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Abstract

This paper considers the estate division problem from a non-cooperative perspective. The inte-
ger claim game initiated by O’Neill (1982) and extended by Atlamaz et al. (2011) is generalized
by considering different sharing rules to divide every interval among the claimants. For problems
with an estate larger than half of the total entitlements, we show that every sharing rule satisfy-
ing four fairly general axioms yields the same set of Nash equilibrium profiles and corresponding
payoffs. Every rule that always results in such equilibrium payoff vector is characterized by the
properties minimal rights first and lower bound of degree half. Well-known examples are the
Talmud rule, the adjusted proportional rule and the random arrival rule. Then our focus turns
to more specific claim games, i.e. games that use the constrained equal awards rule, the Talmud
rule, or the constrained equal losses rule as a sharing rule. Also a variation on the claim game
is considered by allowing for arbitrary instead of integer claims.

Journal of Economic Literature Classification Nos. C72, D74

Keywords Claim games, estate division problem, bankruptcy problem, Talmud rule, adjusted pro-
portional rule, random arrival rule.

1 Introduction

The estate division problem, also known as bankruptcy problem or rationing problem, concerns the
issue of dividing an estate among a group of claimants who have entitlements to the estate, when
the sum of these entitlements exceeds the size of the estate. A seminal paper on this problem is
O’Neill (1982). Subsequently, most research has focused on comparing different solution rules by
their properties. For an overview of this normative, axiomatic approach, see Thomson (2003).

The estate division problem can also be approached strategically, i.e., by a non-cooperative
game. O’Neill (1982) already formulates a non-cooperative game, associated with an estate di-
vision problem, in which players can use their entitlements to claim specific parts of the estate.
More precisely, think of an estate with size E as an interval [0, E]. Each player can partition this
interval into finitely many subintervals and on each of those subintervals put a claim such that
the total amount claimed is equal to his entitlement. Then every subinterval is equally divided
among those players claiming the subinterval. O’Neill (1982) considers the Nash equilibria of this
game. Atlamaz et al. (2011) extend this game by allowing for multiple claims on every subinterval
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and dividing every subinterval according to the proportional rule with respect to the claims. We
generalize their game by allowing for other possible sharing rules to divide the subintervals.

In by far the larger part of the paper we focus on restricted estate division problems, which
means that individual entitlements do not exceed the size of the estate. For the case in which claims
are integer-valued, our first result is of an axiomatic nature and applies to problems for which the
estate is larger than half of the total entitlements. Under four fairly general axioms: efficiency,
claims boundedness, equal treatment of two claims and responsiveness; the set of equilibrium profiles
and corresponding payoffs is characterized. We show that a rule always results in an equilibrium
payoff vector if and only if the rule satisfies the properties minimal rights first and lower bound of
degree half. Three well-known rules that satisfy both properties are the Talmud rule, the adjusted
proportional rule and the random arrival rule. This result provides a non-cooperative support to
use either of these rules for these kind of problems.

We then direct our attention to claim games that use the constrained equal awards rule, the
Talmud rule, or the constrained equal losses rule as a sharing rule. Actually, we consider shar-
ing rules derived from a particular family of rules, the TAL-family, which has been introduced by
Moreno-Ternero and Villar (2006) and includes the above three rules. For a characterization result
for this family as a whole, we refer to Moreno-Ternero (2011). We characterize all Nash equilibria
of the associated claim games and the corresponding payoffs. These results indicate that there is
not one general characterization for claims problems with an estate smaller than half of the total
entitlements – in contrast to problems with an estate larger than half of the total entitlements.

We also investigate what happens if we relax the assumption of placing integer-valued claims
and allow for arbitrary claim heights. Unlike for the proportional case (Atlamaz et al., 2011), the
claims profile in which every player has a uniform claim over the estate, is usually not the unique
equilibrium claims profile.

Although we use the estate division terminology, our model has applications other than the
division of a heritage or the leftovers of a bankrupt firm. For instance, think of the interval [0, E]
as representing a continuum of uniformly distributed consumers (cf. Hotelling, 1929), and of the
claimants as firms who provide services to the consumers, with total services equal to the entitle-
ments. Every claim can be thought of as an investment in a particular consumer segment. Since we
allow for multiple claims, this interpretation allows for competitive investments by different firms in
the same consumer segment. As we can choose the sharing rule, it is possible to allow for different
forms of competition among the firms. Aside from proportional division of the consumers, one
could think of a form of competition in which the firms that invest maximally in a given segment,
equally share the consumers in that segment – this is achieved by using the constrained equal losses
rule in our model. Or one could imagine a competition in which all investing firms equally share a
segment – achieved by using the constrained equal awards rule.

In other related applications the shares induced by the claims may be interpreted as probabilities
of winning in, for instance, political elections (cf. Merolla et al., 2005) or auctions (cf. Cramton et
al., 2003). Note also the connection to Colonel Blotto games (Borel, 1921).

It is also possible (but postponed to future work) to extend to non-homogeneous preferences
over the estate, like in Pálvölgyi et al. (2013). This extension has several additional applications
like, for example, land division problems (Berliant et al., 1992).
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The organization of the paper is as follows. In Section 2, we explain the basic model and
introduce the relevant sharing rules. In Section 3, we analyze integer claim games for restricted
problems with an estate larger than half of the total entitlements. Section 4 also considers integer
claim games, but now for more particular sharing rules. In Section 5, players are allowed to place
arbitrary claims. Section 6 analyzes the relation between restricted and unrestricted problems. In
Section 7 we conclude.

2 The model

The set of players is N = {1, . . . , n}, where n ≥ 2. An estate division problem is a pair (E, c), where
E ∈ R, E > 0, is the estate and c = (c1, . . . , cn) ∈ RN with ci > 0 for all i ∈ N and

∑
i∈N ci ≥ E,

is the vector of entitlements. Let CN be the class of all problems and let CN0 be the class of all
problems with

∑
i∈N ci/2 ≤ E. A payoff vector for (E, c) ∈ CN is a vector x = (x1, . . . , xn) ∈ RN+

with
∑

i∈N xi ≤ E, where xi is the payoff to player i, and R+ := [0,∞).
The purpose of this paper is to find payoff vectors for estate division problems as equilibrium

outcomes of a suitable non-cooperative game. To this end, we first define a sharing rule to be a
function f that assigns to every b ∈ RN+ a vector f(b) ∈ [0, 1]N such that

∑
i∈N fi(b) ≤ 1. Given

a sharing rule f we associate with an estate division problem (E, c) ∈ CN a claim game, denoted
by (E, c, f). First, a strategy of player i ∈ N in this claim game consist of a finite division of
the interval [0, E] into subintervals and on each subinterval a non-negative number of claims, such
that the total amount claimed is equal to ci. It will be without loss of generality to assume that
the strategies of all players have the same division of [0, E] in common, since otherwise we can
consider the common refinement of the player divisions instead. The following definition therefore
introduces so-called claims profiles, after which we can complete the definition of the game (E, c, f).

Definition 2.1. A claims profile for (E, c) ∈ CN is a triple (y, β,m), where

(i) m ∈ N,

(ii) y = (y0, . . . , ym) ∈ Rm+1 with 0 = y0 < y1 . . . < ym−1 < ym = E,

(iii) β = (β1, . . . , βn) with βi : {1, . . . ,m} → R+ such that

m∑
t=1

βi(t) · (yt − yt−1) = ci for all i ∈ N .

We refer to the interval (yt−1, yt) as interval t. We write β(t) = (βi(t))i∈N , where βi(t) is interpreted
as the amount that player i claims on interval t; and we write M = {1, . . . ,m}. We now use the
sharing rule f to distribute every interval t among the claimants of the interval. Specifically,
fi(β(t)) is the share of player i of interval t, and player i’s payoff is determined by the payoff

function ufi : (y, β,m) 7→ ufi (y, β,m) ∈ R defined by

ufi (y, β,m) =
∑
t∈M

fi(β(t)) · (yt − yt−1)

for every claims profile (y, β,m). We write uf = (uf1 , . . . , u
f
n). This concludes the definition of the

game (E, c, f).
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Atlamaz et al. (2011) analyze this game with the proportional rule as the sharing rule. We
generalize their results by considering different sharing rules. We first introduce four properties
that a sharing rule may have.

The first requirement states that the interval is distributed if the total claim on it is at least 1.

Efficiency. For each b ∈ RN+ , if
∑

i∈N bi ≥ 1 then
∑

i∈N fi(b) = 1.

The second requirement is that each player receives at most his claim.

Claims boundedness. For each b ∈ RN+ and each i ∈ N , fi(b) ≤ bi.

The next property says that two players obtain equal shares if they have a claim of 1 and are
the only two claimants.

Equal treatment of two claims. For each b ∈ RN+ , if bi = bj = 1 for i, j ∈ N and bk = 0 for all
k ∈ N , with k 6= i, j, then fi(b) = fj(b).

The last property states that for any number of claims of the other players, there is an amount
of claims such that the own share is positive.

Responsiveness. For each b−i ∈ RN\{i}+ and each i ∈ N , there is some bi ∈ R+ such that
fi(b) > 0.1

Let us now define some particular sharing rules derived from the TAL-family, to which the
constrained equal awards rule, the constrained equal losses rule and the Talmud rule belong. For
the original definitions of these rules see Remark 2.7.

We first describe the constrained equal awards rule fCEA (as a sharing rule).

Definition 2.2. For each b ∈ RN+ and each i ∈ N ,

fCEAi (b) =

{
bi if

∑
j∈N bj < 1,

min{bi, λ} if
∑

j∈N bj ≥ 1,

where λ is the unique solution of the equation
∑

j∈N min{bj , λ} = 1.

The constrained equal awards rule assigns equal shares to all claimants subject to no one
receiving more than his claim. Note that fCEA(0, . . . , 0) = (0, . . . , 0). When used in a claim game
this implies that if a part (an interval) of the estate is not claimed, then it is not distributed. We

write uCEA instead of uf
CEA

.
The constrained equal losses rule fCEL (as a sharing rule) is defined as follows.

Definition 2.3. For each b ∈ RN+ and each i ∈ N ,

fCELi (b) =

{
bi if

∑
j∈N bj < 1,

max{0, bi − µ} if
∑

j∈N bj ≥ 1,

where µ is the unique solution of the equation
∑

j∈N max{0, bj − µ} = 1.

1Define b−i as the vector (bj)j 6=i and b as the vector (b−i, bi).
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The constrained equal losses rule focuses on the loss each claimant incurs. The rule divides
these losses equally among all claimants subject to no one receiving a negative amount. Again, in
the claim game, if a part of the estate is not claimed, then it is not distributed. We write uCEL

instead of uf
CEL

.
The sharing rules derived from the TAL-family fθ, identified by a single parameter θ ∈ [0, 1],

are defined as follows.

Definition 2.4. Let θ ∈ [0, 1]. For each b ∈ RN+ and each i ∈ N ,

fθi (b) =


bi if

∑
j∈N bj < 1,

max{θbi, bi − µ} if
∑

j∈N bj ≥ 1 and θ
∑

j∈N bj < 1,

min{θbi, λ} if θ
∑

j∈N bj ≥ 1,

where µ is the unique solution of the equation
∑

j∈N max{θbj , bj − µ} = 1 and λ is the unique
solution of the equation

∑
j∈N min{θbj , λ} = 1.

Every rule from the TAL-family combines the principles of the constrained equal awards rule
and the constrained equal losses rule. Namely, if θ times the aggregate claim is at least one, then
no one receives more than a fraction of θ of his claim. In this case, the constrained equal awards
rule is applied with θb as claims. If θ times the aggregate claim is smaller than one, everyone
receives at least a θ-fraction of his claim and the remainder is divided using the constrained equal
losses rule with (1− θ)b as claims. This family of rules generalizes the Talmud rule, for which this

switch happens exactly halfway, so for θ = 1
2 . For every θ ∈ [0, 1], we write uθ instead of uf

θ
.

Note that f1 = fCEA and f0 = fCEL. We refer to f
1
2 as the Talmud sharing rule, and denote the

corresponding payoff function by uT .

Remark. All sharing rules derived from the TAL-family satisfy efficiency, claims boundedness,
equal treatment of two claims and responsiveness.

For completeness, we define the proportional rule fP (as a sharing rule), used in Atlamaz
et al. (2011).

Definition 2.5. For each b ∈ RN+ and each i ∈ N ,

fPi (b) =

{
0 if bi = 0,

bi∑
j∈N bj

if bi > 0.

We denote the corresponding vector of payoff functions by uP .

Remark. The proportional sharing rule satisfies efficiency, equal treatment of two claims and
responsiveness. In general, this rule need not satisfy claims boundedness. However, if we assume
integer-valued claims then this condition is satisfied.

Our purpose is to analyze Nash equilibrium outcomes of the claim game under different sharing
rules. The following definition is standard.

