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Abstract. I show that in any symmetric Nash equilibrium of Hotelling’s pure location game,
as the number of firms becomes large, the limiting distribution of market shares converges
to a Gamma(2, 2) distribution. Remarkably, this is true regardless of the distribution of
consumers. The proof for the invariance of the limiting market share distribution builds on
results from the theory of statistical spacings.
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1. Introduction

Consumers, who buy only from the nearest firm, are distributed on the unit interval and

firms independently and simultaneously choose their location on the interval to maximise their

market share. This pure location game is a simplified version of Hotelling’s (1929) seminal

location model that ignores the firms’ pricing decision. The game has been hugely influential

in the social sciences and it has been applied in a number of different contexts including

general spatial competition (Boppana et al., 2016; Núñez and Scarsini, 2017), competition

between firms through product differentiation (Gabszewicz and Thisse, 1992), political party

competition (Xefteris, 2016; Ronayne, 2016), and contests between professional forecasters

(Laster et al., 1999; Ottaviani and Sørensen, 2006; Ewerhart, 2015).

In contrast to the existing literature, which has focused primarily on the equilibrium

location choices of the firms, I study the resulting market structure (i.e. the distribution

of market shares). In any symmetric Nash equilibrium of Hotelling’s pure location game

(in which all firms employ the same location strategy), as the number of firms becomes
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large, each firm chooses its location at random according to a distribution that is equal to

the distribution of consumers (Osborne and Pitchik, 1986). The game therefore features a

stochastic process (via random location choices) that induces a distribution of market shares.

I show that in any symmetric equilibrium of the game, as the number of firms becomes

large, the distribution of market shares tends to a Gamma(2, 2) distribution regardless of the

distribution of consumers.

The main result of this paper therefore pins down the limiting market structure of the

pure location game, which turns out to be invariant to the distribution of consumers.1

Methodologically, I derive the main result by building on the theory of statistical “spacings”,

which are differences between order statistics.2 Weiss (1955) and Pyke (1965) characterise the

limiting distribution of spacings of order one (first-order differences between order statistics

with an arbitrary parent distribution). I extend their result to spacings of order m ≥ 1.

The invariance of the limiting market share distribution comes from the fact that, when the

number of firms is large, the distribution from which the location choices of the firms are

drawn converges to the distribution of consumers, and this implies that the market share of

any firm becomes proportional to the second-order difference between uniform order statistics

regardless of the distribution of consumers. I then apply the general result on spacings of

order m to derive the limiting distribution of these second-order differences.3 Of course,

the main result applies not only in the context of competition among firms, but also in the

context of political party competition and of professional forecasting, and I discuss these

cases in the paper.

The results of this paper can be applied to examine the limiting market structure in non-

trivial extensions of the pure location game. In the classic formulation of the game, each firm

i sells only to the consumers closest to i who are located between it and its nearest neighbours

to the left and to the right, and it is under this formulation that the limiting distribution is

Gamma(2, 2). As an example, I consider a variant of the game in which each firm i sells to

all consumers closest to i who are located between it and its second nearest neighbours to the

left and to the right. The markets of the firms overlap and competitive pressure is reduced in

this case. When the distribution of consumers is uniform, a straightforward application of

the results of this paper shows that the limiting distribution of market shares is Gamma(4, 2).

1Neven (1986) and Ansari et al. (1994) study the equilibria of Hotelling’s game when a pricing decision is
included for the case of a non-uniform distribution of consumers. I allow for any distribution of consumers in
this paper. See Fournier (2016) and Núñez and Scarsini (2017) and references therein for papers that have
considered arbitrary distributions of consumers in games of pure location.
2In a completely different application, Gabaix and Landier (2008) also appeal to results on spacings for the
analysis of their economic model.
3I employ the result on spacings of order m in a heuristic proof of the main result. I provide a distinct formal
proof for the main result in the appendix.
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Such a distribution exhibits less inequality than a Gamma(2, 2) distribution according to the

Lorenz order (Kleiber and Kotz, 2003).

2. The model

I present the standard pure location model here and state a useful result regarding symmetric

equilibria in the limit as the number of firms becomes large that is due to Osborne and

Pitchik (1986). The exposition here closely follows theirs.

Consumers are distributed on the unit interval according to a cumulative distribution

function C ∈ C2 (i.e. C is twice continuously differentiable) with full support. The location

of each firm i ∈ {1, ..., n} on the unit interval is determined by a random variable Xi that is

drawn according to a distribution function Li,n. Each firm i chooses its location strategy Li,n

to maximise its expected market share. The strategies are chosen simultaneously and the

random variables Xi are independent across i. For any realisation of locations x := (x1, ...., xn)

resulting from the strategy profile (L1,n, ..., Ln,n) the market share of firm i is given by

si(x) :=


[C(ρi(x))− C(λi(x))]/µi(x) if lefti(x) 6= ∅, righti(x) 6= ∅

C(ρi(x))/µi(x) if lefti(x) = ∅, righti(x) 6= ∅

[1− C(λi(x))]/µi(x) if lefti(x) 6= ∅, righti(x) = ∅

1/µi(x) if lefti(x) = ∅, righti(x) = ∅

,

where lefti(x) and righti(x) are the locations of the firms (not including i) that are to

the left and right of i’s location respectively, li(x) is the location of the firm closest to i in

lefti(x), ri(x) is the location of the firm closest to i in righti(x), and λi(x) := (xi + li(x))/2

and ρi(x) := (xi + ri(x))/2. The number µi(x) is the number of firms (including i) located at

xi.

Characterising the full set of equilibria of this game for a finite number of firms is notoriously

difficult (e.g. see Ewerhart, 2015). Eaton and Lipsey (1975) show that when the distribution

of consumers is differentiable and C ′ has finitely many maxima, the game possesses no pure

strategy equilibria when the number of firms becomes large.4 On the other hand, the results

of Dasgupta and Maskin (1986a,b) guarantee the existence of symmetric mixed strategy

equilibria, i.e. Li,n = Ln for all i, for any n. Following many other papers in the literature,

I therefore focus only on profiles of the form (Ln, ..., Ln) where Ln is some non-degenerate

distribution.

4Firm i’s location strategy is said to be pure if Li,n is degenerate, and it is said to be mixed otherwise.
3



The expected market share of a firm i that chooses to locate at x ∈ [0, 1] when every other

firm chooses its location randomly according to the distribution Ln is given by

πi(x) := (n− 1)

∫ 1

x

(1− Ln(y))n−2

[
C

(
x+ y

2

)
− 0

]
dLn(y)(1)

+
n−2∑
k=1

(
n− 1

k

)
k(n− k − 1)

∫ x

0

∫ 1

x

Ln(z)k−1(1− Ln(y))n−k−2

[
C

(
x+ y

2

)
− C

(
x+ z

2

)]
dLn(z)dLn(y)

+(n− 1)

∫ x

0

Ln(y)n−2

[
1− C

(
x+ y

2

)]
dLn(y).

The expression above accounts for all the possible events for firm i when it locates at x.

Namely, all other firms locate to the right of x; k = 1, ..., n − 2 locate to the left of x and

n− k − 1 locate to the right of x; and all other firms locate to the left of x.

In a symmetric mixed strategy Nash equilibrium of the game, firm i must be indifferent

over all locations x in the support of Ln. This therefore defines a functional equation for

which the solution is a distribution Ln. Solving this functional equation for finite n and an

arbitrary distribution of consumers C is analytically intractable (Osborne and Pitchik, 1986;

Ewerhart, 2015). Yet Osborne and Pitchik (1986) proved the following limiting result.

Proposition 1 (Osborne and Pitchik, 1986). Suppose that for each n the profile (Ln, ..., Ln)

is a symmetric mixed strategy Nash equilibrium and Ln ∈ C2. If Ln → L, L′n → L′, L′′n → L′′

uniformly for some L ∈ C2, then L = C.

This result essentially states that in any symmetric equilibrium of the pure location game

each firm plays a mixed strategy that is equal to the distribution of consumers when the

number of firms is large. To be clear, this result holds in the limit : a profile (L, ..., L) in

which L = C may not be an equilibrium for a finite number of firms (e.g. see Shaked, 1982).

The fact that the location choice of firms mimics the distribution of consumers in the limit

is a result that is robust across different location models (Laster et al., 1999; Ottaviani and

Sørensen, 2006; Núñez and Scarsini, 2017). Osborne and Pitchik (1986) explain the intuition

for the limit result as follows: suppose for sake of argument that consumers are distributed

uniformly but that the limiting distribution of firms is not uniform. Then any location y at

which the density of consumers exceeds the density of firms will yield a larger market share

than a location z at which the density of firms exceeds that of consumers. It follows that a

firm would prefer to locate at y than at z, which violates the equilibrium condition that the

firm be indifferent across all locations.
4
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Figure 1. The realisations of Xi, X(i), and Si are denoted by xi, x(i), and
si respectively. Here, we see a possible realisation of n = 5 locations. The
share s2, for example, is the area under the density of consumers C ′(·) between
(x(3) + x(2))/2 and (x(4) + x(3))/2.

