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Maastricht University
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Abstract

In this paper we study common belief of rationality in strategic-form games with ordinal utilities,
employing a qualitative doxastic model of beliefs. We characterize the three main solution
concepts for such games, viz., Iterated Deletion of Strictly Dominated Strategies (IDSDS),
Iterated Deletion of Börgers-dominated Strategies (IDBS) and Iterated Deletion of Inferior
Strategy Profiles (IDIP), by means of gradually restrictive properties imposed on the doxastic
models. As a corollary, we prove that IDIP refines IDBS, which refines IDSDS.

1. Introduction

Traditionally, game-theoretic analysis has been based on the assumption that the game under consid-
eration is common knowledge among the players. That is, besides asking that the rules of the game
(i.e., the set of players, the set of strategies and the set of outcomes for each strategy profile) are com-
monly known, we typically assume that the players have vNM preferences and that these preferences
are also commonly known.1 Under these assumptions, rationality and common belief of rationality
characterizes correlated rationalizability, i.e., the strategy profiles that survive Iterated Deletion of
Strictly Dominated Strategies are exactly those that can be rationally played under common belief
of rationality (e.g., see Brandenburger and Dekel, 1987; Tan and Werlang, 1988).

While it is certainly reasonable to assume that the rules of the game are commonly known, the
last two assumptions seem harder to justify at the outset. The issue with the preferences being
commonly known has already been addressed by Harsanyi (1967-68) and the extensive literature on
incomplete information games that followed his seminal contribution. Within Harsanyi’s extended

∗We are indebted to two anonymous referees and an associate editor for their helpful comments and suggestions.
Elias thanks the Department of Economics at UC Davis for its hospitality while working on this project.
†Department of Economics, University of California, Davis, CA 95616-8578, USA; Homepage: http://faculty.

econ.ucdavis.edu/faculty/bonanno/; E-mail: gfbonanno@ucdavis.edu
‡Department of Economics (AE1), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands;

Homepage: http://www.elias-tsakas.com/home.html; E-mail: e.tsakas@maastrichtuniversity.nl
1These assumptions are consistent with extending Savage’s standard decision-theoretic framework to an interactive

setting (e.g., see Epstein and Wang, 1996).
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model, rationality and common belief of rationality characterizes interim correlated rationalizability
(e.g., see Dekel et al., 2007; Ely and Peski, 2006). However, in Harsanyi’s program, preferences are
still assumed to be vNM and therefore the utilities of the game outcomes remain cardinal.

There have been several attempts to relax this last assumption by considering ordinal utilities.
Relaxing this assumption can be motivated not only from a theoretical, but also from an applied
point of view, given that in lab experiments we typically test predictions made by solution concepts
for games with ordinal utilities, such as pure-strategy Nash Equilibrium, or pure-strategy Iterated
Deletion of Strictly (resp., Weakly) Dominated Strategies. From a theoretical standpoint, the main
consequence of sticking to ordinal utilities is that we have to replace the usual models of probabilis-
tic beliefs with Kripke structures, and thus abandon the standard notion of Bayesian rationality.
Depending on the notion of rationality that is adopted, there are various solution concepts charac-
terized by rationality and common belief in rationality, e.g., Iterated Deletion of Strictly Dominated
Strategies (the pure strategy version of correlated rationalizability à la Brandenburger and Dekel,
1987; Tan and Werlang, 1988, henceforth IDSDS), Iterated Deletion of Börgers-dominated Strategies
(Börgers, 1993, henceforth IDBS), Iterated Deletion of Inferior Strategy Profiles (the pure strategy
version of strong rationalizability à la Stalnaker, 1994, henceforth IDIP).

In this paper we investigate the content of the notion of common belief of rationality in strategic-
form games with ordinal utilities within a qualitative context. In particular, we consider qualitative
doxastic models, which consist, for each player, of a belief operator (represented by a KD45 Kripke
structure) and a null operator (represented by a state-dependent collection of null events). Within
this model, we manage to characterize each of the aforementioned solution concepts in terms of
restrictions on our two operators, and without needing to vary the notion of rationality that we
employ. In particular, we prove that IDSDS is characterized by common belief in rationality in a
very broad class of models (Remark 1); IDBS is characterized by common belief in rationality if we
restrict attention to full-support beliefs (Theorem 1); and finally, IDIP is characterized by common
belief in rationality if we further restrict attention to correct full-support beliefs (Theorem 2).2

With the previous three results at hand, not only do we manage to put under the same um-
brella the three main solution concepts for games with ordinal utilities that have been studied in
the literature, but we also manage to prove that they monotonically refine each other (see Corollary
1). In particular, the fact that we impose stronger and stronger restrictions on our epistemic char-
acterizations, implies that IDIP refines IDBS, while IDBS refines IDSDS. In fact, while the second
relationship (between IDSDS and IDBS) seems to be perhaps straightforward, the one between IDBS
and IDIP is far from trivial.

Qualitative doxastic models are quite permissive, in that they induce for each state an incomplete
likelihood relation that does not specify the relative likelihood between any two non-null events.
In this sense, our model weakens earlier models on qualitative beliefs (e.g., see de Finetti, 1949;
Koopman, 1940), which typically rely on complete likelihood relations.3 Furthermore, notice the
duality between our approach and the one taken by preference-based models of beliefs in games (e.g.,
Di Tillio, 2008), which starts with a preference relation over acts and derives the collection of Savage-
null events, contrary to our model where the primitive is the collection of null events. Interestingly,
in our case one could in principle derive a preference relation over acts, which would typically be

2In the discussion section we also introduce a new solution concept (Iterated Deletion of Uniformly Weakly Domi-
nated Strategies; henceforth IDUS), which is characterized by the benchmark doxastic model (see Remark 2).

3Qualitative beliefs have been extensively studied in the literature since the early contributions of de Finetti (1949)
and Koopman (1940). Most papers in the literature have focused on whether a qualitative likelihood relation can
be represented by a probability measure (Kraft et al., 1959; Mackenzie, 2017; Scott, 1964; Scott and Suppes, 1958;
Villegas, 1967) and on the respective logical foundations (Gärdenfors, 1975; Segerberg, 1971; van der Hoek, 1996).
For an early overview of qualitative beliefs see Fishburn (1986). To the best of our knowledge there has not been any
attempt to embed qualitative probability in a game-theoretic model.
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incomplete given that we do not specify the likelihood relation between any two non-null events.
The paper is structured as follows: In Section 2 we introduce the notion qualitative doxastic

model of a strategic-form game; in Section 3 we define our notion of rationality and prove our three
characterization results; in Section 4 we present some additional results; Section 5 concludes; all
proof are relegated to the Appendices.

2. Qualitative models of ordinal games

2.1. The underlying ordinal game

A finite strategic-form game with ordinal payoffs is a quintuple G = 〈I, (Si)i∈I , O, z, (�i)i∈I〉, where
I = {1, 2, . . . , n} is a finite set of players, Si is a finite set of strategies (or actions) of player i ∈ I
with S = S1 × · · · × Sn being the set of strategy profiles, O is a finite set of outcomes, z : S → O is
a function that associates with every strategy profile s = (s1, . . . , sn) ∈ S an outcome z(s) ∈ O, �i

is player i’s ordinal ranking of the outcomes, i.e., a binary relation on O which is complete (i.e., for
all o, o′ ∈ O, o �i o

′ or o′ �i o) and transitive (i.e., for all o, o′, o′′ ∈ O, if o �i o
′ and o′ �i o

′′ then
o �i o

′′). The interpretation of o �i o
′ is that player i considers outcome o to be at least as good as

outcome o′.
Games are often represented in reduced form by replacing the triple 〈O, z, (�i)i∈I〉 with a list

(πi)i∈I of payoff functions, where πi : S → R is any real-valued function that satisfies the property
that, for all s, s′ ∈ S, πi(s) ≥ πi(s

′) if and only if z(s) �i z(s′). In the following we will adopt
this more succinct representation of strategic-form games. It is important to note, however, that
the payoff functions are taken to be purely ordinal and one could replace πi with any other function
obtained by composing πi with an arbitrary strictly increasing function on the set of real numbers.4

A strategic-form game provides only a partial description of an interactive situation, since it does
not specify what choices the players make, nor what beliefs they have about their opponents’ choices.
A specification of these missing elements is obtained by introducing the notion of a “model of the
game”, which represents a possible context in which the game is played. We first do this in terms of
operators on events and then provide a semantic characterization.

2.2. Belief and null operators

The players’ beliefs are represented by means of a finite model 〈Ω, (Bi)i∈I〉, where Ω is a finite set of
states (or possible worlds). As usual, 2Ω denotes the collection of all subsets of Ω (i.e., events), while
¬E := Ω \ E denotes the complement of E for each event E ⊆ Ω. Moreover, for every player i ∈ I,
Bi : 2Ω → 2Ω is the belief operator that associates each E ⊆ Ω with the set of states BiE where E
is believed by i ∈ I. The belief operator is assumed to satisfy the following standard properties, for
every E ⊆ Ω and every i ∈ I:

(K1) Consistency: BiE ⊆ ¬Bi¬E,

(K2) Positive Introspection: BiE ⊆ BiBiE,

(K3) Negative Introspection: ¬BiE ⊆ Bi¬BiE.

