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We analyze the question of how to distribute the asset value of an insolvent firm among 
its creditors and the firm itself. Compared to standard bankruptcy games as studied in 
the game-theoretic literature, we treat the firm as a player and define a new class of 
transferable utility games called liability games. We show that the core of a liability game 
is empty. We analyze the nucleolus of the game. The firm always gets a positive payment, 
at most equal to half of the asset value. Creditors with higher liabilities receive higher 
payments, but also suffer from higher deficiencies. We provide conditions under which the 
nucleolus coincides with a generalized proportional rule.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

It is often the case that insolvent agents agree with their creditors to decrease the value of their liabilities by reducing 
the principal, restructuring the payments, or getting longer maturities. For each liability, the difference between the value of 
the old liability and the legally binding, but lower level of new liability is called the deficiency on the liability. For sovereign 
defaults, about 30-40% deficiency is documented by Arslanalp and Henry (2005), D’Erasmo (2011), and Benjamin and Wright 
(2009).

Insolvent agents can be either countries, states, firms, individuals, or other organizations. Throughout the paper, we will 
stick to the term firm. A liability problem consists of an insolvent firm and a group of creditors. The question is how to 
distribute the asset value of the firm among the creditors and the firm itself. A liability rule assigns a vector of payments 
to the creditors and the firm. Payment vectors should satisfy non-negativity as the firm has limited liability and no creditor 
should be asked to pay, liabilities boundedness as the firm does not pay in excess of its liabilities, and efficiency meaning 
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that the sum of the payments should be equal to the firm’s asset value. We introduce generalized proportional rules, 
assigning a particular non-negative payment to the firm and distributing the remainder in proportion to the liabilities.

Sturzenegger and Zettelmeyer (2007) and Chatterjee and Eyigungor (2015) note that there is no settled theory for the 
renegotiations concerning the distribution of the asset value of the firm, but creditors may join ad hoc committees in order 
to be paid first. Our approach is to use cooperative game theory to model the formation of ad hoc committees by creditors. 
The advantage of this approach is that it does not require us to specify the details of the renegotiation process.

Compared to standard bankruptcy games as studied in the game-theoretical literature, see O’Neill (1982) for a seminal 
contribution and Thomson (2013, 2015) for recent surveys, we introduce the firm as an explicit player. The worth of a 
coalition is given by what the members of a coalition can guarantee for themselves, irrespective of what outsiders do. More 
specifically, given a coalition and its complement, using its asset value the firm first makes payments to the coalition it 
belongs to, up to the value of the liabilities in the firm’s coalition, and then pays to the complementary coalition. The 
resulting transferable utility game is called a liability game.

We show that the core of a liability game is empty. In this case, a solution concept which minimizes the complaints of 
the coalitions is a natural candidate for a liability rule. One way of minimizing the complaints is to do so lexicographically, 
which brings us to the nucleolus (Schmeidler, 1969). A second reason for studying the nucleolus is that it plays a prominent 
role in bankruptcy games. We want to analyze how the predictions of the nucleolus change as soon as the estate is treated 
as a player.

We have two results where the nucleolus behaves the same way in liability games as in bankruptcy games. First, we show 
that the nucleolus satisfies the properties required for a liability rule: efficiency, non-negativity, and liabilities boundedness. 
Second, creditors with higher claims get higher payments, but there is also higher deficiency on higher liabilities.

In bankruptcy games, the entire estate is allocated to the claimants and the nucleolus coincides with the Talmud rule 
(Aumann and Maschler, 1985). In liability games, at the nucleolus, the insolvent firm always gets a positive payment and we 
provide conditions under which the nucleolus coincides with a generalized proportional rule. Treating the bankrupt agent 
as a player, therefore, makes a significant difference.

The rest of the paper is organized as follows. In Section 2 we define and illustrate liability problems and liability games 
and show that the core is empty. In Section 3 we analyze the nucleolus. In Section 4 we present conditions under which 
the nucleolus coincides with a generalized proportional rule. Section 5 contains the conclusion.

2. Liability problems and liability games

Let N = {0, 1, . . . , c} denote the set of agents, where agent 0 is a firm having a set of creditors C = {1, . . . , c}. The firm 
has asset value A ∈R+ and liabilities � ∈RC+ , with �i ∈R+ the liability to creditor i ∈ C . Given a subset of creditors S ⊆ C , 
we use the notation �(S) = ∑

i∈S �i for the total liabilities of S .
The question is how to distribute the asset value of the firm among the creditors and the firm itself. In answering it, 

we construct a particular transferable utility game. Since the definition of this transferable utility game does not change if 
liabilities larger than the asset value are replaced by the asset value itself, we restrict the analysis to the case where all 
liabilities are less than or equal to the asset value.2 Also, to avoid discussing trivial cases, we assume that the asset value is 
insufficient to honor all the creditors, that is, the firm is insolvent.

Definition 2.1. A liability problem is a pair (A, �) ∈ R+ ×RC+ such that, for every i ∈ C , �i ≤ A, and �(C) > A. Let L be the 
class of liability problems.