The limiting result of Osborne and Pitchik (1986) is extremely useful because it tells us

how the locations are chosen along the unit interval, but it does not tell us what the resulting

limiting distribution of market shares will be.

3. The main result

For the class of equilibria studied in Osborne and Pitchik (1986), the firms’ location

choices generate a sample X := {X1, ..., Xn} of random variables in which each Xi is drawn

independently from a distribution Ln ∈ C2. Denote the ith order statistic of the sample by

X(i).
5 Without any loss of generality relabel the firms such that the market share of firm

i+ 1 is given by

(2) Si := C

(
X(i+2) +X(i+1)

2

)
− C

(
X(i+1) +X(i)

2

)
,

where i ∈ {1, ..., n − 2}.6 Indeed, if ties are ignored (which have measure zero here) the

market share of firm i is simply the integral of the density of consumers evaluated between

the mid-points between firm i’s location and the locations of its nearest neighbours.

An illustration of the firms’ market shares is given in Figure 1 for a particular realisation

of firm locations. Notice that there are n− 2 rather than n market shares: the market shares

of the firms at each end point of the unit interval are ignored, but ignoring these two data

points becomes irrelevant when n is large.

5That is, X(i) is the ith smallest value in X . So, for example, X(1) = minX and X(n) = maxX .
6The firms were labelled by the unordered variables X1, ..., Xn but are now identified by the ordered variables
X(1), ..., X(n).
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We will be concerned with the empirical distribution of the variables Si. Specifically, let

us consider the variable Gn(x) := 1
n−2

∑n−2
i=1 1(nSi ≤ x). The summation is the number of

market shares (scaled by n) that do not exceed some value x ≥ 0.7 Since this value is divided

by n− 2, the variable Gn(x) is the empirical fraction of market shares (scaled by n) that do

not exceed x. The main result of the paper is stated below.

Theorem 1. Suppose that for each n the profile (Ln, ..., Ln) is a symmetric mixed strategy

Nash equilibrium and Ln ∈ C2. If Ln → L, L′n → L′, L′′n → L′′ uniformly for some L ∈ C2,

then as n→∞,

sup
x≥0

∣∣Gn(x)−G(x)
∣∣ p−→ 0,

where

G(x) := 1− (2x+ 1) exp{−2x}.

In words, the result essentially states that in any symmetric equilibrium (of the broad

class covered in Osborne and Pitchik, 1986) the distribution of market shares approaches

a Gamma(2, 2) distribution. Indeed, Gn(x), the fraction of market shares (scaled by n)

not exceeding x, approaches the cumulative distribution function G(x) when n is taken to

be arbitrarily large and the density G′(x) = 4x exp{−2x} corresponds to a Gamma(2, 2)

distribution. With some hand-waving one could also read the result as stating that the

distribution of market shares (not scaled by n) is well-approximated by a Gamma(2n, 2n)

distribution when n is large.

Notice that the distribution of consumers C does not appear in the statement of Theorem

1. The limit result of Osborne and Pitchik (1986) tells us that the firms’ location choices

will tend to the distribution of consumers, but the striking feature of Theorem 1 is that,

when this happens, the distribution of market shares remains Gamma(2, 2) regardless of

the distribution of consumers. In other words, the limiting distribution of market shares is

invariant to the distribution of consumers.

3.1. Simulations. To illustrate Theorem 1 numerically one may want to computationally

generate the equilibrium strategy Ln for each n and let n become arbitrarily large. Doing

this would allow us to track the evolution of both the equilibrium strategy as well as the

distribution of market shares as n increases. However, generating the equilibrium strategy

Ln for each n is complex: as explained in section 2, this would require solving a functional

equation involving (1). For the specific case in which the distribution of consumers is uniform,

Ewerhart (2015) derived a system of differential equations that characterises the “doubly”

symmetric equilibrium strategy profile for finite n and used the system to numerically compute

7The market shares obviously go to zero as n→∞ so the scaling is required to prevent the distribution from
becoming degenerate when the limit is taken.
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the equilibrium profile for small values of n.8 Fully characterising symmetric equilibrium

profiles (Ln, ..., Ln) for finite n and a general distribution of consumers remains an open

question.

For the purpose of illustrating Theorem 1, which is about the limit, I do not attempt explicit

computation of Ln for each n. Rather, I rely on the result of Osborne and Pitchik (1986):

since Ln becomes C in the limit, the following is a straightforward corollary of Theorem 1.

Corollary 1. Suppose that for each n the profile (Ln, ..., Ln) is equal to (C, ..., C), then as

n→∞, supx≥0

∣∣Gn(x)−G(x)
∣∣ p−→ 0.

That is, when all firms play the limiting equilibrium strategy C, the distribution of market

shares becomes Gamma(2, 2) as n becomes large. To illustrate the content of Theorem 1

numerically, I therefore let all firms choose their location directly according to the distribution

of consumers (i.e. for each n, Ln is set equal to the limiting symmetric equilibrium strategy

C) and I then choose n to be a large number.

The results of the numerical illustration are shown in Figure 2. I set the distribution of

consumers to be uniform on [0, 1] (panel (a1)) and let n = 1000 firms each draw their location

independently from this distribution. The histogram of the resulting market shares (scaled

by n) is shown in panel (a2) in grey.9 The density of a Gamma(2, 2) distribution is shown in

black and the fit is good. To illustrate the invariance of the limiting market share distribution,

in a separate experiment I set the distribution of consumers to be a Beta(7, 5) (panel (b1))

and let the firms draw their locations from this distribution. The resulting market share

distribution is shown in panel (b2). Once again, a Gamma(2, 2) distribution offers a good fit.

Further simulations relating to this section and to other results in the paper are presented

in appendix B.

3.2. Preliminary discussion. Theorem 1 is relevant in the various different contexts in

which Hotelling’s pure location game has been applied. These include competition across

firms, political party competition, and contests between professional forecasters.

The model presented in section 2 describes competition among firms. The unit interval can,

for example, be interpreted either as physical space such as a street or as the product space

(Gabszewicz and Thisse, 1992). Firms choose their location (on the street or in the product

space) to maximise their market share. If the firms play the same strategy, then Theorem 1

tells us that the distribution of scaled market shares will be Gamma(2, 2) when the number

8The profile is doubly symmetric if all firms use the same location strategy Ln and Ln is reflected at the
mid-point of the unit interval, i.e. Ln(1− x) = 1− Ln(x) for all x ∈ [0, 1].
9The distribution has a long tail so the figure is zoomed in on the distribution for scaled shares between 0
and 10. The code for the simulations is available at http://users.ox.ac.uk/~scat3580/Hotelling.zip.
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Figure 2. Simulation results.

of firms is large regardless of how the consumers are distributed on the unit interval. This

key result therefore characterises the limiting market structure in the pure location game.

In political party competition (Xefteris, 2016; Ronayne, 2016), the unit interval represents

the political spectrum (from left to right) and C represents the distribution of voters over that

space. People vote for the party whose platform is closest to their position on the political

spectrum and each political party chooses a platform (a location on the unit interval) to

maximise its expected number of votes. Such a model is obviously formally equivalent to the

pure location game described above. If the parties play the same strategy, then Theorem 1

tells us that the distribution of scaled party sizes (as measured by the fraction of vote shares)
8



will be Gamma(2, 2) distributed when the number of parties is large regardless of how the

voters are distributed on the political spectrum.10

A number of papers (Laster et al., 1999; Ottaviani and Sørensen, 2006; Ewerhart, 2015)

have re-interpreted Hotelling’s pure location game to model a contest between professional

forecasters. A version of such a contest is given here: suppose that a public authority

wants to know about some macroeconomic variable X but it does not know the distribution

from which the macroeconomic variable is drawn. Forecasters learn that the variable is

drawn from some distribution C on [0, 1], and based on this, each forecaster sends a forecast

to the public authority. The macroeconomic variable is then realised and the authority

rewards the forecaster whose forecast was closest to the realisation. One can verify that the

expected payoff of a forecaster who sends forecast x while all other forecasters choose their

forecast according to the distribution Ln is given by (1). In other words, this contest game

is strategically equivalent to Hotelling’s pure location game. When a forecaster i chooses

a forecast at x and the nearest other forecasts to the left and to the right of x are z and

y respectively, then C((x+ y)/2)− C((x+ z)/2) is the probability that i wins the contest.

Now, suppose that the forecasters all play the same strategy and let P be a random variable

representing the probability that an arbitrarily chosen forecaster wins the contest (before

the realisation of the macroeconomic variable). Theorem 1 tells us that P is approximately

Gamma(2n, 2n) distributed when the number of forecasters is large regardless of how the

macroeconomic variable is distributed.

