

∫ v

a

Fα(t)dt dv . . . dz,

for all values of x.
Let β > 0 be arbitrary, and let γ := αβ. Then∫ x

a

∫ z

a

. . .

∫ v

a

Gβ(t)dt dv . . . dz

= βn−1
∫ β−1x

β−1a

∫ z

β−1a

. . .

∫ v

β−1a

G(t)dt dv . . . dz(44)

for all x while∫ x

a

∫ z

a

. . .

∫ v

a

Fγ(t)dt dv . . . dz

= βn−1
∫ β−1x

β−1a

∫ z

β−1a

. . .

∫ v

β−1a

Fα(t)dt dv . . . dz(45)

for all x.
Putting together Equations (43), (44), and (45) yields γf SDn βg.

Proof of Proposition 1. This follows directly from Lemma 2, which shows
that proportional stochastic dominance extends stochastic dominance with a
riskless asset, and Lemma 3 shows that stochastic dominance with a riskless
asset extends stochastic dominance.
Proof of Proposition 2. First we show that α∗ exists and that it is finite. Let
g be a gamble. The first order condition for a parameter-one CARA agent
is

(46)
∑
i

pie
−αgigi = 0,

where the sum is over the set of payoffs of g. It is easy to see that the
derivative of the left hand side is negative, that its value at α = 0 is positive,
and that it is negative as α increases to infinity. There is therefore only
one value of α that satisfies the first order condition. It follows that the S
ordering is well-defined and a complete ordering.

Next, suppose that g proportional stochastically dominates h at order n.
By definition, this means that CE∗(u,w, g) ≥ CE∗(u,w, h) for all w and
all u ∈ Un. Since the utility function u1(g) = −e−g is in Un for all values
of n, if follows immediately that g PSDn h implies that S(g) > S(h).
Proof of Theorem 1. In one direction we have to show that S satisfies
the three axioms. First, S is continuous by definition and therefore satis-
fies continuity. Second, if g first order stochastic dominates h, its certainty
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equivalent is higher, and therefore S satisfies monotonicity. Finally, to see
that S satisfies duality, suppose that i � j and S(g) > S(h); we need
to show that CE∗(uj, w, g) > CE∗(ui, w, h). Since i � j, by definition
infw ρi(w) > supw ρj(w). Let γ∗ be a number satisfying

(47) inf
w
ρi(w) > γ∗ > sup

w
ρj(w).

We denote by uγ∗ the utility function of a CARA agent with parameter γ∗.
By the assumption that S(g) > S(h) and Lemma 7 one has

(48) CE∗(uγ∗ , w, g) > CE∗(uγ∗ , w, h).

In addition, Equation (47) and Lemma 9 imply thatCE∗(ui, w, g) < CE∗(uγ∗ , w, g)
and CE∗(uγ∗ , w, h) < CE∗(uj, w, h). Putting it all together yields the de-
sired result, i.e.,

(49) CE∗(uj, w, g) > CE∗(ui, w, h).

In the other direction, we need to show that every index Q that satisfies the
three axioms is ordinally equivalent to S. Let g and h be two gambles, and
assume by contradiction that although S(g) > S(h), Q(g) ≤ Q(h). Since
Q satisfies continuity and monotonicity, without loss of generality we can
assume that Q(g) < Q(h). Otherwise, Q(g) = Q(h), and we can define
another gamble ĥ such that S(g) > S(ĥ) but Q(g) < Q(ĥ).14

Now, S(g) > S(h) implies that CE∗(u1, w, g) > CE∗(u1, w, h). Let uγ
be a CARA agent with parameter γ, where

1 < γ <
CE∗(u1, w, g)

CE∗(u1, w, h)
.(50)

Obviously, uγ � u1. From Q(h) > Q(g) and the duality axiom we have
CE∗(u1, w, h) > CE∗(uγ, w, g). From Lemma 6 we haveCE∗(uγ, w, g) =
CE∗(u1, w, g)/γ > CE∗(u1, w, h), where the last inequality comes from
(50). Combining all together impliesCE∗(u1, w, h) > CE∗(u1, w, h) which
is obviously incorrect.
Proof of Proposition 3. We use the following well-known equation regard-
ing to the exponent of a normally-distributed random variable y:

E(ey) = eEy+0.5σ2
y .(51)

14 Specifically, let ĥ be a gamble that takes exactly the same values as h plus ε on each
event. Since S is continuous there exists ε sufficiently small such that S(g) > S(ĥ). By
monotonicity Q(g) < Q(ĥ).
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It follows from this equation that the certainty equivalent of a proportion of
γ of a normally distributed gamble g for a CARA agent with ARA parame-
ter of one is

