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Abstract

This paper addresses the synthesis of virtual views of people from multiple view

image sequences. We consider the target area of the multiple camera “3D Virtual

Studio” with the ultimate goal of capturing video-realistic dynamic human appear-

ance. A mesh based reconstruction framework is introduced to initialise and optimise

the shape of a dynamic scene for view-dependent rendering, making use of silhou-

ette and stereo data as complementary shape cues. The technique addresses two

key problems: (1) robust shape reconstruction; and (2) accurate image correspon-

dence for view dependent rendering in the presence of camera calibration error. We

present results against ground truth data in synthetic test cases and for captured

sequences of people in a studio. The framework demonstrates a higher resolution in

rendering compared to shape from silhouette and multiple view stereo.
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1 Introduction

The challenge of creating realistic computer generated scenes is leading to

a convergence of computer graphics and computer vision technology. Where

computer graphics deals with the complex modelling of objects and simulation

of light interaction in a virtual scene to generate realistic images, computer

vision offers the opportunity to capture and render such models directly from

the real-world with the visual realism of conventional video images, illustrated

in Figure 1.

Fig. 1. Panning a virtual camera for a frame of a multiple view video sequence

captured in an 8 camera 3D Virtual Studio.

One of the key challenges lies in the creation of realistic human models, a

central component of most visual media. In recent years the problem of gener-
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ating visually realistic graphical models of people has been addressed through

computer vision techniques. Three-dimensional production from camera im-

ages was popularised by Kanade et al. [12] who coined the term “Virtualized

Reality”. Kanade et al. [12] demonstrated the ability to reconstruct dynamic

scenes of people from multiple view video sequences, allowing a recorded event

to be visualised in 3D as an immersive viewing experience.

The concept of using multiple cameras for 3D production of human actors is

now being explored in the broadcast industry [22,9]. Traditionally the use of

computer graphics in broadcast has centred on the virtual studio in which a

camera films live action against a constant background such as a blue screen.

Virtual studio technology has now developed to the point where the camera

footage can be overlaid with real or synthetic video in real-time [9]. The use

of multiple cameras in this setting opens up the potential for the “3D Vir-

tual Studio” in which the dynamic shape and appearance of a person can be

captured as a 3D computer graphics model.

There are two strands of research in computer vision that will potentially lead

to the realisation of image based human appearance capture in a 3D Virtual

Studio. Firstly marker-free visual motion capture in which the motion of a

person is tracked from multiple cameras. Secondly accurate scene reconstruc-

tion to capture the dynamic shape and appearance of a person moving in the

studio. In this paper we address the problem of reconstructing the geometric

shape and rendering the appearance of a person from multiple view video se-

quences. There are several important considerations in our approach to the

problem:

(1) Robust 3D shape estimation in the presence of reconstruction ambiguities
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such as self occlusions between camera images and a limited variation in

surface appearance; and

(2) Recovering sub-pixel image correspondence in the presence of inexact

camera calibration for rendering with the visual quality of the original

images.

In this work we seek to render a virtual view of a person with the greatest

fidelity to the original camera images captured in a multiple camera studio.

We present and discuss a new technique to reconstruct geometry for view-

dependent rendering of appearance. A robust initial estimate of the scene is

first derived from multiple view silhouette images. We then update geometry

to recover the correspondence for rendering with a view-dependent appear-

ance. The geometry is optimised in a coarse to fine framework, integrating

both stereo and silhouette data. The stereo matches are then used to pro-

vide the sub-pixel accurate image correspondence to render the virtual view.

This approach is compared to current methods that use either silhouette or

stereo data alone without consideration of image correspondence with inexact

camera calibration. We demonstrate that the technique provides a more ro-

bust estimate of geometry and greater visual fidelity to the camera images in

rendering virtual views of people from multiple view video sequences.

2 Related work

The acquisition and rendering of visually realistic images of real objects and

scenes has been a long standing problem in both computer graphics and com-

puter vision. There are two contrasting approaches to the problem: image-

based modelling and image-based rendering. In modelling from images, a 3D
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surface model is constructed for a scene and texture maps are extracted from

the images. The advantage of this approach is that it allows the model to be

rendered and manipulated in a conventional computer graphics pipeline. The

disadvantage lies in the quality of the geometric reconstruction that can be

achieved from images and the fixed appearance given by the model texture.

Image-based rendering on the other hand synthesises novel views directly from

the original images rather than through explicit reconstruction of scene geom-

etry. This provides greater visual fidelity to the original data at the cost of

requiring dense sampling of the scene for view synthesis. In this work we use 8

fixed cameras to capture dynamic sequences in a studio, making image based

rendering unfeasible without a restrictive range of virtual viewpoints.