The definition of a liability problem (A, �) ∈ L implies that A > 0 and that there are at least two positive liabilities, that 
is, c ≥ 2.

Given a liability problem (A, �) ∈ L, a payment vector is x ∈ R+ × RC+ satisfying liabilities boundedness and efficiency.
Liabilities boundedness means that no creditor i ∈ C receives more than his claim, so xi ≤ �i . Efficiency requires that the 
sum of the payments should be equal to the asset value: 

∑
i∈N xi = A. Note that non-negativity and efficiency imply that 

payments to the firm are also bounded from above, x0 ≤ A.
A liability rule is a function that assigns a payment vector to each liability problem.

Definition 2.2. A liability rule is a function f : L → RN+ such that, for every (A, �) ∈ L, for every i ∈ C , f i(A, �) ≤ �i , and ∑
i∈N fi(A, �) = A.

The agents in our model can form coalitions in bargaining over the eventual payment vector. A coalition is an element 
of 2N , the collection of all subsets of N . The worth of a non-empty coalition S ∈ 2N is equal to what the members of S can 
guarantee for themselves, irrespective of what outsiders do. If 0 ∈ S , then the worth of coalition S is obtained by having the 
firm pay its liabilities to its creditors within the coalition, up to the asset value, before paying the liabilities of outsiders. If 

2 For the case where the firm is not treated as a player, truncation of liabilities by the asset value is necessary and sufficient for a division rule to be a 
game-theoretic decision rule, see Theorem 5 of Curiel et al. (1987).
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Table 1
The induced liability game when N = {0, 1, 2}, A = 12, �1 = 6, and 
�2 = 9.

S {0} {1} {2} {0,1} {0,2} {1,2} {0,1,2}
v(S) 0 3 6 6 9 12 12

0 /∈ S , then the members of coalition S can only guarantee for themselves what is left after the firm has paid its liabilities 
to creditors not in S .

Definition 2.3. Let (A, �) ∈L be a liability problem. The induced liability game v : 2N →R is defined by setting, for S ∈ 2N ,

v(S) =
{

min{A, �(S \ {0})}, if 0 ∈ S,

max{0, A − �(C \ S)}, if 0 /∈ S.

As an illustration of liability games, consider the following example.

Example 2.4. Consider the liability problem with two creditors, so N = {0, 1, 2}, A = 12, and � = (6, 9). The induced liability 
game v is illustrated in Table 1.

To analyze the properties of liability games, we need the following definitions. For a transferable utility game v : 2N →R
and a non-empty coalition D ∈ 2N , the subgame v D with player set D is obtained by restricting v to subsets of D . The game 
is additive if for all S ∈ 2N we have v(S) = ∑

i∈S v({i}), constant sum (von Neumann and Morgenstern, 1944) if for all S ∈ 2N

we have v(S) + v(N \ S) = v(N), convex (Shapley, 1971) if for all S, T ∈ 2N we have v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ), 
superadditive if for all S, T ∈ 2N such that S ∩ T = ∅ we have v(S) + v(T ) ≤ v(S ∪ T ), and zero-monotonic if for all i ∈ N , for 
all S ⊆ N \ {i}, we have v(S) + v({i}) ≤ v(S ∪ {i}).

Remark 2.5. Let (A, �) ∈ L be a liability problem and let v be the induced liability game. Then we can make the following 
three observations. By considering player 0 and a creditor i ∈ C with �i > 0, we get that v({0, i}) > v({0}) + v({i}), so v is 
not additive. It is also straightforward to verify that v is constant sum and superadditive, the latter implying that it is also 
zero-monotonic. For the set of creditors C , the subgame vC corresponds to the transferable utility game defined by O’Neill 
(1982) for standard bankruptcy problems, which is shown to be convex by Curiel et al. (1987).

Let a game v ∈ G be given. An allocation is a vector x ∈RN . The allocation x yields a total payoff of x(S) = ∑
i∈S xi to the 

members of coalition S ∈ 2N . The set of pre-imputations of a game v is equal to I∗(v) = {x ∈RN |x(N) = v(N)}. The addition 
of individual rationality constraints leads to the set of imputations I(v) = {x ∈ I∗(v)| for every i ∈ N, xi ≥ v({i})}. The core
of the game v (Gillies, 1959) is given by Core(v) = {x ∈ I∗(v)| for every S ∈ 2N , x(S) ≥ v(S)}.

In Example 2.4, it is easily seen that the core of the game is empty. The following theorem shows that this is a general 
phenomenon.

Theorem 2.6. Let (A, �) ∈L be a liability problem and let v be the induced liability game. Then Core(v) = ∅.

Proof. Suppose Core(v) �= ∅ and let x ∈ Core(v). Since v is constant sum by Remark 2.5, for all S ∈ 2N we have v(S) + v(N \
S) = v(N). Since x(N) = x(S) + x(N \ S) = v(N), we get that v(S) − x(S) + v(N \ S) − x(N \ S) = 0. Since x ∈ Core(v), this 
implies that v(S) = x(S) for all S ∈ 2N , which can only hold if v is additive. This contradicts v not being additive as argued 
in Remark 2.5. �
3. The nucleolus as a liability rule

By Theorem 2.6, the core of a liability game is empty, so for any imputation there is a coalition which objects to it. 
A solution concept which minimizes the complaints of the coalitions is then a natural candidate for a liability rule. In 
the analysis of transferable utility games, it is common to minimize the complaints lexicographically, which brings us to 
the well-known concept of the nucleolus (Schmeidler, 1969). A second reason for studying the nucleolus is that it plays 
a prominent role in bankruptcy games. We want to verify how the incorporation of the estate as a player influences the 
properties of the nucleolus.

