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Abstract

We conduct a sequential social-learning experiment where subjects each guess a
hidden state based on private signals and the guesses of a subset of their predeces-
sors. A network determines the observable predecessors, and we compare subjects’
accuracy on sparse and dense networks. Accuracy gains from social learning are twice
as large on sparse networks compared to dense networks. Models of naive inference
where agents ignore correlation between observations predict this comparative static in
network density, while the finding is difficult to reconcile with rational-learning models.
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1 Introduction
In many economic situations, people form beliefs based on others’ actions. In these set-
tings, agents typically do not observe all members of the society, but only a select subset —
namely, their neighbors in an underlying social network. How the structure of this observa-
tion network affects learning outcomes is a fundamental question for understanding social
learning. While an extensive theoretical literature has explored this question for both naive
and rational agents (e.g., Golub and Jackson, 2010; Acemoglu, Dahleh, Lobel, and Ozdaglar,
2011; Golub and Jackson, 2012), much less is known empirically.

Density is one of the most basic properties of a network. How do learning patterns dif-
fer between sparse networks, where agents usually observe very few neighbors, and dense
networks, where agents generally have abundant social information? On denser networks,
agents observe more predecessors (both directly and indirectly), so their actions can incor-
porate the private signals of more individuals. But whether this leads to more accurate
learning ultimately depends on how society aggregates these signals. Predecessors’ actions
can be correlated by their common neighbors, so this aggregation may be difficult.

In this work, we conduct an experiment to compare social-learning outcomes on sparse
and dense networks. We study a sequential social-learning environment where agents on
an observation network each guess a hidden state. We find that although later agents have
fewer observations on sparser networks, they nevertheless learn substantially better on sparse
networks than dense networks.

We place subjects into groups of 40 who act in order. Each group lives on a social network,
with randomly-generated links that determine each subject’s observations. Each subject has
a 25% chance of observing each predecessor in the sparse treatment and a 75% chance in the
dense treatment (and subjects know these probabilities). A hidden binary state is drawn for
each group. On her turn, each subject must guess the state using her private signal and the
past guesses of the predecessors she observes. Subjects were paid for accuracy.

Prior to data collection, we pre-registered a measure of long-run learning accuracy: the
fraction of the final 8 subjects in the group who correctly guess the state. Comparing this
measure on 130 sparse networks versus 130 dense networks, we find that denser networks lead
to worse learning accuracy. In dense networks, the average accuracy of the last 8 subjects
improves on the autarky benchmark (i.e., the average accuracy if no one can observe others’
actions) by 5.7%, but this improvement is 12.6% in sparse networks. Thus, the long-run
accuracy gains from social learning are twice as large in the sparse treatment as in the dense
treatment (p-value 0.0239).

In addition to its direct implications about the role of network density in social learning,
this finding provides indirect evidence supporting models of naive inference in which agents
neglect the correlations among their social observations (as in Eyster and Rabin, 2010).
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Motivated by a theoretical result from Dasaratha and He (2020), we compute predictions
of the naive model. Later agents exhibit higher accuracy on sparse networks than dense
networks in this model, as in our experimental evidence. The basic intuition is that an
agent with correlation neglect ends up placing too much weight on the actions of the first
few subjects in the same group, as these actions commonly influence many of the agent’s
predecessors. When the network is denser, this over-weighting is more severe and so naive
agents’ guesses are less accurate in the long run.

On the other hand, our experimental findings are inconsistent with the rational social-
learning model. Acemoglu, Dahleh, Lobel, and Ozdaglar (2011)’s results imply that rational
agents learn asymptotically in environments matching our experimental setup. We adapt
their methods to provide lower bounds on the accuracy of rational agents 33 through 40 in
the sparse and dense treatments. These bounds imply that rational agents’ accuracy cannot
improve substantially from the dense-network treatment to the sparse-network treatment —
in particular, the rational model does not predict a doubling of accuracy gain.

Our data also show that network density has no statistically significant effect on the
overall accuracy averaged across all 40 subjects in each group. This is because dense networks
increase the accuracy of subjects who move early in the group, even though they lower the
accuracy of subjects who move later. This reversal of the accuracy ranking between sparse
and dense networks over the course of social learning is another prediction of naive inference.

Finally, to provide additional evidence that learning is worse on denser networks because
subjects fail to account for correlation, we conduct a variant of the experiment where subjects
observe neighbors who make conditionally independent guesses. The setup is the same as in
the main experiment, except the first 32 agents in each group only observe their own private
signals, while the final 8 agents randomly observe some of the initial 32 agents. For the
latter subjects, average guess accuracy is 68.2% when there is a 25% chance of observing
each predecessor and 72.5% when there is a 75% chance of observing each predecessor. The
extra observations in dense networks improve guess accuracy when those observations are
not correlated by common social information.