CE(u1, γg, 0) = γµg + 0.5γ2σ2
g .(52)

The maximum of this expression is at γ = µg/σ
2
g . Inserting this value in

Equation (52) we get

CE∗(u1, g, 0) =
µ2
g

2σ2
g

.(53)

Recall that the Sharpe ratio of g is defined as µg/γg. Since S(g) = CE∗(u1, g, 0)
and its Sharpe ration is positive, we get that S(g) > S(h) if and only if the
Sharpe ratio of g is larger than that of h.
Proof of Proposition 4. First we show that the value of K exists and that it
is unique. Any value of K that satisfies

∑
i pi(1+Kgi)

−1 = 1 also satisfies

(54)
∑
i

pi
gi

1 +Kgi
= 0.

The left hand side of Equation (54) is positive when K = 0 and negative
when K gets close to −1/min(g) from left (recall that − 1

min(g)
> 0).15

Since the left hand side is (positively) monotonic, there is only one value of
K that satisfies the equation. It follows that the G ordering is well-defined
and a complete ordering.

Next, suppose that g proportional stochastically dominates h at order n.
By definition, this means that CE∗(u,w, g) ≥ CE∗(u,w, h) for all w and
all u ∈ Un. Since the log utility function is in Un for all values of n, it
follows immediately that g PSDn h implies that G(g) > G(h).
Proof of Theorem 2. For the proof of Theorem 2, we first introduce some
convenient notation and a lemma.

As before, we denote by uγ the CARA utility function with risk aversion
parameter γ. Hence u1 is the CARA utility function of parameter 1. Fol-
lowing this, ρuγ denotes the Arrow–Pratt parameter of absolute risk aversion
associated with uγ . Finally, denote Sγ(h) := CE∗(uγ, w, h) for any wealth
w (so that S1(h) = S(h) in the special case of the CARA utility function of
parameter 1). Using this notation, one has Sγ(g) > Sγ(h) for any γ if and
only if S(g) > S(h), by Lemma 7.

Lemma 11. Let g be a gamble and let c > 0 be a real number. Then there
is a CARA parameter γ such that

Sγ(g) = CE∗(uγ, w, g) = c

15 For K ≥ − 1
min(g) , the function log(1 +K(g)) is not well defined.
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for all w.

Proof. First calculate S(g) = CE∗(u1, w, g). Since by Lemma 6, Sγ(g) =
CE∗(uγ, w, g) = S(g)/γ for any γ, and the goal is to find γ such that
Sγ(g) = c, all that needs to be done is to solve c = S(g)/γ, which yields
γ = S(g)/c.

Now, assume g wealth uniformly dominates h but S(h) > S(g). By
definition,

CE∗(u1, w, h) > CE∗(u1, w, g)

where u1(w) = −e−w.
Let c = CE∗(u1, w, g). Let u ∈ U∗ be a utility function satisfying the

condition that ρu(x) = max(1/x, 1) for x > 0.16 Since ρu(x) ≥ ρu1(x) for
every x > 0, by Lemma 9 one has CE∗(u,w, g) ≤ c for all w. On the other
hand, in the interval (1,∞), the risk aversion of u is the same as that of u1,
and therefore there exists some d > 1 such that for w in the range (d,∞),
one has

CE∗(u,w, h) = CE∗(u1, w, h) > CE∗(u1, w, g) = c.

This directly contradicts g >WUD h, since CE∗(u,w, g) ≤ c for all w,
yet there are wealth levels at which CE∗(u,w, h) > c. The contradiction
establishes that g >WUD h implies S(g) ≥ S(h).

Conversely, assume that S(g) ≥ S(h). Let u ∈ U∗ be arbitrarily chosen
and suppose that for some c, the inequality c ≥ CE∗(u,w, g) holds for all
w > 0. Using Lemma 11, find the CARA paramater γ such that

Sγ(g) = CE∗(uγ, w, g) = c

for all w.
Then for all w,

(55) ρu(w) ≥ ρuγ (w).

To see why, suppose instead that there is aw′ such that ρu(w′) < ρuγ (w
′).

Then, since u ∈ U∗, the risk aversion of u cannot increase and hence
ρuγ (w) > ρu(w) for all w ≥ w.

Let α∗γ be the proportion of g that is optimal for uγ . Since uγ satis-
fies CARA, α∗γ is constant for all wealth levels, as is CE∗(uγ, w, g) =
CE(uγ, w, α

∗
γg).