Definition 2.6. A claims profile (y, β,m) is a Nash equilibrium profile (NEP) in (E, c, uf ) if each
player maximizes his own payoff, given his opponents’ claims.
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Hence, in an NEP, no player can increase his payoff by unilaterally reshuffling his claims. Let the
marginal gain or loss be defined as the gain or loss per unit interval from increasing or decreasing
one’s claim on that interval with a smallest claim unit, which is 1 in the case that only integer
claims are allowed, and infinitesimal otherwise. Then, in an NEP, the marginal loss of decreasing
one’s claim on some interval should be at least as large as the marginal gain of increasing one’s
claim on some other interval. For proportional sharing this condition is also sufficient for a claim
profile to be an NEP (Atlamaz et al., 2011), but this does not hold in general. Suppose, as an
example, that claims are restricted to be integer-valued – a case that we will study extensively in
Section 3 – and that the constrained equal losses rule is used as the sharing rule; and suppose that
βi(t) = 2 for some player i and interval t, whereas βj(t) = 0 for all j 6= i. If player j 6= i places a
claim of size 1 on t his gain on t is zero, hence his marginal gain is zero. If, however, j places a
claim of size 2 on t his gain on t is 1

2 and, thus, his average gain is 1
4 . Marginal and average gains

and losses for claim games with integer claims are defined formally in Section 3, where we present
a characterization of NEPs in terms of average gains and losses.

We are interested in the payoffs associated with NEPs with respect to different sharing rules.
For every claim game (E, c, f) we denote the set of equilibrium payoffs by

U(E, c, f) = {(ufi (y, β,m))i∈N | (y, β,m) is an NEP in (E, c, f)}.

Once the set of equilibrium payoffs for the particular claim games is characterized, our aim is to
find rules yielding a payoff within this set of equilibrium payoffs. Formally, a rule is a function R
that associates with every (E, c) ∈ CN a vector R(E, c) ∈ RN+ such that Ri(E, c) ≤ ci for all i ∈ N
and

∑
i∈N Ri(E, c) = E.

Remark 2.7. The original constrained equal awards rule assigns to player i in an estate division
problem (E, c) the amount min{ci, λ}, where λ solves

∑
j∈N min{cj , λ} = E. Recall that, by

assumption,
∑

j∈N cj ≥ E. The original constrained equal losses rule assigns to player i the amount
max{0, ci − µ}, where µ solves

∑
j∈N max{0, cj − µ} = E. The original TAL-rule with parameter

θ ∈ [0, 1] assigns to player i the amount max{θci, ci − µ} if θ
∑

j∈N cj < E, and min{θci, λ} if
θ
∑

j∈N cj ≥ E, where µ and λ are the unique solutions of the equations
∑

j∈N max{θcj , cj−µ} = E
and

∑
j∈N min{θcj , λ} = E, respectively. The original proportional rule assigns to player i the

amount ci∑
j∈N cj

E.

The payoffs assigned by the original rules in Remark 2.7 are also obtained by applying the
associated sharing rules to the claims profile in which each player puts a constant claim ci

E on the
entire estate.2 We call this claims profile, the profile (y, β, 1), the uniform claims profile.

Example 2.8. Consider the estate division problem (E, c) with E = 4 and c = (4, 2, 1). The payoffs
assigned to the players by the (original) constrained equal awards rule, the constrained equal losses
rule and the Talmud rule are found by considering the uniform claims profile, that is, β(1) =(
1, 1

2 ,
1
4

)
. Figure 1 illustrates the three sharing rules. The associated shares are fCEA(β(1)) =(

3
8 ,

3
8 ,

1
4

)
, fCEL(β(1)) =

(
3
4 ,

1
4 , 0
)

and fT (β(1)) =
(

5
8 ,

1
4 ,

1
8

)
. The corresponding payoffs are uCEA =(

11
2 , 1

1
2 , 1
)
, uCEL = (3, 1, 0) and uT =

(
21

2 , 1,
1
2

)
.

A restricted problem is an estate division problem (E, c) with ci ≤ E for all i ∈ N . O’Neill
(1982) considers claim games with the proportional sharing rule for restricted problems, in which

2The crucial property here is homogeneity of a rule (Thomson, 2003).
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b3 = 1
4

λ = 3
8

b2 = 1
2

b1 = 1

1 2 3

(a)

µ = b3 = 1
4

b2 = 1
2

b1 = 1

1 2 3

(b)

1
2b3 = 1

8

1
2b2 = 1

4

µ = 3
8

1
2b1 = 1

2

1 2 3

(c)

Figure 1: An illustration of the outcome of different sharing rules for b =
(
1, 1

2 ,
1
4

)
. The height of

every bar represents the claim height and the number in the bar is the name of the player of that
claim. (a) The constrained equal awards rule: the height of the shaded area of the bar represents
the share of the player. (b) The constrained equal losses rule: the share of each player is represented
by the height of the shaded area of the bar. (c) The Talmud rule: every player receives a share of
1
2bi plus the height of the shaded area of the bar.

βi(t) ∈ {0, 1} for each claims profile (y, β,m), each i ∈ N , and each t ∈M . We generalize to multiple
and not per se integer claims and different sharing rules. We start with restricted problems and
multiple integer claims in the next section.

Notation. We introduce some convenient notation, related to a claims profile (y, β,m). For all
t ∈M , we denote P (t) = {i ∈ N | βi(t) > 0}, βmin(t) = min i∈P (t) βi(t), βmax(t) = max i∈P (t) βi(t),
and βN (t) =

∑
i∈N βi(t).

3 Restricted problems and integer claims

In this section we consider restricted problems (E, c) ∈ CN , i.e., ci ≤ E for all i ∈ N , and integer
claims in each associated claim game, i.e., βi : M → {0} ∪ N for every claims profile (y, β,m) and
every i ∈ N . This is the setting also considered in O’Neill (1982), with the difference that βi(t) > 1
is allowed.

Let f be a sharing rule satisfying the minimal requirements efficiency and claims boundedness.
We will first define Nash equilibrium profiles (Definition 2.6) in terms of average gains and losses.
Let (y, β,m) be a claims profile. For i ∈ N and t ∈M with i ∈ P (t), and ∆ ∈ N with 1 ≤ ∆ ≤ βi(t),
define

ALi(∆, t) =
ufi (y, β,m)− ufi (y, β′,m)

(yt − yt−1)∆
,

where (y, β′,m) is a claims profile in the problem (E, c′) such that β′ is equal to β except that
β′i(t) = βi(t)−∆, and c′ is equal to c except that c′i = ci − (yt − yt−1)∆. Similarly, define

AGi(∆, t) =
ufi (y, β′′,m)− ufi (y, β,m)

(yt − yt−1)∆
,
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where (y, β′′,m) is a claims profile in the problem (E, c′′) such that β′′ is equal to β except that
β′′i (t) = βi(t) + ∆, and c′′ is equal to c except that c′′i = ci + (yt − yt−1)∆. Hence, ALi(∆, t) is the
average loss (in share) to player i ∈ N of decreasing his claim on interval t ∈M by an amount ∆,
and AGi(∆, t) is the average gain (in share) of increasing his claim on t ∈ M by an amount ∆,
both measured per unit interval. For ∆ = 1 these entities are called marginal loss and marginal
gain.

The following lemma characterizes Nash equilibrium profiles: a claims profile is an NEP if
and only if every interval is positively claimed and for every player the minimum average loss
from decreasing his claim on some interval is at least as large as the maximum average gain from
increasing his claim on some other interval.

Lemma 3.1. Let f satisfy efficiency and claims boundedness. A claims profile (y, β,m) is an NEP
in (E, c, f) if and only if |P (t)| ≥ 1 for all t ∈M and for all i ∈ N , we have

min
t∈M :i∈P (t)

min
∆∈{1,...,βi(t)}

ALi(∆, t) ≥ max
t∈M

max
∆∈N

AGi(∆, t). (1)

Proof. For the only-if part, let claims profile (y, β,m) be an NEP. We first show |P (t)| ≥ 1 for all
t ∈M .

Suppose, contrary to what we want to show, there exists t ∈ M with |P (t)| = 0. Since∑
i∈N ci ≥ E, there exists t′ ∈ M with βN (t′) ≥ 2. We consider two cases: |P (t′)| = 1 and

|P (t′)| ≥ 2.
If |P (t′)| = 1, then whenever player i ∈ P (t′) reduces his claim on t′ by one, he remains the

only claimant and thus by efficiency and claims boundedness fi(β(t)) = 1. If player i places this
free claim on t, then he is the only claimant and gains a positive amount.3 This is in contradiction
with the NEP assumption.

If |P (t′)| ≥ 2, then because a sharing rule distributes at most a total share of one, there is a
player i ∈ P (t′) with fi(β(t′)) < 1. So ALi(1, t

′) < 1. However, by efficiency and claims bound-
edness AGi(1, t) = 1. Hence player i gains a positive amount by reshuffling a claim from t′ to t,
which contradicts the NEP assumption.

Next suppose, contrary to (1), there is a player i for which there exist t, t′ ∈ M with i ∈ P (t),
∆1 ∈ {1, . . . , βi(t)} and ∆2 ∈ N, such that ALi(∆1, t) < AGi(∆2, t

′). Taking away ∆1 from (a part
of) interval t and placing ∆2 on (a sufficiently small part of) interval t′ implies an improvement for
player i, which contradicts that (y, β,m) is an NEP.

For the if-part, assume that |P (t)| ≥ 1 for all t ∈ M and (1) is satisfied for all i ∈ N . We
show that (y, β,m) is an NEP.

Consider a claim vector β̄i 6= βi for player i ∈ N (potentially resulting in a different partition
of [0, E], but in that case we consider the common refinement of both partitions). We argue that
the payoff from claim vector βi is at least as large as the payoff from β̄i. The difference in payoff
between the two claims profiles arises from intervals on which the claims of player i differ. Let
Ml = {t ∈ M | βi(t) > β̄i(t)} and Mh = {t ∈ M | βi(t) < β̄i(t)}, respectively denote the intervals
with lower and higher claims when going from βi to β̄i. Note that the total difference in claim on
intervals from Ml is equal to the total difference in claim on intervals Mh, because player i must

3In this argument and in many arguments in the sequel, we mean, implicitly, that a player may shift a claim
amount from a small enough subinterval of some interval s to a small enough subinterval of some interval s′.

8



use his full entitlement. Moreover, the average loss from intervals from Ml is at least as high as the
average gain from intervals from Mh, due to (1). Hence the claim vector βi is a best response, as
it results in a payoff at least as high as the payoff from all other claim vectors.

In the rest of the paper we will often use (sometimes without explicit mentioning) Lemma 3.1
instead of Definition 2.6 when determining Nash equilibria of claim games.

3.1 Axiomatic approach

In this subsection, we consider restricted problems (E, c) ∈ CN0 , i.e.
∑

i∈N ci/2 ≤ E. For this
subset of problems, we provide a characterization of all Nash equilibrium profiles if the sharing rule
satisfies efficiency, claims boundedness, equal treatment of two claims and responsiveness.4

Theorem 3.2. Let f satisfy efficiency, claims boundedness, equal treatment of two claims and
responsiveness and let (y, β,m) be a claims profile for the restricted problem (E, c) ∈ CN0 . Equivalent
are:

(i) (y, β,m) is an NEP in (E, c, f).

(ii) |P (t)| ∈ {1, 2} and βi(t) ∈ {0, 1} for all t ∈M and i ∈ N .

Proof. We first prove (i)⇒ (ii). Let claims profile (y, β,m) be an NEP. By Lemma 3.1, |P (t)| ≥ 1
for all t ∈M .

Note that responsiveness implies that for all t ∈ M and all i ∈ P (t), fi(β(t)) > 0. Suppose
this claim would not be true, then a player i ∈ P (t) with fi(β(t)) = 0 can improve his payoff.
Specifically, player i can reduce his claim on t without any loss. Since f is responsive, there is
some β′i(t) ∈ N such that fi((β

−i(t), β′i(t
′))) > 0. So by placing β′i(t) claims on a sufficiently small

subinterval of t, player i increases his payoff.

First we show that for all t ∈M , if |P (t)| = 1, then βi(t) = 1 for i ∈ P (t).
Suppose, to the contrary, |P (t)| = 1 and βi(t) > 1 for i ∈ P (t). Since player i is the only

claimant on t, by efficiency and claims boundedness he can reduce his claim on t without any loss.
Since we consider restricted problems, there is t′ ∈M with βi(t

′) = 0. Since f satisfies responsive-
ness, there is some β′i(t

′) ∈ N such that fi((β
−i(t), β′i(t

′))) > 0. So by placing β′i(t
′) claims on a

sufficiently small subinterval of t′, player i could improve his payoff. This is in contradiction with
the assumption that (y, β,m) is an NEP.

Second we show that for all t ∈ M , if |P (t)| = 2, then βi(t) = 1 for each i ∈ P (t). We
distinguish two different cases and use a proof by contradiction for each of these cases.

Suppose βi(t) ≥ βj(t) ≥ 2 for i, j ∈ P (t) and i 6= j. Then since fi(β(t)) > 0 and fj(β(t)) > 0,
by definition of a sharing rule fi(β(t)) < 1 and fj(β(t)) < 1. As both players claim t at least twice,
ALi(βi(t), t) <

1
2 and ALj(βj(t), t) <

1
2 .

Since
∑

i∈N ci/2 ≤ E, there must exist an interval t′ with βN (t′) = 1. Hence for at least one of
these two players (a player without a claim on t′), say player i, AGi(1, t

′) = 1
2 by efficiency, claims

4Responsiveness requires that for all i ∈ N and for all b−i ∈ RN\{i}+ , there is some bi ∈ R+ such that fi(b) > 0.
Since we consider integer-valued claims, we implicitly assume bi ∈ N.
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boundedness and equal treatment of two claims. This contradicts Lemma 3.1.