2.1 Image based modelling

Geometric modelling from images is a central problem in computer vision and

techniques have been developed to automate the process of scene reconstruc-

tion [10]. The classical approach to 3D reconstruction developed first in pho-

togrammetry attempts to jointly estimate 3D structure and camera viewing

parameters through a process termed bundle-adjustment [31]. In visual scene

reconstruction this can be simplified by calibrating the viewing parameters

of the cameras. The problem is then to solve for the 3D shape of the scene

that reproduces the images. Techniques for shape estimation from multiple

cameras include reconstruction of volume from image silhouettes, termed the

visual hull [15], volume from colour consistency between images, termed the

photo hull [25,14], and surface recovery from stereo correspondence between

pairs of camera images [12,20].
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Multiple camera systems have been developed to reconstruct dynamic se-

quences of people, Moezzi et al. [19] demonstrated the use of the visual hull,

Vedula et al. [32] made use of the photo hull, and Kanade et al. [12] fused

multiple stereo depth-maps into a surface model of a person. There are sev-

eral important limitations for these techniques for visual reconstruction. The

visual hull provides only a bounding approximation to a scene from silhou-

ettes [15]. Matching colour between images in the photo hull can refine the

estimated shape, however colour consistency techniques suffer from holes or

false cavities in the volume of a scene where consistency cannot be correctly

estimated between views, and the fattening of areas of the scene where there is

insufficient colour information in the images to distinguish different surfaces

[6]. Finally stereo correspondence can fail in regions of poor image texture

or occlusion boundaries and can produce noisy depth estimates with inexact

matches between images.

In this paper we present a technique to integrate multiple visual cues in scene

reconstruction to provide improved reconstruction in the presence of visual

ambiguities. Multiple shape cues have been ysed previously for reconstruc-

tion in computer vision. Terzopoulos [30] introduced a model-based approach

to visual reconstruction in which a prior model is deformed to satisfy multi-

ple constraints on shape. Model-based reconstruction of whole-body human

models from silhouettes has been presented by Hilton et al. [11] and from

silhouettes, stereo and feature data by Starck and Hilton [27]. A model-based

approach relies on a prior scene model and in the case of human shape recon-

struction this model must be articulated to match the pose at each frame of

a video sequence [27].

Fua and Leclerc [7] introduced an object-centred approach to reconstruction
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in which an initial surface estimate rather than a prior model is optimised

to match multiple shape cues. The technique used an initial surface derived

from stereo and updated the surface to match both stereo and shading between

images. Vedula et al. [33] used a similar technique to reconstruct human shape

where an initial surface derived from multiple view stereo is used to refine

the search range for stereo correspondence. These techniques make use of

reconstructed geometry to improve the estimation of image correspondence

and remove the need for a prior scene model. In this work we adopt an object-

centred approach using the visual hull as a robust initial estimate of shape.

The geometry is then optimised to match both silhouette and stereo data as

complementary shape cues. The shape of the model is also used to constrain

the search for stereo correspondence in a coarse-to-fine framework giving a

wider range of convergence compared to local optimisation techniques [7].

2.2 View-dependent rendering

Hybrid techniques have been introduced to combine an image-based represen-

tation of appearance with geometric reconstruction. These techniques provide

the visual quality of image based rendering, making use of reconstructed scene

geometry to interpolate from a sparse set of camera images. Debevec et al.

[4] introduced the concept of view-dependent texturing from photographs and

demonstrated the visual realism that can be achieved in rendering using the

camera images as multiple texture maps. Pulli et al. [23] introduced the con-

cept of both view-dependent geometry and texture for general view-dependent

rendering. These techniques provide the visual quality of the captured images

closest to the novel viewpoint in rendering and highly realistic virtual views
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of people have been demonstrated [24,18,17,32].

Several problems remain for virtual view synthesis from multiple view video

sequences: (1) robust shape reconstruction; and (2) accurate image correspon-

dence for view dependent rendering. Current techniques for view generation

rely on a single reconstructed scene model and render novel views from the

camera images using the scene geometry. While this has enabled the capture

and rendering of realistic 3D scenes, ambiguities in reconstruction can lead

to incorrect scene geometry and errors in correspondence due to either in-

correct geometry or inexact camera calibration. These become apparent as a

misalignment and blurring in the rendered images, as shown later in Figure 7.

In this paper we present a technique to obtain a robust estimate of surface

geometry using shape from silhouette and then to optimise estimated surface

geometry to match the appearance across the camera images used in view-

dependent rendering. The technique provides the shape and sub-pixel accurate

image correspondence for rendering a view-dependent appearance. This gives

increased resolution by correctly aligning image texture from multiple views,

reducing the blur and misalignment of features compared to approaches that

make the assumption that an estimated surface is in correspondence between

images [19,32,12].