We define N = 2N \ {∅, N} as the collection of all non-empty coalitions that are proper subsets of the grand coalition. 
The excess e(S, x) of coalition S ∈ N at an allocation x ∈ RN is given by e(S, x) = v(S) − x(S). Let e(x) ∈RN be the vector 
of excesses at x, indexed by S ∈ N . The lexicographic order �lex is the complete order on R|N | defined as follows. For 
x, y ∈ R|N | it holds that x �lex y if and only if either x = y or there exists a number k′ ∈ {1, . . . , |N |} such that, for every 
k < k′ , xk = yk , and xk′ < yk′ . We have that x ≺lex y if and only if x �lex y and x �= y. The coordinate ordering mapping 
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Table 2
The excesses at x = (1, 4, 7) in Example 2.4.

S {0} {1} {2} {0,1} {0,2} {1,2}
e(S, (1,4,7)) -1 -1 -1 1 1 1

θ : RN �→ R|N | is defined such that it arranges the coordinates of a vector x ∈ RN in a weakly decreasing order. The 
nucleolus of a game v is given by

Nu(v) = {x ∈ I(v)| for every y ∈ I(v), θ(e(x)) �lex θ(e(y))}. (3.1)

If we replace the set of imputations I(v) by the set of pre-imputations I∗(v) in (3.1), then we obtain the pre-nucleolus
Nu∗(v) of the game. As shown in Schmeidler (1969), the sets Nu(v) and Nu∗(v) are singletons. From now on, we will 
therefore treat them as vectors rather than sets.

Remark 3.1 is used to analyze the nucleolus. It follows easily from Remark 2.5.

Remark 3.1. Let (A, �) ∈ L be a liability problem and let v be the induced liability game. For every S ∈ N , for every 
pre-imputation x ∈ I∗(v), it holds that e(S, x) + e(N \ S, x) = 0.

Consider the payment vector x = (1, 4, 7) in Example 2.4, so with a positive payoff of 1 for the firm. The excesses at 
(1, 4, 7) for coalitions S ∈ N are shown in Table 2. As stated in Remark 3.1, the sum of the excesses of a coalition and its 
complement is equal to zero.

The sum of the excesses of the two-player coalitions at any pre-imputation is v({0, 1}) + v({0, 2}) + v({1, 2}) − 2x(N) =
27 − 24 = 3. The highest excess of any of the two-player coalitions is therefore at least equal to 1 and any pre-imputation 
different from (1, 4, 7) will lead to some two-player coalition having an excess strictly above 1. It follows that the pre-
nucleolus Nu∗(v) = (1, 4, 7). Since the pre-nucleolus is an imputation, it coincides with the nucleolus.

Definition 3.2. Let (A, �) ∈ L be a liability problem and x ∈ RN+ be a payment vector. Given a creditor i ∈ C , the deficiency
on liability �i is given by di(A, �, x) = �i − xi .

In Example 2.4, the firm, even though it is insolvent, gets a positive payment of 1 at the nucleolus. The deficiency on 
both liabilities is equal to 2.

Next, we show that the pre-nucleolus satisfies individual rationality and liabilities boundedness.

Theorem 3.3. Let (A, �) ∈L be a liability problem and let v be the induced liability game. Then v({0}) ≤ Nu∗
0(v) and, for every i ∈ C , 

it holds that v({i}) ≤ Nu∗
i (v) ≤ �i .

Proof. The game v is superadditive and therefore zero-monotonic by Remark 2.5. Then it follows from Maschler et al. 
(1979) that, for every i ∈ N , v({i}) ≤ Nu∗

i (v).
Let x = Nu∗(v). We show that, for every i ∈ C , xi ≤ �i . Suppose i ∈ C is such that xi > �i . We define y ∈ RN by yi = �i , 

and, for every j ∈ N \ {i}, y j = x j + (xi −�i)/c. Note that y ∈ I(v) since yi = �i ≥ v({i}), for every j ∈ N \ {i}, y j > x j ≥ v({ j}), 
and y(N) = A.

We show next that θ(e(y)) ≺lex θ(e(x)) by partitioning N in pairs and showing that the ordered excesses of each 
pair are lexicographically improved when replacing x by y. For every non-empty proper subset S of N \ {i}, it holds that 
e(S, x) > e(S ∪ {i}, x) since v(S ∪ {i}) − v(S) ≤ �i and xi > �i . The pair of excesses at y is given by

e(S, y) = v(S) − y(S) = v(S) − x(S) − |S|(xi − �i)

c
,

e(S ∪ {i}, y) = v(S ∪ {i}) − y(S ∪ {i}) = v(S ∪ {i}) − x(S) − |S|(xi − �i)

c
− �i .

