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Risk compensation can undermine the ability of partially-effective vaccines to curb 
epidemics: Vaccinated agents may optimally choose to engage in more risky interactions 
and, as a result, may increase everyone’s infection probability. We show that—in contrast 
to the prediction of standard models—things can be worse than that: Free and perfectly 
safe but only partially effective vaccines can reduce everyone’s welfare, and hence fail to 
satisfy—in a strong sense—the fundamental principle of “first, do no harm.” Our main 
departure from standard economic epidemiological models is that we allow agents to 
strategically choose their partners, which we show creates strategic complementarities 
in risky interactions. As a result, the introduction of a partially-effective vaccine can lead 
to a much denser interaction structure—whose negative welfare effects overwhelm the 
beneficial direct welfare effects of this intervention.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Finding a safe and effective Covid-19 vaccine is an urgent priority. More than 50 different such vaccines are being 
developed, and billions of dollars are already being spent to produce the most promising ones (e.g., Aten 2020). However, 
in the spirit of the wise motto “hope for the best, plan for the worst,” we have to plan for the possibility that none of these 
vaccines will be perfectly effective. In this case, we might be tempted to produce and distribute the best safe vaccine that 
we could find. Would this necessarily be a good idea?

In this paper, we show that a free and perfectly safe but only partially-effective vaccine can reduce everyone’s welfare, and 
hence fail to satisfy—in a strong sense—the fundamental principle of “first, do no harm.” In particular, we uncover a novel 
mechanism that suggests that delivering a vaccine whose effectiveness is below a certain threshold is not necessarily a good 
idea, and it underscores the importance of developing models that help practitioners estimate this threshold in particular 
applications.

A partially-effective vaccine has two opposing effects on welfare. On the one hand, it allows agents to have more risky 
interactions, making them better off. On the other hand, it can increase the probability that agents become infected (as a 
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Fig. 1. Two illustrative partnership networks.

consequence of the increase in risky interactions), making them worse off. We show that—in contrast to the prediction of 
standard models—the second effect can uniformly dominate the first.

Our key departure from the standard economic epidemiological models (e.g., Kremer 1996 and Fenichel et al. 2011) 
is that we allow agents to strategically choose their partners—instead of only allowing each agent to choose her num-
ber of partners, and then having matches occur uniformly at random. This departure is crucial because it uncovers the 
existence—even in low-risk settings—of strategic complementarities in consensual risky partnerships, which are central to 
the mechanism that we uncover in this paper.

Let us illustrate the intuition behind the existence of these strategic complementarities with the simplest example. 
Suppose that there are two pairs of agents having risky partnerships to begin with: Ann and Bob are one pair, and Chloé 
and Dane the other (Network 1 in Fig. 1). Each individual has a fixed probability of contracting a given virus independently 
of her partnerships, and an infected individual transmits the virus in any given partnership with probability p. Infection 
and transmission are independent across agents and partnerships, respectively. To build intuition, consider first the extreme 
case in which each partnership transmits the virus with probability one—that is, p = 1. The partnership between Chloé 
and Bob is risky for each of them, since under some states of the world only one of them is infected, and hence their 
partnership would infect the other. We claim that Ann and Dane’s partnership (that is, a switch from Network 1 to Network 
2 in Fig. 1) increases Chloé and Bob’s incentives to become partners (as long as their initial partnerships are sufficiently 
valuable so that neither of them wants to become isolated instead). Indeed, in Network 2, the states of the world where one 
catches the virus are the same as the states of the world where the other one catches it, so their partnership is risk free. 
Remarkably, the same is true for all positive values of the transmission probability p: Ann and Dane’s partnership decreases 
the probability that only one of Chloé and Bob is infected, hence increasing their incentives to become partners.

The introduction of a partially-effective vaccine has obvious positive direct welfare effects: Fixing the partnership net-
work, it reduces everyone’s probability of becoming infected, and hence makes everyone better off. But the introduction of 
a partially-effective vaccine can also have subtle negative indirect welfare effects: By reducing the (ceteris-paribus) cost of 
each risky interaction, it can destabilize the existing partnership network. We show that—because of the strategic comple-
mentarities in risky interactions illustrated above—the best stable partnership network after this intervention can be much 
denser than before such an intervention, and—as a consequence of the negative externalities of risky interactions—be worse 
for everyone.

More generally, our analysis highlights how relatively high infection transmission probabilities can play a beneficial role by 
preventing deviations from the efficient social structure. As a result, the beneficial effects of partially-effective vaccines—in 
terms of decreased infection probability given any social structure—must be traded off against the welfare effects of the 
change in social structure that they can unleash.

In the context of a general game with externalities, Hoy and Polborn (2015) show that the combination of strategic com-
plementarities and negative externalities implies that a safety technology improvement can be welfare reducing. From this 
perspective, the contribution of this paper is to (i) show how strategic complementarities in consensual risky partnerships 
arise naturally when the agents strategically choose their partners, and (ii) illustrate how this can imply that a free and 
perfectly-safe but only partially-effective vaccine can reduce everyone’s welfare.

Many social scientists have long realized that social networks play a central role in epidemiological processes (see for 
example Jacquez et al. 1988, Barnard 1993 and Friedman et al. 2006). Standard economic epidemiological models, however, 
abstract away from the structure of social interactions, so they are unable to capture the mechanism that we illustrate in 
this paper. Indeed, a free and perfectly safe but only partially effective vaccine necessarily makes everyone better off in 
these models. Kremer (1996, page 555) explains the logic as follows1:

Adoption of an imperfectly effective vaccine could not cause the number of partners to increase so much that [the 
per-interaction probability of infection] increased, because people would not be willing to have more partners if the 
probability of infection from an additional partner increased.