I provide a more detailed discussion of Theorem 1 in section 6. For example, I explain

what is behind the invariance of the limiting distribution, I explain the reason the limiting

distribution of market shares is unequal even though the game is symmetric and the firms

employ the same strategy, and I provide some intuition for why the limiting distribution is

Gamma(2, 2).

The proof of Theorem 1 builds on the theory of statistical spacings, which I present in

section 4 below. This will provide the necessary background to develop intuition for the main

result, and I use the tools of section 4 to present a heuristic proof of Theorem 1 in section

5; the formal proof of the result is in the appendix. I then use the intuition developed in

sections 4 and 5 to provide the more detailed discussion of Theorem 1 in section 6.

4. Statistical spacings

Let us again consider a sample of n random variables X := {X1, ..., Xn} in which each

Xi is drawn independently from a parent distribution F on [0, 1] and denote the ith order

statistic of the sample by X(i). The ordered variables X(1), ..., X(n) induce n− 1 intervals on

10Theorem 1 is a limiting result and may therefore not apply in situations in which the number of competing
parties is small.
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Figure 3. The above illustrates a possible realisation of a sample {X1, ..., X5}
of random variables each drawn from some distribution F . The realisations of
D1,i and D2,i are denoted by d1,i and d2,i respectively.

[0, 1] with lengths D1,1, ..., D1,n−1 where

(3) D1,i := X(i+1) −X(i),

for i ∈ {1, ..., n− 1}. The ordered variables X(1), ..., X(n) also induce n−m intervals on [0, 1]

with lengths Dm,1, ..., Dm,n−m where

(4) Dm,i := X(i+m) −X(i),

for i ∈ {1, ..., n−m}. Each D1,i is a spacing of order one and each Dm,i is a spacing of order

1 ≤ m� n (David and Nagaraja, 2003). Statistical spacings are therefore random variables

that are defined as the differences between order statistics. Spacings of order m are obviously

a generalisation of spacings of order one, but it will be useful for purposes of exposition to

treat spacings of order one on their own. Spacings of order one and two are illustrated in

Figure 3.

In subsection 4.1 below, I present a result originally due to Weiss (1955) on the limiting

empirical distribution of spacings of order one for an arbitrary parent distribution F . I extend

the result to spacings of order m in subsection 4.2 and then use this extension for the case

m = 2 to provide a heuristic proof for Theorem 1 in section 5.

4.1. Spacings of order one. Define H1,n(x) := 1
n−1

∑n−1
i=1 1(nD1,i ≤ x), where D1,i is given

in (3). This is the empirical fraction of spacings of order one (scaled by n) whose length does

not exceed some value x ≥ 0. The following result is originally due to Weiss (1955), and it

was later proved using a different method by Pyke (1965).
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Proposition 2 (Weiss, 1955; Pyke, 1965). If F is absolutely continuous then as n→∞,

sup
x≥0

∣∣H1,n(x)−H1(x)
∣∣ p−→ 0,

where

H1(x) := 1−
∫ ∞
−∞

exp{−xF ′(z)}dF (z).

One way to understand Proposition 2 is to consider the following thought experiment:

break a stick of unit length n times with the location of each break-point drawn independently

according to the distribution F on [0, 1]. Then by Proposition 2, as n becomes large, the

resulting distribution of (scaled) stick piece lengths is given by H1(·). The image of “stick

breaking”, which was also employed by Holst (1980) in his study of spacings, might appear to

be somewhat abstract but it will help to fix ideas and to highlight the important features and

implications of Proposition 2. In particular, I use the thought experiment to make the related

points (i)-(v) below. These will help in developing some insight into the underlying stochastic

process and in drawing connections with standard models in economics and operations

research.11

(i) The limiting distribution of stick piece lengths is positively skewed. Indeed, it is easy

to verify that H1(x) is strictly increasing and strictly concave for any F , so a straightforward

application of Jensen’s inequality yields H1(E[X]) > E[H1(X)] = 1/2 for X ∼ H1. In other

words, the distribution will be unequal with the majority of stick pieces being of smaller than

average length regardless of the distribution F from which the break-points were drawn. To see

why this is the case, notice that even when F is the uniform distribution, the independence of

the draws implies that some break-points will happen to be drawn closer together than others,

and this is what generates the inequality in the limiting distribution of stick piece lengths.

In fact, one can show that for large n the density F ′ that maximises the fraction of pieces

of greater than average length is the uniform: F ′(z) = 1 for z ∈ [0, 1].12 Indeed, any other

density must have at least one local maximum but break-points are more likely to be drawn

near a local maximum and will therefore be drawn close together, which generates more short

pieces. Note that when the parent distribution F is the uniform distribution, the limiting

11Proposition 2 can for example be used to understand inter-arrival times in queues (Cooper, 1981). Imagine
that the interval [0, 1] represents the length of a day and n people arrive uniformly throughout the day
(so F (z) = z for all z ∈ [0, 1]). When n is large, the distribution of (scaled) inter-arrival times is given by
H1(x) = 1− exp{−x}, which is the cumulative distribution of an exponential random variable with mean one.
A straightforward transformation shows that the distribution of (appropriately scaled) inter-arrival times
over the period of one hour is exponential with mean 1/24.
12When n is large, the average piece length (scaled by n) is E[X] =

∫∞
0

Pr(X ≥ x)dx =
∫∞
0

(1−H1(x))dx = 1
for any F (and X ∼ H1). We want to choose the cumulative distribution function F with domain [0, 1] that
maximises (1−H1(1)), i.e. the fraction of greater than average piece lengths. This is equivalent to choosing

F ′ to maximise
∫ 1

0
exp{−F ′(z)}F ′(z)dz. But note that for y ≥ 0, exp{−y}y is maximised at y = 1. It follows

that
∫ 1

0
exp{−F ′(z)}F ′(z)dz is maximised at F ′(z) = 1 for all z ∈ [0, 1].

11



distribution of stick piece lengths is exponential with parameter one, i.e. H ′1(x) = exp{−x},
which exhibits a significant degree of inequality.

(ii) The fact that the break-points are drawn independently from the same parent

distribution is crucial for the inequality and the positive skewness that are exhibited by the

limiting distribution. One can, for example, generate equal piece lengths if the break-points

are drawn non-independently from the same non-degenerate distribution.13 One can also

generate a negatively skewed distribution, with a majority of stick pieces having greater than

average length, if the break-points are drawn from different distributions.14

(iii) One should distinguish between procedures that generate break-points in an i.i.d.

manner and procedures that generate piece lengths (i.e. intervals) in an i.i.d. manner. When

break-points Xi are chosen in an i.i.d. manner, which is what happens in Proposition 2,

the resulting piece lengths D1,i are not independent because the sum of the piece lengths is

fixed. This phenomenon drives the shape of the limiting distribution and it is, incidentally,

this induced non-independence of the spacings that complicates the proof of limit results

relating to them. Contrast this with a procedure in which intervals lengths Yi are drawn

i.i.d. from some distribution J . Then the empirical distribution of the interval lengths,
1
n

∑n
i=1 1(Yi ≤ x), converges straightforwardly to J(x) for each x.15

(iv) Notice that the limiting distribution H1(x) in Proposition 2 depends on the parent

distribution F , while the limiting distribution G(x) in Theorem 1 does not depend on the

limiting parent distribution L = C. But an invariance result does exist for spacings of

order one. Recall that if Xi is drawn from a distribution F then, by the probability integral

transform, Ui := F (Xi) is a uniform random variable on [0, 1]. The same is true for the

order statistics. Namely, U(i) := F (X(i)) has the distribution of the ith order statistic from a

uniform parent distribution on [0, 1]. Now consider the spacings defined by

F (X(i+1))− F (X(i)).

13For example, suppose n is even and draw X1 and X2 from F independently. Then for the ith draw, where
i > 2, let Xi = X1 when i is odd and Xi = X2 when i is even. That is, the variables Xi for i > 2 have a
particular correlation structure that depends entirely on the realisation of X1 and of X2 (but all variables have
the same marginal distribution). Then, all of the resulting overlapping spacings will have length |X2 −X1|.
Physically, if we ignore the end pieces, this breaking process would generate only one stick piece of length
|X2 −X1|.
14For example, draw X1 from a distribution F1 that is degenerate at a point p1 = 0 and draw X2 from a
distribution F2 that is degenerate at a point p2 that is strictly between 0 and 1/(n− 1). Then draw each
Xi for i ∈ {3, ..., n} from a distribution Fi that is degenerate at the point pi = p2 + (i− 2)(1− p2)/(n− 2),
which equally divides the interval [p2, 1]. The result will be n− 1 stick pieces with the left-most piece having
length p2 < 1/(n− 1) while all other pieces have length (1− p2)/(n− 2) > 1/(n− 1).
15In the non-cooperative Nash demand game players demand piece lengths Yi directly (i.e. they choose
intervals) and each player receives their demanded piece length if the aggregate length of demanded pieces is
less than one (i.e. the total stick length). When the demands are i.i.d. (which can occur in a mixed Nash
equilibrium of the game, e.g. see Example 3 in Malueg, 2010) the empirical distribution of the piece lengths
would need to be examined contingent on

∑n
i=1 Yi ≤ 1.
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These spacings represent the integral of the density function F ′ between two consecutive

break-points in the unit interval. But by the reasoning above they are also the first order

differences between ordered random variables whose parent distribution is uniform on [0, 1].