1.1 Related Literature

Our experimental results add to a growing body of evidence that humans do not properly
account for correlations in social-learning settings. Enke and Zimmermann (2017) show that
correlation neglect is prevalent even in simple environments where the observed information
sources are mechanically correlated. In a field experiment where agents interact repeatedly
with the same set of neighbors, Chandrasekhar, Larreguy, and Xandri (2020) find agents fail
to account for redundancies.

Most closely related to the present work, the laboratory games in Eyster, Rabin, and
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Weizsacker (2018) and Mueller-Frank and Neri (2015) directly evaluate behavioral assump-
tions matching ours. Eyster, Rabin, and Weizsacker (2018) find that on the complete ob-
servation network, many agents choose the best response assuming predecessors are rational
while some participants exhibit redundancy neglect. On a more complex network the naive
model matches more observations than the rational model, and there is little anti-imitation
(which would be required for correct Bayesian inference, as shown in Eyster and Rabin,
2014).1 Mueller-Frank and Neri (2015) find most observations are consistent with the be-
havioral assumption we study (which they call quasi-Bayesian updating) in a setting where
agents have limited information about the network. These experiments suggest naiveté may
be more likely in settings where agents either have a limited knowledge of the true network
or the network is known but very complicated. In these settings, the correct Bayesian be-
lief given one’s observations can be far from obvious, so agents are more likely to resort to
behavioral heuristics.

Unlike this previous work, our experiment tests the comparative statics predictions of
naive and rational learning with respect to variations in the learning environment. This
allows us to cleanly test redundancy neglect against rational updating. Our approach allows
us to focus on long-term learning outcomes—which are the welfare-relevant metrics as we
consider changes in the environment—instead of solely on measuring individual behavior.

Several experiments in this literature, including Grimm andMengel (2018), Chandrasekhar,
Larreguy, and Xandri (2020), and Mueller-Frank and Neri (2015), test social learning out-
comes under multiple network structures. In these works, changes in network structure
largely serve as a robustness check for claims about subject behavior. By considering larger
networks and varying density, we show network structures play an important role in learning
outcomes and exploit this variation to better understand behavior.

2 Theoretical Motivation

2.1 Model

The state of the world ω ∈ {0, 1} takes one of two possible values with equal probabilities.
The set of agents is indexed by i ∈ N. Agents move in the order of their indices, each acting
once.

On her turn, each agent i observes a private signal si ∈ R, as well as the actions of some
previous agents. Then, i chooses an action ai ∈ {0, 1} to maximize the probability that
ai = ω given her belief about ω.

1In the complex network, four agents move in each period after observing predecessors from previous
periods.
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Private signals (si) are i.i.d. and Gaussian conditional on the state of the world. When
ω = 1, si ∼ N (1, σ2). When ω = 0, si ∼ N (−1, σ2). Here σ2 > 0 is the conditional variance
of the private signal.

In addition to her signal, each agent i observes the action of each predecessor with
probability q. These observations are i.i.d. Independence of observations means that whether
one agent observes a certain predecessor does not depend on whether a different agent
observes the same predecessor. Agents observed by i are called the neighbors of i, and
the sets of neighbors define a (random) directed network.

We compare two kinds of agents: rational agents and naive agents. Rational agents
play the unique perfect Bayesian equilibrium. Naive agents optimize given the following
misspecified beliefs:

Assumption 1 (Naive Inference Assumption). Each agent wrongly believes that each pre-
decessor chooses an action to maximize her expected payoff based solely on her private signal,
and not on her observation of other agents.

Equivalently, naive agents believe that each of their neighbors observe no other agents.
Besides the error in Assumption 1, naive agents are otherwise correctly specified and optimize
their expected utility given their mistaken beliefs.

Assumption 1 was introduced in a sequential-learning setting where agents observe all
predecessors by Eyster and Rabin (2010). Their work refers to this form of inference as
“best-response trailing naive inference” (BRTNI).

2.2 Naive and Rational Behavior

Dasaratha and He (2020) suggest an empirical test for the naive inference assumption: in
the context of sequential learning on uniform random networks, does increasing the link-
formation probability q cause more inaccurate long-run beliefs? In this paper, we experimen-
tally test this comparative static in networks of 40 agents by comparing learning outcomes
in sparse networks (where q = 1

4) and dense networks (where q = 3
4).