Later in the paper we restrict attention to belief operators that rule out erroneous beliefs, by also
requiring that, for every E ⊆ Ω and every i ∈ I,

4This is in contrast to von Neumann-Morgenstern utility functions where certain properties (e.g., risk attitudes)
are preserved only under positive affine transformations.
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(K4) Truth Axiom: BiE ⊆ E.

While the belief operator Bi captures what player i is certain of, a second operator Ni is introduced
to distinguish between events that are deemed to be impossible and events that are considered to be
possible but judged to be null (i.e., infinitesimally likely). Formally, the null operator Ni : 2Ω → 2Ω

associates each event E ⊆ Ω with the set of states NiE where E is deemed null by i ∈ I. The null
operator is assumed to satisfy the following properties, for every E,F ⊆ Ω and every ω ∈ Ω and
every i ∈ I:

(L1) Measurability: (a) NiE ⊆ BiNiE and (b) ¬NiE ⊆ Bi¬NiE,

(L2) Relationship to Belief: (a) BiE ⊆ ¬NiE and (b) BiE ⊆ Ni¬E,

(L3) Monotonicity: if E ⊆ F then NiE ⊇ NiF ,

(L4) Distribution: NiE ∩ NiF ⊆ Ni(E ∪ F ).

The interpretation of the previous axioms is straightforward: (L1) says that if an event is (resp. is
not) null then it is believed to be (resp., not to be) null; (L2(a)) says that a player cannot believe
a null event, while (L2(b)) says that the complement of a believed event is null; (L3) says that an
implication of a non-null event is also non-null; finally (L4) says that the union of two null events
is also null. Later in the paper we explore the consequences of removing (L4) from our system (see
Section 3.1).

2.3. Doxastic models of games

So far we have introduced the notion of a frame rather abstractly, viz., we have not assigned a meaning
to each event E ⊆ Ω. Let us now do so, by introducing a strategy function σi : Ω→ Si for each player
i ∈ I. Then, each state ω ∈ Ω is associated with the strategy profile σ(ω) = (σ1(ω), . . . , σn(ω)).
Moreover, we denote by σ−i(ω) the profile of strategies played, at ω, by the players other than i, that
is, σ−i(ω) = (σ1(ω), . . . , σi−1(ω), σi+1(ω), . . . , σn(ω)); thus the entire profile, σ(ω), can also be denoted
by (σi(ω), σ−i(ω)). For an arbitrary si ∈ Si, we define the event ||si|| := {ω ∈ Ω : σi(ω) = si}. Then
we impose the following standard (measurability) property, for every i ∈ I and every si ∈ Si:

(Σ0) Knowing your own strategy: ||si|| = Bi||si||.

That is, each player knows her own strategy at every state.

Definition 1. Given a strategic-form game with ordinal payoffs G = 〈I, (Si, πi)i∈I〉 a qualitative
doxastic model of G is a tuple M = 〈Ω, (Bi)i∈I , (Ni)i∈I , (σi)i∈I〉, where Ω is finite, Bi satisfies (K1)−
(K3), and σi is a strategy function satisfying (Σ0). Then, we define:

M1 : the class of models where Ni satisfies (L1)− (L4).

2.4. Semantic characterization of the operators

2.4.1. Belief operator

It is very common in the literature to characterize belief operators with binary relations in Kripke
frames. Recall that a Kripke frame is a tuple 〈Ω, (Bi)i∈I〉, such that Bi is a binary relation on Ω that
describes i’s doxastic accessibility at each state. In particular, Bi(ω) = {ω′ ∈ Ω : ωBiω′} contains all
states considered possible by player i at state ω. In the game-theoretic literature, it is more common
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to view Bi as a function that associates with every state ω ∈ Ω a set of states Bi(ω) ⊆ Ω and to
call such a function a possibility correspondence or information correspondence (e.g., Brandenburger
and Keisler, 2006). Of course, the two views (binary relation and possibility correspondence) are
equivalent.5

A Kripke frame is said to be KD45 whenever the relation Bi is serial (i.e., for all ω ∈ Ω,
Bi(ω) 6= ∅), transitive (i.e., if ω′ ∈ Bi(ω) then Bi(ω′) ⊆ Bi(ω)) and euclidean (i.e., if ω′ ∈ Bi(ω) then
Bi(ω) ⊆ Bi(ω′)). Obviously, by transitivity and euclideanness, we obtain that KD45 Kripke frames
satisfy Bi(ω′) = Bi(ω) for every ω′ ∈ Bi(ω). A Kripke frame is S5 whenever it is KD45 and Bi is
reflexive (i.e., ω ∈ Bi(ω) for all ω ∈ Ω). In this case, we typically use the term “knowledge” instead
of “belief”. It is straightforward to see that in an S5 Kripke frame, Bi is an equivalence relation. A
belief operator Bi is characterized by a binary relation Bi if

BiE = {ω ∈ Ω : Bi(ω) ⊆ E}

for every E ⊆ Ω. It is well-known that a belief operator satisfies (K1)− (K3) (resp., (K1)− (K4)) if
and only if it is characterized by a binary relation in a KD45 (resp., S5) Kripke frame.

2.4.2. Null operator

The null operator can also be characterized semantically, not in terms of a binary relation on Ω, but
in terms of a function Ni : Ω → 22Ω that associates with each state ω ∈ Ω the set Ni(ω) of events
that player i considers null at state ω. Such a function is known in modal logic as a neighborhood
function (see, for example, Pacuit (2017)). A null operator Ni is characterized by a neighborhood
function Ni : Ω→ 22Ω if, for every ω ∈ Ω and every event E ⊆ Ω,

NiE = {ω ∈ Ω : E ∈ Ni(ω)}.

The measurability axioms (L1) correspond to the property

if ω′ ∈ Bi(ω) then Ni(ω
′) = Ni(ω).6

Axiom (L2(a)), namely BiE ⊆ ¬NiE, corresponds to the property

if Bi(ω) ⊆ E then E /∈ Ni(ω),

which says that every event that is believed is not null,7 and axiom (L2(b)), namely BiE ⊆ Ni¬E,
corresponds to the property

if Bi(ω) ⊆ E then ¬E ∈ Ni(ω),

5For more details on Kripke frames see, e.g., Aumann (1999); Battigalli and Bonanno (1999); Chellas (1980); van
Ditmarsch et al. (2015); Fagin et al. (1995); Hughes and Cresswell (1968); Kripke (1959).

6Axiom (L1(a)), namely NiE ⊆ BiNiE, is characterized by the property

if ω′ ∈ Bi(ω) then Ni(ω) ⊆ Ni(ω
′),

while axiom (L1(b)), namely ¬NiE ⊆ Bi¬NiE, is characterized by the propert

if ω′ ∈ Bi(ω) then Ni(ω) ⊇ Ni(ω
′).

7 Note that this property implies that, for every ω ∈ Ω, Bi(ω) /∈ Ni(ω) (take E to be Bi(ω)), which – in turn –
implies that Ω /∈ Ni(ω).
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which says that the complement of an event that is believed is a null event.8 The Monotonicity axiom,
namely E ⊆ F ⇒ NiE ⊇ NiF , is characterized by the property

if E ⊆ F and F ∈ Ni(ω) then E ∈ Ni(ω),

and the distribution axiom, namely NiE ∩ NiF ⊆ Ni(E ∩ F ), is characterized by the property

if E,F ∈ Ni(ω) then (E ∪ F ) ∈ Ni(ω).

It is worth noting that the null operator induces an incomplete qualitative likelihood relation Dω
i ⊆

2Ω × 2Ω for each state ω ∈ Ω and each i ∈ I, viz., E Dω
i F if and only if ω ∈ NiF .9 In other

words, any two null events are deemed equally likely, while a non-null event is deemed strictly more
likely than a null event. However, Dω

i remains silent when it comes to comparing the likelihood of
two non-null events. The latter is the main difference between our minimalistic approach (based
on specifying only the null events) and the one typically taken in the large literature on qualitative
likelihood relations.

2.4.3. Relationship to the standard approach

We now explain how to relate the “orthodox” approach, based on probabilistic beliefs, and our more
general, qualitative, approach. When beliefs are represented by probability distributions, one defines
a function pi : Ω→ ∆(Ω) (with ∆(Ω) being the set of probability distribution over Ω) where pi,ω (we
use the notation pi,ω rather than pi(ω)) are the probabilistic beliefs of player i at state ω. One then
imposes the restriction that

if pi,ω(ω′) > 0 then pi,ω′ = pi,ω

to capture the fact that the player knows his own beliefs. The event ‖pi,ω‖ := {ω′ ∈ Ω : pi,ω′ = pi,ω}
is called a type of player i. For the probabilistic case, our Bi(ω) coincides with ‖pi,ω‖ and Ni(ω)
coincides with the set of zero-probability events (that is, E ∈ Ni(ω) if and only if pi,ω(E) = 0). Note
that under this interpretation, the standard approach implies that the belief operator satisfies the
Truth axiom (K4), viz., that the belief relation Bi is reflexive.