By Proposition 2 it follows that the empirical distribution of these spacings (scaled by n) is

given by H1(x) with F (z) = z for all z ∈ [0, 1]. In other words, the empirical distribution of

these spacings is exponential with parameter one. Remarkably, this is true regardless of the

parent distribution F . A similar phenomenon is at play in obtaining the invariance of the

gamma distribution in Theorem 1 since the market shares defined by (2) are essentially the

integral of the density of consumers between consecutive mid-points of break-points in the

unit interval and the break-points are chosen according to the density of consumers.

(v) A straightforward transformation of variables can make Proposition 2 applicable to

new scenarios. For example, consider a situation in which gold panners (people who mine

a riverbed for gold deposits using pans) place themselves independently at random along

a river of length one (with source at zero) according to the distribution F on [0, 1]. Each

panner searches for gold in the area between their location and the location of the next

panner downstream from them. The value (or abundance) of gold at location x is given by

some strictly positive value function v(x). The value function is ex-ante unknown and the

panners’ location choice is non-strategic; it is determined by purely exogenous factors relating,

for example, to the ease of access to various parts of the river bank. Let V (x) :=
∫ x

0
v(z)dz.

Then the value of gold collected by the ith panner can be written as

V (X(i+1))− V (X(i)),

where each location Xi is drawn from the distribution F .

Remark 1. The limiting empirical distribution of the value of gold collected by the individual

panners (scaled by n) is given by

(5) 1−
∫ ∞
−∞

exp

{
−xF

′(z)

v(z)

}
dF (z).

In other words, F ′(z) in the definition of H1(x) is just replaced by F ′(z)/v(z). A proof of

this (that applies a transformation of variables) is given in the appendix and a simulation

illustrating this remark is given in appendix B. �

The gold panner scenario illustrates the flexibility of the result: here, the value of the

locations is completely independent of the manner in which the locations are chosen. Remark 1

tells us that the resulting limiting distribution is a type of exponential distribution modulated
13



by F and V . Note that when V = F we recover the exponential distribution, just as was

found in point (iv) above.16

Boppana et al. (2016) and Núñez and Scarsini (2017) generalise Hotelling competition on

a line by studying spatial competition over a surface (e.g. a unit square), and the former

set of authors also use the example of miners staking land claims to motivate their model.

In these spatial games, each player chooses a location on the surface that maximises the

Voronoi cell of their location and the players are restricted to choosing from a finite number

of locations on the metric space. The model described here restricts the space to a line and

is not strategic but the gold panners can locate at any point on the line and the value of

locations along the river is not necessarily uniform.

4.2. Spacings of order m. I now considerably generalise Proposition 2 by extending the

limiting result to spacings of order 1 ≤ m� n. Define Hm,n(x) := 1
n−m

∑n−m
i=1 1(nDm,i ≤ x),

where Dm,i is given in (4). This is the empirical fraction of spacings of order m (scaled by n)

whose length does not exceed some value x ≥ 0.

Proposition 3. If F is absolutely continuous then as n→∞,

sup
x≥0

∣∣Hm,n(x)−Hm(x)
∣∣ p−→ 0,

where

Hm(x) := 1−
∫ ∞
−∞

(
m−1∑
k=0

(F ′(z)x)k

k!

)
exp{−F ′(z)x}dF (z).

This result will be key in allowing for the heuristic proof of Theorem 1 that is given in the

next section. It will also be useful in exploring extensions of Hotelling’s classic model, and I

discuss this in section 6.

Remark 2. We can re-apply the transformation of variables that was previously done in

Remark 1 to the case of spacings of order m. If each Xi is drawn independently from some

distribution F and v(x) is a strictly positive value function over [0, 1] with V (x) :=
∫ x

0
v(z)dz,

then the limiting empirical distribution of the spacings V (X(i+m))− V (X(i)) (scaled by n) is

given by

1−
∫ ∞
−∞

(
m−1∑
k=0

(F ′(z)x/v(z))k

k!

)
exp{−F ′(z)x/v(z)}dF (z).

16The gold panners scenario bears some formal resemblance to cake-cutting games. A cake is represented by
the unit interval and each player i has a value function vi over the cake. The goal for a designer is to cut the
cake in a manner that satisfies desirable criteria such as envy-freeness. Within the framework considered
here, the designer would choose the function F according to which the cuts would be drawn at random. But
it is not clear that this approach is best suited to answer the questions typically posed in the literature and,
as noted by Chen et al. (2013), few papers have studied randomised designs.

14



In other words, each occurrence of F ′(z) in the definition of Hm(x) is simply replaced by

F ′(z)/v(z). I omit the proof since it follows exactly the same steps as the proof of Remark 1.

Furthermore, taking a derivative of the equation above with respect to x yields

(6)

∫ ∞
−∞

(F ′(z)/v(z))m

(m− 1)!
xm−1 exp{−(F ′(z)/v(z))x}dF (z),

which is the density at x of the limiting empirical distribution of the scaled spacings

V (X(i+m))− V (X(i)). �

Proposition 3 and Remark 2 have an important connection with the gamma family of

distributions. The gamma distribution is parametrised by a “shape” parameter a > 0 and a

“rate” parameter b > 0; and note that b−1 is often referred to as a “scale” parameter. At any

x > 0 the density function of a Gamma(a, b) random variable is given by

(7)
ba

(a− 1)!
xa−1 exp{−bx}.

The exponential distribution is a special case in which a = 1.

Comparing (7) and (6), one can see that the limiting empirical distribution of the scaled

spacings V (X(i+m))− V (X(i)) is clearly the density of a gamma-like distribution modulated

by F and V . In fact, whenever V = F the distribution is exactly a Gamma(m, 1).

Remark 3. Consider the spacings

1

c
[U(i+m) − U(i)],

where c > 0 is some constant and each U(i) is an order statistic whose parent distribution

is a uniform on [0, 1]. Then using Remark 2 it suffices to set V (x) = x/c and F (z) = z

for all z ∈ [0, 1] to see that the limiting empirical distribution of these spacings (scaled by

n) will be characterised by the density (??) with b = c and a = m. This is precisely the

density of a Gamma(m, c) random variable. In other words, the spacing order, m, becomes

the shape parameter of the gamma distribution while the constant, c, becomes the rate (and

its reciprocal becomes the scale) parameter. �

5. Heuristic proof of Theorem 1

I present a heuristic proof of Theorem 1 in this section. The market shares Si given in (2)

are not quite spacings as they are defined in section 4. However, as I show below, they can

be re-expressed as spacings of order two when n is large.
15



The market shares defined in (2) can be written as

Si := C

(
X(i+2) +X(i+1)

2

)
− C

(
X(i+1) +X(i)

2

)
≈ 1

2

[
C(X(i+2)) + C(X(i+1))− C(X(i+1))− C(X(i))

]
=

1

2

[
C(L−1

n (U(i+2)))− C(L−1
n (U(i)))

]
≈ 1

2

[
U(i+2) − U(i)

]
.

The first line is simply the definition of Si. The second line follows from the fact that when n

becomes large, the points (X(i) +X(i+1))/2 and (X(i+1) +X(i+2))/2, at which the function C

is being evaluated, become very close together since the locations of the many firms become

more tightly packed on the interval. The function C is therefore approximately linear between

the two points. Once C is pulled into the expression (by its local linearity) the term C(X(i+1))

can be cancelled out. Since each Xi is drawn from the distribution Ln, the probability integral

transform gives us the relationship U(i) = Ln(X(i)), and this is used in the third line. Finally,

the last line follows from Osborne and Pitchik’s (1986) result (Proposition 1); namely that

Ln → L = C for large n.

The derivation above shows that Si ≈ (U(i+2) − U(i))/2 when n is large. Remark 3 then

immediately gives us that the limiting empirical distribution of the spacings (U(i+2) − U(i))/2

(scaled by n) is a Gamma(2, 2) distribution. Of course, the derivation here is only heuristic

but the proof in the appendix provides a formal argument.