1 In this quote, we have substituted the symbol βY with its corresponding words: The per-interaction probability of infection. The sentence that follows 
the one in this quote is: “However, the combined costs of the increased prevalence, plus the expense and side effects of the vaccine, could outweigh the 
benefits of a reduced risk of infection per partner and so introduction of an imperfect vaccine could make everybody worse off.” In this paper we show 
that an imperfect vaccine can reduce everyone’s welfare even if it is free and has no side effects.
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Hence, in these canonical models, everyone is better off after the adoption of a free and perfectly safe but only partially-
effective vaccine. Indeed, since such a vaccine decreases the per-interaction probability of infection, everyone can choose 
the same amount of interaction as before its introduction, and in this way obtain the same benefits from her interactions 
with a reduced probability of infection. In order to clarify this point, and to highlight the role that the strategic choice of 
partners plays in the mechanism that we illustrate, in Appendix B we describe a random-matching version of our model, 
and we show that, as long as the infection risk is not extreme, strategic complementarities in risky partnerships do not 
arise in this model. As a result, a partially-effective vaccine increases everyone’s welfare in this random-matching version of 
our model, which shows that strategic complementarities are central to the mechanism that we uncover in this paper.

The remainder of this paper is organized as follows. In section 2, we introduce the model that we use to illustrate 
our argument and, in section 3, we discuss how strategic complementarities in risky partnerships naturally arise in this 
model. In section 4, we characterize the set of stable networks and, in section 5, we show how a free and perfectly safe 
but only partially-effective vaccine can harm everyone. After discussing extensions of our model in section 6, we further 
discuss the contribution of this paper in the context of the related literature in section 7, and we conclude in section 8. 
In Appendix A, we derive the infection probabilities that we use to prove some of the statements in the main body of the 
paper. Finally, in Appendix B, we describe a random-matching version of our model, and we show how, in this case, (i) 
no strategic complementarities arise, and hence (ii) a free and perfectly safe but only partially-effective vaccine necessarily 
makes everyone better off.

2. Epidemiological model with strategic choice of partners

In order to capture the central tradeoff between the benefit and costs of partnership formation in the simplest possible 
way, we follow the modeling approach of Blume et al. (2011), which provides a tractable static reduced-form model for the 
inherently dynamic process of contagion (see Remark 2.1 and Remark 2.2 below).

For simplicity, we start by focusing on a relatively simple case featuring n ≥ 2 men and n women, where n is even. We 
also assume that agents value only (up to two) partners of the opposite sex. This case represents a sexually-transmitted 
disease better than coronavirus, but is useful to illustrate the mechanism as transparently as possible. In section 6, we 
discuss how the results extend to the case in which homogeneous agents value an arbitrary amount of partnerships, which 
better represents infectious diseases like coronavirus.

The game consists in the following four stages:

Stage 1: Network Formation. Each agent announces which partners he or she wants to have. An edge between two agents 
is formed if and only if both of them have announced that they want to form a partnership with the other.

Stage 2: Infection. Each agent becomes exogenously infected with probability q > 0. Infection is independent across agents.
Stage 3: Contagion. Each edge becomes live with probability p > 0. Each agent connected via a path of live edges to an 

infected agent becomes infected. Edges become live independently of each other.
Stage 4: Utility Realized. The utility of each agent is the benefit that he or she derives from his or her partners (0 if no 

opposite-sex partners, s1 if one opposite-sex partner, and s1 + s2 if two opposite-sex partners, with s2 ≤ s1) minus 
the cost of infection (c if infected, and 0 otherwise).

Stage 1 is the only stage in which the agents take actions. We focus on situations in which having a risky partnership 
involves mutual consent. To capture this idea, we assume that the outcome in stage 1 is a stable network—in the sense 
that no agent can profitably drop any subset of his or her edges, and no pair of agents can both benefit by adding an 
edge between them (while possibly removing some of their existing edges). We discuss alternative notions of stability in 
Remark 4.2 below, and we show that our results are robust to stronger notions of stability in section 6.

Remark 2.1. This model can be seen as a network-based variation of the well-known epidemiological model in Philipson and 
Posner (1993, page 33), and it is similar to the one in Blume et al. (2011); the main differences are that Blume et al. (2011)
assume that all edges provide the same benefit and that infected agents do not benefit from their edges, whereas we assume 
decreasing returns to scale in edges and that infected agents benefit from their edges but pay a cost c when they become 
infected. More importantly, their objective is different: Whereas we focus on the effects of partially-effective vaccines—which 
we think of as reductions in the probabilities p and/or q—they focus on characterizing the structural differences between 
optimal and (pairwise) stable networks.

Remark 2.2. The contagion stage of the model (stage 3) can be seen as a reduced form version of the following dynamic 
model: Each partnership consists of interactions that occur periodically over time. There are two types of partnerships, risky 
and safe. Each interaction in a risky partnership has a positive probability of involving risky behavior that transmits the 
infection (if one of its members is infected). In contrast, the interactions in safe partnerships do not involve such risky 
behavior. Each partnership has a probability p of being risky. Agents are not able to tell whether a partnership is risky or 
safe, so forming a partnership is always risky. In this model, the infection must stop spreading at some point; the agents 
that are infected in stage 3 can be thought of as all the agents that are infected once the contagion stops spreading.
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Fig. 2. The networks I , N and X .

Notation 2.1 reviews standard notation that we shall use throughout the text.