3. Common belief of rationality

Fix a player i and two strategies a, b ∈ Si of player i. We denote by ‖b ≥ a‖ the event that strategy b
yields at least as high a payoff for player i as strategy a, that is, ‖b ≥ a‖ = {ω ∈ Ω : πi(b, σ−i(ω)) ≥
πi(a, σ−i(ω))}. Similarly, ‖b > a‖ = {ω ∈ Ω : πi(b, σ−i(ω)) > πi(a, σ−i(ω))} is the event that strategy
b yields a strictly higher payoff for player i than strategy a.

Definition 2. Player i is rational at state ω whenever, for all b ∈ Si,

if ω ∈ Bi‖b ≥ σi(ω)‖ then ω ∈ Ni‖b > σi(ω)‖. (1)

Let Ri ⊆ Ω be the event that player i is rational and R =
⋂

i∈I Ri be the event that all players are
rational.

8Note that this property implies that, for every ω ∈ Ω, ∅ ∈ Ni(ω) (take E to be Ω).
9Early contributions in this literature focused on the problem of “representing a qualitative likelihood relation

with a probability measure” (e.g., see Fishburn, 1986). It is not difficult to verify that (L1) − (L4) do not suffice
for a probability-measure representation to be obtained, e.g., the well-known example of Kraft et al. (1959) satisfies
our properties and yet the likelihood relation cannot be probabilistically represented. In fact, even in the presence
of additional properties – that we will impose in the upcoming sections – our likelihood relations will not always be
represented by a probability measure.
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Intuitively, if at ω player i believes that b yields at least as high a payoff as the chosen strategy
σi(ω) at every state deemed possible, then the event that b yields a strictly higher payoff than σi(ω)
is a null event for player i at ω.

We want to investigate the implications of common belief of rationality. Given an event E, let
BIE =

⋂
i∈I BiE denote the event that all the players believe E. Then the event that E is commonly

believed, denoted by CBE, is defined as the infinite intersection CBE = BIE∩BIBIE∩BIBIBIE∩· · · ,
that is, the event that everybody believes E, and everybody believes that everybody believes E, and
everybody believes that everybody believes that everybody believes E, and so on. It is well-known
that, for every state ω and every event E, ω ∈ CBE if and only if B∗(ω) ⊆ E, where B∗(ω) is
the transitive closure of

⋃
i∈I Bi(ω).10 We are interested in the event that there is common belief of

rationality, henceforth denoted by CBR. In particular, we ask the question: which strategy profiles
are compatible with states in CBR?

Definition 3. We say that common belief of rationality in a class of models M (epistemically)
characterizes the set S∗ ⊆ S of strategy profiles whenever the following two conditions hold:

(A) in every model M ∈M, if ω ∈ CBR then σ(ω) ∈ S∗,

(B) for every s ∈ S∗, there exists a model M ∈M and a state ω in that model such that σ(ω) = s
and ω ∈ CBR.

In the following sections, we will epistemically characterize three well-known solution concepts
for ordinal strategic-form games by means of common belief of rationality, by successively imposing
stronger properties on the models of qualitative beliefs. That way, (i) we will place these different
solution concepts under the same umbrella of common belief of rationality, and (ii) we will formally
order the solution concepts in terms of the strategy profiles that they predict.

3.1. Iterated Deletion of Strictly Dominated Strategies

We begin with the best-known solution concept, namely the Iterated Deletion of Strictly Domi-
nated Strategies, whose relationship to the notion of common belief of rationality has been explored
extensively in the literature.11

A strategy a ∈ Si of player i is strictly dominated if there is another strategy b ∈ Si such that
π(b, s−i) > π(a, s−i) for every strategy profile s−i ∈ S−i of the players other than i, where as usual
S−i = S1 × · · · × Si−1 × Si+1 × · · · × Sn. Iterated Deletion of Strictly Dominated Strategies (IDSDS)
is the following algorithm: reduce the game by deleting, for each player, all the strategies that are
strictly dominated and then repeat the procedure in the reduced game, and so on, until there are no
strictly dominated strategies left. Formally, the procedure is defined as follows:12

Definition 4. Given a strategic-form game with ordinal payoffs G = 〈I, (Si, πi)i∈I〉, recursively
define the sequence of reduced games {G0, G1, . . . , Gm, . . . } as follows: for each i ∈ I,

10B∗ is thus defined as follows: ω′ ∈ B∗(ω) if and only if there is a sequence {ω1, . . . , ωm} in Ω and a sequence
{i1, . . . , im−1} in I such that (1) ω1 = ω, (2) ωm = ω′, and (3) for every j = 1, . . . ,m− 1, ωj+1 ∈ Bij (ωj).

11The pioneering contributions are Bernheim (1984) and Pearce (1984), followed by the characterization provided by
Tan and Werlang (1988) for probabilistic beliefs. More recent characterizations for pure-strategy domination (which
is what we focus on in this paper) can be found in Apt and Zvesper (2010) and Chen et al (2007).

12This is the pure-strategy version of the procedure commonly considered in the literature, which allows for dom-
ination by a mixed strategy. Recall that we have restricted attention to ordinal payoffs and thus a pure strategy of
player i can be strictly dominated only by another pure strategy; in other words, domination by a mixed strategy is
not meaningful in this context.

7



(4.1) let S0
i = Si, and let D0

i ( S0
i be the set of i’s strategies that are strictly dominated in G0 = G;

(4.2) for each m ≥ 1 let Gm−1 be the reduced game with strategy sets Sm−1
i , and define Sm

i =
Sm−1
i \ Dm−1

i , where Dm−1
i ( Sm−1

i is the set of i’s strategies that are strictly dominated in
Gm−1.

Let S∞i =
⋂∞

m=0 S
m
i . The strategy profiles in S∞ = S∞1 × · · · × S∞n are those surviving IDSDS.

Obviously, since the strategy sets are finite, there exists an integer r such that S∞ = Sk for every
k ≥ r, i.e., the procedure terminates after finitely many steps. Moreover, it is straightforward to
verify that S∞ 6= ∅.

IDSDS is the most permissive solution concept for strategic form games with ordinal payoffs,
often allowing for seemingly counter-intuitive strategies. To see this, consider the game in Figure
1, where no strategy is strictly dominated and thus IDSDS does not eliminate any strategy, i.e.,
S∞ = {a, b, c} × {d, e}. Although strategy a is not strictly dominated, it is natural to ask: how can

a

Player 1 b

c

1 , 1 1 , 0

2 , 0 1 , 1

1 , 1 2 , 0

d

Player 2

e

Figure 1: IDSDS and models without the Distribution Axiom.

we justify strategy a being a rational choice for by Player 1?
Let us consider an arbitrary qualitative doxastic model M ∈ M1, with D := {ω ∈ Ω : σ2(ω) =

d} = ‖b > a‖ and E := {ω ∈ Ω : σ2(ω) = e} = ‖c > a‖; thus Ω = ‖b > a‖ ∪ ‖c > a‖.
Assume that there exists some ω ∈ R1 such that σ1(ω) = a. Clearly, ‖b ≥ a‖ = ‖c ≥ a‖ = Ω,
implying that ω ∈ B1‖b ≥ a‖ = B1‖c ≥ a‖. Hence, by ω ∈ R1, it is necessarily the case that
ω ∈ N1‖b > a‖ ∩N1‖c > a‖, which by (L4) implies ω ∈ N1Ω. The latter clearly contradicts (L2) (see
Footnote 7). Hence, no model in M1 can sustain a as a rational strategy.

Given that our notion of rationality is anyway weak, it seems natural to further weaken the
axioms of M1, in order to characterize IDSDS. Indeed, we define:

M0 : the class of models where Ni satisfies (L1)− (L3).

Obviously, M0 generalizes M1 by relaxing the Distribution Axiom (L4) (see Definition 1). Then,
the following characterization result is obtained.

Remark 1 (Characterization of IDSDS). If the belief operators satisfy (K1) − (K3) and the null
operators satisfy merely (L1)−(L3), then common belief of rationality characterizes IDSDS. Formally,

(A0) in every model M ∈M0, if ω ∈ CBR then σ(ω) ∈ S∞,

(B0) for every s ∈ S∞, there exists a model M ∈M0 and a state ω in that model such that σ(ω) = s
and ω ∈ CBR.

8



The proof of Remark 1 is given in the Appendix. Let us point out that we present the result of
this section as a remark, rather than a theorem, since it relies on assumptions that may be viewed
as too weak to be appealing, as illustrated below.

Consider the following model M ∈M0 of the game of Figure 1: Ω = {ω0, ω1}, Bi(ω0) = Bi(ω1) =
Ω, Ni(ω0) = Ni(ω1) = {∅, {ω0}, {ω1}}, σ1(ω0) = σ1(ω1) = a, σ2(ω0) = d and σ2(ω1) = e, noticing
that R1 = Ω. In fact, the reason a is sustained as a rational strategy at some ω is that every strict
subset of B1(ω) is a null event, viz., ‖b > a‖ = {ω0} ∈ N1(ω) and ‖c > a‖ = {ω1} ∈ N1(ω). In
other words, what is unappealing about this characterization is that it is possible that a strategy
that survives IDSDS is compatible with common belief of rationality only at states ω where the only
non-null event is Bi(ω) itself.13

This last fact should be seen as a shortcoming of the notion of strict dominance employed above.
We further discuss this issue later in the paper, in relation to the different refinements of IDSDS.