The naive-learning model and the rational-learning model make competing predictions
about this comparative static. The intuition for naive learning comes from Dasaratha and He
(2020), which suggests that overweighting due to correlation neglect is more severe on dense
networks.2 We do not expect human subjects to behave exactly according to Assumption 1
— for example, the meta-analysis of Weizsäcker (2010) reports that laboratory subjects in
sequential learning games suffer from autarky bias, underweighting their social observations

2Dasaratha and He (2020) consider agents with a continuous action space, but we implemented a binary
action space in the experiment for clarity. We felt it would be easier for subjects to make a binary choice
than to accurately report their exact belief.
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Figure 1: Learning accuracy on random networks with 40 naive agents, binary actions, and
σ2 = 4. Dashed blue and solid red curves show the expected accuracy of different agents on
networks with link probabilities q = 1

4 and q = 3
4 , respectively.

relative to the payoff-maximizing strategy. However, the comparative static prediction of
the naive model remains robust even after introducing any fraction of autarkic agents.3

The prediction of the naive model is shown in Figure 1, which plots the probabilities
that each of the 40 naive agents will correctly guess the state in sparse and dense networks
with σ = 2. Because naive agents’ actions only depend on the number of their predecessors
choosing each of the two actions and not the order of these actions, recursively calculating
the distributions of actions is computationally feasible (see Appendix A.2 for details). As
shown in Figure 1, early naive agents do worse under q = 1

4 than q = 3
4 because there is

very little social information, but the comparison quickly reverses as we examine later naive
agents.

On the other hand, the rational-learning model predicts that later agents will have either
similar or greater accuracy on the dense network compared to the sparse network. Acemoglu,
Dahleh, Lobel, and Ozdaglar (2011)’s results imply that in an environment matching our
experimental setup, rational agents will learn the true state in the long-run, regardless of
the network density. We can confirm that 40 rational agents are enough to approach this
asymptotic learning limit when q = 3

4 . To do this, we compute a lower bound for the
probability of correct learning for each agent i in the dense network of our experiment,
assuming all agents are rational Bayesians (see Appendix A.1 for details). This lower bound
is based on (suboptimal) agent strategies that only depend on own private signals and the
action of just one neighbor, as in the neighbor-choice functions in Lobel and Sadler (2015).
This exercise shows that the 33rd rational agent is correct at least 96.8% of the time on dense

3See the Appendix of a previous version of Dasaratha and He (2020), available at https://arxiv.org/
pdf/1703.02105v5.pdf.

5

https://arxiv.org/pdf/1703.02105v5.pdf
https://arxiv.org/pdf/1703.02105v5.pdf


networks, with the lower bound on accuracy continuing to increase up to the 40th agent, who
is correct at least 97.5% of the time. In addition to suggesting that the asymptotic result
of Acemoglu, Dahleh, Lobel, and Ozdaglar (2011) very likely holds by the 40th agent, the
fact that this lower bound for accuracy on the dense network is so close to perfect learning
proves the 40th rational agent could not perform substantially better on the sparse network,4

contrary to the predicted improvement for the 40th naive agent shown in Figure 1.
Intuitively one might also expect more connections to also help rational agents in the

short- and medium-run as they can adjust for potential redundancies in information. For
example, on the complete network with continuous actions, rational agents can back out the
private signals of all predecessors by observing their actions, so every agent i does better on
the complete network than on any sparser network structure. We note, however, that exact
comparative statics of the rational model or variants are not known on random networks.

We experimentally test the competing predictions of the naive and the rational models
about how long-run accuracy varies with network density. We thus provide indirect evidence
for the naive inference assumption, complementing the direct measurement of behavior in
Eyster, Rabin, and Weizsacker (2018) and Mueller-Frank and Neri (2015).

Beyond providing another form of evidence, our experiment also contributes to under-
standing social learning by using the welfare-relevant outcome, namely the long-run accuracy
of actions, as the dependent variable. Even if individual behavior tends to match redundancy
neglect models in simple or stylized settings, one might worry that the theoretical implica-
tions of said models concerning aggregate learning need not hold in practice for complex
environments. For a policymaker who can alter the observation network, for instance, ex-
periments using welfare-relevant outcomes as their dependent variables give more explicit
guidance as to the consequences of different policies.

3 Experimental Design
We conducted our experiment on the online labor platform Amazon Mechanical Turk (MTurk)
using Qualtrics survey software.

We pre-registered our experimental protocol and regression specification prior to the
start of the experiment in August 2017. Our pre-registration included the target sam-
ple size (which was met exactly) and the dependent variable to measure the accuracy of
social learning. The pre-registration document can be found on the registry website at
https://aspredicted.org/yp6eq.pdf and is also included in the Online Appendix.

4We prove these bounds because we are not aware of a computationally feasible method of calculating or
simulating the probability that rational agents are correct. Rahimian, Molavi, and Jadbabaie (2014) show
computing rational actions in another social learning environment is NP-hard.
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We recruited 1040 subjects. To be recruited, each subject must correctly answer three
comprehension questions (which were scenarios in the game with a dominant choice). An
additional 375 MTurk users incorrectly answered one or more comprehension questions and
were not allowed to participate in the experiment, based on the pre-registered exclusion
criteria. These excluded users were 26.5% of the potential subjects. The experiment was
carried out in fall 2017.

In addition to comprehension questions, we restricted to subjects located in the United
States who had completed at least 50 previous MTurk tasks with a lifetime approval rate of
at least 90%. Subjects were not permitted to participate multiple times in the experiment.
There were at most 15 subjects who did not complete all trials, implying a completion rate
of at least 98.5%. These non-completers were excluded and replaced by new subjects.