Notation 2.1. Given a network G = (N, E) with node set N and edge set E , and given N ′ ⊆ N and E ′ ⊆ E , we say that (N ′, E ′)
is a subnetwork of G . We say that a subnetwork G ′ = (N ′, E ′) of G is a component of G if E contains no edges between N ′
and N\N ′ , and, for any two nodes i and j in N ′ , there is a walk (sequence of edges) in E ′ from i to j.

3. Strategic complementarities in risky partnerships

We start by showing how strategic complementarities in risky partnerships naturally arise in this model. For simplicity, 
we focus on the case in which the value s1 of having one partner is high enough so that no network with an isolated agent 
is stable.

Fig. 2 depicts all the possible networks (up to isomorphism) of four non-isolated agents that can emerge in the network 
formation stage. Let μi denote the probability that agent i becomes infected (exogenously—i.e., in stage 2—or endogenously—
i.e., in stage 3); for brevity, we denote by μI and μX the infection probability of any given agent in the symmetric networks 
I and X , respectively. In Appendix A we derive the infection probability of the agent in each relevant network position.

Proposition 3.1 uses Definition 3.1 to formalize the idea that risky partnerships are strategic complements. For brevity, 
we denote the edge between nodes i and j by i j.

Definition 3.1. Given a network G , the risk of the edge i j for agent i is the difference in i’s infection probability in G ∪ i j and 
i’s infection probability in G . When the risk of the edge i j is the same for agents i and j, we refer to it simply as the risk 
of the edge i j.

Proposition 3.1. The risk of the edge N2N3 in Network N is strictly smaller than the risk of the edge I2 I3 in Network I .

Proof. The risk of edge N2 N3 is μX − μN2 , and the risk of edge I2 I3 is μN1 − μI . Using the expressions derived in Ap-
pendix A, it is easily verified that μX − μN2 < μN1 − μI for all values of p and q. �

Fig. 4 depicts the risk of edge N2N3 and I2 I3 as a function of the transmission probability p when the exogenous 
infection probability is q = 1

4 ; the picture looks similar for all q ∈ (0, 1). To understand this picture, it is useful to keep in 
mind that the transmission probability p affects agents’ optimal actions in two different ways. On the one hand, p is the 
probability that infection is transmitted between two prospective partners. On the other hand, p influences the probability 
that the agents under consideration have already become infected through contagion from other agents in their networks. 
This explains why the risk of edge N2N3 is increasing in p for low values of p and decreasing in p for high values of 
p: the risk of edge N2N3 is highest when the transmission probability is high enough so that this edge has a substantial 
probability of transmitting an infection but low enough so that there is a substantial probability that only one of N2 and 
N3 are infected.

Remark 3.2. Philipson and Posner (1993) discuss how increases in the prevalence of a disease reduce the demand for risky 
partnerships for low levels of prevalence, but can increase it for high enough levels of prevalence. The intuition there is that, 
if prevalence is sufficiently high, then agents may have such a high probability of being already infected that they might 
rationally reduce their precautions. In contrast, the non-monotonicity depicted in Fig. 4 is present for all values of infection 
probability q, and hence for all levels of prevalence. To understand the difference, note that, even when q is very small, so the 
prevalence of the disease is very small, the edge N2 N3 is essentially riskless when the transmission p is high—not because 
the probability that N2 and N3 are already infected is high, but because the probability that N2 is infected conditional on N3
being infected is high.

Remark 3.3. The key behind Proposition 3.1 is the observation that the risk of a partnership only comes from the situations 
in which one and only one of the parties is infected. In other words, the correlation between the health states of two agents 
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Fig. 3. The networks M and M ′ .

created by overlapping partnerships is important to understand the incentives behind strategic partnership formation. Re-
latedly, Toxvaerd (2017) discusses how overlapping partnerships can affect the speed of agents’ learning about transmission 
risks via the correlation in health states that they induce, and that the riskiness of an activity does not necessarily corre-
spond to how much it exposes one to a disease, but rather to how much it exposes one to a disease while not already 
infected.

4. Stable networks

Proposition 4.1 shows that only the pair-complete and the cross-complete networks (see Definition 4.1 below) can be stable. 
Every pair-complete network is isomorphic to n/2 copies of Network I , and every cross complete network is isomorphic to 
n/2 copies of Network X .

Definition 4.1. We say that a network is pair complete if each agent is part of exactly one edge (that is, each agent has exactly 
one partner). We say that a network is cross complete if each agent is in a component of the network that is isomorphic to 
Network X (see Fig. 2).

Proposition 4.1 shows that pair-complete networks are stable for intermediate values of the transmission probability 
p, which is intuitive: When the transmission probability p is small enough, Network I is unstable because agents have 
incentives to form the diagonal links. In contrast, when the transmission probability p is high enough, Network I is not 
stable because agents have incentives to remove their one link. Proposition 4.1 also shows that cross-complete networks are 
stable with the only potential exception of a range of intermediate values of transmission probability, which is also intuitive: 
The benefit from removing the edge X2 X3 for its adjacent vertices is highest for intermediate values of p, when it is most 
likely that exactly one of them is infected in network N .

Proposition 4.1. Only pair-complete and cross-complete networks are ever stable. Moreover:

1. There exist p� ≤ p�� such that any pair-complete network is stable if and only if p is in [p�, p��].
2. There exist p� < p ≤ p such that any cross-complete network is stable if and only if p is not in (p, p).

Proof. A pair-complete network is stable if and only if (i) no agent wants to remove her existing edge (that is, the cost 
s1 of removing this edge is greater than the associated benefit cμI ) and (ii) no two agents have incentives to form a 
partnership—that is, the cost c(μN1 − μI ) of an extra edge is greater than its benefit s2, or

μN1 − μI ≥ s2

c
. (1)

Using equation (4) in Appendix A, it is easily verified that there exists p�� such that condition (i) holds for all transmission 
probabilities p < p�� . Using equation (6) in Appendix A, it is easily verified that there exists p� < p�� such that condition 
(ii) holds for all p > p� .