3.2. Iterated Deletion of Börgers-dominated Strategies

Börgers (1993) introduced a refined notion of pure-strategy dominance. In particular, let a, b ∈ Si

be two pure strategies of player i, and let X−i ⊆ S−i be a non-empty set of strategy-profiles of
the players other than i (note that X−i need not have a product structure). We say that b weakly
dominates a relative to X−i whenever: (1) πi(b, x−i) ≥ πi(a, x−i) for all x−i ∈ X−i, and (2) there
exists some x̂−i ∈ X−i such that πi(b, x̂−i) > πi(a, x̂−i). Then, a pure strategy a ∈ Si is Börgers-
dominated (henceforth B-dominated) if for every non-empty subset X−i ⊆ S−i there exists a strategy
b ∈ Si (which is allowed to vary with X−i) such that b weakly dominates a relative to X−i. Iterated
Deletion of B-dominated Strategies (IDBS) is the following algorithm: reduce the game by deleting,
for each player, all the strategies that are B-dominated and then repeat the procedure in the reduced
game, and so on, until there are no B-dominated strategies left.

Definition 5. Given a strategic-form game with ordinal payoffs G = 〈I, (Si, πi)i∈I〉, recursively
define the sequence of reduced games {G0, G1, . . . , Gm, . . . } as follows: for each i ∈ I,

(5.1) let B0
i = Si, and let E0

i ( B0
i be the set of i’s strategies that are B-dominated in G0 = G;

(5.2) for each m ≥ 1 let Gm−1 be the reduced game with strategy sets Bm−1
i , and define Bm

i =
Bm−1

i \ Em−1
i , where Em−1

i ( Bm−1
i is the set of i’s strategies that are B-dominated in Gm−1.

Let B∞i =
⋂∞

m=0B
m
i . The strategy profiles in B∞ = B∞1 × · · · ×B∞n are those surviving IDBS.

Similarly to IDSDS, since the strategy sets are finite, there exists an integer r such that B∞ =
Bk for every k ≥ r, i.e., the procedure terminates after finitely many steps. Furthermore, it is
straightforward to verify that B∞ 6= ∅.

For example, in the game of Figure 1, strategy a of Player 1 is B-dominated. Indeed, a is weakly
dominated by b relative to {d} and also relative to {d, e}, and it is weakly dominated by c relative to
{e}. However, as we saw above, unless additional restrictions (besides (L1) − (L3)) are imposed on
the null operator, there exists a model and a state within this model such that strategy a is rational
according to Definition 2.

The first natural step is to restrict attention to qualitative doxastic models in M1, i.e., to ad-
ditionally impose (L4). However, as it turns out, CBR in M1 does not characterize IDBS. Indeed,

13Such a situation is not compatible with the Distribution Axiom (L4). To see this, first of all recall that, by Axiom
L2(a), Bi(ω) /∈ Ni(ω) (see Footnote 7). Let E be any proper subset of Bi(ω). If Bi(ω) is the only non-null event, then
E ∈ Ni(ω) and (¬E ∩ Bi(ω)) ∈ Ni(ω). By the Distribution Axiom, Bi(ω) = E ∪ (¬E ∩ Bi(ω)) ∈ Ni(ω), yielding a
contradiction.
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consider the game in Figure 2, which is a variant of the game that we presented in the previous
section, noticing that strategy a is Börgers-dominated, viz., B∞ = {b, c} × {d, e}.

a

Player 1 b

c

1 , 1 1 , 0

2 , 0 1 , 1

0 , 1 2 , 0

d

Player 2

e

Figure 2: IDBS and models without full-support beliefs.

Consider the following model M ∈M1: Ω = {ω0, ω1}, B1(ω0) = B1(ω1) = Ω, N1(ω0) = N1(ω1) =
{∅, {ω0}}, σ1(ω0) = σ1(ω1) = a, σ2(ω0) = d and σ2(ω1) = e. Observe that R1 = Ω, which follows
from B1‖b ≥ a‖ = N1‖b > a‖ = Ω and B1‖c ≥ a‖ = ∅. Hence, even though a is Börgers-dominated,
it is rational at a state in M , implying that additional restrictions need to be imposed on our doxastic
models.

In what follows we shall restrict attention to models with cautious players, i.e., with players who
have full-support beliefs.

Definition 6. A finite qualitative doxastic model of a strategic-form game with ordinal payoffs has
full support if, for every i ∈ I and every E ⊆ Ω,

(L5) NiE ⊆ Bi¬E.

Let M2 (M1 denote the class of finite full-support qualitative doxastic models.

Property (L5) says that only impossible events are deemed null. In other words, for every ω ∈ Ω,
if Bi(ω) ∩ E 6= ∅ then E /∈ Ni(ω). Notice that (L5) is the converse of (L2(b)), i.e., in full-support
models, an event is null if and only if its negations is believed.

Theorem 1 (Characterization of IDBS). If the belief operators satisfy (K1) − (K3) and the null
operators satisfy (L1)− (L5), then common belief of rationality characterizes IDBS. Formally,

(A2) in every model M ∈M2, if ω ∈ CBR then σ(ω) ∈ B∞,

(B2) for every s ∈ B∞, there exists a model M ∈M2 and a state ω in that model such that σ(ω) = s
and ω ∈ CBR.

Note that, in order to “rationalize” a strategy profile in B∞, it may be necessary for a player to
have erroneous beliefs. To see this, consider the game in Figure 3, where B∞ = S, that is, IDBS does
not eliminate any strategy; in particular, (a, d) ∈ B∞.14 Consider an arbitrary full-support model of
this game and a state ω0 such that σ(ω0) = (a, d). Since, for every s2 ∈ {c, d}, π1(b, s2) ≥ π1(a, s2),
‖b ≥ a‖ = Ω and thus B1(ω0) ⊆ ‖b ≥ a‖. That is, ω0 ∈ B1‖b ≥ a‖. Hence, if Player 1 is rational at

14For Player 1, a is weakly dominated by b relative to {d} and {c, d} but not relative to {c} and for Player 2 d is
weakly dominated by c relative to {a} but not relative to {b} or {a, b}.
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ω0 (according to Definition 2) then ‖b > a‖ ∩ B1(ω0) = ∅.15 Thus, σ2(ω) = c for all ω ∈ B1(ω0). In
particular, it must be that ω0 /∈ B1(ω0). Thus at state ω0 Player 2 actually plays d but Player 1 –
who plays a – must erroneously believe that Player 2 is playing c. In the next section we investigate

a

b

Player 1
1 , 1 1 , 0

1 , 0 2 , 2

c

Player 2

d

Figure 3: IDBS and full-support models with erroneous beliefs.

the consequences of ruling out false beliefs, while maintaining caution, i.e. full-support beliefs.

3.3. Iterated Deletion of Inferior Strategy Profiles

The following algorithm is the pure-strategy version of a procedure first introduced by Stalnaker
(1994) and further studied in Bonanno (2008); Bonanno and Nehring (1998); Hillas and Samet (2014);
Trost (2013). Unlike the procedures considered above (viz., IDSDS and IDBS), this procedure deletes
entire strategy profiles, rather than individual strategies. In particular, let X ⊆ S be a set of strategy
profiles (not necessarily having a product structure). A strategy profile x ∈ X is inferior relative
to X if there exist a player i and a strategy si ∈ Si of player i (i.e., si need not belong to the
projection of X onto Si) such that (1) πi(si, x−i) > πi(xi, x−i), and (2) for all s−i ∈ S−i, either
(xi, s−i) /∈ X or πi(si, s−i) ≥ πi(xi, s−i). Iterated Deletion of Inferior Profiles (IDIP) is the following
algorithm: reduce the game by deleting all the inferior strategy profiles and then repeat the procedure
by eliminating inferior profiles relative to the strategy profiles that have not been eliminated so far,
until there are no inferior profiles left. Formally, the algorithm is defined as follows:

Definition 7. Given a strategic-form game with ordinal payoffs G = 〈I, (Si, πi)i∈I〉, recursively
define the sequence of sets of strategy profiles {T 0, T 1, . . . , Tm, . . . } as follows:

(7.1) let T 0 = S, and let I0 ( T 0 be the set of inferior strategy profiles relative to T 0;

(7.2) for each m ≥ 1 let Tm = Tm−1 \ Im−1, where Im−1 ( Tm−1 is the set of strategy profiles in
Tm−1 that are inferior relative to Tm−1.

Then T∞ =
⋂∞

m=0 T
m denotes the strategy profiles surviving IDIP.

Once again, since the strategy sets are finite, there exists an integer r such that T∞ = T k for
every k ≥ r, i.e., the procedure terminates after finitely many steps. Besides, it is straightforward to
verify that T∞ 6= ∅.