3 Image based reconstruction

In this section we describe the multiple camera 3D Virtual Studio for the ac-

quisition of multiple view video sequences. Algorithms are then presented for

reconstruction of shape from image silhouettes and stereo correspondence as

8



a basis for comparison with the object-centred optimisation technique intro-

duced in this paper.

3.1 Data acquisition

Video sequences are recorded from 8 cameras in a dedicated studio. Sony

DXC-9100P 3-CCD colour cameras are used, providing PAL-resolution pro-

gressive scan images at 25Hz. The cameras are synchronised by an external

trigger and the RGB analogue output is converted to a time-stamped digi-

tal SDI stream. The video is stored to disk using multiple frame grabbers on

a PC network. The studio is equipped with a lighting grid to provide con-

trolled lighting conditions and a blue curtain for background segmentation.

All cameras are colour calibrated by white-balancing the RGB output with a

white reference object. The studio set-up provides 8 channels of synchronised

broadcast standard digital video capture.

The cameras are positioned to provide a frontal ring of 7 cameras, giving 6

pairs for stereo matching. The final camera is mounted on the ceiling to in-

crease the intersection angle between views for reconstruction of the visual

hull. The cameras provide a capture volume of approximately 2.5m × 2.5m ×
2.5m with a frontal viewing range in the order of 120o surrounding the volume.

The intrinsic and extrinsic camera parameters are calibrated using the Cam-

era Calibration Toolbox for Matlab from MRL-Intel [1]. The source code for

the implementation of the toolbox is available in the Open Source Computer

Vision library distributed by Intel [2]. Camera calibration provides a worst

case reprojection error of 1.6 pixels averaged across the cameras, equivalent

to a reconstruction error in the order of 5mm to 10mm.
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3.2 Shape from silhouette

An image silhouette describes an occluding contour that encloses the projected

shape of an observed scene. The visual hull is reconstructed through the vol-

ume intersection of the occupied region of 3D space represented by multiple

image silhouettes [15]. Techniques for volumetric reconstruction of the visual

hull in general use a discrete representation of space as a set of volume elements

or voxels [6,26]. The voxels corresponding to the visual hull are extracted by

intersecting the visual cones for the silhouettes. This intersection test, also

called the voxel occupancy problem, is performed by projecting voxels to each

image in turn and testing the overlap with the silhouettes [29].

The visual hull reconstruction algorithm used here is outlined in Algorithm

1. A voxel grid is first defined in the studio capture space. The set of oc-

cupied voxels that lie inside the visual hull are then derived by testing the

projected overlap of each voxel with the silhouettes. If the projected shape of

a voxel overlaps all the silhouettes it is set as occupied, otherwise if a voxel

falls outside any silhouette the voxel is set as unoccupied. The image region

corresponding to a voxel is simplified as the rectangular region enclosing the

projected corners of a voxel. These image regions can be pre-computed to

speed up the procedure. The surface voxels for a scene are finally extracted as

the set of occupied voxels that are adjacent to unoccupied voxels. This discrete

representation is converted to a surface mesh by iso-surface extraction using

a variation on the Marching Cubes algorithm [16].
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Algorithm 1: Visual hull reconstruction

(1) set (all voxels = occupied)

(2) for (each voxel)

(3) for (each image)

(4) project (each voxel corner to image)

(5) set (image region containing voxel corners)

(6) if (no silhouette pixels in image region)

(7) set (voxel = unoccupied)

(8) for (each voxel)

(9) if (voxel = occupied)

(10) if (connected voxel = unoccupied)

(11) set (surface voxel)

(12) extract (iso-surface for occupied voxels)

3.3 Shape from stereo correspondence

Surface reconstruction from stereo is performed by extracting a 2.5D stereo

depth-map for each camera pair in the studio. Here we use a two-stage dy-

namic programming technique proposed by Sun [28] to extract a surface that

maximises the stereo correspondence between images and enforces continuity

in the depth-map. We use a normalised cross-correlation metric to allow for

linear changes in intensity between images with non-Lambertian surfaces or
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inexact intensity matched images. We also add the constraint that the dispar-

ity range for stereo correspondence lies within the visual hull extracted from

image silhouettes. This follows the model-enhanced stereo paradigm proposed

by Vedula et al. [33] and removes outliers in stereo correspondence.