Denoting I = (w′,∞), there is a sufficiently large wealth level w′′ such
that w + α∗γg ⊂ I for all w > w′′. Hence by Lemma 8, CE(u,w, α∗γg) >

16 For instance, let u(x) := (log(x) − 1)/e, for x ≤ 1 and u(x) := −e−x for x > 1.
Then ρu(x) = 1/x for x ≤ 1 and ρu(x) = 1 for x > 1. (A similar example can be found
in Hart (2011)).
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CE(uγ, w, α
∗
γg) for all w > w′′. From this one gets CE∗(u,w, α∗γg) ≥

CE(u,w, α∗γg) > CE(uγ, w, α
∗
γg). But by definition, CE(uγ, w, α∗γg) =

CE∗(uγ, w, g), while by homogeneity zero one hasCE∗(u,w, α∗γg) = CE∗(u,w, g).
We conclude that CE∗(u,w, g) > CE∗(uγ, w, g) for w > w′′, contradict-
ing CE∗(uγ, w, g) = c ≥ CE∗(u,w, g).

But if Equation (55) holds, then by Lemma 9, one has

(56) CE∗(uγ, w, h) ≥ CE∗(u,w, h)

for all w. Recalling the initial assumption that S(g) ≥ S(h) and noting that
by Lemma 7 this is equivalent to Sγ(g) ≥ Sγ(h) yields

c = Sγ(g) ≥ Sγ(h) = CE∗(uγ, w, h) ≥ CE∗(u,w, h).

This is the condition for g >WUD h. The conclusion is that S(g) ≥ S(h)
implies g >WUD h.
Proof of Theorem 3. As in the proof of Theorem 2, let γ be the CARA
parameter such that Sγ(g) = CE∗(uγ, w, g) = c.

In one direction, the proof that g >WBD h implies S(g) ≥ S(h) is
much the same as in the proof of Theorem 2: supposing S(h) > S(g)
enables the construction of a utility function u1 such that CE(u,w, h) =
CE∗(u1, w, h) > CE∗(u1, w, g) = c, for all w sufficiently large, contra-
dicting any possibility that g >WBD h.

Conversely, assume that S(g) ≥ S(h), let u ∈ U∗ be arbitrarily chosen
and let

b := α∗γLg + α∗h,wMg.

Suppose that for some c, the inequality c ≥ CE∗(u,w′, g) holds for all w′

such that |w′ − w| ≤ b.
We show that ρu(w′) ≥ ρuγ (w

′) for all w′ ∈ [w − α∗h,wLh, w + α∗h,wMh].
To see this, suppose by contradiction that for some w′ < w + α∗h,wMh, one
has that ρuγ (w′) > ρu(w

′). Then by the assumption of non-increasing of
ARA for all u ∈ U∗ and the fact that ρuγ is constant, ρuγ (w′′) > ρu(w

′′) for
all w′′ ∈ I := [w′,∞].

Denote w := w′ + α∗γLg. By construction, w + α∗γg ⊂ I (because w −
α∗γLg = w′). At the same time, w ∈ [w−b, w+b]. Since ρuγ (w′′) > ρu(w

′′)
for all w′′ ∈ I := [w′,∞], by Lemma 9, CE∗(u,w, g) > CE∗(uγ, w, g) =
c. This is a contradiction to the assumption of the inequality c ≥ CE∗(u,w′, g)
for all w′′ such that |w′′ − w| ≤ b.

The conclusion is that ρu(w′) ≥ ρuγ (w
′) for all w′ ∈ [w − α∗h,wLh, w +

α∗h,wMh]. Appealing again to Lemma 9, we conclude that h is *-admissible
for [w − α∗h,wLh, w + α∗h,wMh] and uγ at w, and hence CE∗(u,w, h) ≤
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CE∗(uγ, w, h). But by the assumption that S(g) > S(h), one hasCE∗(uγ, w, h) <
CE∗(uγ, w, g) = c. Therefore, CE∗(u,w, h) < c.
Proof of Theorem 4. First note that by Corollary 9 in Hart (2011), ρ̃u(w) ≥
1 for all u ∈ U∗ and all w > 0. Since ρ̃log(w) = 1 for all w > 0, it follows
that ρ̃u(w) ≥ ρ̃log(w) for all w > 0.

Since for all w > 0, ρ̃u(w) ≥ ρ̃log(w) for all u ∈ U∗, equivalently
wρu(w) ≥ wρlog(w), it follows that

ρu(w) ≥ ρlog(w)

for all u ∈ U∗ and all w > 0. Lemma 9 then implies that

(57) CE∗(ulog, w, g) ≥ CE∗(u,w, g)

for all w > 0, all u ∈ U∗ and all gambles g.
Suppose thatG(h) > G(g). Then CE∗(ulog, w, h) > CE∗(ulog, w, g) for

all w > 0. Let c = CE∗(ulog, w, g). Clearly CE∗(u,w, g) ≤ c for all u ∈
U∗ and for all w, but the same does not hold for h, since CE∗(ulog, w, h) >
c. In other words, g >UUD h is contradicted. Hence g >UUD h implies
G(g) ≥ G(h).