We have that e(S, y) < e(S, x) and e(S, y) − e(S ∪ {i}, y) = v(S) − v(S ∪ {i}) + �i ≥ 0. Thus for all the pairs of coalitions 
considered so far, we have lexicographically improved the ordered excesses when replacing the imputation x by the impu-
tation y.

The final pair of coalitions to consider is {i} and N \ {i}. We have that

e({i}, x) = max{0, A − �(C \ {i})} − xi < max{0, A − �(C \ {i})} − �i = e({i}, y).

Since �(C) > A, it follows that e({i}, y) ≤ 0. By Remark 3.1, we now get that e(N \ {i}, x) = −e({i}, x) > 0 and e(N \ {i}, x) >
e(N \ {i}, y) ≥ 0. Thus also this pair of ordered excesses is lexicographically improved when x is replaced by y. It follows 
that θ(e(y)) ≺lex θ(e(x)), a contradiction to x being the nucleolus. Consequently, it holds that, for every i ∈ C , xi ≤ �i . �
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Since the pre-nucleolus satisfies individual rationality by Theorem 3.3, the pre-nucleolus coincides with the nucleolus 
and from now on we will restrict attention to the nucleolus. By Definition 2.3 it follows immediately that, for every i ∈ N , 
v({i}) ≥ 0, and 

∑
i∈N Nui(v) = v(N) = A. Hence it follows from Theorem 3.3 that we can use the nucleolus as a liability 

rule.
Next, we derive properties of the payment vector generated by the nucleolus. We start by analyzing the asset value that 

the firm is allowed to keep after making its payments. To do so, we first study the vector of excesses in more detail.

Lemma 3.4. Let (A, �) ∈ L be a liability problem, let v be the induced liability game, and let x = Nu(v). For every S ⊆ T ⊂ C , we 
have:

1. If �(T ) ≤ A, then e({0} ∪ S, x) ≤ e({0} ∪ T , x) and e(C \ S, x) ≥ e(C \ T , x).
2. If �(S) ≥ A, then e({0} ∪ S, x) ≥ e({0} ∪ T , x) and e(C \ S, x) ≤ e(C \ T , x).

Proof. Part 1. �(T ) ≤ A.
By Definition 2.3, we have that

e({0} ∪ S, x) = v({0} ∪ S) − x({0} ∪ S) = min{A, �(S)} − x({0} ∪ S) = �(S) − x({0} ∪ S).

Similarly, e({0} ∪ T , x) = �(T ) − x({0} ∪ T ). It follows that

e({0} ∪ T , x) − e({0} ∪ S, x) = �(T \ S) − x(T \ S) ≥ 0,

where the inequality follows since the nucleolus satisfies liabilities boundedness by Theorem 3.3. Now e(C \ S, x) ≥ e(C \T , x)
follows from Remark 3.1.

Part 2. �(S) ≥ A.
By Definition 2.3, we have that

e({0} ∪ S, x) = v({0} ∪ S) − x({0} ∪ S) = min{A, �(S)} − x({0} ∪ S) = A − x({0} ∪ S).

Similarly, e({0} ∪ T , x) = A − x({0} ∪ T ). We have that e({0} ∪ S, x) − e({0} ∪ T , x) = x(T \ S) ≥ 0, where the inequality follows 
since the nucleolus is a liability rule. Now e(C \ S, x) ≤ e(C \ T , x) follows from Remark 3.1. �

The result of Lemma 3.4 can be used to show that the coalition of all creditors C has the highest excess at the nucleolus.

Theorem 3.5. Let (A, �) ∈L be a liability problem and let v be the induced liability game. For every S ∈N it holds that e(S, Nu(v)) ≤
e(C, Nu(v)).

Proof. Let x = Nu(v) = Nu∗(v). It holds that e(C, x) = A − (x(N) − x0) = x0 ≥ v({0}) = 0.
We show that, for every non-empty U ⊂ C , e(U , x) ≤ e(C, x). Let V = C \ U . If �(V ) ≤ A, then by taking S = ∅ and T = V

in Part 1 of Lemma 3.4, we have that e(C, x) ≥ e(C \ V , x) = e(U , x). Consider next the case �(V ) > A. Take any i ∈ U . By 
setting S = V and T = C \ {i} ⊇ V in Part 2 of Lemma 3.4, we get that

e(U , x) = e(C \ V , x) ≤ e(C \ (C \ {i}), x) = e({i}, x) = v({i}) − xi ≤ 0.

Since e(C, x) ≥ 0, it follows that e(U , x) ≤ e(C, x).
Let T ∈N be a coalition with the maximal excess at x. Suppose e(C, x) < e(T , x). We have that 0 ∈ T by the first part of 

the proof. Let ε ∈ (0, e(T , x) −e(C, x)) and define y ∈ I∗(v) by y0 = x0 +ε and, for every i ∈ C , yi = xi −ε/c. Let some S ∈N
be given. If S ⊆ C , then e(S, y) = e(S, x) + ε|S|/c ≤ e(C, x) + ε < e(T , x). If 0 ∈ S , then e(S, y) = e(S, x) + ε(|S| − 1)/c − ε <

e(S, x). It follows that maxS∈N e(S, y) < maxS∈N e(S, x) = e(T , x), so θ(e(y)) ≺lex θ(e(x)), contradicting that x is equal to 
the pre-nucleolus. �

Next, we show that at the nucleolus the firm gets a positive payment which is at most equal to half the asset value.