A cross-complete network is stable if and only if (i) the benefit c(μX − μN2 ) from deleting an edge is smaller than its 
cost s2, or

μX − μN2 ≤ s2

c
, (2)

and (ii) no two agents have incentives to remove one of their edges and create an edge between them; that is, μM3 ≥ μX

(see Fig. 3). Using equation (7) in Appendix A, it is easily verified that condition (i) is satisfied for all p except possibly 
those in an intermediate range (p, p). The fact that p� < p follows from Proposition 3.1. Condition (ii) follows from the fact 
that combining equation (5) and equation (8) in Appendix A gives μM3 > μX .
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Fig. 4. Illustration of Proposition 4.1 and when q = 1
4 and s2

c = .11. Assuming s1 is large enough, a pair-complete network is stable if and only if s2
c is 

below μN1 − μI . A cross-complete network is stable if and only if s2
c is above μX − μN2 .

It only remains to be shown that a network that is neither pair complete nor cross complete is not stable. The fact 
that μM3 > μX implies that no subnetwork of a stable network is isomorphic to network M . Note that no agent is part of 
more than two edges in any stable network, so a component of such a network contains a node that is part of two edges 
if and only if all of the nodes in this component are part of two edges (otherwise, because n is even, there must be two 
agents who are each part of only one edge who can profitably deviate by removing their one edge and matching to each 
other). Hence, we only have to show that no subnetwork of a stable network is isomorphic to network M ′ (see Fig. 3). This 
follows from the fact that μX < μM′ , where μM′ denotes the infection probability of each agent in M ′ .2 This last inequality 
is intuitive: The probability that each of the agents M ′

1, M
′
2, M

′
3 and M ′

4 becomes infected goes down when the three edges 
M ′

3M ′
6, M ′

6M ′
5, and M ′

5M ′
2 are replaced by the edge M ′

3 M ′
2, since this leaves each of them with the same number of edges 

but decreases the independent sources of infection. �
Fig. 4 illustrates the determinants of the cutoff p� when the infection probability is q = 1

4 and s2
c = .11. For clarity, in 

Fig. 4, we don’t show the determinants of the cutoff p��; this cutoff is 1 if s1 is large enough. Fig. 4 also illustrates the 
determinants of the cutoff values p and p for the same parameters q = 1

4 and s2
c = .11. For large enough values of s2

c , every 
cross-complete network is stable for all transmission probabilities p.

Remark 4.2. Our notion of stability is stronger than the standard pairwise stability notion of Jackson and Wolinsky (1996). 
In particular, while pairwise stability considers one link at a time, we allow pairs of agents to deviate by forming an edge 
between them while, at the same time, dropping some of their existing edges. We regard this notion of stability as being 
just as reasonable, and it simplifies our arguments by allowing us to deem networks like M and M ′ as unstable, leaving 
only the pair-complete and cross-complete networks as the potentially stable ones. We show how our results are robust to 
stronger notions of group stability in section 6.

5. Partially-effective vaccines can harm everyone

Pair-complete and cross-complete networks—the only two (non-trivial) potentially stable types of networks—are fully 
symmetric. Hence, in every stable network, all agents’ expected utilities are the same. Therefore, the total welfare in each 
network scales with the expected utility of a single agent in this network.

From Proposition 4.1, we have that there always exists a nonempty region (p�, p) of values of the transmission prob-
ability p in which (i) both pair-complete and cross-complete networks are stable and (ii) a reduction in p leads to only 

2 Indeed, μX < μM ′ implies that M ′
2 and M ′

3 strictly benefit from partnering while dropping their partnerships with M ′
5 and M ′

6, respectively.
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Fig. 5. Illustration of Theorem 5.1 when s1 = 40, c = 80, s2
c = .11 and q = 1/4. Each agent’s expected utility under the most efficient stable network structure 

is in bold.

pair-complete networks being stable. Theorem 5.1 follows directly from this observation and the fact that, for all values of 
p close enough to p� , everyone’s expected utility in a pair-complete network is strictly greater than in a cross-complete 
network. To see this last fact, note that, when p = p� , agent 1’s expected utility in network I is the same as that in network 
N , and hence, each agent’s expected utility in a pair-complete network is strictly greater than that in a cross-complete 
network.

Theorem 5.1. There exists � > 0 such that each agent’s expected utility in the most efficient stable network when p ∈ (p�, p� + �) is 
strictly greater than when p ∈ (p� − �, p�).

Fig. 5 illustrates Theorem 5.1 for a particular utility function (s1 = 40, c = 80 and s2
c = .11) and exogenous infection 

probability q = 1
4 . In this case, p� is approximately .48.

Remark 5.2. Theorem 5.1 implies that there is always a non-empty range of transmission probabilities above p� such that—
assuming that we start with a transmission probability in this range and from an efficient stable network (a pair-complete 
network)—there is a non-empty range of reductions in the transmission probability p that necessarily harm everyone. A 
similar statement holds for interventions that either reduce q, or that reduce both p and q.

6. Discussion and extensions

We have shown how strategic complementarities in consensual risky partnerships naturally arise when agents strate-
gically choose their partners. The intuition is that, when two agents become partners, they reduce the cost—in terms of 
infection risk—of partnerships among their partners. We have also shown how these strategic complementarities—combined 
with risk compensation—imply that an intervention that reduces the (ceteris-paribus) transmission probability of an infection 
can reduce everyone’s welfare.