Suppose βi(t) > βj(t) = 1 for i, j ∈ P (t). We consider two different possible subcases.
If 0 < fj(β(t)) < 1

2 < fi(β(t)) < 1, then ALj(βj(t), t) < 1
2 and ALi(βi(t), t) < 1

2 (since
βi(t) ≥ 2). Since

∑
i∈N ci/2 ≤ E, there must exist an interval t′ with βN (t′) = 1. Hence for at least

one of these two players (a player without a claim on t′), say player i, AGi(1, t
′) = 1

2 by efficiency,
claims boundedness and equal treatment of two claims. This contradicts Lemma 3.1.

If 0 < fi(β(t)) ≤ 1
2 ≤ fj(β(t)) < 1, then player i could reduce his claim on t to βj(t) such

that his share of t equals 1
2 (by efficiency, claims boundedness and equal treatment of two claims).

Either this is an improvement or else he could use his free claim to gain a positive amount of some
interval t′ for which βi(t

′) = 0. Since we consider a restricted problem such an interval exists and
by responsiveness such a deviation exists.

Finally, we establish a contradiction for any t ∈M with |P (t)| ≥ 3.
Suppose that |P (t)| ≥ 3. Recall that fi(β(t)) > 0 for each i ∈ P (t). This implies that there are

at least two players i ∈ P (t) with fi(β(t)) < 1
2 . But then for these two players, ALi(βi(t), t) <

1
2 .

Since
∑

i∈N ci/2 ≤ E, there must exist an interval t′ with βN (t′) = 1. Hence for at least one of
these two players (a player without a claim on t′), AGi(1, t

′) = 1
2 by efficiency, claims boundedness

and equal treatment of two claims. This contradicts Lemma 3.1.

For the converse implication (ii) ⇒ (i), assume that |P (t)| ∈ {1, 2} and βi(t) ∈ {0, 1} for
all for all t ∈M and i ∈ N .

If |P (t)| = 1, then player i ∈ P (t) with fi(β(t)) = 1 is never able to gain by changing his claim
on t.

If |P (t)| = 2, then ALi(1, t) = 1
2 for i ∈ P (t). Since for all t′ ∈ M , AGi(1, t

′) ≤ 1
2 (where 1

2
can be obtained if |P (t′)| = 1 and i /∈ P (t′) or if |P (t′)| = 2 and i ∈ P (t′)) and AGi(∆, t

′) ≤ 1
2 for

∆ ≥ 2 (since a sharing rule distributes at most 1), condition (1) of Lemma 3.1 is satisfied. Hence
the claims profile constitutes an NEP.

The next result describes every payoff vector in the set of equilibrium payoff vectors obtained
in Theorem 3.2.

Corollary 3.3. Let f satisfy efficiency, claims boundedness, equal treatment of two claims and
responsiveness and let (E, c) ∈ CN0 be a restricted problem. The following two statements are
equivalent:

(i) v = (vi)i∈N ∈ U(E, c, f).

(ii) There exists a vector r = (r1, . . . , rn) such that 0 ≤ ri ≤ min{ci,
∑

i∈N ci−E} for every i ∈ N
and

∑
i∈N ri = 2 ·

(∑
i∈N ci − E

)
with vi = ci − 1

2ri for every i ∈ N .

Proof. Suppose (y, β,m) is an NEP in (E, c, fCEL). In view of Theorem 3.2, the length of the part
that is claimed by two different players is equal to

∑
i∈N ci−E and the length of the part with total

claim 1 is equal to 2E −
∑

i∈N ci. To find the payoff of each player, let ri denote the part of player
i’s claim invested in intervals with total claim 2. Then, ci − ri is put on intervals with total claim
1. Clearly, 0 ≤ ri ≤ ci, ri ≤

∑
i∈N ci − E and the sum of ri should equal 2 ·

(∑
i∈N ci − E

)
. These

10



conditions imply ci−ri ≤ 2E−
∑

i∈N ci, since ri = 2·
(∑

i∈N ci − E
)
−
∑

j∈N\i rj ≥
∑

i∈N ci−2E+ci.
The corresponding payoff for each player i in such a claims profile is equal to

1

2
ri + ci − ri = ci −

1

2
ri.

Conversely, suppose there exists a vector r = (r1, . . . , rn) satisfying the above conditions. Each
such vector r gives rise to an NEP: distribute parts of the entitlement with sizes ri on the interval
[0,
∑

i∈N ci − E], such that two players each have a claim of 1 on each part; and distribute the
remaining parts of the entitlements ci− ri on the interval [

∑
i∈N ci−E,E], such that each part has

total claim 1. To see that this distribution is feasible, note that since
∑

i∈N (ci− ri) =
∑

i∈N ci−2 ·(∑
i∈N ci − E

)
= 2E −

∑
i∈N ci together with ri ≤ ci, implies that ci − ri ≤ 2E −

∑
i∈N ci. Hence

we found a feasible claims profile that satisfies the conditions of Theorem 3.2, that is, we have an
NEP.

Remark 3.4. If there are two players (n = 2) then it is easy to see that in an NEP the claims
should have minimal overlap. So the only choice for (r1, r2) is r1 = r2 = c1 +c2−E, resulting in the
unique equilibrium payoffs

(
E+c1−c2

2 , E+c2−c1
2

)
. These payoffs coincide with the payoffs assigned by

concede-and-divide (Thomson, 2003).

The following example presents an estate division problem for which many well-known rules do
not result in an equilibrium payoff vector.5 (Atlamaz et al., 2011, give a different example to show
that the proportional rule need not be obtained in equilibrium.)

Example 3.5. Consider the restricted problem (E, c) ∈ CN0 with E = 4 and c = (4, 2, 1), cf.
Example 2.8. For this problem, r1 = 3, r2 = 2 and r3 = 1 (see Figure 2). Hence there is a unique
equilibrium payoff vector equal to

(
21

2 , 1,
1
2

)
.

Every rule from the TAL-family with parameter θ ∈ [0, 1] assigns a payoff θ to player 3. For
example, the constrained equal awards rule assigns the payoff vector

(
11

2 , 1
1
2 , 1
)
, the Talmud rule

assigns the payoff vector
(
21

2 , 1,
1
2

)
and the constrained equal losses rule assigns the payoff vector

(3, 1, 0).
The payoff vector of the proportional rule is equal to

(
22

7 , 1
1
7 ,

4
7

)
, the payoff vector of the

adjusted proportional rule is equal to
(
21

2 , 1,
1
2

)
, the payoff vector of the random arrival rule is

equal to
(
21

2 , 1,
1
2

)
, the payoff vector of the reversed Talmud rule is equal to

(
21

6 , 1
1
6 ,

2
3

)
, the payoff

vector of the Piniles rule is equal to
(
21

6 , 1
1
6 ,

2
3

)
, the payoff vector of the constrained egalitarian rule

is equal to (2, 1, 1), and the payoff vector of the minimal overlap rule is equal to
(
25

6 ,
5
6 ,

1
3

)
.

Hence the only rules resulting in an equilibrium payoff are the Talmud rule, the adjusted
proportional rule and the random arrival rule.

5For the definitions of the adjusted proportional rule and the random arrival rule, see the end of this section.
For the reversed Talmud rule, see Chun et al. (2001). For the Piniles rule, the constrained egalitarian rule and the
minimal overlap rule, see Thomson (2003).
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Figure 2: An illustration of a Nash equilibrium claims profile (y, β,m) for problem (E, c) with
E = 4 and c = (4, 2, 1). Each square corresponds to a claim: the number in the square is the name
of the player who puts that claim on the interval. Here r1 = 3, r2 = 2 and r1 = 1.

The above example illustrates that not all rules are supported by an equilibrium argument. In
the remainder of this section, we prove that each rule that always leads to an equilibrium vector in
claim games with

∑
i∈N ci/2 ≤ E must satisfy minimal rights first and lower bound of degree half.

In order to define these properties, we need an additional piece of notation. For (E, c) ∈ CN ,
let mi(E, c) = max{0, E −

∑
j 6=i cj} be the minimal right of player i and m(E, c) = (mi(E, c))i∈N .

The first requirement states that the payoff vector is equivalently obtainable (i) directly and (ii) by
first assigning the minimal right to each player, adjusting the claims downwards by these amounts
and applying the rule to divide the remainder (Curiel et al., 1987).

Minimal rights first. For each (E, c) ∈ CN0 , R(E, c) = m(E, c)+R
(
E −

∑
i∈N mi(E, c), c−m(E, c)

)
.

The following property says that each player receives at half his claim.

Lower bound of degree half. For each (E, c) ∈ CN0 , R(E, c) ≥ min{c/2, E/2}.

It turns out that above two properties describe the equilibrium behavior of a rule.

Theorem 3.6. Let f satisfy efficiency, claims boundedness, equal treatment of two claims and
responsiveness. Equivalent are:

(i) R(E, c) ∈ U(E, c, f) for all restricted (E, c) ∈ CN0 .

(ii) R satisfies minimal rights first and lower bound of degree half.

Proof. We first prove the implication (i) ⇒ (ii). Let (E, c) ∈ CN0 be a restricted problem. By
assumption, R(E, c) ∈ U(E, c, f). By Corollary 3.3, there exists a vector r = (r1, . . . , rn) such
that 0 ≤ ri ≤ min{ci,

∑
i∈N ci − E} for every i ∈ N and

∑
i∈N ri = 2 ·

(∑
i∈N ci − E

)
with

Ri(E, c) = ci − 1
2ri for every i ∈ N . Recall that ri for i ∈ N specifies the amount of claim placed

on an interval with total claims 2.

We first show that R satisfies minimal rights. Define K = {i ∈ N | mi(E, c) > 0}. If i ∈ K,
then by definition of mi(E, c), E−

∑
j 6=i cj > 0 and thus ci >

∑
i∈N ci−E. Since ri ≤

∑
i∈N ci−E,

mi(E, c) is placed on an interval with total claim 1 and the minimal right is assigned to player i.
Now we show that the revised problem

(
E −

∑
i∈N mi(E, c), c−m(E, c)

)
is a restricted problem

in CN0 such that r satisfies the conditions of Corollary 3.3 for this problem. To this end, we first
prove two claims.

12



Claim. ci −mi(E, c) =
∑

i∈N ci − E for all i ∈ K.

Proof. By definition of mi(E, c), ci −mi(E, c) = ci −
(
E −

∑
j 6=i cj

)
=
∑

i∈N ci − E.

Claim.
∑

i∈N mi(E, c) ≤ 2E −
∑

i∈N ci.

Proof. Several cases are to be considered.
If K = ∅, then the claim states 0 ≤ 2E −

∑
i∈N ci which is true by assumption.

If |K| = 1, then for k ∈ K the claim states E −
∑

j∈N\k cj ≤ 2E −
∑

i∈N ci. Straightforward
rewriting implies ck ≤ E, which is true as we consider restricted problems.

If |K| ≥ 2, then the claim states |K| ·E−|K| ·
∑

j∈N\K cj−(|K| − 1) ·
∑

k∈K ck ≤ 2E−
∑

i∈N ci.
Straightforward rewriting implies

(|K| − 2) · E ≤ (|K| − 2) ·
∑
i∈N

ci +
∑

j∈N\K

cj ,

which is true as
∑

j∈N\K cj ≥ 0 and
∑

i∈N ci ≥ E. Hence the Claim is proved.

By the second claim, E −
∑

i∈N mi(E, c) ≥
∑

i∈N ci − E and thus by the first claim, 0 < ci −
mi(E, c) ≤ E−

∑
i∈N mi(E, c) for all i ∈ N . Hence the revised problem

(
E −

∑
i∈N mi(E, c), c−m(E, c)

)
is a restricted problem. Moreover, the second claim implies

∑
i∈N (ci −mi(E, c)) /2 ≤ E−

∑
i∈N mi(E, c).

Note the following properties of r:

(i) ri ≥ 0 for all i ∈ N ,

(ii) ri ≤ ci − mi(E, c) for all i ∈ N , since if i /∈ K, then ri ≤ ci and if i ∈ K, then ri ≤∑
i∈N ci − E = ci −mi(E, c) ,

(iii) ri ≤
∑

i∈N ci − E =
∑

i∈N (ci −mi(E, c))−
(
E −

∑
i∈N mi(E, c)

)
for all i ∈ N ,

(iv)
∑

i∈N ri = 2 ·
(∑

i∈N ci − E
)

= 2 ·
(∑

i∈N (ci −mi(E, c))−
(
E −

∑
i∈N mi(E, c)

))
.

Hence the conditions of Corollary 3.3 are satisfied for the revised problem, which proves that
R(E, c) = m(E, c) +R

(
E −

∑
i∈N mi(E, c), c−m(E, c)

)
.

Next, since ri ≤ ci, Ri(E, c) = ci − 1
2ri ≥

1
2ci for all i ∈ N . Hence, R satisfies lower bound of

degree half.

We now prove the converse implication (ii) ⇒ (i). Let R satisfy minimal rights first and lower
bound of degree half and let (E, c) ∈ CN0 be a restricted problem. Define ri = 2 · (ci −Ri(E, c))
for all i ∈ N . We show that r = (r1, . . . , rn) satisfies the conditions of Corollary 3.3. Note the
following properties of r:

(i) ri ≥ 0 for all i ∈ N , since Ri(E, c) ≤ ci.

(ii) ri ≤ ci for all i ∈ N , since Ri(E, c) ≥ 1
2ci by lower bound of degree half.
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(iii) for all i ∈ N ,

ri = 2 · (ci −Ri(E, c)) = 2 ·

(
ci −mi(E, c)−Ri

(
E −

∑
i∈N

mi(E, c), c−m(E, c)

))

≤ 2 ·
(
ci −mi(E, c)−

1

2
(ci −mi(E, c))

)
= ci −mi(E, c),

where the second equality follows from minimal rights first and the inequality from lower
bound of degree half for the revised problem (remember the revised problem is a restricted
problem in CN0 ).