Each trial consisted of 40 agents who were asked to each make a binary guess between
two a priori equally likely states of the world, L (for left) and R (for right). The states
were color-coded to make instructions and observations more reader-friendly. Agents are
assigned positions in the sequence and move in order. Each MTurk subject participated in
10 trials, all in the same position (depending on when they participated in the experiment).
The grouping of subjects into trials was independent across trials. Subjects received $0.25
for completing the experiment and $0.25 per correct guess, for a maximum possible payment
of $2.75. Subjects received no feedback about the accuracy of their guesses until they were
paid at the conclusion of the experiment. Subjects ordinarily took less than 10 minutes to
complete their participation and earned $2.08 on average, so the incentives were quite large
for an MTurk task.

In each trial, every agent received a private signal, which had the Gaussian distribution
N (−1, 4) in state L and the Gaussian distribution N (1, 4) in state R. These distributions
were presented visually in the instructions. Along with the value of their signal, subjects
were told the probability of each state conditional on only their private signal.

Each trial was also associated with a density parameter, either q = 1
4 or q = 3

4 . A
random network was generated for each trial by linking each agent with each predecessor
with probability q. Each MTurk subject was assigned into either the “sparse” or the “dense”
treatment, and then placed into 10 trials either all with q = 1

4 or all with q = 3
4 . So there

were 520 subjects and 130 trials for each treatment. Agents were told the actions of each
linked predecessor and the link probability q (but not the full realized network, which could
not be presented succinctly).

In each trial, agents viewed their private signal and any social observations and were
asked to guess the state. States, signals, and networks were independently drawn across
trials. Experimental instructions and an example of a choice screen are shown in the Online
Appendix.
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4 Results
Let yi,j be the indicator random variable with yi,j = 1 if agent i in trial j correctly guesses the
state, yi,j = 0 otherwise. Define ỹj := 1

8
∑40
i=33 yi,j as the fraction of the last 8 agents in trial

j who correctly guess the state. We test learning outcomes for the final 8 agents because
welfare depends on long-run learning outcomes in large societies and these agents better
approximate long-run outcomes. By using only her private signal, an agent can correctly
guess the state 69.15% of the time.5 We call ỹj−0.6915 the gain from social learning in trial
j, as this quantity represents improvement relative to the autarky benchmark.

We find that the average gain from social learning is 8.73 percentage points for the q = 1
4

treatment and 4.12 percentage points for the q = 3
4 treatment. Social learning improves

accuracy on the sparse networks by twice as much as on the dense networks. To test for
statistical significance, we consider the regression

ỹj = β0 + β1qj + εj

where qj ∈ {1
4 ,

3
4} is the network density parameter for trial j. Recall that each subject was

assigned into ten random trials with the same network density and in the same sequential
position. This means for two different trials j ′ 6= j

′′ , the error terms εj′ and εj′′ are close to
independent since there are likely very few subjects who participated in both trials.

We estimate β1 = −0.092 with a p-value of 0.0239 (see Table 1). The results are the
same whether we use robust standard errors or not. These findings are consistent with naive
updating but not with rational updating, as discussed in Section 2.6

This difference in the gains from social learning is not driven by different rates of autarky
among the two treatments for the last 8 agents. We say an agent goes against her signal if
she guesses L when her signal is positive or guesses R when her signal is negative. Within
the last 8 rounds, there are 138 instances of agents going against their signals in the q = 1

4
treatment, which is very close to the 136 instances of the same under the q = 3

4 treatment.
However, when agents go against their signals in the last 8 rounds, they correctly guess the
state 81.88% of the time under the q = 1

4 treatment, but only 71.32% of the time under the
q = 3

4 treatment. This shows the observed difference in accuracy is due to social learning
being differentially effective on the two network structures.

However, the q = 3
4 treatment yields better learning outcomes for early agents. For

5In fact, subjects in the first position (who have no social observations) correctly use their private signals
93.8% of the time.

6We pre-registered average accuracy in the last 8 agents (i.e last 20% of agents) as the dependent variable
for the experiment, but the regression result is robust to other definitions of ỹj . When ỹj encodes average
accuracy among the last m agents for any 4 ≤ m ≤ 12 (i.e. between last 10% and last 30% of the agents),
the estimate for β1 remains negative.
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FractionCorrect
NetworkDensity -0.0923

(0.0406)

Constant 0.802
(0.0218)

Observations 260
Adjusted R2 0.016

Table 1: Regression results for the effect of network density on learning outcomes (with
robust standard errors).

agents 10 through 20, the average guess accuracy is 72.24% under the q = 1
4 treatment

and 73.22% under the q = 3
4 treatment. As such, if we replace the dependent variable in

the pre-registered regression with overall accuracy ȳj := 1
40

∑40
i=1 yi,j, then we do not find a

statistically significant estimate for β1 (p-value of 0.663). This result is consistent with the
naive-learning model: according to the predictions of the naive model shown in Figure 1,
early agents are more accurate under q = 3

4 , but later agents are more accurate under q = 1
4 .