6. Discussion

Many features of Theorem 1 can be explained by applying the insights derived in sections

4 and 5. For example, the fact that the limiting distribution of market shares exhibits some

inequality follows from the discussion in point (i) of section 4. The fact that the limiting

distribution belongs to the gamma family follows from the result that the limiting empirical

distribution of scaled spacings is closely related to this family (e.g. see Proposition 3).17 In

17Different stochastic processes can lead to distributions belonging to other parametric families. For example,
in the context of city growth, if all cities grow at the same average rate regardless of their size then the
resulting city size distribution is either Pareto or log-normal (Gibrat, 1931; Gabaix, 2009). Indeed, if city
i grows according to sizei,t+1 = growth ratei,t × sizei,t, where the growth rates are i.i.d. random variables,
then for large t the resulting city size distribution is log-normal. If a small but positive error is added to the
auto-regressive process then we have a Kesten process and the resulting distribution is Pareto (Gabaix, 1999).
The gamma parametric family is qualitatively different from the Pareto or log-normal families because gamma
distributions have thinner right tails. The literature does contain examples of stochastic processes that
generate distributions belonging to the gamma family. For example, Sutton (1998, Chapter 10.3) proposes a
model in which an opportunity arises in each period that can be taken up by only one firm in that period.
The limiting firm size distribution is exponential, which is a special case of the gamma family (and a firm’s
size is measured by the number of opportunities that it has accumulated over time). Angle (1993) proposes
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fact, the limiting empirical distribution of scaled market shares belongs to a specific member

of this family: it is Gamma(2, 2) regardless of how the consumers are distributed. This

invariance result follows from the fact that, in the limit, the location strategy of each firm

mimics the distribution of consumers (and therefore, as shown in section 5, the market share

of any firm can be expressed as a spacing of order two of variables whose parent distribution is

uniform). If the locations of the firms were drawn according to a distribution that is different

from the distribution of consumers then the limiting distribution of market shares would be

modulated by the firms’ location strategy as well as by the distribution of consumers (e.g.

see Remark 2).

Of course, the invariance result relies on a number of assumptions which, if relaxed, might

lead to different limiting market structures. In the original formulation of the location game

given in section 2, each firm i essentially sells one unit of its good to each consumer who is

located between the midpoint between i and i’s nearest neighbours to the left and to the right

(and each consumer therefore consumes the good of only one firm). Consider the following

variant: each firm i sells one unit of its good to each consumer who is located between the

midpoint between i and i’s second nearest neighbours to the left and to the right. Consumers

located between two adjacent firms might purchase from each of the two firms. Competitive

pressure on each firm is reduced in this variant of the game because the markets of the firms

overlap.18 Demand is therefore less rival across firms. In this case, the payoff of firm i+ 2

can be written as

C

(
X(i+4) +X(i+2)

2

)
− C

(
X(i+2) +X(i)

2

)
.

Compared to the shares of the original game, which are given in (2), the payoff here is simply

the integral of the distribution of consumers evaluated over a larger band of the unit interval.

Remark 4. Suppose that the distribution of consumers is uniform and that the firms play a

symmetric equilibrium in which they choose their locations uniformly at random on the unit

interval (this is indeed an equilibrium of the limiting game and a proof is given in appendix).19

Then, it is straightforward to see that the payoffs can be written as (U(i+4) − U(i))/2. By

Remark 3 the limiting empirical distribution of scaled payoffs is a Gamma(4, 2) distribution.

A simulation illustrating this remark is given in appendix B. �

a stochastic process in which whenever two people interact, one is chosen at random to gain a fraction of
the other’s wealth (and the loser retains only the remaining fraction). The resulting distribution of wealth
belongs to the gamma family.
18Williams and Senior (1977) and De Palma et al. (1985) consider an extension that is similar in spirit.
19This remark merely presents an application of the methods developed in this paper to a variant of the pure
location game. I therefore consider only the simple case in which the distribution of consumers is uniform
because deriving the limiting symmetric equilibrium for this case is straightforward. One would need a result
analogous to Proposition 1 adapted to this variant of the game in order to consider limiting equilibria under
a non-uniform distribution of consumers.
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Now note that if X ∼ Gamma(m, c) and X ′ ∼ Gamma(m′, c) with m < m′ then X exhibits

more inequality than X ′ in the Lorenz sense, i.e. the Lorenz curve associated with X lies

everywhere below the Lorenz curve associated with X ′ (see Kleiber and Kotz, 2003, pp.

24, 164). Remark 4 therefore tells us that in the variant of the game in which competitive

pressure is reduced the distribution of payoffs is less unequal.

There are many avenues for future work. First, I have assumed that the firms play a

symmetric equilibrium. Arguably, such equilibria are focal in the symmetric game, especially

when the number of firms is large. That said, one could examine what the market structure

would be in situations in which the firms play different strategies from each other. Second,

I have assumed that the firms choose their locations simultaneously and independently.

Following point (ii) in section 4, the limiting distribution may be very different if correlated

strategies were allowed or if firms chose their locations sequentially – which would imply

that their choices can be drawn from different distributions (e.g. see Prescott and Visscher,

1977, or Loertscher and Muehlheusser, 2011). Third, the firms can locate at any point on

the unit interval. Núñez and Scarsini (2017) consider a variant of the pure location game

in which firms can locate on a finite number of locations over a surface.20 Extending the

results of the paper to a more general space would be fruitful, but it is likely to be technically

challenging: points on an interval are completely ordered, so one can rely on the existing

theory of order statistics (and their corresponding spacings) to derive the results of this

paper. No such ordering of points exists on a two dimensional surface so new methods may

need to be developed to derive limiting results. Fourth, the results presented in this paper

apply, strictly speaking, only in the limit as the number of firms goes to infinity. Currently,

no tractable characterisation exists of all symmetric equilibria for finite n and an arbitrary

distribution of consumers. But if such a characterisation were found, one could then derive

the market structure in Hotelling’s pure location game for a finite number of firms. Fifth, I

have only considered Hotelling’s pure location game, which abstracts from the firms’ pricing

decision. Examining the market structure in a game that includes a pricing decision is a

promising area of future research.

20If firms could choose from, say, only two globally fixed locations on the unit interval then the resulting
limiting distribution of market shares would not belong to the gamma family since the distribution would be
concentrated on only two points. Indeed, if the firms could locate only at points x or y where 0 < x < y < 1
then the only possible resulting market shares are (x+ y)/2µx and 1− (x+ y)/2µy where µx is the number
of firms located at x and µy is the number of firms located at y.
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Appendix A. Proofs

Proof of Remark 1. Let Y(i) := V (X(i)), where each Xi is drawn according to F . Then by a

transformation of variables, each Yi is drawn from a distribution FY satisfying

F ′Y (y) = F ′(V −1(y))
∂V −1(y)

∂y
=
F ′(x)

V ′(x)
=
F ′(x)

v(x)
,

where x = V −1(y), and so v(x)dx = dy. Substituting into H1(·) yields (5). �

I now present the key steps of Pyke’s (1965) proof of Proposition 2. For the reader

interested in the technical aspects of this paper, reading this proof will be useful because I

follow broadly the same steps to prove all the other limiting results.

Proof of Proposition 2. Since H1(·) is continuous, monotonic, and bounded, the uniformity

of the convergence that is given in the statement of the result will follow from pointwise

convergence in probability (see Weiss, 1955). To prove the latter, we must show that for any

x ≥ 0 and any ε > 0, limn→∞ Pr(|H1,n(x)−H1(x)| > ε) = 0. And, by Chebyshev’s inequality,

it suffices to show that E[H1,n(x)]→ H1(x) and Var[H1,n(x)]→ 0 as n→∞ for all x ≥ 0.

The remaining difficulty is the evaluation of E[H1,n(x)] and Var[H1,n(x)]: the variables

D1,i and D1,j when i 6= j are not independent and have different distributions, so taking the

expectation or variance directly is not tractable. However, Pyke (1965) proposed an ingenious

transformation of variables that allows us to proceed further. For each Xi ∈ X define the

random variable

(8) I1,i(x, n) :=

1 if no random variable in X falls in (Xi, Xi + x/n]

0 otherwise
.

The variables I1,i(x, n) for i ∈ {1, ..., n} are not independent of each other but they are

exchangeable. The key step to the proof is to see that

(9) H1,n(x) =
n

n− 1
− 1

n− 1

n∑
i=1

I1,i(x, n).

To see why this is true, order the variables in X and denote them as X(1), ..., X(n). For

each j ∈ {1, ..., n} the realisation of X(j) is the realisation of some variable Xi where the

indices are related by i = σ(j) and σ is a permutation on {1, ..., n}. So if the first spacing

D1,1 = X(2) −X(1), say, is less than x/n it is because some variable in X has fallen between

X(1) and X(1) +x/n, but the realisation of X(1) is simply the realisation of some variable Xσ(1).