If i /∈ K, then by definition of mi(E, c), E−
∑

j 6=i cj ≤ 0. This implies ri ≤ ci ≤
∑

i∈N ci−E.

If i ∈ K, then by the first claim, ri ≤ ci −mi(E, c) =
∑

i∈N ci − E.

(iv)
∑

i∈N ri =
∑

i∈N 2 · (ci −Ri(E, c)) = 2 ·
(∑

i∈N ci − E
)
.

Since Ri(E, c) = ci − 1
2ri for all i ∈ N , Corollary 3.3 implies R(E, c) ∈ U(E, c, f).

There are three well-known rules that satisfy these two properties: the Talmud rule, the adjusted
proportional rule and the random arrival rule. The above result provides a non-cooperative support
for these three rules.

Example 3.7. Consider the restricted problem (E, c) ∈ CN0 with E = 4 and c = (3, 2, 1). For
this problem, the Talmud rule assigns the payoff vector

(
21

4 , 1
1
4 ,

1
2

)
, the adjusted proportional rule

assigns the payoff vector
(
21

5 , 1
1
5 ,

3
5

)
and the random arrival rule assigns the payoff vector

(
21

6 , 1
1
6 ,

4
6

)
.

Hence the three rules can assign a different payoff vector.

Recall that the Talmud rule (Aumann and Maschler, 1985) is the TAL-rule with parameter 1
2 .

Proposition 3.8. The Talmud rule satisfies minimal rights first and lower bound of degree half.

Proof. In Curiel et al. (1987) it is already mentioned that the Talmud rule satisfies minimal rights
first. Let

∑
i∈N ci/2 ≤ E. By definition of the Talmud rule, lower bound of degree half is satisfied.

Next, we consider the adjusted proportional rule (Curiel et al., 1987). Let ti(E, c) = min{ci, E}
be the truncation of player i and t(E, c) = (ti(E, c))i∈N . The adjusted proportional rule first assigns
minimal rights to each player. Second, each claim is revised downwards to the minimum of the
remainder and the difference between the initial claim and the minimal right. Third, the remainder
is divided proportionally to the revised claims.

Definition 3.9. For each (E, c) ∈ CN and each i ∈ N ,

Ai(E, c) = mi(E, c) +
ti

(
E −

∑
j∈N mj(E, c), c−m(E, c)

)
∑

j∈N tj

(
E −

∑
j∈N mj(E, c), c−m(E, c)

) ·
E −∑

j∈N
mj(E, c)

 .

Proposition 3.10. The adjusted proportional rule satisfies minimal rights first and lower bound
of degree half.
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Proof. Curiel et al. (1987) show that the adjusted proportional rule satisfies minimal rights first.
We show that the rule satisfies lower bound of degree half for problems with

∑
i∈N ci/2 ≤ E.

Let
∑

i∈N ci/2 ≤ E. For each i ∈ N , define λi = ci−mi(E,c)∑
i∈N (ci−mi(E,c)) . In the proof of Theorem 3.6, it

is shown that the revised problem
(
E −

∑
i∈N mi(E, c), c−m(E, c)

)
is a restricted problem. Hence

the adjusted proportional rule assigns to each player i ∈ N , mi(E, c) + λi ·
(
E −

∑
i∈N mi(E, c)

)
.

Note

mi(E, c) + λi ·

(
E −

∑
i∈N

mi(E, c)

)
= mi(E, c) + λi ·

(∑
i∈N

ci −
∑
i∈N

mi(E, c)−

(∑
i∈N

ci − E

))

= ci − λi ·

(∑
i∈N

ci − E

)

≥ ci −
ci −mi(E, c)

2 ·
(∑

i∈N ci − E
) ·(∑

i∈N
ci − E

)
=

1

2
(ci +mi(E, c))

≥ 1

2
ci,

where the first inequality follows from the second claim in the proof of Theorem 3.6.

Finally, we consider the random arrival rule (O’Neill, 1982). To define the random arrival rule,
imagine players arriving one at a time, and compensate them fully until money runs out. The
resulting payoff vector of course depends on the order in which claimants arrive. To remove the
unfairness associated with a particular order, take the arithmetic average over all orders of arrival
of the payoff vectors calculated in this way. Formally, let ΠN be the class of bijections from N into
itself.

Definition 3.11. For each (E, c) ∈ CN and each i ∈ N ,

RAi(E, c) =
1

n!

∑
π∈ΠN

min{ci,max{0, E −
∑

j∈N :π(j)<π(i)

cj}}.

Proposition 3.12. The random arrival rule satisfies minimal rights first and lower bound of degree
half.

Proof. In Curiel et al. (1987) it is already mentioned that the random arrival rule satisfies minimal
rights first. We show that the random arrival rule satisfies lower bound of degree half for problems
with

∑
i∈N ci/2 ≤ E.

Let
∑

i∈N ci/2 ≤ E. Let π ∈ ΠN and let π′ be the permutation in which the order of π is
reversed. Take i ∈ N , then it is sufficient to show that the average payoff for player i is at least
1
2ci.

Define S = {j ∈ N | π(j) < π(i)} and S′ = {j ∈ N | π′(j) < π′(i)}. Note that S ∪ S′ ∪ {i} = N
and S ∩ S′ = ∅. We distinguish three cases.

If S = ∅ or if |S| ≥ 1 and
∑

i∈S ci ≤ E − ci, then player i is fully compensated in π. Hence the
average payoff of player i over π and π′ is at least 1

2ci.
If |S| ≥ 1 and E − ci <

∑
i∈S ci < E, then player i gets a compensation of E −

∑
i∈S ci in π.

Since
∑

i∈N ci ≤ 2E,
∑

i∈S′ ci < E. So player i gets a compensation of min{ci, E −
∑

i∈S′ ci} in π′.
Since 2E −

∑
j 6=i cj ≥ ci, player i’s average payoff over π and π′ is at least 1

2ci.
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If |S| ≥ 1 and
∑

i∈S ci ≥ E, then player i gets a compensation of 0 in π. Since
∑

i∈N ci ≤ 2E,∑
i∈S′ ci ≤ E − ci. So player i is fully compensated in π′. Hence the average payoff of player i over

π and π′ is 1
2ci.

Since π and π′ are chosen arbitrarily and the random arrival rule takes the arithmetic average
over all orders of arrival, this completes the proof.

4 Sharing rules derived from the TAL-family

We still consider restricted problems with multiple integer claims. The aim of this section is to
study claim games with specific sharing rules. In particular, we restrict out attention to sharing
rules derived from the TAL-family.

The following lemma is useful for computing average gains and losses if we use a sharing rule
derived from the TAL-family.

Lemma 4.1. Let θ ∈ [0, 1]. Let (y, β,m) be a claims profile for the game (E, c, fθ). Then for all
i ∈ N and t ∈M ,

min
∆∈{1,...,βi(t)}

ALi(∆, t) =

{
ALi(βi(t), t) if θβN (t) < 1 and i ∈ P (t),
ALi(1, t) if θβN (t) ≥ 1 and i ∈ P (t),

(2)

and

max
∆∈N

AGi(∆, t) =


max{AGi(1, t), AGi(βmax(t)− βi(t), t),
AGi(βmax(t) + 1− βi(t), t)}

if θβN (t) < 1 and i /∈ Pmax(t)
AGi(1, t) otherwise .

(3)

Proof. We first prove (2). For intervals t with θβN (t) < 1, fθi (βi(t)) = θβi(t) if i /∈ Pmax(t). So the
marginal loss for player i ∈ P (t) equals θ if i /∈ Pmax(t) and is strictly larger than θ if i ∈ Pmax(t).
Thus, the marginal loss either decreases or remains constant as i decreases his claim on t. Hence
in all such situations, the minimum average loss is obtained when i reduces his claim to zero, i.e.,
∆ = βi(t).

On the other hand, if θβN (t) ≥ 1 then the marginal loss for player i ∈ P (t) never decreases
as i decreases his claim on t such that θβN (t) ≥ 1. Moreover, the marginal loss is at most θ if
θβN (t) ≥ 1 and at least θ if θβN (t) < 1. These two observations combined imply that the minimum
average loss on those intervals is equal to the marginal loss for player i, i.e., ∆ = 1.

We next prove (3). If θβN (t) < 1 and i /∈ Pmax(t) then the maximum average gain on the
interval is either the marginal gain (in case θ (βN (t) + βmax(t)− βi(t)) ≥ 1), or the average gain of
increasing the claim to βmax(t) (such that i shares the remainder of 1− θ (βN (t) + βmax(t)− βi(t))
with the other players j ∈ Pmax(t)), or the average gain of increasing his claim to βmax(t) + 1 (such
that i is the only player with the largest claim and thus has no incentive to increase his claim any
further).

In all other situations, where either i ∈ Pmax(t) (no incentive to add more than 1 to his claim)
or θβN (t) ≥ 1 (marginal gain can only decrease if i increases his claim), the maximum average gain
is equal to the marginal gain of player i.

Remember every rule in the TAL-family is identified by a single parameter θ. In the ensuing
subsections we consider the sharing rules fθ for θ ∈ [1

2 , 1] (among which the Talmud and constrained
equal awards rule), θ = 0 (constrained equal losses rule), and θ ∈ (0, 1

2).
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4.1 Constrained equal awards and Talmud

Let θ ∈ [1
2 , 1]. In this subsection we analyze the game (E, c, fθ). Recall that among these sharing

rules, we have the Talmud sharing rule and the constrained equal awards sharing rule.
Let (y, β,m) be a claims profile. Note that if |P (t)| = 1, then fθi (β(t)) = 1 for i ∈ P (t). And

if |P (t)| ≥ 2 for t ∈ M , then the constrained equal awards rule with θβ(t) as entitlements is used
to determine the shares. As θ ≥ 1

2 , this implies that the interval is equally divided among the
claimants. Thus, for each i ∈ N and each t ∈M :

fθi (β(t)) =

{
1
|P (t)| if i ∈ P (t),

0 otherwise.

In words, each positively claimed interval is equally divided among those who put a positive
claim on it. Therefore, the following lemma, which states that in an NEP each interval is claimed
at most once by a player, does not come as a surprise.

Lemma 4.2. Let (y, β,m) be an NEP. Then βi(t) ∈ {0, 1} for every i ∈ N and t ∈M .

Proof. Let (y, β,m) be an NEP. Suppose, contrary to what we wish to prove, that βi(t) > 1 for
some i ∈ N and some t ∈ M . Since ci ≤ E, there exists an interval t′ ∈ M with βi(t

′) = 0. Since
ALi(1, t) = 0 and AGi(1, t

′) > 0, we obtain a contradiction with Lemma 3.1.

Since on each interval t each player has a claim of at most 1 in equilibrium, we end up in the
same situation as considered by O’Neill (1982). We obtain the following theorem.

Theorem 4.3. Let θ ∈ [1
2 , 1] and let (y, β,m) be a claims profile for the restricted problem (E, c) ∈

CN . Equivalent are:

(i) (y, β,m) is an NEP in (E, c, fθ).

(ii) |P (t)| ∈ {k, k + 1}, where k =
⌊∑

i∈N ci
E

⌋
, and βi(t) ∈ {0, 1} for all t ∈M and i ∈ N .

Proof. Suppose (y, β,m) is an NEP in (E, c, fθ). Since
∑

i∈N ci ≥ E, every part is claimed posi-
tively by at least one player. Lemma 4.2 implies that every player puts at most claim 1 on each
interval. Consider interval t with the minimum number of claimants and let k = |P (t)|. It is suffi-
cient to show that each interval has either k or k+1 claimants. Suppose, contrary to what we wish to
prove, that there exists an interval t′ ∈M on which the total claim is at least k+2. If player i with
βi(t

′) = 1 claims (a part of) t instead of t′, his net gain will be at least 1
k+1 −

1
k+2 = 1

(k+1)(k+2) > 0,
which is a contradiction.

For the converse implication, suppose there exists a k ∈ N such that for all t ∈ M , |P (t)| ∈
{k, k + 1} and βi(t) ∈ {0, 1} for every i ∈ N . Then for all t ∈ M , ALi(1, t) ≥ 1

k+1 for i ∈ P (t),

and either AGi(1, t) ≤ 1
k+1 for i /∈ P (t) or AGi(1, t) = 0 if i ∈ P (t). Hence (1) in Lemma 3.1 is

satisfied: this claims profile is an NEP.

We refer to the set of equilibrium payoffs in Theorem 4.3 as U(E, c, fCEA). So U(E, c, fCEA) =
U(E, c, fθ) for all θ ∈ [1

2 , 1].
The result that the total claim on each interval is either k or k+1, is similar to the result found

by Atlamaz et al. (2011) for the proportional case. In that case, however, it is possible that a player
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puts two claims on the same interval, which does not happen in the above equilibria. Hence, the set
of NEPs for the constrained equal awards rule is a subset of the set of NEPs for the proportional
rule. Moreover, if βi(t) ∈ {0, 1} for every i ∈ N , then the same payoffs are generated. Thus, we
have the following result.

Corollary 4.4. Let (E, c) ∈ CN be a restricted problem. Then

U(E, c, fCEA) ⊆ U(E, c, fP ).