The point of overtaking happens at a later round in practice than in theory, because our
experimental subjects rely more on their private signal than predicted by the naive model,7

consistent with the meta-analysis of Weizsäcker (2010).
Our experiment was designed to compare long-run learning accuracy on different networks

instead of measuring individual behavior. We do not directly test alternate behavioral models
for two reasons. First, given the complex signal and network structures, such tests will be
very noisy in our data. Second, because the spaces of possible networks and actions have
very high dimension, it is computationally infeasible to determine the action that each agent
would take under common knowledge of rationality. However, in the next subsection we
provide some evidence that our findings are driven by herding under naive inference rather
than other behavioral mechanisms.

4.1 Evidence of naive herding

In this section, we present three pieces of evidence suggesting that naive herding is the
mechanism responsible for the difference in learning accuracy between the two treatments.

(1) Distribution of overall accuracy. Figure 2 in Appendix B plots the distributions
of subjects who correctly guess the state in the q = 1

4 and q = 3
4 treatments, across dif-

ferent trials. Compared to the distribution under q = 1
4 , the distribution under q = 3

4 has
7The overall frequency of agents going against their signals was 36.8% of the predicted frequency under

the naive model.
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more extreme values and a larger standard deviation (11.36 percentage points versus 9.12
percentage points). This is suggestive evidence for naive herding. With denser networks,
we simultaneously find more trials where agents do very badly overall (from herding on the
wrong state) and more trials where agents do very well overall (from herding on the correct
state).

(2) Effect of misleading early signals on the accuracy of later agents. Call a
private signal misleading if it is positive while the state is L, or if it is negative while the
state is R. If naive herding is the mechanism, we would expect misleading signals received
by early agents to be more harmful for eventual learning accuracy on denser networks than
on sparser networks. On the other hand, a different behavioral mechanism based on the
salience of the visible decisions would suggest that early misleading signals are more harmful
on sparse networks, since each visible decision is more salient when agents have fewer social
observations. To test the naive herding mechanism, we expand our baseline regression to
include two additional regressors: the number mj of the first fifth of agents who receive
misleading signals in trial j, and its interaction effect with network density. That is, we
estimate

ỹj = β0 + β1qj + β2mj + γ(qjmj) + εj.

The difference in the marginal effect of a misleading early signal for learning accuracy on the
dense network (q = 3

4) versus on the sparse network (q = 1
4) is 1

2γ in the above specification.
As reported in Table 5 in Appendix B, we find γ = 0.05 with a p-value of 0.0923. This

means each misleading signal among the first fifth of agents harms the average accuracy of
the last fifth of agents in the same trial by an extra 2.5 percentage points in dense networks
compared to sparse networks.

(3) Average uncertainty. Based on simulation evidence, we expect naive agents to
exhibit more agreement on denser networks. To test this prediction in the data, we consider
for each trial a set of 30 moving windows centered around periods 6, 7, ... 35, with each
window spanning 11 consecutive periods. For each trial j and each window w, we compute
rj,w ∈ {0, 1

11 , ..., 1} as the fraction of 11 agents in the window who guessed R, and we let
uj,w := rj,w · (1 − rj,w) be a measure of uncertainty within the window.8 In windows where
agents exhibit a greater degree of agreement, we will see a lower uj,w. Under herding, we
expect lower uncertainty on denser networks, as higher density accelerates convergence to
a (possibly mistaken) social consensus. We find in the data that the average uncertainty
across all trials and all windows is 0.165 on dense networks and 0.178 on sparse networks.
Examining uncertainty in each of the 30 windows w separately, we find average uj,w across
trials is lower among dense networks than sparse networks for all but 1 out of 30 windows.

8The value of uj,w would be unchanged if we instead defined rj,w as the fraction of the 11 agents in
window w who correctly guessed the state.
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Numerically, the naive herding theory predicts lower average uj,w on denser networks in all
30 windows.

5 Neighbors with Conditionally Independent Actions
In our main experiment, we find that denser networks lead to worse social learning by later
subjects. We have presented evidence suggesting the mechanism behind this result is that
subjects neglect correlation in observed actions. To provide additional evidence for this
channel, we now test how network density affects social learning when observed actions
are conditionally independent given the state. In this section, we will ask whether more
observations help subjects whose neighbors only have private information.

5.1 Experimental Design

We also pre-registered the experimental protocol and regression specification for this second
experiment, including the dependent variable to measure the accuracy of social learning and
the target sample size, prior to the start of the experiment in November 2020. The pre-
registration document is included in the Online Appendix and may also be accessed via the
registry website at https://aspredicted.org/ag8fr.pdf.