In other words, the statement D1,1 ≤ x/n if and only if I1,σ(1)(x, n) = 0 will hold for the

realisations of the random variables under the ex-post permutation σ. This relationship holds
19
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Figure 4. The grey bands represent the distance x/n for some x > 0, which
can be compared with the lengths of the spacings of order one. For example,
d1,1 < x/n but d1,2 > x/n. The realisation of

∑n−1
i=1 1(nD1,i ≤ x) is clearly 2.

Notice that, here, σ is the map (1, 2, 3, 4, 5) 7→ (3, 5, 4, 1, 2). The realisation
of the indicator I1,3(x, n) is 0 since x5 appears between x3 and x3 + x/n. The
realisations of the indicators I1,1(x, n), ..., I1,n(x, n) are, respectively, 0, 1, 0, 1, 1.
The realisation of

∑n
i=1(1− I1,i(x, n)) is 2.

for D1,1, ..., D1,n−1. The realisation of the indicator I1,σ(n)(x, n) is always equal to one.21 It

follows that
∑n−1

i=1 1(nD1,i ≤ x) =
∑n

i=1(1− I1,i(x, n)), and dividing by n− 1 yields equation

(9). An illustration of this relationship is shown in Figure 4.

We can now derive the expectation E[H1,n(x)] and its limit. Note that for each i,

E[I1,i(x, n)] = Pr(no random variable in X falls in (Xi, Xi + x/n])

=

∫ ∞
−∞

[1− (F (z + x/n)− F (z))]n−1dF (z).(10)

Conditional on Xi = z the term in square brackets to the n− 1 is the probability that the

n− 1 variables Xk for k 6= i fall outside the interval (z, z + x/n]. Taking the limit of (10) as

n→∞ we obtain

lim
n→∞

∫ ∞
−∞

[1− (F (z + x/n)− F (z))]n−1dF (z) =

∫ ∞
−∞

exp{−F ′(z)x}dF (z).

Indeed, we can pull the limit inside the integral and the integral converges by the dominated

convergence theorem. Somewhat informally, the limit of the term inside the integral can

be obtained from the fact that for large n, F (z + x/n) − F (z) ≈ F ′(z)x/n, and that

exp{−F ′(z)x} = limn→∞ (1− F ′(z)x/n)n−1. Using (9), it is then easy to see that

lim
n→∞

E[H1,n(x)] = H1(x).

To complete the proof, we still need to show that limn→∞Var[H1,n(x)] = 0. Firstly note

that E[I1,i(x, n)2] = E[I1,i(x, n)], and for j 6= i, the term E[I1,i(x, n)I1,j(x, n)] is equal to the

probability that no variable in the sample X falls in (Xi, Xi + x/n] ∪ (Xj, Xj + x/n]. This,

21For some k we must have that k = σ(n). But then no random variable in the sample can have fallen above
the realisation of Xk, so the indicator corresponding to this variable must have a realised value of one.
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in turn, is equal to

(11)

∫ ∞
−∞

∫ ∞
−∞

[1−{(F (z+x/n)−F (z))+(F (y+x/n)−F (y))−ζ(x, y, z, n)}]n−2dF (z)dF (y).

Conditional on Xi = y and Xj = z, the term in curly brackets is the probability that Xk falls

in the interval (y, y + x/n] ∪ (z, z + x/n], where k 6= i, j. In particular, F (z + x/n)− F (z) is

the probability of falling in the interval (z, z + x/n], F (y + x/n)− F (y) is the probability

of falling in the interval (y, y + x/n], and ζ(x, y, z, n) is the probability of falling in their

intersection, and it is defined as

(12) ζ(x, y, z, n) :=


0 if z ∈ (−∞, y − x/n)

F (z + x/n)− F (y) if z ∈ [y − x/n, y)

F (y + x/n)− F (z) if z ∈ [y, y + x/n)

0 if z ∈ [y + x/n,∞)

.

The term in square brackets to the n− 2 in equation (11) is the probability that all n− 2

variables Xk fall outside the interval. Notice that the intervals over which ζ(x, y, z, n) may

be non-zero vanish as n→∞.

Let α1(x, n) be defined as the expression given in (10) and let α2(x, n) be defined as the

expression given in (11). Following the same reasoning that was used to obtain the limit of

α1(x, n), we have that22

lim
n→∞

α2(x, n) =

∫ ∞
−∞

∫ ∞
−∞

exp{−(F ′(y) + F ′(z))x}dF (z)dF (y)

=

(∫ ∞
−∞

exp{−F ′(z)x}dF (z)

)2

.

We can now use this result to show that the variance of H1,n(x) goes to zero in the limit as

n→∞. Obviously, Var[H1,n(x)] = E[H1,n(x)2]− E[H1,n(x)]2. But E[H1,n(x)2] is equal to

E

[
n2

(n− 1)2
− 2n

(n− 1)2

n∑
i=1

I1
i (x, n) +

1

(n− 1)2

n∑
i=1

n∑
j=1

I1
i (x, n)I1

j (x, n)

]
.

The expression above becomes

(13)
n2

(n− 1)2
− 2n

(n− 1)2
nα1(x, n) +

n

(n− 1)2
α1(x, n) +

n(n− 1)

(n− 1)2
α2(x, n).

Taking the limit of (13) as n→∞, we are left with

lim
n→∞

E[H1,n(x)2] = 1− 2 lim
n→∞

α1(x, n) + lim
n→∞

α2(x, n) = H1(x)2 = lim
n→∞

E[H1,n(x)]2.

22For intuition, when n is large, I1,i(x, n) and I1,j(x, n) essentially become independent since Xi and Xj are
drawn independently. Therefore E[I1,i(x, n)I1,j(x, n)] ≈ E[I1,i(x, n)]E[I1,j(x, n)] = E[I1,i(x, n)]2 for large n.
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This completes the proof. �

Notice that in Proposition 2, each Xi is drawn from some parent distribution F directly

rather than being drawn from some distribution Fn that tends to F as n becomes large. This

contrasts with Theorem 1, where each Xi has a parent distribution Ln that may be different

from C but that effectively tends to C as n become large. However, as Remark 5 below

shows, Proposition 2 can be easily modified to accommodate for a parent distribution that

varies with n.

Remark 5. Instead of the Xi being drawn from an absolutely continuous parent distribution

F , suppose that they are drawn from a parent distribution Fn ∈ C2 such that Fn → F ,

F ′n → F ′, F ′′n → F ′′ uniformly for some F ∈ C2 . Then, the limiting distribution of the

resulting spacings of order one would still be H1(·). Indeed, one can repeat all the steps of

the proof of Proposition 2 above with the only difference that now the parent distribution

has an “n” subscript. Taking the limit needs somewhat more work but ultimately, as I show

below, the limiting result remains unchanged. �

Proof of Remark 5. In this case equation (10) becomes

(14) E[I1,i(x, n)] =

∫ ∞
−∞

[1− Pn(x, z)]n−1dFn(z),

where Pn(x, z) := Fn(z + x/n)− Fn(z). The only difference is that F in (10) is now Fn in

(14). Now notice that

lim
n→∞

[1− Pn(x, z)]n−1 = exp
{

lim
n→∞

(n− 1) ln(1− Pn(x, z))
}
.

Using the inequality −y(1− y)−1 ≤ ln(1− y) ≤ −y for y ∈ [0, 1) one obtains

−(n− 1)Pn(x, z)(1− Pn(x, z))−1 ≤ (n− 1) ln(1− Pn(x, z)) ≤ −(n− 1)Pn(x, z).

By Taylor’s theorem, Fn(z + x/n) = Fn(z) + (x/n)F ′n(z) + (1/2)(x/n)2F ′′n (tn), where the last

term is the Lagrange form of the remainder and tn is a number between z and z+ x/n. Since

F ′′n → F ′′ uniformly and tn → z as n → ∞ we have that F ′′n (tn) → F ′′(z) (e.g. see Rudin,

1976). It follows that −(n− 1)Pn(x, z)→ −xF ′(z) and −(n− 1)Pn(x, z)(1− Pn(x, z))−1 →
−xF ′(z) as n→∞, and so limn→∞(n− 1) ln(1− Pn(x, z)) = −xF ′(z). In other words, (14)

has the same limit as (10), so this takes care of the expectation of the empirical distribution.

The convergence of its variance at each point to zero can be dealt with in a similar manner. �

Proof of Proposition 3. Just as was the case in the proof of Proposition 2, since Hm(x) is

continuous, monotonic, and bounded, it suffices to show that E[Hm,n(x)] → Hm(x) and
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Var[Hm,n(x)]→ 0 as n→∞ for all x. Now, for each Xi ∈ X define the random variable

Im,i(x, n) :=

1 if at most m− 1 random variables in X fall in (Xi, Xi + x/n]

0 otherwise
.