In order to describe the associated payoff vectors, recall that k =
⌊∑

i∈N ci
E

⌋
. The length of the

part with total claim k + 1 is equal to
∑

i∈N ci − kE and the length of the part that with total
claim k is equal to (k + 1)E −

∑
i∈N ci. To find the payoff of each player, let ri denote the part

of player i’s claim invested in intervals with total claim k + 1. Then, ci − ri is put on intervals
with total claim k. Clearly, 0 ≤ ri ≤ ci, ri ≤

∑
i∈N ci − kE and the sum of all ri should equal

(k + 1) ·
(∑

i∈N ci − kE
)
. On the other hand, ci − ri ≤ (k + 1)E −

∑
i∈N ci. Summarizing, each

NEP corresponds to a vector (r1, . . . , rn) such that
∑

i∈N ri = (k + 1) ·
(∑

i∈N ci − kE
)

and for
each i ∈ N ,

max{0,
∑
i∈N

ci + ci − (k + 1)E} ≤ ri ≤ min{ci,
∑
i∈N

ci − kE}.

Conversely, each such vector gives rise to an NEP: distribute parts of the entitlement with sizes
ri, i ∈ N , on the interval [0,

∑
i∈N ci − kE] such that each part is claimed by an amount of at

most 1 and each part is claimed by exactly k + 1 players; and distribute the remaining parts of
the entitlements ci − ri on the interval [

∑
i∈N ci − kE,E] such that each part is claimed by an

amount of at most 1 and each part is claimed by exactly k players. Although there are many NEPs
associated with the same vector (r1, . . . , rn), the corresponding payoff vector is the same for all of
them, namely v = (vi)i∈N , given by

vi =
ri

k + 1
+
ci − ri
k

=
ci
k
− ri
k(k + 1)

for each i ∈ N . This implies that the set of payoff vectors attainable by NEPs is determined by
linear inequalities and, in particular, is a polytope.

Example 4.5. Consider the restricted problem (E, c) with E = 4, n = 4, and c = (4, 3, 2, 1). For
this problem, k = 2 and r1 +r2 +r3 +r4 = 6, where r1 = 2, 1 ≤ r2 ≤ 2, 1 ≤ r3 ≤ 2 (since 0 ≤ r3 < 1
contradicts with r1 + r2 + r3 + r4 = 6) and 0 ≤ r4 ≤ 1. Hence, in an NEP in (E, c, fCEA) player
1’s payoff is 12

3 , player 2’s payoff is in [11
6 , 1

1
3 ], player 3’s payoff is in [2

3 ,
5
6 ], and player 4’s payoff

is in [1
3 ,

1
2 ]. An example of such a claims profile is represented in Figure 3. The corresponding

equilibrium payoffs are given by
(
12

3 , 1
1
6 ,

5
6 ,

1
3

)
.
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1 2 30

2 3

3 4

t = 1 t = 2 t = 3 t = 4 4

1 1 1 1

2 2

Figure 3: An illustration of a Nash equilibrium claims profile (y, β,m) for problem (E, c) with
E = 4 and c = (4, 3, 2, 1). Here r1 = 2, r2 = 2, r3 = 1 and r4 = 1.

4.2 Constrained equal losses

In this subsection we analyze the game (E, c, fCEL). For every t ∈M we write Pmax(t) = {i ∈ N |
βi(t) = βmax(t)} for the set of players with maximal claim on t ∈ M . Since βi(t) ∈ N for every
i ∈ P (t), only players i ∈ Pmax(t) obtain a positive share from interval t when the constrained
equal losses sharing rule is applied. Observe the resemblance with a first-price auction in which the
winners have equal probability to win the object. Formally, for every i ∈ N and t ∈M :

fCELi (β(t)) =

{
1

|Pmax(t)| if P (t) 6= ∅ and i ∈ Pmax(t),

0 otherwise.

For the next two lemmas, let claims profile (y, β,m) be an NEP of (E, c, fCEL). The first lemma
implies that every part is claimed by at most two different players.

Lemma 4.6. |Pmax(t)| ∈ {1, 2} for every t ∈M .

Proof. Since βN (t) ≥ 1 for all t ∈M , we suppose |Pmax(t)| ≥ 3 for t ∈M and derive a contradiction.
Consider a player i with βi(t) = βmax(t). Then ALi(1, t) = 1

|Pmax(t)| and AGi(1, t) = 1 − 1
|Pmax(t)| .

Since |Pmax(t)| ≥ 3, the marginal loss is smaller than the marginal gain, which contradicts Lemma
3.1.

The second lemma states that no player puts a claim higher than 1 on an interval.

Lemma 4.7. βi(t) ∈ {0, 1} for every i ∈ N and every t ∈M . Consequently, |Pmax(t)| = |P (t)| for
every t ∈M .

Proof. The proof is by contradiction. Suppose there exists an interval t ∈M with βmax(t) ≥ 2. By
Lemma 4.6, |Pmax(t)| ∈ {1, 2}. We derive a contradiction for both cases.

Suppose |Pmax(t)| = 1 and consider player i ∈ Pmax(t) with βi(t) ≥ 2. If |P (t)| = 1, then
player i can reduce his claim on t without loss and achieve a positive gain by placing this free claim
sufficiently often on a part of the estate for which he is not yet the sole winner. If |P (t)| > 1, then
player j ∈ P (t) \ Pmax(t) can reduce his claim on t without any loss and put βmax(t) claims on a
subinterval of t such that he gains a positive amount.

19



Suppose that |Pmax(t)| = 2 with βi(t) = βj(t) ≥ 2 for i, j ∈ Pmax(t) and i 6= j. Then for
i ∈ Pmax(t), ALi(βi(t), t) = 1

2βi(t)
and AGi(1, t) = 1

2 . Since βi(t) ≥ 2, we obtain a contradiction
with Lemma 3.1.

Since βi(t) ∈ {0, 1} for all i ∈ N and t ∈ M , the second statement of the lemma follows
immediately.

The main result of this subsection is the following theorem, which presents a full characterization
of the NEPs.

Theorem 4.8. Let (y, β,m) be a claims profile for the restricted problem (E, c) ∈ CN . Equivalent
are:

(i) (y, β,m) is an NEP in (E, c, fCEL).

(ii) |P (t)| ∈ {1, 2} and βi(t) ∈ {0, 1} for all t ∈M and i ∈ N .

Proof. Suppose (y, β,m) is an NEP in (E, c, uCEL). Lemmas 4.6 and 4.7 imply that |P (t)| ∈ {1, 2}
and βi(t) ∈ {0, 1} for every i ∈ N and all t ∈M .

Conversely, assume that |P (t)| ∈ {1, 2} and βi(t) ∈ {0, 1} for all for all t ∈M and i ∈ N .
If |P (t)| = 1, then player i ∈ P (t) with fi(β(t)) = 1 is never able to gain by changing his claim

on t.
If |P (t)| = 2, then ALi(1, t) = 1

2 for i ∈ P (t). On the other hand, for all t′ ∈M , AGi(1, t
′) ≤ 1

2
(where 1

2 can be obtained if |P (t′)| = 1 and i /∈ P (t′) or if |P (t′)| = 2 and i ∈ P (t′)) and
AGi(2, t

′) = 1
2 for i /∈ P (t′). Hence by Lemma 3.1, the claims profile constitutes an NEP.

Theorem 4.8 shows that the set of NEPs when using the constrained equal losses rule is a
subset of the equilibria found for the constrained equal awards rule, which was again a subset of
the equilibria found for the proportional rule. Moreover, since βi(t) ∈ {0, 1} for every i ∈ N , all
three rules result in the same payoff vectors. We have the following result.

Corollary 4.9. Let (E, c) ∈ CN be a restricted problem. Then

U(E, c, fCEL) ⊆ U(E, c, fCEA) ⊆ U(E, c, fP ).

Another consequence of the Theorem 4.8 is an existence condition for NEP.

Corollary 4.10. An NEP exists in the game (E, c, fCEL) if and only if
∑

i∈N ci/2 ≤ E.

Proof. The only-if part follows from Theorem 4.8. For the if-part, note that if
∑

i∈N ci/2 ≤ E,
we can iteratively, from left to right, put the claim of each player on a part of the estate which is
not claimed yet and start over again on the left if the total claim on every part of the estate is 1.
Since we consider restricted problems, we will end up with a claim profile satisfying the conditions
of Theorem 4.8.
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4.3 Remaining sharing rules from the TAL-family

In this subsection we consider the game (E, c, fθ) with θ ∈ (0, 1
2).

If θ ∈ [1
3 ,

1
2), then the induced sharing rule is different from the sharing rule with θ ∈ [1

2 , 1], but
we do obtain the same set of NEPs. (We omit the formal proof, in which the main observation is
that if |P (t)| = 2 for t ∈M , then βi(t) ≤ 2 for all i ∈ N and otherwise βi(t) ≤ 1 for all i ∈ N and
all t ∈M . This is mainly due to the constrained equal awards part of these rules.)

Lemma 4.11. Any rule in the TAL-family with θ ∈ [1
3 , 1] results in the same set of NEPs and in

the same set of equilibrium payoffs in the game (E, c, fθ), equal to U(E, c, fCEA).

The only claim games that we have not discussed yet, are those associated with problems with∑
i∈N ci/2 > E and a sharing rule fθ with θ ∈ (0, 1

3). We first provide partial answers to the ques-
tion of existence of NEPs for these kind of games. Later, we provide an example that illustrates
that we might need a different characterization for these NEPs (in case they exist).

The next lemma provides a sufficient condition for existence of an NEP. In particular, un-
der this condition there is an NEP (y, β,m) with βN (t) ∈ {k, k + 1} and βi(t) ∈ {0, 1} for all
i ∈ N .

Lemma 4.12. Let (E, c) ∈ CN\CN0 be a restricted problem and let θ ≥ k2−k−1
k3−k , where k =

⌊∑
i∈N ci
E

⌋
.

Then there exists an NEP in (E, c, fθ).

Proof. Let (y, β,m) be a claims profile such that for all t ∈M , |P (t)| ∈ {k, k+1} and βi(t) ∈ {0, 1}
for all i ∈ N . Note for all i ∈ N , ALi(1, t) = 1

k for all t ∈ M with |P (t)| = k, and ALi(1, t) = 1
k+1

for all t ∈M with |P (t)| = k + 1.

In order to prove that condition (1) of Lemma 3.1 is satisfied, we consider two cases: k2−k−1
k3−k ≤

θ < 1
k+1 and θ ≥ 1

k+1 .

Suppose k2−k−1
k3−k ≤ θ < 1

k+1 . If t ∈ M is such that |P (t)| = k. Then by Lemma 4.1, it is

sufficient to note that for all i ∈ P (t), AGi(1, t) = (1− θ(k − 1)) − 1
k (≤ 1

k+1 , since θ ≥ k2−k−1
k3−k ),

and for all i /∈ P (t), AGi(1, t) = 1
k+1 and AGi(2, t) = 1−θk

2 (≤ 1
k+1 , since θ ≥ k2−k−1

k3−k ).
If t ∈ M is such that |P (t)| = k + 1. Then by Lemma 4.1, it is sufficient to note that for all

i ∈ P (t), AGi(1, t) = (1− θk)− 1
k+1 (≤ 1

k+1 , since θ ≥ k2−k−1
k3−k ), and for all i /∈ P (t), AGi(1, t) = 1

k+2

and either AGi(2, t) = 1−θ(k+1)
2 (< 1

k+1 , since θ ≥ k2−k−1
k3−k and obtained if θ(k + 2) < 1) or there is

no additional gain for placing a second claim (obtained if θ(k + 2) ≥ 1).

Suppose θ ≥ 1
k+1 . If t ∈ M is such that |P (t)| = k, then by Lemma 4.1, it is sufficient to

note that for all i ∈ P (t), AGi(1, t) ≤ 2
k+1 −

1
k <

1
k+1 (where equality is obtained if θ = 1

k+1), and

for all i /∈ P (t), AGi(1, t) = 1
k+1 and there is no additional gain for placing a second claim.

If t ∈ M is such that |P (t)| = k + 1, then by Lemma 4.1, it is sufficient to note that for all
i ∈ P (t), AGi(1, t) = 0, and for all i /∈ P (t), AGi(1, t) = 1

k+2 .

Hence in both cases Lemma 3.1 implies that the claims profile is an NEP.

A consequence of Lemma 4.12 is that if θ ≥ 5
24 – which is the maximum attained by k2−k−1

k3−k ,
namely for k = 3 – then there always exists an NEP.
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The following example shows that an NEP need not exist for claim games with θ ∈ (0, 1
6).

Example 4.13. Consider the claim game (E, c, fθ), with θ ∈ (0, 1
6), with E = 1 and c = (1, 1, 1).

We show that no NEP exists.
To the contrary, suppose that (y, β,m) is an NEP. Clearly, βN (t) > 0 for all t. We prove the

following three claims.

Claim. There is no t ∈M with βN (t) = 3.

Proof. Suppose t ∈M is such that βN (t) = 3. We show that for all three possible cases there exists
a player for which (1) (in Lemma 3.1) does not hold.

If βi(t) = 3 for i ∈ P (t), then there is t′ ∈ M with βi(t) = 0. Since ALi(1, t) = 0 and
AGi(1, t

′) > 0, we obtain a contradiction with Lemma 3.1.
If βi(t) = 2 and βj(t) = 1 for i, j ∈ P (t) with i 6= j, then ALj(t) = θ and AGj(t) = 1

2 − θ. Since
0 < θ < 1

6 , this contradicts with Lemma 3.1.
If βi(t) = 1 for all i ∈ P (t), then for i ∈ P (t), ALi(1, t) = 1

3 and AGi(1, t) = (1− 2θ)− 1
3 = 2

3−2θ.
Since 2

3 − 2θ > 1
3 for 0 < θ < 1

6 , Lemma 3.1 is violated.