This experiment was also conducted online on MTurk. We recruited 624 subjects, and
each subject participated in 10 trials. There were a total of 130 trials. To increase power,
each trial included subjects in both sparse and dense treatments. The first 32 subjects in
each trial had no neighbors, and chose actions based only on their private signals. Each
trial also contained 8 subjects in the sparse treatment and 8 subjects in the dense treatment.
Subjects in the sparse treatment observed each of the first 32 subjects in the same trial with
probability q = 1

4 while subjects in the dense treatment observed each of the first 32 subjects
with probability q = 3

4 . There were no other observations, so the actions of the observed
neighbors are always uncorrelated given the state. In particular, the subjects after the first
32 in each trial never observe each other.

We maintained the state distribution, private signal distribution, and action space from
the main experiment. Recruitment and payment were also the same as in the main ex-
periment. The experimental instructions were modified to accurately describe the social
information subjects would receive, if any. The first 32 subjects in each trial (like the first
subject in each trial in the main experiment) were only asked the one comprehension question
that just involves private signals, as the other comprehension questions pertain to subjects
who receive social information. Subjects earned an average of $1.90 per person in this second
experiment.

11
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FractionCorrect
NetworkDensity 0.0865

(0.0417)

Constant 0.660
( 0.0229)

Observations 260
Adjusted R2 0.013

Table 2: Regression results for the effect of network density on learning outcomes for subjects
observing neighbors with only private information (with robust standard errors).

5.2 Results

We find that the average accuracy is 68.2% in the sparse treatment and 72.5% in the dense
treatment. When subjects’ neighbors only have private information and not social informa-
tion, having more neighbors improves the accuracy of guesses.

In each trial, we will index the 8 subjects in the sparse treatment as 33, . . . , 40 and the
8 subjects in the dense treatment as 41, . . . , 48. Let yi,j be the indicator random variable
with yi,j = 1 if agent i in trial j correctly guesses the state, yi,j = 0 otherwise. For each
q ∈

{
1
4 ,

3
4

}
, we define ỹqj as the fraction of the 8 subjects in that treatment in trial j who

correctly guess the state, so

ỹ
1
4
j := 1

8

40∑
i=33

yi,j and ỹ
3
4
j :=

1
8

48∑
i=41

yi,j.

To test for statistical significance, we consider the regression

ỹqj = βuncor0 + βuncor1 q + εj,q

where q ∈ {1
4 ,

3
4} is the network density parameter. We estimate βuncor1 = 0.087 with a

p-value of 0.0391 (see Table 2).
The difference in average accuracy is again driven by a difference in the value of social

information. Recall that a subject goes against her signal if her signal is positive and she
chooses L or her signal is negative and she chooses R. Conditional on going against one’s
own signal, subjects correctly guess the state 53.66% of the time in sparse treatment and
69.39% of the time in dense treatment.

Guesses are in general less accurate in this follow-up experiment than in the main ex-
periment. The subjects in the first 32 positions in each trial had only one comprehension
question because their decision problems did not involve any social information. Subjects

12



who did not fully understand the experimental instructions may therefore have been more
likely to participate in the experiment in these positions, producing much noisier choices
that degrade later subjects’ accuracy.9 There may also be differences in the MTurk subject
pool compared to the main experiment, as the second experiment was conducted three years
later.

The follow-up experiment finds that having more observations improves accuracy when
those observations are conditionally uncorrelated. This provides additional evidence that
our main result is driven by the failure of subjects to account for correlation in observed
actions, rather than by some other mechanism that does not depend on this correlation.

6 Concluding Discussion
Our study provides experimental evidence on how the density of the observation network
affects people’s long-run accuracy in social-learning settings. We find that sparser networks
double the accuracy gains from social learning relative to denser networks. While the rational
model predicts correct asymptotic social learning with minimal assumptions on the social
network, we conjecture that in practice, many structural properties of the network can
substantially alter long-run accuracy. Our empirical findings support this conjecture for the
case of network density, one of the most canonical network statistics. We leave open the
roles of other network structures as promising future work.

We have argued that our experimental results provide evidence for inferential naiveté
by analyzing a particular form of behavior (Assumption 1). We conclude by discussing two
ways in which the experimental results are potentially consistent with more general models
of behavior. First, we have discussed models where all agents are rational or all agents
are naive, but a model where only some of the agents suffer from inferential naiveté may
be more realistic. Such a model could also generate herding on incorrect beliefs, and this
herding may be more likely on denser networks. The exact details depend on how the agents
who do not suffer from inferential naiveté reason about others’ play. If these agents wrongly
believe that others are playing the perfect Bayesian equilibrium strategies, then they will
fail to correct the mistakes of naive agents. In this case, early agents’ actions can have very
disproportionate influence on later agents.

Second, Assumption 1 is a particular form of naive updating that assumes agents entirely
neglect correlations in neighbors’ actions. Even in homogeneous populations, intermediate
forms of naive updating could also generate herding on incorrect beliefs. Our main result sug-
gests inferential naiveté, but does not distinguish between alternate naive models involving
some correlation neglect.