Multiple 2.5D depth-maps are fused into a single 3D surface representation

using volumetric fusion similar to that proposed by Narayanan et al. [20]. The

fusion technique outlined in Algorithm 2, averages the depth to the surface

of the scene at a discrete set of points on a volumetric grid and extracts the

shape of the scene as the zero-distance surface inside the volume. Here the

discrete volume defined by the visual hull is used. At each occupied voxel in

the visual hull a 3D depth value is derived. The depth value is calculated by

projecting the voxel to all the depth maps and searching for the closest 3D

surface point in each view. An average is then taken for the depth to each

3D point within a set tolerance of the closest surface point across all views.

The tolerance is automatically set as the size of the voxels used in volumetric

fusion in order to average the surfaces that fall within each voxel. A signed

distance function is constructed by assigning positive distance values where

the depth of the voxel to the camera view-point is less than the distance in

the depth-map and a voxel lies outside the surface. A negative depth value is

otherwise assigned where a voxel falls inside the surface. The surface of the

scene is then extracted as the zero-valued iso-surface of the distance function

using the marching cubes algorithm [16].
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Algorithm 2: Fuse multiple stereo depth-maps

(1) for (each voxel)

(2) set (closest distance as undefined)

(3) if (voxel inside visual hull)

(4) for (each 2.5D depth image)

(5) project (each voxel corner to image)

(6) get (average depth inside voxel)

(7) set (distance = depth to voxel - average depth)

(8) if (‖ distance ‖ < closest)

(9) set (closest = ‖ distance ‖)
(10) if (closest is undefined)

(11) set (voxel distance = positive)

(12) else

(13) average (distances within tolerance of closest)

(14) extract (iso-surface from signed distances)

4 Surface optimisation for rendering

In this section we describe the object-centred multiple view optimisation al-

gorithm. We start with an initial estimate of shape using a mesh generated

for the visual hull as outlined in Algorithm 1. We then update the mesh to

minimize the error in fitting to both stereo and silhouette data. Shape optimi-
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sation is performed in a regularised coarse-to-fine framework. The result is a

regularised mesh that fits the data, aligning available texture between camera

images and returning sub-pixel accurate image locations for rendering.

The surface optimisation technique follows the physically based deformable

model framework proposed by Terzoupoulos [30]. A cost-function is constructed

consisting of a potential energy term derived from the fit of the model to the

data, and an internal energy term that penalises the deviation from the desired

model properties. The model is then deformed to minimize the total energy

function, hence minimizing the error between the model and the data while

the internal energy regularises the model deformation. In data fitting we use

the cost of fitting to stereo data ES and matching the shape from silhouette

provided by the visual hull EV . The trade-off between these data terms is

governed by a weighting β, and the influence of model regularisation, ER, is

governed by α.

E = βES + (1− β)EV + αER (1)

We discretize the energy function at the vertices of our mesh xi and use gra-

dient descent for minimization. In terms of physics-based deformable models

this is equivalent to a zero mass dynamic system. The deformation of the mesh

vertices is then given as.

dxi

dt
= −∇E = − (β∇ES + (1− β)∇EV + α∇ER) (2)
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4.1 Silhouette data

The visual hull is used to provide an initial estimate of the scene geometry for

optimisation, we then seek to update the estimated geometry to match stereo

data. Stereo matching can however fail where there is a limited variation

in image appearance or where there is significant distortion in appearance

between views due to projective distortion or occlusion boundaries. Silhouette

data is therefore incorporated by fitting the volumetric visual hull as well. A

data energy term for the visual hull, EV (xi), is defined as the squared error

between the vertex position and the closest surface voxel on the visual hull y
i

derived using Algorithm 1.

EV =
∑

i

(1− β(xi))‖yi
− xi‖2 (3)

4.2 Stereo data

In stereo matching we use a direct search for stereo correspondence between

the images used in view dependent rendering. For each mesh vertex we first

determine the key view, from the views used in rendering, that has the greatest

surface visibility according to the camera with the closest viewpoint to the

direction of the vertex normal. We then recover the disparity in each stereo

pair that uses the key view. Here we make the simplifying assumption of a

fronto-parallel surface at each vertex and use area-based normalized cross-

correlation between rectified camera images [8]. For each offset image in each

stereo pair we locate the sub-pixel match to the key image with the highest

correlation score. We define the search range along the epipolar line in each

rectified offset image according to the expected error in the shape of the mesh.
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Key
Offset Offset

Fig. 2. Stereo matching between key and offset views, showing the search region

along each epipolar line allowing for off-axis matches with inexact camera calibra-

tion.

We also match up to a specified pixel error perpendicular to each epipolar line

according to the expected accuracy of the camera calibration as illustrated in

Figure 2. In this work we assume an expected shape error of 200mm and a 2

pixel reprojection error in all cases.