In order to make the analysis as transparent as possible, we have worked with a stylized model featuring a number of 
simplifying assumptions. But the mechanism that we have uncovered is a natural one, and it is thus robust to more general 
environments. For example, we have assumed that agents only value up to two partners, and that homosexual partnerships 
are not valuable. In this section, we show that the mechanism that we have illustrated in this paper does not rely on these 
assumptions. Also, so far we have focused on a stability notion that ensures that pairs that can form a beneficial partnership 
(while possibly dropping some of their other partnerships) do so. But this notion of stability does not ensure that larger 
groups of agents do not have incentives to deviate. In order to show that our results go through under stronger notions 
of group stability as well, we now focus on equilibria in which no group of agents (irrespective of its size) can arrange 
the partnerships among its members (while possibly dropping some partnerships with non-members) to make all of its 
members better off.
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Fig. 6. The 3- and 4-complete networks when n = 12.

Consider the following modification of the game described in section 2, where agents are homogeneous (in particular, 
they are all of the same sex or, alternatively, they do not mind the sex of their partners) and value an arbitrary amount 
of partnerships. There are n ≥ 2 agents. The expected utility of an agent with m ∈ {1, 2, . . . , n − 1} partnerships who has a 
probability μ of becoming infected is 

∑m
�=1 s� − cμ, where s� denotes the benefit of the �th-partnership, and the returns 

to partnerships are decreasing (i.e., s�+1 ≤ s�).
For the rest of this section, let 2 ≤ m ≤ n be such that n is divisible by both m and m + 1. We say that a network 

is m-complete if it consists of n/m cliques of size m—that is, n/m components, each containing all possible links among 
its m members.3 Fig. 6 illustrates the 3-complete and the 4-complete network in the case n = 12. We restrict attention 
to situations in which the infection probability in the m-complete network is not extreme. In particular, we assume that 
the exogenous infection probability q is sufficiently small so that each agent’s infection probability μm in the m-complete 
network is not larger than 1/2.

Theorem 6.1 below is the analog of Theorem 5.1 in the more general framework described in this section. It establishes 
that a reduction in the transmission probability p can reduce everyone’s welfare. For simplicity, we focus on symmetric 
equilibria—in which every agent has the same number of partnerships. To prove Theorem 6.1, we describe situations in 
which (i) only the m-complete and the (m + 1)-complete networks are stable, (ii) everyone’s expected utility under the 
m-complete network is strictly higher than under the (m + 1)-complete network, and (iii) a reduction in the transmission 
probability p leaves the (m + 1)-complete network as the only stable network.

Theorem 6.1. There exist pm > 0, � > 0 and 0 < κm+1 < κm < κm−1 such that, if sm−1 > κm−1 , sm < κm and sm+1 < κm+1 , then 
each agent’s expected utility in the most efficient symmetric stable network when p ∈ (pm, pm + �) is strictly larger than when 
p ∈ (pm − �, pm).

Proof. Let sm−1 > κm−1, where κm−1 is sufficiently large so that networks in which agents have strictly less than m − 1
partners are not stable. Also, let sm+1 < κm+1, where κm+1 is sufficiently small so that networks in which agents have 
strictly more than m partners are not stable either. The only equilibrium network candidates are then the m-complete 
and the (m + 1)-complete networks. This is because—conditional on each agent having k partnerships—the probability of 
infection of a member of a clique is as low as it can be. As a result, in every network other than the m-complete network 
in which every agent has m − 1 partnerships, a group of m agents can profitably deviate by dropping all of their edges 
with others and forming all possible links among themselves. Similarly, in every network other than the (m + 1)-complete 
network in which every agent has m partnerships, a group of m + 1 agents can profitably deviate by dropping all of their 
edges with others and forming all possible links among themselves.

The m-complete network is stable if and only if an agent’s cost (in terms of infection risk) of forming an additional edge 
is greater than its benefit. In other words, the m-complete network is stable if and only if4

sm ≤ (1 − μm)μm pc. (3)

Since μm < 1/2 is increasing in p, the right-hand side of (3) is also increasing in p. Hence, there exist unique values pm

and pm+1 that satisfy

pm = sm

c(1 − μm)μm
and pm+1 = sm+1

c(1 − μm+1)μm+1
,

3 For the purposes of illustration, we focus on the case in which n is divisible by both m and m + 1, so that the m-complete network and the (m +
1)-complete network are well-defined. When this divisibility assumption is not satisfied, slight modifications of these networks (that include smaller 
“remainder components”) can be constructed so that our main result still holds.

4 The increase in infection probability due to an added edge ab in the m-complete network is the probability 1 − μm that a is not infected from another 
source times the probability μm that node b is infected times the probability p that the edge ab is active.
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Fig. 7. The 334-network when n = 12.

respectively. These are the threshold values of the transmission probability p below which the m-complete and the (m + 1)-
complete network, respectively, are not stable. Given that μm < μm+1 and that sm+1 ≤ sm , we have that pm+1 < pm . Hence, 
because the cost of an additional link (1 − μm)μm pc increases with p, a reduction in p from pm to a value between pm+1
and pm renders the m-complete network unstable, and leaves the (m + 1)-complete network as the only stable network.

We conclude by showing that there exists a threshold pm > 0 such that, if pm < pm , then everyone’s expected utility in 
the (m + 1)-complete network when p = pm is strictly lower than in the m-complete network. Given that pm is increasing 
in sm , this implies that there exists κm such that, if sm < κm , then pm ≤ pm , and hence the expected utility in the (m + 1)-
complete network when the transmission probability is at the threshold pm at which the m-complete network becomes 
unstable is strictly lower than in the m-complete network.