9Subjects in the first 32 positions correctly used their private signals only 81.7% of the time.
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Appendix

A Theoretical Predictions in the Experimental Envi-
ronment

A.1 Bounding the Performance of Rational Agents

Consider 40 rational agents on a random network where each agent is linked to each of her
predecessors 3

4 of the time, i.i.d. across link realizations. Agents know their own neighbors
but have no further knowledge about the realization of the random network. The signal
structure and payoff structure match the experimental design in Section 3.

We provide a lower bound for the accuracy of agents 33 through 40 in the unique PBE
of the social-learning game. We first show that when every player uses the equilibrium
strategy, all agents learn at least as well as when everyone uses any constrained strategy
that chooses an action based on only own private signal and the action of the most recent
neighbor. We then exhibit payoffs under one such strategy, which give a lower bound on
rational performance.

Fix an arbitrary sequence of constrained strategies (σi) where σi : Si × {0, 1, ∅} →
∆({0, 1}) is only a function of i’s signal si and the action of the most recent predecessor that
i observes (σi(si, ∅) refers to i’s play if i does not observe any predecessor). Let ai denote i’s
(random) action induced by this sequence of strategies. Let a′i denote i’s (random) action
when all agents use the PBE strategy.

Claim 1. For all i, P[a′i = ω]≥ P[ai = ω].

Proof. The proof is by induction on i and the base case of i = 1 is clear. Suppose the claim
holds for i = 1, ..., n. Conditional on agent n+ 1 observing no predecessors, the claim again
holds as in the base case, so we can check the claim conditional on n+ 1 observing at least
one neighbor.

Let j be the most recent neighbor that n+ 1 observes. Then the rational agent observes
sn+1, a′j for some j ≤ n, and perhaps some other actions while the constrained agent only uses
sn+1 and aj in decision-making, where P[a′j = ω]≥ P[aj = ω] by the inductive hypothesis. By
garbling the observed action a′j, the rational agent could construct a random variable with the
same joint distribution with ω as the less accurate action aj. Ignoring information other than
sn+1 and the garbled a′j, the rational agent n+1 could therefore follow a strategy that does as
well as agent n+1 under the strategy profile (σi). So we must have P[a′n+1 = ω]≥ P[an+1 = ω]
when everyone uses the PBE strategy.
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We then numerically compute the values for P[a
i

= ω] under the optimal constrained
strategy, which are displayed in Table 3.

agent number
probability correct

33 34 35 36 37 38 39 40
0.9685 0.9695 0.9705 0.9714 0.9723 0.9731 0.9739 0.9746

Table 3: Lower bounds on the accuracy of rational agents on dense networks.

A.2 Performance of Naive Agents

Consider 40 naive agents on a random network where each agent is linked to each of her
predecessors with probability q, i.i.d. across link realizations. The signal structure and payoff
structure match the experimental design in Section 3.

We will compute the accuracy of each agent by a recursive calculation. Because naive
agents’ actions do not depend on the order of predecessors, behavior depends only on the
number of agents who have played L and the number of agents who have played R as well
as the network. We will compute the distribution over the number of agents from the first
n who have played L and the number who have played R recursively.

Assume the state is R. Let P (k, k′) be the probability that k of the first n agents play L
and k′ of the first n agents play R. We define P (k, k′) = 0 if k < 0 or k′ < 0. The posterior
log-likelihood of state R for a naive agent observing one action equal to R (and no signal) is

` = 2
σ2 ·

µ+ σφ(−µ/σ)
1− Φ(−µ/σ) ,

where Φ and φ are the distribution function and probability density function of a standard
Gaussian random variable, respectively.

Then we have the recursive relation

P (k, k′) = P (k − 1, k′) ∑
i≤k−1,i′≤k′ B(i, k − 1, q)B(i′, k′, q)Φ(σ(i−i′)`−2µσ

2 ) +
P (k, k′ − 1) ∑

i≤k,i′≤k′−1 B(i, k, q)B(i′, k′ − 1, q)[1− Φ(σ(i−i′)`−2µσ
2 )],

where B(i, k, q) is the probability a binomial distribution with parameters k and q is equal to
i. The first summand gives the probability of agent k+k′ choosing L after k−1 predecessors
choose L and the remainder choose R, and the second summand gives the probability of agent
k + k′ choosing R after k predecessors choose L and the remainder choose R. The binomial
coefficients correspond to the possible network realizations. Here we use naive inference,
which implies that only the number of observed agents choosing each action matters for
behavior and not their order.
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From these distributions P (·, ·) we can compute the probability that agent n chooses the
correct action R:

n∑
k=0

P (k, n− k)
∑

i≤k,i′≤n−k
B(i, k, q)B(i′, n− k, q)[1− Φ(σ(i− i′)`− 2µσ

2 )].