The variables Im,i(x, n) are similar to the variables I1,i(x, n) defined in (8) in the proof of

Proposition 2, with the exception of “no” in the definition of I1,i(x, n) being replaced with

“at most m− 1” in the definition of Im,i(x, n). The variables Im,i(x, n) now allow us to write23

Hm,n(x) =
n

n−m
− 1

n−m

n∑
i=1

Im,i(x, n).

The rest of the proof proceeds in the same way as the proof of Proposition 2. To start, note

that E[Im,i(x, n)] is equal to

Pr(at most m− 1 random variables in X fall in (Xi, Xi + x/n])

=

∫ ∞
−∞

m−1∑
k=0

(
n− k
k

)
{F (z + x/n)− F (z)}k[1− (F (z + x/n)− F (z))]n−k−1dF (z).(15)

Conditional on Xi = z the term in the curly brackets to the k is the probability that k of the

remaining n− 1 random variables fall in the interval (z, z + x/n] while the term in square

brackets to the n− k − 1 is the probability that the other n− k − 1 random variables fall

outside the interval. The probabilities are multiplied by the number of ways that each event

can occur and aggregated over all k from 0 to m− 1.

Define β1(x, n) as the expression given in (15). Since n − k choose k is equal to 1/k!

multiplied by a term of order nk, we have that

lim
n→∞

β1(x, n) =

∫ ∞
−∞

(
m−1∑
k=0

(F ′(z)x)k

k!

)
exp{−F ′(z)x}dF (z).

This time, expanding E[Hm,n(x)] and taking its limit one obtains

lim
n→∞

E[Hm,n(x)] = 1− lim
n→∞

β1(x, n) = Hm(x).

Having found the limit of the expectation, let us now turn to the variance. Notice that

E[Im,i(x, n)Im,j(x, n)] is the probability that at most m− 1 random variables fall in (Xi, Xi +

x/n] and at most m− 1 random variables fall in (Xj, Xj + x/n]. This probability, which I

23This time, returning to the ex-post permutation σ discussed in the proof of Proposition 2, Dm,i ≤ x/n if
and only if Im,σ(j)(x, n) = 0 for j ∈ {1, ..., n−m}, but the realisations of Im,σ(n−m+1)(x, n), ..., Im,σ(n)(x, n)

are always equal to one. Therefore
∑n−m
i=1 1(nDm,i ≤ x) =

∑n
i=1(1− Im,i(x, n)).
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denote by β2(x, n), is equal to∫ ∞
−∞

∫ ∞
−∞

m−1∑
a=0

m−1∑
b=0

(
n− 2

a+ b

)
×(

a+ b

a

)[
{Qn(y)− ζ}a{Qn(z)}b +

a−1∑
t=0

(
a

t

)
{Qn(y)− ζ}tζa−t{Qn(z)− ζ}b−(a−t)

]
×

[1− {Qn(z) +Qn(y)− ζ}]n−2−(a+b)dF (z)dF (y).

where ζ is being used as short-hand for ζ(x, y, z, n) as it is defined in (12) and Qn(q) :=

F (q + x/n)− F (q). One can understand this equation as follows: fix Xi = y and Xj = z and

consider what happens to the n− 2 remaining variables. Choose a+ b of the n− 2 variables

to fall outside (y, y + x/n] ∪ (z, z + x/n] (this is the term in the small square brackets to the

n− 2− (a+ b)). For the a+ b variables that fall inside (y, y + x/n] ∪ (z, z + x/n], the term

in the large square brackets is the probability that exactly a of them fall in (y, y + x/n] and

b of them fall in (z, z + x/n], accounting for the fact that the intervals may intersect. The

terms are multiplied by the number of ways one can choose a+ b from n− 2 and a from a+ b.

These are them summed over a and b from 0 to m− 1.

Note that n−2 choose a+ b multiplied by a+ b choose a is equal to 1/(a!b!) times a term of

order na+b. Furthermore, the term ζ vanishes as n becomes large (since the intersection of the

intervals goes to zero). Taking the limit as n→∞ we therefore obtain that limn→∞ β2(x, n)

is equal to∫ ∞
−∞

∫ ∞
−∞

m−1∑
a=0

m−1∑
b=0

(F ′(y)x)a

a!

(F ′(z)x)b

b!
exp{−(F ′(y) + F ′(z))x}dF (z)dF (y)

=

(∫ ∞
−∞

(
m−1∑
k=0

(F ′(z)x)k

k!

)
exp{−F ′(z)x}dF (z)

)2

.

We can now use this result to show that the variance of Hm,n(x) goes to zero in the limit as

n→∞. Obviously, Var[Hm,n(x)] = E[Hm,n(x)2]− E[Hm,n(x)]2. But expanding E[Hm,n(x)2]

we obtain that it is equal to

(16)
n2

(n−m)2
− 2n

(n−m)2
nβ1(x, n) +

n

(n−m)2
β1(x, n) +

n(n− 1)

(n−m)2
β2(x, n).

If we take the limit of (16) as n→∞, we are left with

lim
n→∞

E[Hm,n(x)2] = 1− 2 lim
n→∞

β1(x, n) + lim
n→∞

β2(x, n) = Hm(x)2 = lim
n→∞

E[Hm,n(x)]2.

This completes the proof. �
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Proof of Theorem 1. Partition the unit interval into A(δ) subintervals (ai, ai+1) for i ∈
{0, ..., A(δ) − 1}, with a0 = 0 and aA(δ) = 1, such that over any given union of adja-

cent subintervals (ai, ai+1) ∪ (ai+1, ai+2) and any x, y ∈ (ai, ai+2) the continuous density C ′(·)
satisfies |C ′(x)−C ′(y)| < δ. For any particular subinterval (ai, ai+1) denote by X (i) the set of

random variables from the sample X that fall into this interval and denote by X i
(1), ..., X

i
(|X (i)|)

the ordered random variables that are in X (i). For j ∈ {1, ..., |X (i)| − 2} let us define the

spacings

Sij := C

(
X i

(j+2) +X i
(j+1)

2

)
− C

(
X i

(j+1) +X i
(j)

2

)

=
X i

(j+2) −X i
(j)

2
C ′(Y i

j )

=
X i

(j+2) −X i
(j)

2
(C ′(X i

(j)) + Zi
(j)).

The second line follows from the mean value theorem for some Y i
j ∈ [(X i

(j)+X
i
(j+1))/2, (X

i
(j+1)+

X i
(j+2))/2] and the third line follows from setting C ′(X i

(j)) + Zi
(j) = C ′(Y i

j ). The spacings

defined above are determined by cuts that fall strictly within (ai, ai+1). Now notice that

if (ai, ai+1) is not the right-most interval then there are the two spacings which we may

define as Si|X (i)|−1 := (X i+1
(1) −X i

(|X (i)|−1))(C
′(X i

(|X (i)|−1)) +Zi
(|X (i)|−1))/2 and Si|X (i)| := (X i+1

(2) −
X i

(|X (i)|))(C
′(X i

(|X (i)|)) + Zi
(|X (i)|))/2 that are determined by cuts that straddle (ai, ai+1) and

(ai+1, ai+2). So for each i < A(δ)− 1 and each j ∈ {1, ..., |X (i)|} we can think of Zi
(j) as being

equal to some function ∆i(X i
(j),X (i) ∪ X (i+ 1)) that depends on the value of X i

(j) and on

the values of the other variables in X (i) and in X (i+ 1).24 For any x ∈ (ai, ai+1), let us write

∆i(x) as short-hand for ∆i(x,X (i) ∪ X (i+ 1)).

Now for each i < A(δ) − 1 let M i
n(x) :=

∑|X (i)|
j=1 1(nSij ≤ x) and for i = A(δ) − 1,

M i
n(x) :=

∑|X (i)|−2
j=1 1(nSij ≤ x). For any interval i that is not the right-most subinterval the

value M i
n(x) is the number of spacings scaled by n that are in (ai, ai+1) or that straddle

(ai, ai+1) and (ai+1, ai+2) and whose length is less than x. For the right-most interval the

value M i
n(x) obviously does not include spacings straddling an adjacent subinterval to the

right. Now for each j such that Xj ∈ X (i) define the random variable

Kj(x, n,∆
i) :=

1 if at most one random variable in X falls in
(
Xj, Xj + x

n
2

C′(Xj)+∆i(Xj)

]
0 otherwise

.

24For the right-most subinterval (i = A(δ)− 1) the function ∆i depends only on the values of the random
variables in that subinterval.
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Following the argument given in the proof of Propostion 2 to obtain (9), for each i ≤ A(δ)−1

we can write

M i
n(x) =

∑
j:Xj∈X (i)

(1−Kj(x, n,∆
i)) = |X (i)| −

∑
j:Xj∈X (i)

Kj(x, n,∆
i).

If we now sum over all subintervals and divide by n− 2 we obtain

Gn(x) =
1

n− 2

A(δ)−1∑
i=0

M i
n(x) =

n

n− 2
− 1

n− 2

A(δ)−1∑
i=0

∑
j:Xj∈X (i)

Kj(x, n,∆
i).