Theorem 3.6. Let (A, �) ∈L be a liability problem and let v be the induced liability game. It holds that 0 < Nu0(v) ≤ A/2.

Proof. Let x = Nu(v). By Theorem 2.6, Core(v) = ∅, so there is a coalition with a positive excess at the nucleolus. Then by 
Theorem 3.5 it holds that e(C, x) > 0. Now 0 < Nu0(v) follows by observing that e(C, x) = v(C) − x(C) = A − (A − x0) = x0.

Suppose x0 > A/2. Let ε ∈ (0, x0 − A/2) and define y ∈ RN by y0 = x0 − ε, and, for every i ∈ C , yi = xi + ε/c. We have 
that y(N) = v(N), y0 > 0 = v({0}), and, for every i ∈ C , yi > xi ≥ v({i}), so y ∈ I(v).

Let some S ∈ N be given. If S ⊆ C , then e(S, y) = e(S, x) − ε|S|/c < e(C, x), where the inequality follows from Theo-
rem 3.5. If 0 ∈ S , then e(S, x) = v(S) − x(S) < A − A/2 = A/2 and
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Table 3
The liability game when N = {0, 1, 2, 3}, A = 10, � = (1, 8, 8). i ∈ {2, 3}.

S {0} {1} {i} {0,1} {0, i} {1, i} {2,3} {0,1, i} {0,2,3} {1,2,3}
v(S) 0 0 1 1 8 2 9 9 10 10

e(S, y) = e(S, x) − ε |S|−1
c + ε ≤ e(S, x) + ε ≤ A/2 + ε < x0 = e(C, x).

It follows that maxS∈N e(S, y) < e(C, x) = maxS∈N e(S, x), so θ(e(y)) ≺lex θ(e(x)), contradicting that x is equal to the nu-
cleolus. �

Theorem 3.6 highlights an important difference between liability games and bankruptcy games. In liability games, the 
firm always gets a strictly positive payment at the nucleolus. The intuition for this result is that even though the singleton 
coalition consisting of the firm has value zero, the firm obtains bargaining power by increasing the value of those coalitions 
it joins. To put it differently, when there are at least two liabilities, the firm is using the threat to pay others to get debt 
relief and is able to keep a positive amount of its assets.

We show in Section 4 that the firm can get arbitrarily close to A/2 when the nucleolus is used as a liability rule, so the 
upper bound as provided in Theorem 3.6 is tight.

An interesting question is whether at the nucleolus every creditor with a positive claim faces a loss from the insolvent 
firm, so whether there is a deficiency on each positive liability. The following example shows this is not always the case.

Example 3.7. Consider the liability problem (A, �) ∈L with 3 creditors, where A = 10, �1 = 1, and �2 = �3 = 8. The induced 
liability game v is depicted in Table 3, where i = 2 or i = 3.

It is easily verified that Nu(v) = x = (7/3, 1, 10/3, 10/3), at which x1 = �1 = 1. There is no deficiency on liability 1 even 
though there is positive deficiency on liability 2 and 3, d2(A, �, x) = d3(A, �, x) = 14/3.

The feature in Example 3.7, an insolvent firm paying some of its liabilities in full, can only occur for some of its smaller 
liabilities. Our last result in this section shows that there is a higher deficiency on higher liabilities at the nucleolus. We 
also show that creditors with higher claims receive higher payments at the nucleolus. These properties are called order 
preservation in Aumann and Maschler (1985).

Theorem 3.8. Let (A, �) ∈ L be a liability problem and v the induced liability game. Let i, j ∈ C be such that �i ≤ � j . At x = Nu(v) it 
holds that xi ≤ x j and �i − xi ≤ � j − x j .

Proof. Suppose xi > x j . We define y ∈ I(v) by yi = xi − ε and y j = x j + ε, where ε > 0 is chosen sufficient small such that 
yi > y j . The other components of y are set equal to the corresponding components of x. We show next that θ(e(y)) ≺lex
θ(e(x)) by partitioning the coalitions in N for which the excess at x is different from the excess at y in pairs and showing 
that the ordered excesses of each pair are lexicographically improved when replacing x by y.

For coalitions S ∈ N such that both i and j belong to S or both i and j belong to C \ S , it clearly holds that e(S, x) =
e(S, y). Take some S ⊆ N \ {i, j}. It holds that

max{e(S ∪ {i}, x), e(S ∪ { j}, x)} = e(S ∪ { j}, x),

max{e(S ∪ {i}, y), e(S ∪ { j}, y)} = e(S ∪ { j}, y) = e(S ∪ { j}, x) − ε,

where we use that v(S ∪ {i}) ≤ v(S ∪ { j}), xi > x j , and yi > y j , so

max{e(S ∪ {i}, x), e(S ∪ { j}, x)} > max{e(S ∪ {i}, y), e(S ∪ { j}, y)}.
It follows that θ(e(y)) ≺lex θ(e(x)), contradicting that x is equal to the nucleolus. Consequently, it holds that xi ≤ x j .