These probabilities, which we compute numerically, are displayed in Table 4 for agents 33
through 40.

agent number
accuracy with q = 1/4
accuracy with q = 3/4

33 34 35 36 37 38 39 40
0.8773 0.8780 0.8786 0.8792 0.8797 0.8801 0.8805 0.8808
0.7768 0.7768 0.7768 0.7768 0.7768 0.7768 0.7768 0.7768

Table 4: The accuracy of naive agents on sparse and dense networks.
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B Relegated Figures and Tables

Distribution of overall accuracy for trials on sparse networks (p = 0.25)
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Distribution of overall accuracy for trials on dense networks (p = 0.75)
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Figure 2: Histograms of fractions of agents correctly guessing the state
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Dependent variable:
FractionCorrect

MisleadingEarlySignals 0.014
(0.017)

NetworkDensity 0.033
(0.082)

MisleadingEarlySignals×NetworkDensity −0.050∗
(0.030)

Constant 0.768∗∗∗
(0.045)

Observations 260
R2 0.040
Adjusted R2 0.029
Residual Std. Error 0.163 (df = 256)
F Statistic 3.566∗∗ (df = 3; 256)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 5: Effect of misleading early signals.
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Online Appendix

C Experimental Instructions
Instructions and an example choice follow. To avoid confusion, the instructions were modified
for player 1 in each round to exclude discussion of social observations. A sample experiment
can be completed online at https://upenn.co1.qualtrics.com/jfe/form/SV_42dq2J2wHO30zA1
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This is round 1 (out of 10).

Your signal: -3.3968.

Based on your signal alone, there is 84.53% chance the direction is LEFT,

15.47% chance the direction is RIGHT.

Your observations:

Player 1 guessed RIGHT

Player 3 guessed RIGHT

Player 4 guessed LEFT

Player 5 guessed LEFT

Player 7 guessed RIGHT

Player 8 guessed RIGHT

Player 9 guessed LEFT

Player 10 guessed LEFT

Player 11 guessed LEFT

Player 12 guessed LEFT

Player 13 guessed LEFT

Player 15 guessed LEFT

Player 16 guessed LEFT

Player 17 guessed RIGHT

Player 18 guessed LEFT

What is your guess about the direction this round?

LEFT

RIGHT

 >> 
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Network Density and Sequential Learning – When Neighbors Have No Neighbors (#51451)
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Krishna Dasaratha (University of Pennsylvania and Harvard University) - dasarath@g.harvard.edu
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1) Have any data been collected for this study already?

No, no data have been collected for this study yet.

2) What's the main question being asked or hypothesis being tested in this study?

Previously, we found that subjects in a sequential learning game learn correctly more often in sparser networks, where most participants observe few

neighbors, than in denser networks, where most participants observe many neighbors. Now, to distinguish between the naive inference mechanism from

some other possible mechanisms as an explanation for this result, we test whether the same pattern still holds across network density if subjects observe

social neighbors who had no social neighbors themselves.

3) Describe the key dependent variable(s) specifying how they will be measured.

Fraction of the last eight agents in a trial who correctly guess the state.

4) How many and which conditions will participants be assigned to?

We will create 130 pairs of matched trials. For each pair of matched trials, we generate a binary state of the world and a profile of 40 signals for 40

participants. The same state and signal profile are used for both trials in the pair. One trial in the pair will have a sparse network, and the other a dense

network. For the sparse trial, for each 33 <= i <= 40 and 1 <= j <= 32, we generate a link from i to j with probability 25%. For the dense trial, each such link is

generated with probability 75%. In particular, the first 32 participants in each trial have no social neighbors, and the final 8 participants in each trial never

observe each other as social neighbors. A participant will either be in an early position (32 or earlier), a late position in a sparse trial, or a late position in a

dense trial. A participant in an early position is assigned to 10 random pairs of trials in that position. In each pair of trials, the participant is shown their

private signal and asked to make a guess about the state. Each of these guesses is recorded for both trials in the pair. A participant in a late position will be

assigned to 10 random trials with the same network density in that position. They observe their private signal and the actions of their network neighbors,

then make a guess about the state.

5) Specify exactly which analyses you will conduct to examine the main question/hypothesis.

Linear regression of the dependent variable on the link formation probability p.

6) Describe exactly how outliers will be defined and handled, and your precise rule(s) for excluding observations.

Participants who incorrectly answer comprehension questions will be excluded. Participants who do not complete all trials will be excluded.

7) How many observations will be collected or what will determine sample size? No need to justify decision, but be precise about exactly how the

number will be determined.

We will run 130 pairs of trials. As explained above, each of the first 32 pairs of guesses in each pair of trials is made by the same participant. Each

participant will be asked to make 10 guesses. Therefore, the total number of participants is (130 x 32 + 130 x 8 x 2) / 10 = 624.

8) Anything else you would like to pre-register? (e.g., secondary analyses, variables collected for exploratory purposes, unusual analyses planned?)

None.
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