Claim. There is no t ∈M with βN (t) = 2.

Proof. Suppose t ∈M is such that βN (t) = 2. We show that for both possible cases there exists a
player exists for which (1) (in Lemma 3.1) does not hold.

If βi(t) = 2 for i ∈ P (t), then there is t′ ∈ M with βi(t) = 0. Since ALi(1, t) = 0 and
AGi(1, t

′) > 0, we obtain a contradiction with Lemma 3.1.
If βi(t) = 1 for i ∈ P (t), then for i ∈ P (t), AGi(1, t) = (1− θ) − 1

2 = 1
2 − θ and for i /∈ P (t),

AGi(1, t) = 1−2θ
2 = 1

2 − θ. It remains to show that there exists an interval t′ and a player i ∈ N for
which the average loss on t′ is strictly less than 1

2−θ. Since
∑

i∈N ci = 3 and βN (t) = 2, there exists
t′ ∈M with βN (t′) ≥ 4. If there is a player i /∈ Pmax(t′), then ALi(1, t) ≤ θ and since θ < 1

2 − θ for
0 < θ < 1

6 , we are done.
So we may assume P (t′) = Pmax(t′). Since βN (t′) = |Pmax(t′)| · βmax(t′) ≥ 4, we have

ALi(βmax(t′), t′) = 1
|Pmax(t′)|·βmax(t′) ≤

1
4 for i ∈ Pmax(t′). Since 1

4 < 1
2 − θ for 0 < θ < 1

6 ,
Lemma 3.1 is violated.

Claim. There is no t ∈M with βN (t) = 1

Proof. Suppose t ∈M is such that βN (t) = 1. We derive a contradiction to (1) in Lemma 3.1.

Consider player i ∈ N with βi(t) = 0. Since ci = 1, there exists t′ ∈ M with βi(t
′) ≥ 2.

Note that βN (t′) > βi(t
′), otherwise player i could reduce his claim on t′ without any loss and place

it on t, and thus fi(β(t′)) < 1. But then ALi(2, t
′) < 1

2 , while AGi(1, t) = 1
2 . Hence the Claim is

proved.
Above three claims imply that βN (t) ≥ 4 for each t, which is clearly impossible. Hence, no NEP

exists.

From the results in this section, it is clear that there is no general extension for the charac-
terization of NEPs to restricted problems with

∑
i∈N ci/2 > E. So far, we have seen that the set
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of equilibrium payoffs may differ (compare the games (E, c, fCEA) and (E, c, fP )) or may even be
empty (see the game (E, c, fCEA)). The following example shows that if we consider the game
(E, c, fθ) with θ = 1

4 , we yet get a different equilibrium payoff vector.

Example 4.14. Consider the four-player problem (E, c) with E = 2 and c = (2, 1, 2, 1). Consider
the claims profile represented in Figure 4: player 1 claims [0, 1] twice and player 2 claims [0, 1]
once; and player 3 claims [1, 2] twice and player 4 claims [1, 2] once. This claims profile satisfies

the condition in Lemma 3.1 for θ = 1
4 and thus is an NEP in (E, c, f

1
4 ). The corresponding payoff

vector is
(

3
4 ,

1
4 ,

3
4 ,

1
4

)
. Note that since k = 3 and R = 0 (with k and R as in Subsection 4.1), the

unique equilibrium payoff vector in the game (E, c, fCEA) or in the game (E, c, fP ) is
(

2
3 ,

1
3 ,

2
3 ,

1
3

)
,

hence
(

3
4 ,

1
4 ,

3
4 ,

1
4

)
/∈ U(E, c, fP ).

0

1

1

2

1

3

3

4

t = 1 t = 2 2

Figure 4: An illustration of a Nash equilibrium claims profile (y, β,m) for (E, c, fθ), where θ = 1
4 ,

with E = 2 and c = (2, 1, 2, 1). Notice that both player 1 and 3 claim an interval twice although
R = 0.

The following example shows that the payoff vector from the Talmud rule, or from the adjusted
proportional rule, or from the random arrival rule does not need to result in an equilibrium payoff
vector in the games (E, c, fCEA) or (E, c, uP ) if

∑
i∈N ci/2 > E.

Example 4.15. Consider the restricted problem (E, c) with n = 4, E = 4, and c = (4, 3, 2, 1), cf.
Example 4.5. The unique equilibrium payoff of player 1 in (E, c, fCEA) or in (E, c, fP ) equals 12

3 ,
while T =

(
11

4 , 1
1
4 , 1,

1
2

)
, A =

(
13

5 , 1
1
5 ,

4
5 ,

2
5

)
and RA =

(
1 7

12 , 1
1
4 ,

3
4 ,

5
12

)
.

5 Restricted problems and arbitrary claims

We still consider restricted problems. For a claims profile (y, β,m) in (E, c), we now assume that
βi : M → R+ for all i ∈ N . In particular, Lemma 3.1 no longer applies.

Recall that the uniform claims profile is the claims profile in which each player puts a claim
of size ci

E on the complete interval [0, E]. Also recall that the payoffs assigned by any rule from
the TAL-family or by the proportional rule to the estate division problem (E, c) are equal to the
payoffs in the claim game associated with that rule under the uniform claims profile.

In the ensuing subsections we consider, respectively, the constrained equal awards, constrained
equal losses, and Talmud sharing rules.
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5.1 Constrained equal awards

In this subsection we analyze the game (E, c, fCEA), cf. Definition 2.2. The first lemma shows that
the uniform claims profile is an NEP.

Lemma 5.1. The uniform claims profile (y, β, 1) is an NEP in (E, c, fCEA).

Proof. Consider player i ∈ N , then either uCEAi (y, β, 1) = ci or uCEAi (y, β, 1) < ci. In the former
case, it is impossible for i to improve. In the latter case, because of the uniform claims profile,
βi(t) > λ for all t ∈ M (with λ as in Definition 2.2). This implies that player i cannot gain by
deviating. So (y, β, 1) is an NEP.

The following example shows that the uniform claims profile is not necessarily the unique NEP.

Example 5.2. Consider the two-player problem (E, c) with E = 2 and c = (13
4 ,

3
4). Suppose player

1 puts a claim of 3
4 on [0, 1] and a claim of 1 on [1, 2]; and player 2 puts a claim of 1

2 on [0, 1] and
a claim of 1

4 on [1, 2]. This claims profile is an NEP, although it is not the uniform claims profile.
Observe that λ = 1

2 on [0, 1] and λ = 3
4 on [1, 2], so that the associated payoffs are (11

4 ,
3
4). These

are the same payoffs the players obtain if the constrained equal awards rule is applied to (E, c).

In this example the equilibrium payoffs are equal to the payoffs assigned by the constrained
equal awards rule. The following theorem shows that this is true in general.

Theorem 5.3. All NEPs result in the same payoffs, equal to the payoffs assigned by the constrained
equal awards rule.

Proof. Suppose (y, β,m) is an NEP in (E, c, fCEA). Suppose there exists a player i ∈ N and
t, t′ ∈ M with βi(t) > λ and βi(t

′) < λ. We derive a contradiction. If i decreases his claim on t to
λ, he will not incur any loss. However, since βi(t

′) < λ, increasing his claim on t′ leads to a positive
gain, which contradicts the NEP assumption.

So in an NEP, we have two sets of players: let J denote the set of players with βj(t) ≥ λ for all
t ∈M , where at least one of the inequalities is strict, and let N \ J denote the set of players with
βi(t) ≤ λ for all t ∈M .

Note that for all t ∈M , fCEAj (β(t)) = λ for all j ∈ J , and fCEAi (β(t)) = βi(t) for all i ∈ N \ J .
In other words, all players i ∈ N \ J receive exactly their claim. All players j ∈ J receive the same
payoff, which is at least as much as the players i ∈ N \ J , but strictly less than their claim. This
is precisely the payoff each player obtains from the constrained equal awards rule applied to the
estate division problem (E, c).

5.2 Talmud

In this subsection we analyze the game (E, c, fT ): see Definition 2.4 for the definition of fT = f
1
2 .

We consider two cases: estate division problems with
∑

i∈N ci/2 > E and those with
∑

i∈N ci/2 ≤
E. We start with the former case.

Theorem 5.4. Let (E, c) ∈ CN \ CN0 be a restricted problem. Then all NEPs result in the same
payoffs, equal to the payoffs assigned by the Talmud rule to (E, c).
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Proof. Suppose (y, β,m) is an NEP. Recall that βN (t) ≥ 1 for all t ∈ M . Let J denote the set of
players with 1

2βj(t) > λ for some t ∈ M with βN (t) ≥ 2. Since βN (t) > 2 for some t ∈ M , there
exists a player j ∈ P (t) with 1

2βj(t) > λ, which shows that J 6= ∅. We first prove the statement for
|J | = 1 and afterwards for |J | ≥ 2.

Suppose that |J | = 1. Since j ∈ J can reduce his claim on t to λ without any loss (since the
constrained equal awards rule is applied on this interval), it should not be possible for him to gain
a positive amount from an increase in claim on a different interval t′ 6= t.

If βN (t′) ≥ 2, this implies that 1
2βj(t

′) ≥ λ for j ∈ J , and that 1
2βi(t

′) ≤ λ for all i ∈ N \ {j} by
definition of J .

If βN (t′) < 2, this implies by similar arguments that 1
2βj(t

′) ≥ µ for j ∈ J , while for all other
players i ∈ N \ {j}, we have that 1

2βj(t
′) ≤ µ, as otherwise j ∈ J could increase his claim on t′

with a positive gain.
Hence in equilibrium every player i ∈ N \ {j} receives half of his claim, whereas the remainder,

which is at least as much as the payoff of every i ∈ N \ {j}, is for player j. These are the same
payoffs the players obtain if the Talmud rule is applied to the original estate division problem.

Suppose that |J | ≥ 2. First, we will argue that βN (t) ≥ 2 for all t ∈ M . By definition of the set
J , for every player j ∈ J there exists an interval t ∈ M with βN (t) ≥ 2 and 1

2βj(t) > λ. On this
interval t, j can reduce his claim to λ without any loss (again because of the constrained equal
awards rule). Since we consider an NEP, this means that it must not be possible for j to gain from
an increase on any other interval.

Suppose there exists a t′ ∈ M with βN (t′) < 2. If there is at most one player j ∈ J with
1
2βj(t

′) ≥ µ, then one of the other players in J gains a positive amount by increasing his claim on
t′. If there are at least two players from J with 1

2βj(t
′) ≥ µ, then then either of these players gains

a positive amount by increasing his claim on t′. Since we consider an NEP, these intervals can not
exist in equilibrium.

Next we show that 1
2βj(t) ≥ λ for all j ∈ J and for all t ∈ M . Suppose, contrary to what

we wish to prove, that 1
2βj(t

′) < λ for some t′ ∈ M . Since j can reduce his claim on some t 6= t′

without any loss, he can make a positive gain by increasing his claim on t′. This is a contradiction.
Hence in equilibrium, for all t ∈M , 1

2βj(t) ≥ λ for all j ∈ J and 1
2βi(t) ≤ λ for all i ∈ N \ J by

definition of J . This means that all players i ∈ N \ J receive half of their claim on every interval,
while all players j ∈ J receive an equal amount which is at least as much as what the players in
N \ J receive. Again, these payoffs are equal to the payoffs assigned by the Talmud rule to the
original estate division problem.

The following lemma is convenient for finding the equilibrium payoffs in case
∑

i∈N ci/2 ≤ E.
It is the analogue of Lemma 5.12.

Lemma 5.5. Let (E, c) ∈ CN0 be a restricted problem. For every NEP in (E, c, fT ) there exists a
payoff-equivalent NEP such that |P (t)| ≤ 2 and βi(t) = 1 for all t ∈M and i ∈ P (t).

Proof. Let (y, β,m) be an NEP. We will show that we can redistribute the claims on every interval
t ∈M such that |P (t′)| ≤ 2 and βi(t

′) = 1 for all i ∈ P (t′), for every subinterval t′ of t, but without
changing any player’s total share of the interval t. This generates a new finer claim profile which
is still an NEP.

Observe that βN (t) ≥ 1 for all t ∈ M , and that βi(t) = 1 for i ∈ P (t) if |P (t)| = 1. Thus for
this lemma, we only consider intervals with two or more claimants.
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Suppose there is some t ∈ M with βN (t) > 2. There can only be one player j with 1
2βj(t) > λ

(otherwise one of such players can gain by increasing his claim on t′ 6= t with βN (t′) < 2). Because
j can reduce his claim to λ without any loss and since we consider an NEP, j can increase his claim
on any t′ 6= t without any gain. As

∑
i∈N ci/2 ≤ E, it is thus possible to redistribute j’s claims

such that all t ∈M satisfy βN (t) ≤ 2 but without changing the shares of the players.
Thus, w.l.o.g., we can assume that all t ∈M satisfy 1 ≤ βN (t) ≤ 2. For all t ∈M , divide P (t)

into two different groups. Let J(t) denote the set of players j for who βj(t) − µ > 1
2βj(t), then

P (t) \ J(t) is the set of players i for who βi(t) − µ ≤ 1
2βi(t). This means that the share of player

j ∈ J(t) is equal to βj(t)− µ and the share of player i ∈ P (t) \ J(t) is equal to 1
2βi(t), where

µ =
1

|J(t)|

 ∑
j∈J(t)

βj(t) +
∑

i∈P (t)\J(t)

1

2
βi(t)− 1

 if J(t) 6= ∅.