As an illustration of this procedure, consider the game in Figure 4. In this game (a, d) is inferior
relative to T 0 = S since π1(b, d) > π1(a, d) and π1(b, c) = π1(a, c) (and (a, c) ∈ S). No other strategy
profile is inferior relative to T 0 and thus I0 = {(a, d)} so that T 1 = {(a, c), (b, c), (b, d)}. Now (b, d)
is inferior relative to T 1 since π2(b, c) > π2(b, d) and (a, d) /∈ T 1. No other strategy profile is inferior

15Suppose that ω0 ∈ R1. Then, by Definition 2, since ω0 ∈ B1‖b ≥ a‖, it must be that ‖b > a‖ ∈ N1(ω0). Fix an
arbitrary ω ∈ B1(ω0) and suppose that ω ∈ ‖b > a‖, noting that, by (Σ0), σ1(ω) = σ1(ω0) = a. By the assumption of
full support, {ω} /∈ N1(ω0) and thus, by (L2), ‖b > a‖ /∈ N1(ω0), yielding a contradiction.
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a

b

Player 1
1 , 1 1 , 2

1 , 1 2 , 0

c

Player 2

d

Figure 4: IDIP.

relative to T 1 and thus I1 = {(b, d)} so that T 2 = {(a, c), (b, c)}. Now no strategy profile is inferior
relative to T 2 so that T∞ = T 2.

We now turn to investigating the consequences of ruling out false beliefs. At state ω player i has
correct beliefs if ω is one of the states that player i considers possible at ω, that is, if ω ∈ Bi(ω).

Definition 8. A finite qualitative doxastic model of a strategic-form game with ordinal payoffs
rules out false beliefs if, for every i ∈ I the belief operator Bi satisfies the Truth Axiom (K4). Let
M3 ( M2 denote the class of finite full-support qualitative doxastic models that rule out false
beliefs.

Theorem 2 (Characterization of IDIP). If the belief operators satisfy (K1) − (K4) and the null
operators satisfy (L1)− (L5), then common belief of rationality characterizes IDIP. Formally,

(A3) in every model M ∈M3, if ω ∈ CBR then σ(ω) ∈ T∞,

(B3) for every s ∈ T∞, there exists a model M ∈M3 and a state ω in that model such that σ(ω) = s
and ω ∈ CBR.

Property (K4) says that no player can have false beliefs. This is actually stronger than simply
requiring that it is commonly believed that every player has correct beliefs. In fact, in order to get
a characterization of the set T∞, common belief that all players have correct beliefs is not sufficient
(see Section 4.3).

4. Discussion

4.1. Iterated Deletion of Uniformly Weakly Dominated Strategies

We have characterized three well-known solution concepts for games with ordinal payoffs (viz.,
IDSDS, IDBS and IDIP) by means of restrictions imposed on the belief operator and the null oper-
ator. Interestingly, none of these solution concepts is characterized by our benchmark system, M1.
In this section, we do so, by introducing a new elimination solution concept that coarsens IDBS.

We say that a strategy a ∈ Si is uniformly weakly dominated (henceforth U-dominated) if for
every X−i ⊆ S−i and every s−i ∈ X−i there exists some b ∈ Si (which is allowed to vary with X−i
and s−i) such that (1) πi(b, x−i) ≥ πi(a, x−i) for all x−i ∈ X−i, and (2) πi(b, s−i) > πi(a, s−i). For
instance, strategy a in Figure 1 is U-dominated. On the other hand, in Figure 2, the same strategy
a is not: take for instance X−i = {d, e} and s−i = e, and observe that b violates condition (2), while
c violates condition (1), viz., π1(b, e) ≯ π1(a, e) and π1(c, d) � π1(a, d).

Iterated Deletion of U-dominated Strategies (IDUS) is the following algorithm: reduce the game
by eliminating, for each player, all the strategies that are U-dominated, and then repeat the procedure
in the reduced game, and so on until there are no U-dominated strategies left.
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Definition 9. Given a strategic-form game with ordinal payoffs G = 〈I, (Si, πi)i∈I〉, recursively
define the sequence of reduced games {G0, G1, . . . , Gm, . . . } as follows: for each i ∈ I,

(9.1) let U0
i = Si, and let W 0

i ( U0
i be the set of i’s strategies that are U-dominated in G0 = G;

(9.2) for each m ≥ 1 let Gm−1 be the reduced game with strategy sets Um−1
i , and define Um

i =
Um−1
i \Wm−1

i , where Wm−1
i ( Um−1

i is the set of i’s strategies that are U-dominated in Gm−1.

Let U∞i =
⋂∞

m=0 U
m
i . The strategy profiles in U∞ = U∞1 × · · · × U∞n are those surviving IDUS.

Like in the case of IDSDS and IDBS, by the fact that the strategy sets are finite, it follows
that the algorithm terminates after finitely many steps, i.e., there is some integer r ≥ 0 such that
U∞ = Uk for all k ≥ r. Hence, it is straightforward that U∞ 6= ∅.

Remark 2 (Characterization of IDUS). If the belief operators satisfy (K1) − (K3) and the null
operators satisfy (L1)− (L4), then common belief of rationality characterizes IDUS. Formally,

(A1) in every model M ∈M1, if ω ∈ CBR then σ(ω) ∈ U∞,

(B1) for every s ∈ U∞, there exists a model M ∈M1 and a state ω in that model such that σ(ω) = s
and ω ∈ CBR.

It follows from the previous result that the main difference between IDBS and IDUS is that the
former requires every strict subset of Bi(ω) to be non-null, whereas the latter requires at least one
strict subset of Bi(ω) to be non-null.

4.2. Monotonicity result

A direct implication of our four results (Theorems 1-2 and Remarks 1-2) is the following (monotonic-
ity) result, which proves that IDIP is a refinement of IDBS, which is a refinement of IDUS, which is
a refinement of IDSDS.

Corollary 1 (Monotonicity result). T∞ ⊆ B∞ ⊆ U∞ ⊆ S∞.

The proof follows directly from M3 ( M2 ( M1 ( M0. The last two parts of the result are
not very surprising and can also be proven directly, viz., it can be shown that for every m ≥ 0 it is
the case that Bm ⊆ Um ⊆ Sm. However, this is not the case with the first part of our monotonicity
result, which is far from trivial. The difficulty of proving the result stems from the fact that there
exist games where Bm ( Tm for some m > 0, as illustrated in the game in Figure 5.

a

Player 1 b

c

1 , 1 2 , 1

2 , 1 0 , 1

1 , 1 1 , 1

d

Player 2

e

Figure 5: Monotonicity.
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In this game, c is B-dominated, while no other strategy is subsequently eliminated. That is,
formally B∞ = B1 = {a, b} × {d, e}. On the other hand, the only inferior strategy profile relative
to the entire game is (c, e), and therefore T 1 ) B1. But then, (c, d) is inferior relative to T 1, thus
implying that B∞ = B2 = T 2 = T∞, consistently with the conclusions of our Corollary 1.

4.3. Correct beliefs

As we have already mentioned above, common belief in correct beliefs does not suffice for a strategy
that survives IDIP to be played. Formally, let Ci = {ω ∈ Ω : ω ∈ Bi(ω)} be the event that player
i has correct beliefs, and let C∪ =

⋃
i∈I Ci be the event that at least one player has correct beliefs

and C =
⋂

i∈I Ci the event that all players have correct beliefs. As the following example shows, it
is possible that ω ∈ CBR ∩ CBC and yet the strategy profile played at ω does not survive IDIP.

a

b

Player 1
1 , 1 1 , 0

1 , 0 2 , 2

c

Player 2

d

Figure 6: Common belief in correct beliefs.

Consider the following model of the game in Figure 6: Ω = {ω1, ω2, ω3},B1(ω1) = {ω1},B1(ω2) =
B1(ω3) = {ω3},B2(ω1) = B2(ω2) = {ω1},B2(ω3) = {ω3}, σ1(ω1) = b, σ1(ω2) = σ1(ω3) = a, σ2(ω1) =
σ2(ω2) = d and σ2(ω3) = c. Then σ(ω2) = (a, d) /∈ T∞ and yet ω2 ∈ CBR ∩ CBC (in fact,
B∗(ω2) = {ω1, ω3},C = {ω1, ω3} and R = Ω). Note that, in this model, at state ω2 both players
have false beliefs. This is because, although it is common belief at ω2 that only strategy profiles in
T∞ are played, the strategy profile actually played does not belong to T∞.

Although common belief in correct beliefs does not suffice for IDIP, it guarantees common belief
in the event that only strategy profiles in T∞ are played. Let T∞ = {ω ∈ Ω : σ(ω) ∈ T∞}.

Proposition 1. If the belief operators satisfy (K1)− (K3) and the null operators satisfy (L1)− (L5),
then common belief of rationality and common belief of correct beliefs imply common belief in IDIP.
Formally, CBR ∩ CBC ⊆ CBT∞ in every model M ∈M2.

The condition that there is common belief that all players have correct beliefs (ω ∈ CBC) is nec-
essary for Proposition 1. To see this, consider the game in Figure 7, where T∞ = {(a, c), (b, c)}.
Consider the following model of this game: Ω = {ω1, ω2},B1(ω1) = B1(ω2) = {ω2},B2(ω1) =
{ω1},B2(ω2) = {ω2}, σ1(ω1) = σ1(ω2) = a, σ2(ω1) = d, σ2(ω2) = c. Then R = CBR = Ω, while
T∞ = {ω2} (since σ(ω1) = (a, d) /∈ T∞). Since B∗(ω1) = {ω1, ω2}, ω1 ∈ CBR but ω1 /∈ CBT∞. In
this model, at state ω1 Player 1 has false beliefs (C1 = {ω2}) and thus ω1 /∈ CBC.