Conversely, suppose that G(g) ≥ G(h). Let some w and c satisfy the
property thatCE∗(u,w, g) ≤ c for all u ∈ U∗. Then in particularCE∗(ulog, w, g) ≤
c. As G(g) ≥ G(h), it follows that CE∗(ulog, w, h) ≤ c and therefore
CE∗(u,w, h) ≤ c for all u ∈ U∗.

The conclusion is that G(g) ≥ G(h) implies g >UUD h.
Proof of Proposition 5. In what follows, fix u to be a utility function such
that for any gamble g, the derivative du(w + λg)/dλ exists for all wealth
levels w, and similarly fix a wealth level w. What will be allowed to vary
will be the identity of the gamble g.

To simplify notation, denote ρ(g) := CE(u,w, g) and ρ∗(g) := CE∗(u,w, g)
and let α∗g denote the optimal proportion of g taken by an agent with utility
u at wealth w.

Suppose that ρ∗(g1) > x and ρ∗(g2) > x, for two gambles g1 and g2.
Then, for any λ ∈ [0, 1],

(58) ρ∗(λg1 + (1− λ)g2) = ρ∗
(
λ

α∗g1
α∗g1g1 +

1− λ
α∗g2

α∗g2g2

)
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Let D := λ
α∗
g1

+ 1−λ
α∗
g2

, and write β := λ/Dα∗g1 , 1−β = (1−λ)/Dα∗g2 . Then
by homogeneity zero,

ρ∗
(
λ

α∗g1
α∗g1g1 +

1− λ
α∗g2

α∗g2g2

)
= ρ∗

(
1

D

λ

α∗g1
α∗g1g1 +

1

D

(1− λ)
α∗g2

α∗g2g2

)(59)

≥ ρ

(
λ

Dα∗g1
α∗g1g1 +

(1− λ)
Dα∗g2

α∗g2g2

)
(60)

≥ λ

Dα∗g1
ρ

(
α∗g1g1

)
+

(1− λ)
Dα∗g2

ρ

(
α∗g2g2

)
(61)

=
λ

Dα∗g1
ρ∗
(
α∗g1g1

)
+

(1− λ)
Dα∗g2

ρ∗
(
α∗g2g2

)
(62)

= βρ∗(g1) + (1− β)ρ∗(g2)(63)

≥ min{ρ∗(g1), ρ∗(g2)}.(64)

where Equation (60) follows from the fact that ρ ∗ (g) ≥ ρ(g) by definition,
Equation (61) from the concavity of the function ρ, and Equation (62) from
the definition of ρ∗ and α∗.
Proof of Proposition 6.

(1) Translation Invariance. Let h = g+λ, and let y0 satisfy S(g+y0) =
x. Let y1 = y0 − λ. Then

S(h+ y1) = S(g + λ+ y0 − λ) = S(g + y0) = x.

This proves that ASx is translation invariant. The same reasoning
holds for RG

x .
(2) Positive Homogeneity. Let h = λg, and let y0 satisfy S(g+y0) = x.

Let y1 = λy0. Then

S(h+ y1) = S(λg + y1) = S(λ(g + y0)) = x,

with the last equality following from the zero homogeneity of S.
This proves that ASx satisfies positive homogeneity. The same rea-
soning holds for RG

x .
(3) Monotonicity. This follows directly from the definitions.
(4) Sub-additivity. By first order stochastic dominance, both ASx and

RS
x monotonically increase with increasing x. Recall that by Propo-

sition 5, both S andG are quasi-concave, i.e., letting α denote either
one, if α(g1) ≥ x and α(g2) ≥ x then α(λg1 + (1 − λ)g2) ≥ x for
all 0 ≤ λ ≤ 1.
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Now, fix x and suppose that S(g1 + y1) = x, S(g2 + y2) = x and
S(g1 + g2 + y3) = x. Then by homogeneity zero of S,

S

(
1

2
(g1 + y1) +

1

2
(g2 + y2)

)
= S

(
1

2
(g1 + g2 + y1 + y2)

)
= S(g1 + g2 + y1 + y2).

At the same time, by quasi-concavity, S
(
1
2
(g1 + y1) +

1
2
(g2 +

y2)
)
≥ x. Hence S(g1+g2+y1+y2) ≥ xwhile S(g1+g2+y3) = x,

leading to the conclusion that y1 + y2 ≥ y3.
The same reasoning holds for G.
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