We show that for some yt−1 < α < yt, we can reshuffle all the claims on (yt−1, yt) such that on
every subinterval of (yt−1, α) there is a claim of 1 by two players, on every subinterval of (α, yt) there
is a claim of 1 by one player, and all shares of players i ∈ P (t) remain unchanged. The procedure
we use here is similar to the way we describe the payoffs in Corollary 3.3, using the vector r, only
now applied to the specific interval t. Since βN (t) (yt − yt−1) = 2 (α− yt−1) + (yt − α), we have
α = yt−1 + (βN (t)− 1) (yt − yt−1).

Let xj = 2µ for all j ∈ J(t) and xi = βi(t) for all i ∈ P (t) \ J(t) denote the part of the
claim distributed on (yt−1, α) such that on every part there is a claim of 1 by two players, and let
βj(t)− xj for all j ∈ J(t) be distributed on (α, yt) such that on every part there is a claim of 1 by
one player.

In order to see that we have a feasible redistribution, note the following properties:

(i) 2µ ≥ 0.

(ii) 2µ < βj(t) for all j ∈ J(t), since βj(t)− µ > 1
2βj(t).

(iii) If |J(t)| ≥ 1, then βi(t) ≤ 2µ ≤ βN (t) − 1 for all i ∈ P (t) \ J(t). Since βj(t) ≤ 1 for
j ∈ J(t) if |J(t)| = 1 and (|J(t)| − 1)βN (t)−

∑
j∈J(t) βj(t) ≥ (|J(t)| − 2)βN (t) ≥ (|J(t)| − 2)

if |J(t)| ≥ 2.

(iv)
∑

i∈P (t) xi =
∑

j∈J 2µ+
∑

i∈P (t)\J βi(t) = 2 (βN (t)− 1).

Moreover, the share of player j ∈ J(t) is

1

2
xj + βj(t)− xj = βj(t)− µ,

and for player i ∈ P (t) \ J(t) it is
1

2
xi =

1

2
βi(t).

If we reshuffle every interval in the above way, we end up with an equilibrium claims profile without
changing the shares of the players.

We are now able to describe the payoffs associated with every NEP. If
∑

i∈N ci/2 > E, then
Theorem 5.4 applies, which means that the equilibrium payoffs are equal to the payoffs from the
Talmud rule. If

∑
i∈N ci/2 ≤ E, by Lemma 5.5 all NEP payoffs can be found by only using intervals

with either one or two claimants. Hence the set of payoff vectors is equal to the set in Corollary
3.3.
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5.3 Constrained equal losses

In this subsection we analyze the game (E, c, fCEL), cf. Definition 2.3. The following example
shows that the uniform claims profile is not always an NEP.

Example 5.6. Consider the three-player problem (E, c) with E = 4 and c = (4, 2, 1). The payoffs
in the uniform claims profile are (3, 1, 0). If player 3 puts claim 1 on [0, 1] instead, he receives payoff
1
2 . Thus, the uniform claims profile is not an NEP in (E, c, fCEL).

The following lemma provides a necessary condition for an NEP in the game (E, c, fCEL).

Lemma 5.7. Let (y, β,m) be an NEP. Then βN (t)− βmin(t) ≤ 1 for all t ∈M .

Proof. Let t ∈ M . The statement trivially holds in case |P (t)| = 1. For the other cases, we argue
by contradiction.

Suppose that βN (t) − βmin(t) > 1, which implies that |P (t)| ≥ 2. We will show that a player
i ∈ P (t) with βi(t) = βmin(t) can gain by deviating. Observe that in an NEP: fj(β(t)) > 0 for
all j ∈ P (t). Otherwise, a player j with fj(β(t)) = 0 could put his claim on a sufficiently small
subinterval of t in order to gain a positive amount. Let i divide t into two equally large intervals.
We will now show that i can transfer an amount of r from his claim on the first half to the second
half, such that his share on the first half equals zero but without changing anyone’s total share of
the interval (including his own share). The remaining claim on the first half can then be used to
increase his total share of t, since the marginal loss on the first half after the transfer is zero.

Since the losses are equally distributed among all claimants, the decrease in claim on the first
half, leads to a decrease in µ (with µ as in Definition 2.3) at a constant rate of 1

|P (t)| . On the second

half, the increase in claim increases µ at a constant rate of 1
|P (t)| , until some claimant’s share drops

to zero. We will show that during this procedure all claimants’ shares remain positive on the second
half, which implies that the total share of every player on t stays the same. To this end, see Figure
5.

At the point r = r∗ = |P (t)|(βi(t)−µ)
|P (t)|−1 , we see that µ1(r) – i.e., the new value of µ on the first half

after a transfer of r – intersects with the line βi(t) − r. This means that we are at the point at
which the share of player i dropped to zero on the first half. In order to see what happens on the
second half, note that

µ2(r∗) =
1

|P (t)|
r∗ + µ =

βi(t)

|P (t)| − 1
+

(|P (t)| − 2)µ

|P (t)| − 1
.

In view of the right-hand side of the expression, we will first treat the case |P (t)| = 2 separately.
If |P (t)| = 2 with βi(t) = βj(t) > 1 for i, j ∈ P (t), then µ2(r∗) = βi(t) = βj(t) – where µ2(r) is,

analogously, the new value of µ on the second half. This implies that the share of player j dropped
to zero on the second half after the transfer, which means that i has a share of 1 on the second
half and j has a share of 1 on the first half. Notice that the remaining claim of µ1(r∗) = βi(t)− 1
on the first half can be placed on a sufficiently small subinterval of the first half such that i gains a
positive amount on this first half as well. This, however, means that i is able to gain by deviating,
which is a contradiction.

On the other hand, if |P (t)| = 2 with βi(t) < βj(t) for i, j ∈ P (t) or if |P (t)| ≥ 3 then
µ2(r∗) < βj(t) for all j ∈ P (t) \ i. This means that the share of every player j ∈ P (t) \ i remains
positive on the second half after the transfer of i. This conclusion is obvious for |P (t)| = 2 with
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r

βi(t)

βi(t)

µ

µ1(r)

µ2(r)
µ2(r∗)

r∗0

Figure 5: An illustration of the level of µ on the first and second half of t. The value of r represents
the amount of claim transferred from the first to the second half of t. The line µ1(r) denotes the
level of µ on the first half of t and the line µ2(r) denotes the level of µ on the second half of t. The
line βi(t)− r represents the amount of claim of player i left on the first half of the interval. Notice
that the slope of µ1(r) is −1

|P (t)| until r∗ and the slope of µ2(r) is 1
|P (t)| until r∗.

βi(t) < βj(t), since then µ2(r∗) = βi(t) < βj(t). For |P (t)| ≥ 3, notice that it is sufficient to show
that µ2(r∗) < βi(t) (as βi(t) ≤ βj(t) for all j ∈ P (t) \ i), which is equivalent to showing µ < βi(t).
This is true since fj(β(t)) > 0 for all j ∈ P (t), thus in particular for player j himself.

In order to show that i can actually gain by deviating, observe that since µ1(r∗) = βN (t)−βi(t)−1
n−1 >

0 by assumption, player i could decrease his claim by an additional positive, but sufficiently small,
amount of r on the first half without any loss, while having a marginal gain of 1 − 1

|P (t)| on the

second half. This contradicts that (y, β,m) is an NEP.

As a corollary to the previous lemma, we obtain a necessary and sufficient condition for the
uniform claims profile to be an NEP.

Corollary 5.8. The uniform claims profile is an NEP in (E, c, fCEL) if and only if
∑

i∈N ci −
mini∈Nci ≤ E.

Proof. If the uniform claims profile is an NEP, then Lemma 5.7 implies
∑

i∈N
ci
E −mini∈N

ci
E ≤ 1,

which is the only-if statement. For the if-part, suppose that
∑

i∈N ci −mini∈Nci ≤ E and consider
the uniform claims profile. The average gain of any increase on an interval is at most n−1

n , as
the increased loss is equally divided among all players as long as the shares remain positive. The
average loss of a decrease is at least n−1

n by similar arguments. Hence, no player has a profitable
deviation.

The following theorem gives a full description of every possible NEP. We restrict our attention
to those estate division problems with

∑
i∈N ci > E. The reason for this is that if

∑
i∈N ci = E

then in equilibrium every interval t ∈ M satisfies βN (t) = 1, which means that everyone receives
his claim.
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Theorem 5.9. Let (y, β,m) be a claims profile for the restricted problem (E, c) ∈ CN with
∑

i∈N ci >
E. Then the following statements are equivalent:

(i) (y, β,m) is an NEP in (E, c, fCEL).

(ii) Let k = max{ |P (t)| | t ∈M}. Then k ≥ 2 and the following three conditions are satisfied:

(a) For all t ∈M , if |P (t)| < k, then βN (t) = 1.

(b) For all t ∈ M , if |P (t)| = k and P (t) = P (t′) for all t′ ∈ M with |P (t′)| = k, then
1− βmin(t) ≤ βN (t)− βmin(t) ≤ 1.

(c) For all t ∈ M , if |P (t)| = k and P (t) 6= P (t′) for some t′ ∈ M with |P (t′)| = k, then
βN (t)− βmin(t) = 1.

Proof. For the implication (i)⇒ (ii), let (y, β,m) be an NEP in (E, c, fCEL) and define k as in (ii).
Observe that since a player can not be the sole winner of every interval, βN (t) = 1 if |P (t)| = 1.
This implies that k ≥ 2 and that we only need to consider intervals t ∈ M with |P (t)| ≥ 2. By
Lemma 5.7 and since βN (t) ≥ 1 for all t ∈M , we have that all t ∈M with |P (t)| ≥ 2 satisfy

1− βmin(t) ≤ βN (t)− βmin(t) ≤ 1. (4)

This proves (b).
Lemma 5.7 only considers deviations within a specific interval. The following claim, which is

used to prove (a) and (c), considers deviations between two different intervals. For the remainder
of this proof, we denote β(1)(t) ≥ β(2)(t) ≥ . . . ≥ β(|P (t)|)(t) > 0 for all t ∈M .

Claim. Let there exists a player i ∈ P (t′), i /∈ P (t), where t, t′ ∈ M with 2 ≤ |P (t′)| ≤ |P (t)|
satisfy (4) with βN (t′) > 1. Then

∑|P (t′)|−1
i=1 β(i)(t) ≥ 1.

Proof of claim. In an NEP, player i is not able to gain by putting some of his claim of interval t′

on interval t. The average loss of a sufficiently small decrease in claim on t′ equals 1− 1
|P (t′)| .

The best player i can do on t is to place a claim such that µ = β(|P (t′)|)(t), meaning that at
most |P (t′)| − 1 other players have a positive share left. Player i cannot do better, since a further
increase would lead to a marginal gain of at most 1− 1

|P (t′)| , whereas placing a lower claim would

mean that the opportunity of a marginal gain of at least |P (t′)|
|P (t′)|+1 will be ignored. More precisely,

let player i put a claim of size βi(t) = |P (t′)|β(|P (t′)|)(t) −
∑|P (t′)|−1

j=1 β(j)(t) + 1 on a δ-fraction of

t, where 0 < δ ≤ 1 is chosen such that the average loss on t′ does not exceed |P (t′)|−1
|P (t′)| . His loss in

payoff from t′ is then equal to the total amount of claim needed times the average loss:

βi(t)δ(yt − yt−1)

(
1− 1

|P (t′)|

)
=|P (t′)|β(|P (t′)|)(t)−

|P (t′)|−1∑
j=1

β(j)(t) + 1

 δ(yt − yt−1)
|P (t′)| − 1

|P (t′)|
.

Since µ = β(|P (t′)|)(t), the gain in payoff from t is equal to

(βi(t)− µ) δ(yt − yt−1) =

(|P (t′)| − 1)β(|P (t′)|)(t)−
|P (t′)|−1∑
j=1

β(j)(t) + 1

 δ(yt − yt−1).
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Since the loss in payoff must be at least as large as the gain in payoff, we get after tedious rewriting:

|P (t′)|−1∑
i=1

β(i)(t) ≥ 1.

This completes the proof of the Claim.

For (a), suppose that βN (t′) > 1 for t′ ∈ M with |P (t′)| < k. We will derive a contradiction.
Consider an interval t with |P (t)| = k. Observe that there cannot be a player i ∈ P (t′) ∩ P (t)
(since then his marginal loss on t′ would be smaller than his marginal gain on t). So there exists a

player i ∈ P (t′), i /∈ P (t). From the claim,
∑|P (t′)|−1

j=1 β(j)(t) ≥ 1. This, however, contradicts with
(4), since

βN (t)− βmin(t) =
k−1∑
j=1

β(j)(t) =

|P (t′)|−1∑
j=1

β(j)(t) +
k−1∑

j=|P (t′)|

β(j)(t) ≥ 1 +
k−1∑

j=|P (t′)|

β(j)(t) > 1.