Suppose �i − xi > � j − x j . We define y ∈ I(v) by yi = xi + ε and y j = x j − ε, where ε > 0 is chosen sufficient small 
such that �i − yi > � j − y j . The other components of y are set equal to the corresponding components of x. For coalitions 
S ∈ N such that both i and j belong to S or both i and j belong to C \ S , it clearly holds that e(S, x) = e(S, y). Take some 
S ⊆ N \ {i, j}. It holds that

max{e(S ∪ {i}, x), e(S ∪ { j}, x)} = e(S ∪ {i}, x),

max{e(S ∪ {i}, y), e(S ∪ { j}, y)} = e(S ∪ {i}, y) = e(S ∪ {i}, x) − ε,

where we use that v(S ∪ {i}) − v(S ∪ { j}) ≥ �i − � j , �i − xi > � j − x j , and �i − yi > � j − y j , so

max{e(S ∪ {i}, x), e(S ∪ { j}, x)} > max{e(S ∪ {i}, y), e(S ∪ { j}, y)}.
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It follows that θ(e(y)) ≺lex θ(e(x)), contradicting that x is equal to the nucleolus. Consequently, it holds that �i − xi ≤
� j − x j . �

Theorem 3.8 implies that using the nucleolus as a liability rule leads to the same payment to creditors with identical 
claims. In terms of deficiency, we have seen in Example 3.7 that there could be no deficiency on low liabilities. Theo-
rem 3.8 generalizes this insight and implies that there is a threshold such that there is no deficiency on liabilities below 
the threshold and there is positive deficiency above the threshold.

4. Generalized proportional rules

In principle, it is possible to compute the nucleolus by solving a linear programming problem. However, the size of the 
linear programming problem is related to the number of coalitions, which increases exponentially in the number of players. 
For instance, in a game with n players, Owen (1974) presents a linear programming formulation to compute the nucleolus 
that involves 2n+1 +n variables and 4n +1 constraints. In this section, we argue that for liability problems there is a relation 
between the nucleolus and a particular generalized proportional rule and we have an easy to compute closed-form solution 
for the latter.

A well-known rule in bankruptcy problems is the proportional rule. Under the proportional rule the entire asset value 
is distributed to the creditors in proportion to their liabilities. The insolvent agent is then left without any assets. A rule 
is called a generalized proportional rule if the firm receives a non-negative amount and payments to creditors are made in 
proportion to the liabilities.

Definition 4.1. The liability rule f : L → RN+ is a generalized proportional rule if for every (A, �) ∈ L there is λ ∈ [0, 1] such 
that for every i ∈ C it holds that f i(A, �) = λ�i .

Let p :L →RN+ denote the generalized proportional rule obtained by assigning to (A, �) ∈ L the payment vector

p0(A, �) = (�(C) − A)A

2�(C) − A
,

pi(A, �) = A

2�(C) − A
�i, for all i ∈ C .

To relate p to the nucleolus, we need some extra assumptions. For a given liability problem (A, �) ∈ L, let C̃ be the set of 
creditors with a liability strictly in between 0 and A, so C̃ = {i ∈ C | 0 < �i < A}, and denote the cardinality of C̃ by c̃.3 For 
each non-empty S ⊆ C̃ , let m̃(S) ∈ RC̃ denote the membership vector of S , so m̃i(S) = 1 if i ∈ S and m̃i(S) = 0 if i ∈ C̃ \ S . 
Let S̃ be the collection of all S ∈N such that S ⊆ C̃ . The collection S̃ is independent if {m̃(S)|S ∈ S̃} is a set of independent 
vectors. The collection S̃ is balanced if there are weights (λS )S∈S̃ ∈RS̃++ such that 

∑
S∈S̃ λSm̃(S) = m̃(C̃).

Assumption 4.2. The liability problem (A, �) ∈ L is such that there exists an independent and balanced collection of coali-
tions S̃ with |S̃| = c̃ such that for every S ∈ S̃ we have that �(S) = A.

As an illustration, the following example presents a number of cases where Assumption 4.2 is satisfied.

Example 4.3. Case 1. The liability problem (A, �) ∈ L is such that for every i ∈ C , �i = 0 or �i = A. It holds that C̃ = ∅ and 
Assumption 4.2 is trivially satisfied.

Case 2. The liability problem (A, �) ∈ L has c̃ ≥ 3 creditors with a claim in (0, A), without loss of generality, C̃ =
{1, . . . , ̃c}, and (�1, . . . , �c̃) = (A/(c̃ − 1), . . . , A/(c̃ − 1)). Then Assumption 4.2 is satisfied with S̃ = {{1, . . . , ̃c − 1}, {1, . . . , ̃c −
2, ̃c}, . . . , {2, . . . , ̃c}} and λS = 1/(c̃ − 1) for all S ∈ S̃ .