Define the mab-network to be the m-complete network with an extra edge (between agents a and b). Fig. 7 illustrates 
the 334-network when n = 12. By definition of the threshold pm , if the transmission probability p is equal to pm , then 
everyone’s expected utility in the m-complete network is the same as the expected utility of agents a and b in the mab-
network. Since agent a has m edges in both the mab-network and the (m + 1)-complete network, it is enough to show that, 
when p is small enough, her infection probability in the mab-network is smaller than in the (m + 1)-complete network. 
For this, note that the number of different paths of length 2 that can transmit the infection to her in the (m + 1)-complete 
network is larger than in the mab-network.5 Given that the number of different paths of length 1 that can transmit the 
infection to her in the (m + 1)-complete network is the same as in the mab-network (namely, the number of neighbors she 
has, m), and that, when p is small enough, the probability that the network has a path of length strictly greater than 2 
is second-order compared to the probability that the network has a path of length 2, we conclude that, when p is small 
enough, agent a’s probability of infection is larger in the (m + 1)-complete network than in the mab-network. �

An important part of the proof of Theorem 6.1 is to show that the increase in the density of the network triggered by 
the reduction in the transmission probability p makes everyone worse off. In the case that we have focused on throughout 
the main body of the paper (in which agents only value up to two heterosexual partnerships), this step is simpler because 
Network N is a strict subset of Network X , which directly implies that everyone’s infection probabilities are strictly smaller 
in the former than in the latter. In the more general setting discussed in this section, the reasoning is a bit more subtle, 
because there are edges in the (m + 1)-network that are not in the mab-network, and vice versa. As a result, it is not 
immediate to see that, when the transmission probability p is at the threshold pm , the infection probability of agents a and 
b in the (m + 1)-complete network is larger than in the mab network. As we have shown, however, this is true as long as 
the threshold transmission probability pm is smaller than an upper bound pm > 0. As an illustration, the following table 
provides the approximate upper bounds on pm in the case m ∈ {2, 3, 4, 5, 6} and q = 1/4.

p2 p3 p4 p5 p6
.57 .51 .47 .43 .4

Hence, if p3 < .51, for example, then a reduction in the transmission probability forces a society that starts with a 3-
complete network and a transmission probability just above p3 to switch to a different social structure (e.g., a 4-complete 
network), potentially making everyone worse off unless the reduction in the transmission probability is large enough to 
compensate for the reduction in welfare created by the induced change in social structure.

Remark 6.2. Beyond the specific modeling assumptions of this paper in terms of strategic network formation, the analysis 
in this section has shown that, as long as the threshold transmission probability pm is below pm , when the transmission 
probability p is close to pm , the (m + 1)-complete network gives lower welfare to everyone than the m-complete network. 
A similar analysis holds when we define the m-complete and the (m + 1)-complete networks to be networks with distinct 
components, with the components not necessarily being cliques, but with everyone having exactly m − 1 and m edges, 
respectively. Hence, the mechanism that we have illustrated in this paper is present in alternative models of network 

5 A path of a network is a walk that contains any given node at most once. In the (m + 1)-complete network, there are m(m − 1) different paths of length 
2 that end in node a. In the mab-network, there are (m − 1)(m − 2) + m − 1 = (m − 1)2 different such paths.
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formation in which the agents organize themselves into different components (not necessarily cliques), and in which no 
two agents can have incentives to form an additional edge (so that, when the transmission probability p moves below a 
threshold, the efficient network is no longer stable, while a denser network can still be stable).

7. Relation to the existing literature

The well-known phenomenon of risk compensation is an important element of the mechanism that we describe in this 
paper. Observed at least as early as the Victorian era (see for example Adams 1879), it was popularized by Peltzman 
(1975), who controversially suggested that automobile safety regulations would not diminish automobile-related deaths. 
The importance of risk compensation in various settings has been a source of heated debates ever since. Most recently, 
Greenwood et al. (2019) calibrate a general equilibrium search model to quantitatively assess the extent to which behavioral 
reactions can reduce the effectiveness of several policy interventions.

In the context of HIV, the evidence on risk compensation is mixed.6 For example, on the one hand, Eaton and Kalichman 
(2007) (see also Chan et al. 2015, Delavande and Kohler 2015, and Blumenthal and Haubrich 2017) review the empirical 
literature on risk compensation in HIV prevention and conclude that “risk compensation is evident in response to prevention 
technologies that are used in advance of HIV exposure and at minimal personal cost.” On the other hand, Marcus et al. 
(2013) argue that there is no evidence of risk compensation in a recent trial of Daily Oral HIV Preexposure Prophylaxis 
(iPrEx).

The mechanism that we illustrate in this paper is distinct from the one described in Kremer (1996), which relies on 
heterogeneities in agents’ preferences, and can be summarized as follows: If low-activity people reduce their activity by 
a higher proportion than high-activity people in response to an increase in the prevalence of a disease, the composition of 
the pool of available partners worsens after such a change, which creates positive feedbacks. In contrast to our mechanism, 
however, the feedback effects in Kremer (1996) only make partially-effective vaccines more desirable. For example, for those 
with sufficiently many partners, the introduction of a partially-effective vaccine will actually increase the marginal risk of 
infection from an additional partner, reducing their optimal number of partners, and hence making the pool of available 
partners safer for everyone. These feedback effects are absent in our analysis because—in order to illustrate our mechanism 
as simply as possible—we focus on the case of homogeneous preferences.