The following Corollary shows that if, to the hypotheses of Proposition 1, we add the further
hypothesis that at least one player does not have false beliefs, then it follows that the strategy
profile actually played also belongs to T∞. Recall that C∪ =

⋃
i∈I Ci is the event that at least one

player has correct beliefs.

Corollary 2. If the belief operators satisfy (K1) − (K3) and the null operators satisfy (L1) − (L5),
then common belief of rationality, common belief of correct beliefs and correct beliefs of at least one
player imply IDIP. Formally, CBR ∩ CBC ∩C∪ ⊆ T∞ in every model M ∈M2.
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a

b

Player 1
1 , 1 1 , 1

1 , 1 2 , 0

c

Player 2

d

Figure 7: Correct beliefs.

5. Conclusion

In this paper we have studied the behavioral implications of common belief of rationality in strategic-
form games with ordinal utilities, using qualitative beliefs. Focusing on ordinal utilities is relevant
both theoretically (as we implicitly relax the admittedly unrealistic assumption of commonly known
vNM preferences), as well as empirically (as experimental economists typically use solution concepts
for games with ordinal payoffs for their benchmark theoretical predictions).

Our main contribution is threefold. Firstly, we systematically embed qualitative doxastic models
into a game-theoretic model. Secondly, we manage to characterize three well-known solution concepts
for games with ordinal payoffs in terms of common belief of rationality, without needing to vary the
notion of rationality that we employ, but rather by gradually strengthening the properties of the
doxastic model that we use. Finally, as a consequence of our characterization results, we prove that
the aforementioned solution concepts monotonically refine each other, viz., IDIP refines IDBS, which
in turn refines IDSDS. Notably, the first refinement result is far from trivial to prove.

It is worth noting that the definition of rationality that we have used (Definition 2) is extremely
weak; indeed, it allows one to label as rational a strategy that intuitively ought to be considered
as irrational. To see this, consider the pure coordination game of Figure 8 and the following model
of it.16 Ω = {ω0, ω1},B1(ω0) = B1(ω1) = Ω,N1(ω0) = N1(ω1) = {∅, {ω0}} , σ1(ω0) = σ1(ω1) =
a, σ2(ω0) = c, σ2(ω1) = d. At state ω1 (and also at ω0) Player 1 does not rule out the event that

a

b

Player 1
1 , 1 0 , 0

0 , 0 1 , 1

c

Player 2

d

Figure 8: A coordination game

Player 2 plays c but considers this event null; on the other hand she does not consider the event
that Player 2 plays d null. Thus ω1 ∈ N1 ‖a > b‖ while ω1 /∈ N1 ‖b > a‖. In other words, Player
1 is confident that Player 2 is playing d and should therefore play b. Yet, playing a is rational for
Player 1, that is, ω1 ∈ R1, because ω1 /∈ B1 ‖b ≥ a‖. This example might be seen as suggesting that
one should employ a stronger, and intuitively more appealing, definition of rationality. However, it
is important to stress that the weaker the definition of rationality, the stronger the results. The fact

16This example was suggested by an anonymous referee.
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that we are able to obtain a characterization of solution concepts such as IDSDS, IDBS, IDUS and
IDIP with a such a weak notion of rationality is actually a strength rather than a weakness of our
approach.

A. Proofs of Section 3

Proof of Remark 1. (A0) Fix a strategic-form game with ordinal payoffs and a model M ∈M0

of the game. Suppose that ω1 ∈ CBR. That is, B∗(ω1) ⊆ R. We want to show that σ(ω1) ∈ S∞.
The proof is by induction.

Initial Step. First we show (by contradiction) that, for every player i ∈ I and for every ω ∈ B∗(ω1),
σi(ω) /∈ D0

i (see Definition 4). Suppose not. Then there exist a player i and an ω2 ∈ B∗(ω1) such
that σi(ω2) ∈ D0

i , that is, strategy σi(ω2) of player i is strictly dominated in G by some other
strategy ŝi ∈ Si: for every s−i ∈ S−i, πi(ŝi, s−i) > πi(σi(ω2), s−i). Thus, for every ω ∈ Bi(ω2),
πi(ŝi, σ−i(ω)) > πi(σi(ω2), σ−i(ω)), that is, ‖ŝi > σi(ω2)‖ ∩ Bi(ω2) = Bi(ω2). Since Bi(ω2) /∈ Ni(ω2)
(see Footnote 7), it follows from Definition 2 that ω2 /∈ Ri, thus contradicting the hypothesis that
ω2 ∈ B∗(ω1) ⊆ R (recall that R ⊆ Ri). Thus, for every ω ∈ B∗(ω1), σi(ω) ∈ Si\D0

i = S1
i .

Inductive Step. Fix an integer m ≥ 1 and suppose that, for every player j ∈ I and for every
ω ∈ B∗(ω1), σj(ω) ∈ Sm

j . We want to show (again by contradiction) that, for every player i ∈ I and
for every ω ∈ B∗(ω1), σi(ω) /∈ Dm

i . Suppose not. Then there exist a player i and an ω2 ∈ B∗(ω1)
such that σi(ω2) ∈ Dm

i , that is, strategy σi(ω2) is strictly dominated in Gm by some other strategy
s̃i ∈ Sm

i . Since, by hypothesis, for every player j and for every ω ∈ B∗(ω1), σj(ω) ∈ Sm
j , it follows

– since Bi(ω2) ⊆ B∗(ω2) ⊆ B∗(ω1) (the latter inclusion follows from transitivity of B∗) – that, for
every ω ∈ Bi(ω2), πi(s̃i, σ−i(ω)) > πi(σi(ω2), σ−i(ω)), that is, ‖s̃i > σi(ω2)‖ ∩ Bi(ω2) = Bi(ω2).
Since Bi(ω2) /∈ Ni(ω2) (see Footnote 7), it follows from Definition 2 that ω2 /∈ Ri, contradicting
the hypothesis that ω2 ∈ B∗(ω1) ⊆ R. Thus, for every player i ∈ I and for every ω ∈ B∗(ω1),
σi(ω) ∈

⋂∞
m=1 S

m
i = S∞i . It only remains to show that σi(ω1) ∈ S∞i . Fix an arbitrary ω2 ∈ Bi(ω1).

Since Bi(ω1) ⊆ B∗(ω1), ω2 ∈ B∗(ω1). Thus σi(ω2) ∈ S∞i . By (Σ0), since ω2 ∈ Bi(ω1), σi(ω2) = σi(ω1).
Thus σi(ω1) ∈ S∞i .

(B0) Given a game G construct the following model M ∈M0: Ω = S∞ = S∞1 × · · · × S∞n ; for every
player i and for every s ∈ S∞, Bi(s) = {s′ ∈ S∞ : s′i = si} (that is, at state s player i considers
possible each of the strategy profiles of the other players in S∞−i, while her strategy is held constant
at si); σi : S∞ → Si is defined by σi(s) = si (that is, σi(s) is the ith coordinate of s); finally, for
every i ∈ I and s ∈ S∞, let Ni(s) = {E ∈ 2Ω : E ∩ Bi(s) 6= Bi(s)}. Fix an arbitrary state s ∈ S∞
and an arbitrary player i. By definition of S∞, for every s′i ∈ S∞i there exists an ŝ−i ∈ S∞−i such
that πi(si, ŝ−i) ≥ πi(s

′
i, ŝ−i) (that is, (si, ŝ−i) /∈ ‖s′i > si‖). By construction, (si, ŝ−i) ∈ Bi(s) so

that ‖s′i > si‖ ∩ Bi(s) 6= Bi(s) and thus, by construction, ‖s′i > si‖ ∈ Ni(s) so that, by Definition
2, s ∈ Ri. Since s and i were chosen arbitrarily, if follows that, for every s ∈ S∞, s ∈ R, that is,
R = S∞ and thus CBR = S∞.

Proof of Theorem 1. (A2) Fix a strategic-form game with ordinal payoffs and a model M ∈M2.
Suppose that ω1 ∈ CBR (that is, B∗(ω1) ⊆ R). We want to show that σ(ω1) ∈ B∞. The proof is by
induction.