Case 3. The liability problem (A, �) ∈ L has c̃ ≥ 3 creditors with a claim in (0, A), without loss of generality, C̃ =
{1, . . . , ̃c}, (�1, . . . , �c̃−1) = (A/(c̃ − 1), . . . , A/(c̃ − 1)), and �c̃ = A(c̃ − 2)/(c̃ − 1). Then Assumption 4.2 is satisfied with 
S̃ = {{1, ̃c}, . . . , {c̃ − 1, ̃c}} ∪ {{1, . . . , ̃c − 1}}, λ{1,c̃} = · · · = λ{c̃−1,c̃} = 1/(c̃ − 1), and λ{1,...,c̃−1} = (c̃ − 2)/(c̃ − 1).

Although Assumption 4.2 is not a generic condition, there are many cases in which it is satisfied, some of which are 
presented in Example 4.3. One needs to find c̃ coalitions S such that �(S) = A and the collection of coalitions is balanced 
and independent. In general, there are many balanced and independent collections of coalitions, see Peleg (1965). Often 
Assumption 4.2 is approximately satisfied in the sense that for every element S in some independent and balanced col-
lection of coalitions S̃ it holds that �(S) is approximately equal to A. The next result shows that under Assumption 4.2, 

3 The dependence of C̃ and c̃ on the liability problem (A, �) is not made explicit in the notation.
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the nucleolus corresponds to the payment vector generated by the generalized proportional rule p. In case Assumption 4.2
only holds approximately, the payment vector generated by p would still be approximately equal to the nucleolus since 
the associated TU game depends continuously on (A, �) and the Nucleolus depends continuously on TU games (Schmeidler, 
1969). Example 4.5 illustrates this by presenting a closed-form solution for the nucleolus in a family of examples where 
Assumption 4.2 is typically not satisfied and showing that it is approximately equal to the generalized proportional rule p.

Theorem 4.4. Let (A, �) ∈ L be a liability problem satisfying Assumption 4.2 and let v be the induced liability game. It holds that 
Nu(v) = p(A, �).

Proof. Let x = p(A, �). We show that x = Nu(v). First, we establish that for all coalitions the excesses at x are less than or 
equal to x0. Let some S ∈N be given. If 0 ∈ S , then we have

e(S, x) = min{A, �(S \ {0})} − x0 − A

2�(C) − A
�(S \ {0})

≤ (1 − A

2�(C) − A
)min{A, �(S \ {0})} − x0 ≤ (1 − A

2�(C) − A
)A − x0 = x0.

If 0 /∈ S , then we have e(S, x) = max{0, A − �(C \ S)} − (A − x0 − x(C \ S)). If A − �(C \ S) ≥ 0, then the right-hand side equals 
−�(C \ S) + x0 + x(C \ S) ≤ x0. Otherwise, A − �(C \ S) < 0 and the right-hand side is equal to −A + x0 + x(C \ S) ≤ x0.

Let S̃ be an independent and balanced collection of coalitions with |S̃ | = c̃ such that for all S ∈ S̃ we have that �(S) = A

and let (λS )S∈S̃ ∈ RS̃++ be the corresponding vector of balancing weights. We define C = {i ∈ C | �i > 0} as the set of 
creditors with a positive claim and denote its cardinality by c ≥ 2. We define S = S̃ ∪ {{i} | i ∈ C \ C̃}. For a non-empty 
subset S of C , we define the membership vector m(S) ∈RC by mi(S) = 1 if i ∈ S and mi(S) = 0 if i ∈ C \ S . We denote m(C)

by 1.
Since the set {m̃(S) | S ∈ S̃} is a set of independent vectors of cardinality c̃ and {m({i}) | i ∈ C \ C̃} is a set of unit vectors 

with coordinate one at a player not being part of some S ∈ S̃ , the set {m(S) | S ∈ S} is a set of independent vectors of 
cardinality c. For i ∈ C \ C̃ , we define λ{i} = 1. We have that 

∑
S∈S λSm(S) = 1, or in matrix notation, with M being the 

matrix with columns equal to m(S) for S ∈ S , Mλ = 1. It holds that 
∑

S∈S λS > 1, since c ≥ 2 and the set S therefore 
contains at least two coalitions, whereas the sum of the weights over the members of each coalition is equal to 1.

Let some S ∈ S be given. We have by Definition 2.3 that v({0} ∪ S) = min{A, �(S)} = A, where the last equality follows 
from Assumption 4.2 if S ∈ S̃ and from �i = A if S = {i} for i ∈ C \ C̃ . It holds that

e({0} ∪ S, x) = A − x0 − A

2�(C) − A
�(S) = A − (�(C) − A)A

2�(C) − A
− A

2�(C) − A
A = (�(C) − A)A

2�(C) − A
= x0.