Hence we have shown (a).
For (c), note that all t ∈M with |P (t)| < k satisfy βN (t) = 1. This combined with

∑
i∈N ci > E,

implies that there exists an interval t′ ∈M with |P (t′)| = k and
∑

i∈P (t′) βi(t
′) > 1. Consider such

an interval t′ together with an interval t ∈ M with |P (t)| = k and P (t′) 6= P (t). Then there is a
player i such that i ∈ P (t′) and i /∈ P (t). Combining the result of the claim with (4) implies that

βN (t)− βmin(t) =
k−1∑
j=1

β(j)(t) = 1,

which shows (c).
For the implication (ii)⇒ (i), suppose that the claim profile satisfies the conditions of (ii). It

is sufficient to check that players have no incentive to deviate from intervals t ∈M with |P (t)| = k
(since for all other intervals the marginal loss equals 1, as βN (t) = 1). Due to Lemma 5.7 it is not
profitable to deviate within the same interval, as the loss of removing ∆ is at least k−1

k ∆ (since

the losses are equally divided) and the gain of placing it elsewhere is at most k−1
k ∆. By similar

arguments, it follows that there is also no incentive do deviate to an interval with a smaller or equal
number of claimants.

So the only interesting case arises if there is a player i ∈ P (t), i /∈ P (t′) where t′ ∈ M with
|P (t′)| = k. As the minimum average loss on t equals k−1

k , the most profitable claim to put on t′ is
the claim which assures that each player j ∈ P (t′) with βj(t

′) = βmin(t′) gets a share of zero. An
additional increase in claim results in a marginal gain of at most k−1

k and is thus not profitable.

A lower claim does not take the marginal gain of k
k+1 into account, which means that the claim is

not the most profitable one. More precisely, the claim needs to have a size of kβmin(t′), as then
µ = βmin(t). The total gain on t′ then equals (k − 1)βmin(t′), whereas the total loss is at least
k k−1

k βmin(t′). This proves that no profitable deviation between intervals is possible.

The following corollary presents the existence condition for an NEP.

Corollary 5.10. The game (E, c, fCEL) has an NEP if and only if
∑

i∈N ci/2 ≤ E.

30



Proof. Let (y, β,m) be an NEP. If |P (t)| = 1, then βN (t) = 1. If |P (t)| ≥ 2, we have by Lemma
5.7 that βN (t) − βmin(t) ≤ 1 for all t ∈ M . So |P (t)|βmin(t) − βmin(t) ≤ βN (t) − βmin(t) ≤ 1,
which implies that βmin(t) ≤ 1

|P (t)|−1 and thus βN (t) ≤ 1 + 1
|P (t)|−1 ≤ 2. Together this implies that∑

i∈N ci =
∑

t∈M βN (t) ≤ 2E.
Suppose

∑
i∈N ci/2 ≤ E. We construct an NEP in the following way: every player puts a claim

of 0 or 1 on every interval, and the total claim on every interval is 1 or 2. If we distribute the
entitlements iteratively from left to right and start again on the left for the second claims, then one
can check that the claims profile satisfies the conditions of Theorem 5.9.

Remark 5.11. We can also use Lemma 5.7 to derive an upper bound on the number of claimants
on an interval in an equilibrium as in Corollary 5.10. If

∑
i∈N ci = E, then βN (t) = 1 for all

t ∈ M in equilibrium, and only n is an upper bound. Now let ` ∈ R, ` > 1 be such that(
1 + 1

`

)
E <

∑
i∈N ci ≤ 2E. Then ` is an upper bound, which can be seen as follows. If |P (t)| = 1,

then clearly |P (t)| < `. If |P (t)| ≥ 2, we have by Lemma 5.7 that βN (t) ≤ 1+βmin(t) ≤ 1+ 1
|P (t)|−1

for all t ∈M . This implies that(
1 +

1

`

)
E <

∑
i∈N

ci =
∑
t∈M

βN (t) ≤
(

1 +
1

|P (t)| − 1

)
E,

which in turn implies |P (t)| ≤ `.

In order to be able to describe the equilibrium payoffs, we show that in equilibrium any interval
can be redistributed such that the payoffs for the players remain unchanged and only intervals with
one or two claimants are used.

Lemma 5.12. For every NEP in (E, c, fCEL) there exists a payoff-equivalent NEP such that
|P (t)| ≤ 2 and βi(t) = 1 for all t ∈M and i ∈ P (t).

Proof. Let (y, β,m) be an NEP. We will show that we can redistribute the claims on every interval
t ∈M such that |P (t′)| ≤ 2 and βi(t

′) = 1 for all i ∈ P (t′), for every subinterval t′ of t, but without
changing a player’s total share of the interval t. This generates a new finer claim profile which is
still an NEP.

We only need to consider intervals t ∈ M with |P (t)| ≥ 2, since βi(t) = 1 for i ∈ P (t) if
|P (t)| = 1. By Lemma 5.7, every interval t with |P (t)| ≥ 2 satisfies the following inequality:
1− βmin(t) ≤ βN (t)− βmin(t) ≤ 1. The share of each player i ∈ P (t) for such an interval is

fi(β(t)) = βi(t)−
βN (t)− 1

|P (t)|
.

We show that for some α with yt−1 < α < yt, we can reshuffle all the claims on (yt−1, yt) such
that on each subinterval of (yt−1, α) there is a claim of 1 by two players, on each subinterval of
(α, yt) there is a claim of 1 by one player, and all shares of players i ∈ P (t) remain unchanged. The
procedure we use here is similar to the way we describe the payoffs in Corollary 3.3, using the vector
r, only now applied to the specific interval t. Since βN (t) (yt − yt−1) = 2 (α− yt−1) + (yt − α), we
have α = yt−1 + (βN (t)− 1) (yt − yt−1).

Let xi = 2(βN (t)−1)
|P (t)| for i ∈ P (t) denote the part of the claim of player i distributed on (yt−1, α)

such that on every part there is a claim of 1 by two players, and let βi(t) − xi be distributed on
(α, yt) such that on every part there is a claim of 1 by one player.

In order to see that we have a feasible redistribution, note the following properties:
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(i) xi = 2(βN (t)−1)
|P (t)| ≥ 0.

(ii) xi = 2(βN (t)−1)
|P (t)| ≤ βN (t)−1 ≤ βmin(t) ≤ βi(t), where the first inequality follows since |P (t)| ≥ 2

and the second inequality follows from Lemma 5.7.

(iii)
∑

i∈P (t) xi = 2(βN (t)− 1).

Moreover, the share of player i ∈ P (t) is

1

2
xi + βi(t)− xi = βi(t)−

1

2
xi = βi(t)−

βN (t)− 1

|P (t)|
= fi(β(t)).

If we reshuffle every interval in the above way, we end up with an equilibrium claim profile without
changing the shares of the players.

Lemma 5.12 makes it possible to describe the payoffs associated with NEPs: all these payoffs
can be found by only using intervals with either one or two claimants. Hence the set of payoff
vectors is equal to the set found in Corollary 3.3.

6 Unrestricted problems

In this section we discuss NEPs for unrestricted problems. That is, players i ∈ N may have
entitlements with ci > E.

6.1 Constrained equal awards

If the constrained equal awards rule is used as sharing rule and we assume integer claim heights,
then we obtain the following lemma, which says that in equilibrium every player with an entitlement
of at least the estate, puts a claim of 1 on the entire estate.

Lemma 6.1. Let (y, β,m) be an NEP. If ci ≥ E for player i, then βi(t) ≥ 1 for all t ∈M .

Proof. Let (y, β,m) be an NEP. Suppose, to the contrary, that player i does not claim interval
t ∈ M . Since ci ≥ E, there exists an interval t′ ∈ M with βi(t

′) ≥ 2. The net gain of removing a
claim amount of 1 from t′ and putting it on (a part of) t is positive, which contradicts that (y, β,m)
is an NEP.

Hence, under integer claims, every player i with ci ≥ E claims the estate once and is indifferent
where to put his remaining claims, as this remainder does not affect his nor his opponents’ payoffs.
So in fact, we are allowed to ignore the part of the entitlement that is above the amount of the
estate without changing the equilibrium outcome. Therefore, we can solve the unrestricted problem
as a restricted problem where the entitlement of every player i with ci ≥ E is equal to E. For the
analysis of these problems see Subsection 4.1. We obtain the following theorem.

Theorem 6.2. Under integer claims, U(E, c, fCEA) = U(E, c′, fCEA), where c′i = min{ci, E} for
all i ∈ N .

Also if arbitrary claims are allowed, both the restricted and unrestricted problems result in the
same analysis: all NEPs result in the same payoffs, equal to the payoffs assigned by the constrained
equal awards rule. Hence, Theorem 5.3 still applies.
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6.2 Talmud rule

If the Talmud rule is used as sharing rule in the game with integer claims, then recall that this rule
is equal to the constrained equal awards sharing rule. Thus, the same analysis applies.

In case of arbitrary claims, we obtain the following theorem.

Theorem 6.3. If there is a player i with ci > E, then all NEPs result in the same payoffs, equal
to the payoffs assigned by the Talmud rule.

Proof. Note that if
∑

i∈N ci/2 > E, the presence or absence of a player i with ci > E does not
make a difference for the analysis in Theorem 5.4. Hence this result still holds.

If
∑

i∈N ci/2 ≤ E, then a player i with ci > E puts a claim of 1 on the entire estate, so that
the share of each player j ∈ N \ {i} is at most 1

2βj(t) for every t ∈M . Since
∑

j∈N cj ≤ 2E, every

player j ∈ N \ {i} is able to assure a share of 1
2βj(t) on all t ∈ M , so that in equilibrium every

player j ∈ N \ {i} receives 1
2cj and i receives E−

∑
i∈N\{i}

1
2ci. This is precisely what every player

obtains if the Talmud rule is applied to the estate division problem.

6.3 Constrained equal losses

If the constrained equal losses rule is used as sharing rule, the main observation is that no NEP
exists if there is some player i with ci > E, independent of whether we consider integer or arbitrary
claims.

Theorem 6.4. If there is a player i with ci > E, then the game (E, c, fCEL) with integer or with
arbitrary claims has no NEP.

Proof. We first prove the statement for integer claims and afterwards for arbitrary claims.
Let player i have ci > E, and suppose that (y, β,m) is an NEP in the game with integer claims.

We derive a contradiction. It can be checked that Lemmas 4.6 and 4.7 also apply for unrestricted
problems, which implies that in equilibrium βj(t) ≤ 1 for all j ∈ N and all t ∈M . However, since
ci > E for player i, there must exist some interval t ∈M with βi(t) > 1. This is a contradiction.

Next, let again player i have ci > E, and suppose that (y, β,m) is an NEP in the game with
arbitrary claims. We again derive a contradiction. Note that βN (t) = 1 if |P (t)| = 1, as a free
claim can always be used to gain a positive amount somewhere else. Lemma 5.7 (which can be
seen to hold also for unrestricted problems) implies that βj(t) ≤ 1 for all j ∈ N and all t ∈M with
|P (t)| ≥ 2. However, since ci > E for player i, there must exist some interval t ∈M with βi(t) > 1.
This is a contradiction.

7 Summary and conclusion

We have analyzed the estate division problem as a non-cooperative game, in which every player uses
his entitlement to claim specific parts of the estate. Every part is then distributed based on these
integer valued or arbitrary claims, according to a sharing rule. We have investigated the payoffs
associated with the equilibrium outcomes of this game. Our first main result is an axiomatic result
for restricted claim games with

∑
i∈N ci/2 ≤ E. We characterize the set of equilibrium payoffs

under four fairly general axioms and show that all rules always resulting in an equilibrium payoff
satisfy minimal rights first and lower bound of degree half. Examples are the Talmud rule, the
adjusted proportional rule and the random arrival rule.
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Restricted and Restricted, Restricted, Unrestricted and
integer claims arbitrary claims and arbitrary claims and integer claims∑

i∈N ci/2 ≤ E
∑

i∈N ci/2 > E

fCEA vi = ci
k −

ri
k(k+1) CEA-payoff CEA-payoff Solve (E, c′, fCEA),

(Subsection 4.1) (Theorem 5.3) (Theorem 5.3) where c′i = min{ci, E}
(Theorem 6.2)

fT vi = ci
k −

ri
k(k+1) vi = ci − ri

2 Talmud-payoff Solve (E, c′, fT ),

(Lemma 4.11) (Lemma 5.5) (Theorem 5.4) where c′i = min{ci, E}

fCEL vi = ci − ri
2 vi = ci − ri

2 No NEPs No NEPs
(Corollary 3.3) (Lemma 5.12) (Corollary 5.10) (Corollary 6.4)

Table 1: A summary of the equilibrium payoffs for the three main sharing rules for different
problems. For clarification, we refer to the corresponding references.

Then we turn to claim games with sharing rules derived from the TAL-family. These results are
summarized in Table 1. The first (most left) column describes the possible NEP payoffs in integer
claim games associated with restricted problems. The payoff from the CEL sharing rule arises from
taking k = 1: NEPs exist if and only if

∑
i∈N ci ≤ 2E. For all restricted problems (E, c) ∈ CN , we

have the following relation between the different sets of equilibrium payoffs:

U(E, c, fCEL) ⊆ U(E, c, fCEA) = U(E, c, fT ) ⊆ U(E, c, fP ).

The second column maintains the condition
∑

i∈N ci ≤ 2E, but allows for arbitrary claims. This
does not essentially affect the payoffs under CEL or Talmud, but for CEA all payoffs coincide with
the payoffs assigned by the CEA rule to the original estate division problem. The third column
concerns arbitrary claims under the condition

∑
i∈N ci/2 > E. The fourth column collects some

results for unrestricted problems.
In future research, the present analysis may be extended to still other rules, e.g., the ICI

(containing the TAL-family) and CIC classes in Thomson (2008). An interesting open question is
whether a rule exists that results in an equilibrium payoff for problems with

∑
i∈N ci/2 > E.
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