Pongou and Serrano (2013) provide a strategic model of network formation that shows how a higher optimal number 
of partners for men than for women can explain the fact that more women are infected from HIV/AIDS than men. For this, 
they describe two different dynamic processes of network formation whose long-run predictions refine the set of pairwise-
stable networks. They assume that both the benefits and costs of each link are exogenous, so that each agent has a fixed 
optimal number of partners. In contrast, in the present setting, the costs of a link are endogenous—and this is the key for 
the strategic complementarities in risky interactions that we uncover.

This paper complements the growing body of theoretical literature that studies the effects of different interventions on 
epidemiological processes (e.g., Galeotti and Rogers 2013, Chen and Toxvaerd 2014, Rowthorn and Toxvaerd 2015, Goyal and 
Vigier 2015 and Goyal et al. 2016). The main difference between this paper and most of this literature is that we focus on 
the welfare effects of such interventions—that is, the trade-off between changes in behavior and changes in infection rates—
rather than just on the effects on infection rates. In a similar vein, Toxvaerd (2019) uses a dynamic version of a standard 
economic epidemiological model to show that reducing the infectiousness of a disease can—via negative welfare effects 
along the transition between steady states—reduce agents’ discounted lifetime welfare. However, as in related economic 
epidemiological models (e.g., Kremer 1996 and Fenichel et al. 2011), reductions in the infectiousness of a disease cannot 
reduce anyone’s steady state welfare. In particular, the steady state per-exposure probability of infection in Toxvaerd (2019)
is independent of the infectiousness of the disease. Hence, each agent can—by choosing her exposure level exactly as before 
the change in infectiousness—be exactly as well off as before. In contrast, we show—using a different model that allows 
agents to strategically choose whom to interact with—that the conclusion that a free and perfectly safe but only partially-
effective vaccine necessarily makes everyone better off in steady state is an artifact of the anonymous-mixing assumption 
of the standard models.

8. Conclusion

The capacity of infectious-disease epidemics to disrupt societies is comparable to that of wars and natural disasters. 
For this reason, considerable resources are expended to manage and ameliorate the effects of such epidemics. Because of 
risk compensation, however, the effects of different potential interventions are subtle. As a consequence, before deciding 
whether and how to intervene, we might wish to ensure that our interventions at least do no harm.

In this paper, we show that an intervention that consists of distributing a free and perfectly safe but only partially effec-
tive vaccine can fail this fundamental principle of “first, do no harm” in a strong sense, since it can actually harm everyone. 
A key force in the mechanism that we uncover is that consensual risky partnerships can feature strategic complementari-
ties, even in low-risk environments. These strategic complementarities can generate feedback effects that can lead to large 

6 See Philipson and Posner (1993) for an interesting in-depth economic perspective on the HIV epidemic.
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changes in the structure of risky partnerships after a relatively small intervention—overwhelming the direct effects of this 
intervention.

The result of this paper underscores the importance of taking into account the network of social interactions in theoret-
ical and empirical epidemiological studies in order to understand the potential effects that different interventions have on 
social structure—and hence on behavior and welfare. Measuring the relevant interaction structure—and how it changes with 
different interventions—can be crucial for understanding which social groups are more likely to feature strategic comple-
mentarities in risky interactions, and hence which parts of a society are more vulnerable to the potentially-negative welfare 
effects of different interventions.

Appendix A. Infection probabilities

Lemma A.1 describes the probability that an agent becomes infected (exogenously—i.e., in stage 2—or endogenously—i.e., 
in stage 3) conditional on her network position.

Lemma A.1. The probability that any given agent in network I is infected is

μI = qp + (1 − qp)q, (4)

the probability that any given agent in network X is infected is

μX = (1 − p)2μI

+ p(1 − p)
[
q(2 − q) + (1 − q)2qp(2 − qp)

]

+ p(1 − p) [q + (1 − q)p(pq + (1 − pq)q(2 − q))]

+ p2 [q(2 − q) + (1 − q(2 − q))q(2 − q)p(2 − p)] ,

(5)

the probability that N1 is infected is

μN1 = μI + (1 − q)(1 − pq)μI p, (6)

the probability that N2 is infected is

μN2 = q + (1 − q)pq + (1 − q)2 p2μI , (7)

and, finally, the probability that M3 is infected is

μM3 = μN2 + (1 − μN2)μI p. (8)

Proof. To see equation (4), consider for concreteness the probability that I1 is infected. The probability that I2 infects I1 is 
qp and, conditional on not being infected by I2, I1 is infected with probability q.

To derive equation (5), consider the three exhaustive and mutually exclusive cases depicted below, where thick edges 
correspond to live edges. We say that i is infected from j if j is exogenously infected and there is an live path from i to j.

X1

X2

X3

X4

Case 0

X1

X2

X3

X4

X1

X2

X3

X4

Case 1

X1

X2

X3

X4

Case 2

Case 0: None of the edges X1 X4 and X2 X3 are live. This happens with probability (1 − p)2. The probability that any given 
agent is infected is μI .

Case 1: Exactly one of the edges X1 X4 and X2 X3 is live. This happens with probability 2p(1 − p). Assume without loss of 
generality that X1 X4 is live (and hence X2 X3 is not live). The probability that node X1 is infected is q(2 − q) + (1 − q(2 −
q))(qp + (1 − qp)qp) or

q(2 − q) + (1 − q)2qp(2 − qp) (9)

To see this, note that the probability that X1 is infected exogenously or from X4 is 1 −(1 −q)2 = q(2 −q), and the probability 
that X1 is infected from X2 or X3 is qp + (1 − qp)qp.
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The probability that node X2 is infected is

q + (1 − q)p(pq + (1 − pq)q(2 − q)) (10)

To see this, note that the probability that X2 is exogenously infected is q. Conditional on this not happening, the probability 
that X2 is infected is p times the probability that X1 is infected from X3, or X1 or X4, which is pq + (1 − pq)q(2 − q).