For the coalition of all creditors, we also have e(C, x) = v(C) − x(C) = A − (A − x0) = x0.
Let y = Nu(v) and suppose y �= x. We have that θ(e(y)) ≺lex θ(e(x)). From Theorem 3.5 and from e(C, y) = A − A + y0 =

y0 it follows that y0 ≤ x0. For every S ∈ S it holds that

e({0} ∪ S, y) = A − y({0} ∪ S) ≤ y0 ≤ x0 = e({0} ∪ S, x) = A − x({0} ∪ S),

where the first inequality follows by Theorem 3.5. It follows that, for every S ∈ S , x0 + x(S) ≤ y0 + y(S), or in matrix 
notation

x01 + M�xC ≤ y01 + M� yC , (4.1)

where xC = (xi)i∈C and yC = (yi)i∈C . Consider first the case x0 = y0. Since x �= y and M has full rank, we have that 
M�xC < M� yC . Taking the inner product with the vector of balancing weights λ ∈RS̃++ , we obtain

1�xC = λ�M�xC < λ�M� yC = 1� yC . (4.2)

For every i ∈ C such that �i = 0, it holds that xi = yi = 0 since x and y are payment vectors. Also, x0 = y0 and x(N) = y(N), 
so we find that 1�xC = 1� yC , leading to a contradiction with (4.2).

Consider next the case y0 < x0. We take the inner product of (4.1) with the vector of balancing weights λ. This gives 
x0λ

�1 + A − x0 ≤ y0λ
�1 + A − y0, since λ�M�xC = 1�xC = A − x0 and λ�M� yC = 1� yC = A − y0. Equivalently, we have 

(x0 − y0)(λ
�1 − 1) ≤ 0. Since x0 > y0 and λ�1 = ∑

S∈S λS > 1, we obtain a contradiction. Consequently, it holds that x = y
as was to be shown. �

Let (A, �) ∈L be a liability problem such that �i = A for every i ∈ C . Case 1 in Example 4.3 is satisfied, so the nucleolus 
Nu(v) of the induced liability game is equal to p(A, �). We have that p0(A, �) = ((c − 1)A)/(2c − 1). Theorem 3.6 states that 
the payment received by the firm is at most equal to half of the asset value. The expression above shows that the payment 
received by the firm at the nucleolus can get arbitrarily close to A/2 for large values of c.
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Our last example, where all liabilities are the same, demonstrates that the generalized proportional rule p is approxi-
mately equal to the nucleolus when Assumption 4.2 is approximately satisfied.

Example 4.5. Consider a liability problem (A, �) ∈ L where all liabilities are identical and equal to a < A. The firm is 
insolvent, so ca > A. Let k ∈N be such that ka ≤ A and (k +1)a > A. If S ⊂ C is a coalition with k creditors, then v({0} ∪ S) =
ka and if T ⊆ C is a coalition with k +1 creditors than v({0} ∪ T ) = A. We denote the nucleolus Nu(v) of the induced liability 
game v by x. We know by Lemma 3.4 that the excess of {0} ∪ S or {0} ∪ T is the maximal excess at x among all coalitions 
containing 0. Since all liabilities are identical, all creditors receive the same payoff, x1. We have that e(C, x) = x0 and

e({0} ∪ S, x) = ka − x0 − kx1,

e({0} ∪ T , x) = A − x0 − (k + 1)x1.

It holds that ka − x0 − kx1 ≥ A − x0 − (k + 1)x1 if and only if x1 ≥ A − ka.
We solve for ka − x0 − kx1 = x0 and x0 + cx1 = A to find x0 = (cka − kA)/(2c − k) and x1 = (2A − ka)/(2c − k). The 

condition x1 ≥ A − ka is then equivalent to

ka
2c − k − 1

2c − k − 2
≥ A.

This condition is clearly satisfied whenever ka = A. In that case, we get exactly the payment vector of the generalized 
proportional rule p(A, �) of Theorem 4.4, so x0 = ((c − k)A)/(2c − k) and x1 = A/(2c − k). To the extent that ka is almost 
equal to A, we get that the nucleolus is almost equal to the generalized proportional rule p(A, �).

In case ka(2c − k − 1) < A(2c − k − 2), we find the nucleolus by solving A − x0 − (k + 1)x1 = x0 and x0 + cx1 = A and 
find x0 = (c A − (k + 1)A)/(2c − k − 1) and x1 = A/(2c − k − 1). Again, to the extent that (k + 1)a is almost equal to A, we 
get that the nucleolus is almost equal to the payment vector of the generalized proportional rule p(A, �).

5. Conclusion

We study the allocation of the asset value of an insolvent firm among creditors using transferable utility games and, 
contrary to the large body of game-theoretic work on bankruptcy games, treat the firm as a player. In particular, we study 
the nucleolus of the resulting liability game and prove that it assigns a positive payoff to the firm, at most equal to one half 
of its asset value. We also show that creditors with higher claims get higher payments, although there is a higher deficiency 
on higher liabilities.

In general, there is no closed-form solution for the nucleolus. However, we provide conditions under which it coincides 
with a generalized proportional rule. In the game-theoretic literature on bankruptcy games, the bankrupt agent is not treated 
as a player, but rather as an exogenous estate. As shown by Aumann and Maschler (1985), the nucleolus corresponds to 
the Talmud rule. It is striking that the case where the bankrupt agent is a player makes such a significant difference in the 
allocation of the asset value.
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