Initial Step. First we show (by contradiction) that, for every player i ∈ I and for every ω ∈ B∗(ω1),
σi(ω) /∈ E0

i (see Definition 5). Suppose not. Then there exist a player i and an ω2 ∈ B∗(ω1) such
that σi(ω2) ∈ E0

i , that is, strategy σi(ω2) of player i is B-dominated relative to S−i, i.e., for every
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X−i ⊆ S−i there exists a strategy si ∈ Si such that (1) for all x−i ∈ X−i, πi(si, x−i) ≥ πi(σi(ω2), x−i),
and (2) there exists an x̂−i ∈ X−i such that πi(si, x̂−i) > πi(σi(ω2), x̂−i). Let X−i = σ−i(Bi(ω2)) =
{s−i ∈ S−i : s−i = σ−i(ω) for some ω ∈ Bi(ω2)}. Let si ∈ Si and x̂−i ∈ X−i satisfy (1) and (2) and
let ω̂ ∈ Bi(ω2) be such that σ−i(ω̂) = x̂−i. Then, by (1), ω2 ∈ Bi‖si ≥ σi(ω2)‖ and by (2) ‖si >
σi(ω2)‖ ∩ Bi(ω2) ⊇ {ω̂}. By (L5), {ω̂} /∈ Ni(ω2) and thus, by (L2), ‖si > σi(ω2)‖ ∩ Bi(ω2) /∈ Ni(ω2);
hence ω2 /∈ Ri (see Definition 2), contradicting the hypothesis that ω1 ∈ CBR and ω2 ∈ B∗(ω1) (which
implies that ω2 ∈ R ⊆ Ri). Thus we have shown that, for every ω ∈ B∗(ω1), σi(ω) ∈ Si\E0

i = B1
i .

Inductive Step. Fix an integer m ≥ 1 and suppose that, for every player j ∈ I and for every
ω ∈ B∗(ω1), σj(ω) ∈ Bm

j , that is, B∗(ω1) ⊆ Bm. We want to show (by contradiction) that, for
every player i ∈ I and for every ω ∈ B∗(ω1), σi(ω) /∈ Em

i . Suppose not. Then there exist a player
i and an ω2 ∈ B∗(ω1) such that σi(ω2) ∈ Em

i , that is, strategy σi(ω2) of player i is B-dominated
relative to Bm

−i: for every X−i ⊆ Bm
−i there exists a strategy si ∈ Si such that (1) for all x−i ∈ X−i,

πi(si, x−i) ≥ πi(σi(ω2), x−i) and (2) there exists an x̂−i ∈ X−i such that πi(si, x̂−i) > πi(σi(ω2), x̂−i).
Let X−i = σ−i(Bi(ω2)) = {s−i ∈ S−i : s−i = σ−i(ω) for some ω ∈ Bi(ω2)}. By the induction
hypothesis and the fact that Bi(ω2) ⊆ B∗(ω2) ⊆ B∗(ω1) (the latter inclusion follows from transitivity
of B∗), X−i ⊆ Bm

−i. Let si ∈ Si and x̂−i ∈ X−i satisfy (1) and (2) and let ω̂ ∈ Bi(ω2) be such that
σ−i(ω̂) = x̂−i. Then, by (1), ω2 ∈ Bi‖si ≥ σi(ω2)‖ and by (2) ‖si > σi(ω2)‖∩Bi(ω2) ⊇ {ω̂}. By (L5),
{ω̂} /∈ Ni(ω2) and thus, by (L2), ‖si > σi(ω2)‖ ∩ Bi(ω2) /∈ Ni(ω2); hence ω2 /∈ Ri (see Definition 2),
contradicting the hypothesis that ω1 ∈ CBR and ω2 ∈ B∗(ω1) (which implies that ω2 ∈ R ⊆ Ri).
Thus, for every player i ∈ I and for every ω ∈ B∗(ω1), σi(ω) ∈

⋂∞
m=1 B

m
i = B∞i .

It only remains to show that σi(ω1) ∈ B∞i . Take any ω2 ∈ Bi(ω1). Since Bi(ω1) ⊆ B∗(ω1),
ω2 ∈ B∗(ω1). Thus σi(ω2) ∈ B∞i . By (Σ0), since ω2 ∈ Bi(ω1), σi(ω2) = σi(ω1). Thus σi(ω1) ∈ B∞i .

(B2) Given a game G construct the following model M ∈ M2: Ω = B∞ = B∞1 × · · · × B∞n ; for
every player i and for every s ∈ B∞, σi : B∞ → Si is defined by σi(s) = si (that is, σi(s) is the ith

coordinate of s). To define Bi first note that, by Definition of B∞, every si ∈ B∞i is not B-dominated
relative to B∞−i, that is, there exists an Xsi

−i ⊆ B∞−i (note that this set may vary with si, hence the
superscript “si”) such that, for all s′i ∈ Si, either there exists an x̂−i ∈ Xsi

−i such that:

πi(s
′
i, x̂−i) < πi(si, x̂−i) (A.1)

or for all x−i ∈ Xsi
−i,

πi(s
′
i, x̂−i) ≤ πi(si, x̂−i). (A.2)

For every si ∈ B∞i fix one such set Xsi
−i (there may be several) and define Bi(si, s′−i) = {si} ×Xsi

−i.
By construction, (si, x̂−i) ∈ Bi(s) and thus, either, by (A.1), s /∈ Bi‖s′i ≥ si‖ or, by (A.2), ‖s′i > si‖∩
Bi(s) = ∅. It follows that, for every i ∈ I and for every s ∈ B∞, s ∈ Ri and thus B∞ = R = CBR.
Note that for completeness – although strictly speaking this is not needed – we can add the condition
that, for every i ∈ I and s ∈ B∞, Ni(s) = {E ∈ 2Ω : E ∩ Bi(s) = ∅}.

The proof of Theorem 2 uses as intermediate results the ones stated in Section 4.3 and proved in
Appendix B.

Proof of Theorem 2. (A3) Given a game, consider a model M ∈M3. Then C = CBC = C∪ =
Ω (so that CBR∩CBC∩C∪ = CBR). Let ω ∈ CBR. Then, by Corollary 2 in Section 4.3, ω ∈ T∞.

(B3) Given a game construct the following model of it: Ω = T∞; for every player i and for every
s ∈ T∞, Bi(s) = {s′ ∈ T∞ : s′i = si} (that is, s′ ∈ Bi(s) if and only if both s and s′ belong to T∞

and player i’s strategy is the same in s and s′); σi : T∞ → Si is defined by σi(s) = si (that is, σi(s)
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is the ith coordinate of s); finally, for all i ∈ I and s ∈ T∞, Ni(s) = {E ∈ 2Ω : E ∩ Bi(s) = ∅}.
Note that each relation Bi is an equivalence relation. Fix an arbitrary state s ∈ T∞ and an arbitrary
player i and suppose that, for some s′i ∈ Si, πi(s

′
i, s−i) > πi(si, s−i), that is, s ∈ ‖s′i > si‖, so that

‖s′i > si‖ ∩ Bi(s) ⊇ {s} /∈ Ni(s). Then, by definition of T∞, there exists an ŝ−i ∈ S−i such that
(si, ŝ−i) ∈ T∞ and πi(s

′
i, ŝ−i) < πi(si, ŝ−i); by construction, (si, ŝ−i) ∈ Bi(s) so that s /∈ Bi‖s′i ≥ si‖.

Thus, by Definition 2, player i is rational at state s, that is, s ∈ Ri. Since i and s were chosen
arbitrarily, it follows that R = T∞.

B. Proofs of Section 4

Proof of Remark 2. Preliminary Step. Let us first formally prove (by contradiction) that within
M ∈ M1 it is the case that, for all i ∈ I and for all ω ∈ Ω there exists some ω′ ∈ Bi(ω) such that
ω /∈ Ni{ω′}. Suppose otherwise, i.e., let ω ∈ Ni{ω′} for all ω′ ∈ Bi(ω). Then, by (L4), ω ∈ NiBi(ω),
which contradicts (L2).

(A1) Fix a strategic-form game with ordinal payoffs and a model M ∈ M1. Suppose that
ω1 ∈ CBR (that is, B∗(ω1) ⊆ R). We want to show that σ(ω1) ∈ U∞. The proof is by induction.

Initial Step. First we show (by contradiction) that, for every player i ∈ I and for every ω ∈ B∗(ω1),
σi(ω) /∈ W 0

i (see Definition 9). Suppose not. Then there exist a player i and an ω2 ∈ B∗(ω1) such
that σi(ω2) ∈ W 0

i , that is, strategy σi(ω2) of player i is U-dominated relative to S−i, i.e., for every
X−i ⊆ S−i and every s−i ∈ X−i there exists a strategy si ∈ Si such that (1) for all x−i ∈ X−i,
πi(si, x−i) ≥ πi(σi(ω2), x−i), and (2) πi(si, s−i) > πi(σi(ω2), s−i). Set X−i = σ−i(Bi(ω2)). By our
preliminary step, there exists some ω′ ∈ Bi(ω2) such that ω2 /∈ Ni{ω′}. Then, set s−i = σ−i(ω

′). Let
b ∈ Si be the strategy that satisfies conditions (1) and (2) for (X−i, s−i) = (σ−i(Bi(ω2)), σ−i(ω

′)),
implying that ω2 ∈ Bi‖b ≥ σi(ω2)‖, and {ω′} ⊆ ‖b > σi(ω2)‖. By (L3), Ni{ω′} ⊇ Ni‖b > σi(ω2)‖.
Therefore, by ω2 /∈ Ni{ω′} it follows that ω2 /∈ Ni‖b > σi(ω2)‖, thus implying ω2 /∈ Ri, and therefore
contradicting ω2 ∈ B∗(ω1).