We conclude that each agent’s expected probability of infection in this case is the average of expressions (9) and (10).
Case 2: Both edges X1 X4 and X2 X3 are live. This happens with probability p2. The probability that X1 is infected is

q(2 − q) + (1 − q(2 − q))q(2 − q)p(2 − p).

To see this, note that the probability that X1 is infected exogenously or from X4 is 1 −(1 −q)2 = q(2 −q), and the probability 
that X1 is infected from X3 or X4 is the probability q(2 − q) that either of them is infected times the probability p(2 − p)

that at least one of the edges X1 X2 and X3 X4 is live.
To see equation (6), note that μN1 −μI = (1 − q)(1 − pq)μI p, since the probability that N1 is infected from either N3 or 

N4 and is not infected from either N1 or N2 is the probability 1 − q that N1 is not infected from N1 times the probability 
1 − qp that N1 is not infected from N2 times the probability μI that N4 is infected either exogenously or from N3 times 
the probability p that the edge N1 N4 is live.

To see equation (7), note that the probability that N2 is infected is the probability q that she becomes exogenously 
infected plus the probability (1 −q)p that she does not become infected and N1 N2 is live times the probability q +(1 −q)pμI

that N1 is infected exogenously, from N3 or from N4. That is, μN2 = q + (1 − q)p [q + (1 − q)pμI ], which is equivalent to 
equation (7).

To see equation (8), note that the probability that M3 is infected is the probability μN2 that she becomes infected 
exogenously or from either M1, M2 or M4 plus the complement probability times the probability that the edge M3 M6 is 
live times the probability that M6 is infected exogenously or from M5, M7 or M8. �
Appendix B. Epidemiological model with random matching

In this section we describe a model similar to the one described in section 2 that features random matching instead 
of strategic choice of partners. We then discuss how both the strategic complementarities in risky partnerships and the 
negative welfare effects of partially-effective vaccines naturally vanish in this case. There are n ≥ 2 agents, and four stages, 
listed below. For simplicity, we focus on the case in which n is even.

Stage 1: Network Formation. Each agent announces how many partners he or she wants to have. Edges are then formed as 
follows: One pair of agents is selected uniformly at random, and if both of them have less edges than the number 
that they have announced, an edge is formed between them. This process continues until everyone but at most 
one agent has less edges than the number that she has announced.

Stage 2: Infection. Each agent becomes exogenously infected with probability q. Infection is independent across agents.
Stage 3: Contagion. Each edge becomes live with probability p. Each agent connected via a directed path of live edges to 

an infected agent becomes infected. Edges become live independently of each other.
Stage 4: Utility Realized. The utility of each agent is the benefit that she derives from his partners (0 if no partners, s1 if 

one partner, and s1 + s2 if two partners) less the cost of infection (c if infected, and 0 otherwise).

When everyone announces that she or she wants to have one partner, the outcome of the random network formation 
is necessarily a pair-complete network (Definition 4.1). Hence, it follows from our analysis in section 4 that this is an 
equilibrium if and only if p ∈ (p�, p��).

When the number of agents n is large, and each agent is part of at most two edges, the process of random matching 
implies that the event that an agent i transmits the infection to an agent j is approximately independent from the event 
that an agent k 	= i transmits the infection to agent j. For simplicity, in what follows, we shall assume that n is large enough, 
so that these events can be safely treated as being independent (alternatively, we can assume, as is standard in the literature 
using epidemiological models with random matching, that there is a continuum of agents, so that these approximations are 
exact). Also, we focus on the natural case in which the equilibrium per-partnership infection probability is below 1/2 (this 
is guaranteed, for example, by c ≥ 2s1).7

When an agent decides to have more partners, the probability of becoming infected from each partnership increases. 
Hence, everyone’s incentives to have additional partners diminish after this deviation. In other words, with random matching, 
there are no strategic complementarities in risky partnerships. As a consequence, as we now discuss, partially-effective vaccines 
cannot harm anyone in this random-matching version of our model.

7 This rules out situations in which agents are fatalistic, in the sense that they are so likely to become infected by their first partnership that they 
might as well choose additional partnerships (e.g., Kremer 1996). Note that the mechanism that we illustrate in this paper does not rely on such extreme 
scenarios.
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Suppose for contradiction that a partially-effective vaccine reduces someone’s expected utility. Denote by μ and μ′ the 
average equilibrium per-partnership infection probability before and after introducing the vaccine, respectively. We have 
that

μ′ > μ. (11)

Indeed, otherwise, each agent can have an expected utility at least as high after the intervention as she had before the 
intervention—by doing exactly as she was doing before.

Equation (11) implies that some agents must be choosing strictly more partners after the intervention. Moreover, the 
vaccine cannot reduce anyone’s expected utility in equilibrium if either everyone is choosing zero partners or everyone is 
choosing two partners before the intervention, so we have that

s1 ≥ μpc︸︷︷︸
expected infection cost of first partnership

and s2 ≤ (1 − μp)μpc︸ ︷︷ ︸
expected infection cost of second partnership

Hence, the following two cases are exhaustive. On the one hand, if no one chooses to have zero partners before the inter-
vention, equation (11) implies that some agents choose to have two partners after the intervention, so s2 ≥ (1 −μ′ p)μ′ pc >

(1 − μp)μpc, a contradiction.8 On the other hand, if some (but not all) agents choose to have zero partners before the in-
tervention, we have that μpc = s1, so that μ′ pc > s1 (i.e., no one chooses to have any partners after the intervention), also 
a contradiction.
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