Now for any constant d define

Kn(x, d) :=
n

n− 2
− 1

n− 2

A(δ)−1∑
i=0

∑
j:Xj∈X (i)

Kj(x, n, d) =
n

n− 2
− 1

n− 2

∑
j:Xj∈X

Kj(x, n, d).

The second equality follows from the fact that for any constant d, Kj(x, n, d) does not depend

on any particular subinterval. Finally, by the construction of the intervals we know that

|∆i(x)| < δ for each x and each i, so we can now write

(17) Kn(x,−δ) ≤ Gn(x) ≤ Kn(x,+δ).

To complete the proof it now suffices to show for d ∈ {−δ,+δ} and for each x ≥ 0 that

limd→0 limn→∞ E[Kn(x, d)] = G(x) and limd→0 limn→∞Var[Kn(x, d)] = 0. In other words, the

upper and lower bounds in equation (17) each converge in probability to G(x) when the

sample size becomes large and when the mesh size over the subintervals becomes small, and

by virtue of being squeezed between the bounds, the convergence of the value of interest

Gn(x) follows.

The rest of the proof follows steps that are similar to the ones given in the proof of

Proposition 3. Notice that E[Kj(x, n, d)] is equal to

Pr

(
at most one random variable in X falls in

(
Xj, Xj +

x

n

2

C ′(Xj) + d

])
=

∫ ∞
−∞

(n− 1) {Rn(x, z, d)} [1−Rn(x, z, d)]n−2 + [1−Rn(x, z, d)]n−1 dLn(z),(18)

where Rn(x, z, d) := Ln (z + 2xn−1(C ′(z) + d)−1) − Ln(z). Equation (18) is obtained in a

manner that is similar to the way in which equation (15) was obtained. Recalling that the Xi

are drawn independently from Ln for each i, equation (18) is derived as follows: conditional on

Xj = z the term in the first set of square brackets taken to the power of n−2 is the probability

that n− 2 of the variables Xk for k 6= i fall outside the interval (z, z + 2xn−1(C ′(z) + d)−1]

and the term in curly brackets is the probability that the remaining variable falls in the

interval. The entire expression is multiplied by n− 1 to account for the number of ways that
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this event can occur. The term in the second set of square brackets taken to the power of

n− 1 is the probability that none of the n− 1 variables Xk for k 6= i fall outside the interval.

Define γ(x, n, d) as the expression given in (18). Using arguments similar to those given in

the proof of Remark 5, which rely on Ln → L, L′n → L′, and L′′n → L′′ uniformly, one can

show that

lim
n→∞

γ(x, n, d) =

∫ ∞
−∞

(
L′(z)2x

C ′(z) + d
+ 1

)
exp

{
− L′(z)2x

C ′(z) + d

}
dL(z).

By Proposition 1, which is due to Osborne and Pitchik (1986), L = C. So we have that

lim
n→∞

γ(x, n, d) =

∫ ∞
−∞

(
C ′(z)2x

C ′(z) + d
+ 1

)
exp

{
− C ′(z)2x

C ′(z) + d

}
dC(z).

It is then straightforward to see that

lim
d→0

lim
n→∞

E[Kn(x, d)] = 1− lim
d→0

lim
n→∞

γ(x, n, d) = G(x).

By a similar reasoning, we find that for each d, limn→∞ E[(Kn(x, d)2] = limn→∞ E[Kn(x, d)]2,

so limd→0 limn→∞Var[Kn(x, d)] = 0, which completes the proof. �

Proof of Remark 4. I simply show that all firms drawing their locations from a uniform

distribution on [0, 1] is a symmetric mixed strategy Nash equilibrium when n→∞. The rest

of the result follows directly from Remark 3.

The expected payoff for firm i when it locates at x while all other firms choose their location

at random according to Ln is given by π̃i(x) :=
∑5

i=1Wi(x) where

W1(x) :=

(
n− 1

2

)(
2

1

)∫ 1

x

∫ 1

z

(1− Ln(y))n−3C

(
x+ y

2

)
dLn(y)dLn(z),

W2(x) :=

(
n− 1

1

)(
n− 2

2

)(
2

1

)
×∫ x

0

∫ 1

x

∫ 1

z

(1− Ln(y))n−4C

(
x+ y

2

)
dLn(y)dLn(z)dLn(z′),

W3(x) :=
n−3∑
k=2

(
n− 1

k

)(
k

2

)(
2

1

)(
n− k − 1

2

)(
2

1

)
×

∫ 1

x

∫ x

0

∫ 1

z

∫ z′

0

Ln(y′)k−2(1− Ln(y))n−k−3×[
C

(
x+ y

2

)
− C

(
x+ y′

2

)]
dLn(y′)dLn(y)dLn(z′)dLn(z),
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Figure 5. Illustration of π̃i(x). The number of firms is set to n = 10 and
each point is the payoff at the relevant location averaged over 10000 simulated
rounds.

W4(x) :=

(
n− 1

1

)(
n− 2

2

)(
2

1

)
×∫ 1

x

∫ x

0

∫ z

0

Ln(y)n−4

[
1− C

(
x+ y

2

)]
dLn(y)dLn(z)dLn(z′),

W5(x) :=

(
n− 1

2

)(
2

1

)∫ x

0

∫ z

0

Ln(y)n−3

[
1− C

(
x+ y

2

)]
dLn(y)dLn(z).

The equation for π̃i(x) is derived by considering all possible cases: W1(x) captures the case in

which i locates at x such that 0 < x < z < y < (n−3 variables) < 1; W2(x) captures the case in

which i locates at x such that 0 < z′ < x < z < y < (n−4 variables) < 1; W3(x) captures the

case in which i locates at x such that 0 < (k−2 variables) < y′ < z′ < x < z < y < (n−k−3

variables) < 1, for k from 2 to n− 3; W4(x) captures the case in which i locates at x such

that 0 < (n − 4 variables) < y < z < x < z′ < 1; and finally W5(x) captures the case in

which i locates at x such that 0 < (n− 3 variables) < y < z < x < 1.

After employing the binomial theorem on W3(x), integrating by parts (multiple times),

and then substituting Ln(x) = C(x) = x for all x (so that the firms choose their locations
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uniformly and the consumers are distributed uniformly), one obtains

π̃i(x) =
2

n
− xn

n
− (1− x)n

n
+
n− 1

2

[
(1− x)n−2x2 + xn−2(1− x)2

]
.

An illustration of this function is shown in Figure 5 when n = 10. It is easy to verify that

limn→∞ nπ̃i(x) = 2 for all x ∈ (0, 1).25 In other words, as the number of firms becomes large,

the scaled payoffs become the same at each location. So when the distribution of consumers

is uniform, the firms choosing their locations uniformly at random is a symmetric mixed

equilibrium of the limiting game. �

Appendix B. Further simulations

Figure 6 repeats the simulations of subsection 3.1 for the uniform case for different values of

n. The firm locations Xi are drawn from a uniform distribution on [0, 1] and the distribution

of consumers is uniform. The histogram of the scaled market shares is shown in grey and the

density of a Gamma(2, 2) distribution is shown as a solid black line. The panels show the

outcomes for n equal to 50, 100, 250, and 1000. Clearly, the fit improves as n becomes larger.

Since the strategy employed by the firms is the limiting one for each n, the speed with which

the empirical distribution converges to the limiting distribution in these simulations may not

accurately represent how fast the distribution would converge if the firms were playing an

equilibrium strategy for each n. Following the discussion in subsection 3.1 I repeat, though,

that only the limit matters for the purpose of illustrating Theorem 1.

Figure 7(a) illustrates Remark 1. I chose F (x) = x and V (x) = x2 for all x ∈ [0, 1]. In

other words, the gold panners locate along the river uniformly at random and since v(x) = 2x

there is twice as much gold at the end of the river than at the source. The histogram of

the scaled values of gold collected across panners is shown in grey (with n = 1000) and the

density derived from equation (5) is shown as a solid black line.

Figure 7(b) illustrates Remark 4. I set the distribution of consumers to be uniform on

[0, 1] and let n = 1000 firms each draw their location independently from this distribution.

The histogram of the scaled payoffs is shown in grey (with n = 1000) and the density of a

Gamma(4, 2) distribution is shown as a solid black line.

25Performing similar steps on πi(x) in equation (1) (namely, evaluating the equation when Ln(x) = C(x) = x

for all x), one obtains that πi(x) = 1
n −

1
2
xn

n −
1
2
(1−x)n
n + 1

2

[
(1− x)n−1x+ xn−1(1− x)

]
. It is then easy to

see that limn→∞ nπi(x) = 1 for all x ∈ (0, 1).
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Figure 6. Simulation results in the uniform case, varying n.

Figure 7. Illustration of Remark 1 and Remark 4.
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