Inductive Step. Fix an integer m ≥ 1 and suppose that, for every player j ∈ I and for every
ω ∈ B∗(ω1), σj(ω) ∈ Um

j , that is, B∗(ω1) ⊆ Um. We want to show (by contradiction) that, for every
player i ∈ I and for every ω ∈ B∗(ω1), σi(ω) /∈ Wm

i . Suppose not. Then there exist a player i and an
ω2 ∈ B∗(ω1) such that σi(ω2) ∈ Wm

i , that is, strategy σi(ω2) of player i is U-dominated relative to
Um
−i, i.e., for every X−i ⊆ Um

−i and every s−i ∈ X−i there exists a strategy si ∈ Um
i such that (1) for all

x−i ∈ X−i, πi(si, x−i) ≥ πi(σi(ω2), x−i), and (2) πi(si, s−i) > πi(σi(ω2), s−i). Set X−i = σ−i(Bi(ω2)).
By the induction hypothesis and the fact that Bi(ω2) ⊆ B∗(ω2) ⊆ B∗(ω1) (the latter inclusion follows
from transitivity of B∗), X−i ⊆ Um

−i. By our preliminary step, there exists some ω′ ∈ Bi(ω2) such that
ω2 /∈ Ni{ω′}. Then, set s−i = σ−i(ω

′). Let b ∈ Um
i be the strategy that satisfies conditions (1) and (2)

for (X−i, s−i) = (σ−i(Bi(ω2)), σ−i(ω
′)), implying that ω2 ∈ Bi‖b ≥ σi(ω2)‖, and {ω′} ⊆ ‖b > σi(ω2)‖.

By (L3), Ni{ω′} ⊇ Ni‖b > σi(ω2)‖. Therefore, by ω2 /∈ Ni{ω′} it follows that ω2 /∈ Ni‖b > σi(ω2)‖,
thus implying ω2 /∈ Ri, which contradicts ω2 ∈ B∗(ω1). Thus, for every player i ∈ I and for every
ω ∈ B∗(ω1), σi(ω) ∈

⋂∞
m=1 U

m
i = U∞i .

It only remains to show that σi(ω1) ∈ U∞i . Take any ω2 ∈ Bi(ω1). Since Bi(ω1) ⊆ B∗(ω1),
ω2 ∈ B∗(ω1). Thus σi(ω2) ∈ U∞i . By (Σ0), since ω2 ∈ Bi(ω1), σi(ω2) = σi(ω1). Thus σi(ω1) ∈ U∞i .

(B1) Given a game G construct the following model M ∈ M1: Ω = U∞ = U∞1 × · · · × U∞n ; for
every player i and for every s ∈ U∞, σi : U∞ → Si is defined by σi(s) = si (that is, σi(s) is the ith

coordinate of s). To define Bi first note that, by Definition of U∞, every si ∈ U∞i is not U-dominated
relative to U∞−i, that is, there exists an Xsi

−i ⊆ B∞−i and some ŝ−i ∈ Xsi
−i such that, for all s′i ∈ Si,
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either there exists an x−i ∈ Xsi
−i such that:

πi(s
′
i, x−i) < πi(si, x−i) (B.1)

or
πi(s

′
i, ŝ−i) ≤ πi(si, ŝ−i). (B.2)

For every si ∈ U∞i fix one such set Xsi
−i (there may be several) and define Bi(s) = {si} × Xsi

−i.
Moreover, let {(si, ŝ−i)} be the only non-empty non-null event for player i at s, that is, Ni(s) =
{∅, {(si, ŝ−i)}}. Thus, by construction for every s′i ∈ Si, either, by (B.1), s /∈ Bi‖s′i ≥ si‖ or, by
(B.2), ‖s′i > si‖ ∈ Ni(s). It follows that, for every i ∈ I and for every s ∈ U∞, s ∈ Ri and thus
U∞ = R = CBR.

Proof of Corollary 1. Fix an arbitrary s ∈ T∞. Then, by Theorem 2, there exists some model
in M ∈ M3 such that for some state ω (in this model), σ(ω) = s and ω ∈ CBR. Since M3 ⊆ M2 it
follows that M ∈M2, and therefore, by Theorem 1, s ∈ B∞, thus proving T∞ ⊆ B∞.

Likewise, fix an arbitrary s′ ∈ B∞. Then, by Theorem 1, there exists some model M ′ ∈M2 such
that for some state ω′ (in this model), σ(ω′) = s′ and ω′ ∈ CBR. Since M2 ⊆ M1 it follows that
M ′ ∈M1, and therefore, by Remark 2, s′ ∈ U∞, thus proving B∞ ⊆ U∞.

Finally, fix an arbitrary s′ ∈ U∞. Then, by Remark 2, there exists some model M ′ ∈ M1 such
that for some state ω′ (in this model), σ(ω′) = s′ and ω′ ∈ CBR. Since M1 ⊆ M0 it follows that
M ′ ∈M0, and therefore, by Theorem 1, s′ ∈ S∞, thus proving U∞ ⊆ S∞.

Proof of Proposition 1. Fix a strategic-form game and a model M ∈ M2. Suppose that ω1 ∈
CBR ∩ CBC, i.e., B∗(ω1) ⊆ R ∩C. We want to show that σ(ω1) ∈ T∞. As before, the proof is by
induction.

Initial Step. First we show (by contradiction) that, for every ω ∈ B∗(ω1), σ(ω) /∈ I0 (see Definition
7). Suppose, that there exists an ω2 ∈ B∗(ω1) such that σ(ω2) ∈ I0, that is, σ(β) is inferior relative
to the entire set of strategy profiles S. Then there exists a player i and a strategy ŝi ∈ Si such that

πi(ŝi, s−i) ≥ πi(σi(ω2), s−i), for all s−i ∈ S−i, (B.3)

πi(ŝi, σ−i(ω2)) > πi(σi(ω2), σ−i(ω2)). (B.4)

Hence, for every ω ∈ Bi(ω2), πi(ŝi, σ−i(ω)) ≥ πi(σi(ω2), σ−i(ω)), that is, ω2 ∈ Bi‖ŝi ≥ σi(ω2)‖.
Furthermore, since B∗(ω1) ⊆ C ⊆ Ci and ω2 ∈ B∗(ω1), ω2 ∈ Bi(ω2). Since the model has full
support, {ω2} /∈ Ni(ω2) and thus, by (B.3), ‖ŝi > σi(ω2)‖ ∩ Bi(ω2) /∈ Ni(ω2) (appealing to (L2)
with F = ‖ŝi > σi(ω2)‖ and E = {ω2}), so that, by Definition 2, player i is not rational at state
ω2, contradicting the hypothesis that ω2 ∈ B∗(ω1) and ω1 ∈ CBR. Thus, for every ω ∈ B∗(ω1),
σ(ω) ∈ T 0\I0 = T 1 (recall that T 0 = S).

Inductive Step. Fix an integer m ≥ 1 and suppose that, for every ω ∈ B∗(ω1), σ(ω) ∈ Tm. We
want to show that, for every ω ∈ B∗(ω1), σ(ω) /∈ Im. Suppose, by contradiction, that there exists an
ω2 ∈ B∗(ω1) such that σ(ω2) ∈ Im, that is, σ(ω2) is inferior relative to Tm. Then there exist a player
i and a strategy s̃i ∈ Si such that

πi(s̃i, σ−i(ω2)) > πi(σi(ω2), σ−i(ω2)), (B.5)

πi(s̃i, s−i) ≥ πi(σi(ω2), s−i), for all s−i ∈ S−i such that (σi(ω2), s−i) ∈ Tm. (B.6)

By the induction hypothesis, for every ω ∈ B∗(ω1), (σi(ω), σ−i(ω)) ∈ Tm. Thus, since Bi(ω2) ⊆
B∗(ω2) ⊆ B∗(ω1) (the latter inclusion follows from transitivity of B∗), we have that, for every ω ∈
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Bi(ω2), (σi(ω2), σ−i(ω)) ∈ Tm (recall that, by (Σ0), if ω ∈ Bi(ω2) then σi(ω) = σi(ω2)). Since
B∗(ω1) ⊆ C ⊆ Ci and ω2 ∈ B∗(ω1), ω2 ∈ Bi(ω2). Since the model has full support, {ω2} /∈ Ni(ω2)
and thus ‖ŝi > σi(ω2)‖ ∩ Bi(ω2) /∈ Ni(ω2) so that, by (B.5) and Definition 2, player i is not rational
at state ω2, contradicting the hypothesis that ω2 ∈ B∗(ω1) and ω1 ∈ CBR. Thus, we have shown
that, for every ω ∈ B∗(ω1), σ(ω) ∈

⋂∞
m=1 T

m = T∞, that is, ω1 ∈ CBT∞.

Proof of Corollary 2. Fix a strategic-form game with ordinal payoffs and a model M ∈ M2.
Suppose that ω0 ∈ CBR ∩CBC ∩C∪. Since ω0 ∈ C∪, there exists a player i ∈ I such that ω0 ∈ Ci,
that is, ω0 ∈ Bi(ω0). Hence, by definition of B∗, ω0 ∈ B∗(ω0). By Proposition 1, ω0 ∈ CBT∞, that
is, for every ω ∈ B∗(ω0), ω ∈ T∞. Hence ω0 ∈ T∞.
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