For each vertex we derive a sub-pixel correspondence in each offset image and

a reconstructed 3D position. The stereo energy term at each vertex, ES(xi), is

defined as the squared error between the vertex position and the reconstructed

3D position zi,c for each offset camera c. We therefore seek a least-square error

fit to the matched vertex positions across the whole mesh, as given in Equation

4. The energy term is weighted according to the quality of the stereo matches

as given by the correlation score wi,c ∈ [0, 1], Equation 5. This enables a

trade-off between fitting stereo data where good matches are obtained and

fitting silhouette data where matching is poor. The weighted stereo term and

the corresponding vertex weight are defined as follows where nc
i indicates the
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number of offset cameras for which a 3D position is derived.

βES =
∑

i

1

nc
i

nc
i−1∑

c=0

wi,c‖zi,c − xi‖2 (4)

β(xi) =
1

nc
i

nc
i−1∑

c=0

wi,c (5)

In stereo matching it is important to account for self-occlusions to prevent

incorrect matches between occluded and visible regions. We deal with self-

occlusions by checking the visibility of each mesh vertex in each camera image

and only matching between unoccluded views. Here we use the visibility algo-

rithm introduced by Debevec et al. [5] that uses hardware accelerated OpenGL

rendering. To test the visibility in a camera, the mesh is rendered to the cam-

era viewpoint with a unique colour ID assigned to each polygon. For each

front-facing vertex we can then retrieve the polygon at the projected location

in the camera and check for occlusion against the polygon.

4.3 Surface regularisation

The standard approach to shape regularisation is to treat a deformable model

as a thin-plate material under tension [30]. Here we use membrane tension

for regularisation. The membrane functional for ER across a parameterised

surface x(u, v) is given in Equation 6 and the variational derivative is given

by the Laplacian 4(x). Under the simplifying assumption of a regular mesh

parameterisation, the Laplacian at a mesh vertex is given by the “umbrella-

operator” in Equation 7 where the index v spans the 1-neighbourhood xi,v of

a vertex xi [13].

ER =
∫ ∫ (

‖xu‖2 + ‖xv‖2
)
dudv (6)
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dER

dxi

= − 1

nv
i

nv
i−1∑

v=0

(xi,v − xi) (7)

The effect of the umbrella operator is to pull vertices towards the centroid

of the 1-neighbourhood. Intuitively the role of regularisation is to maintain a

smooth, even parameterisation of the mesh surface during deformation. The

weighting parameter α introduced in Equation 1 provides user defined control

over the degree of regularisation required in data fitting. The exact value of

the parameter required will depend both on the accuracy of the data used in

fitting, as well as the triangulation of mesh due to the scale dependence of the

umbrella operator. Throughout this work a fixed value of α = 10.0 is used to

compare results.

4.4 Surface optimisation

The shape optimisation process is performed in a coarse-to-fine framework in

order to deal with noisy stereo matches. The geometry is initialised as the

surface shape of the visual hull, this surface mesh is then optimised to match

the appearance between the images used in view-dependent rendering. We

start at an initial expected error for the surface mesh and locate the stereo

matches up to the error estimate in all the cameras pairs for which a camera

is to be used in rendering. We then update vertex locations to minimize the

energy function. The expected error is successively reduced and the model

again deformed to minimize the energy. The convergence criteria at each error

level is set to the error estimate multiplied by the error reduction factor such

that the assigned data remains within the matching range at the next iteration

of mesh deformation. Optimisation is stopped when the error level reaches the
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reconstruction accuracy of the camera set-up. The advantage of the coarse-to-

fine matching and model deformation is that it allows the mesh to converge

to a solution, allowing for noisy stereo matches and an increased range of

convergence compared to local optimisation techniques [7]. The technique also

provides sub-pixel accurate image correspondence for the mesh vertices up

to the expected calibration accuracy of the camera system for subsequent

rendering.

Algorithm 3: Coarse to fine surface optimisation

(1) (extract surface mesh for visual hull)

(2) set (camera views for rendering)

(3) set (initial expected shape error)

(4) while (error > reconstruction accuracy)

(5) set (mesh visibility in camera images)

(6) for (each mesh vertex xi)

(7) set (closest surface voxel y
i
)

(8) for (each camera used in rendering)

(9) set (stereo matches zi,c)

(10) while (‖dxi

dt
‖ ≥ η × error)

(11) set (
dxi

dt
= −β dES

dxi
− (1− β)dEV

dxi
− αdER

dxi
)

(12) set (error = η × error)
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5 View-dependent rendering

In view-dependent rendering the original camera images are used as a set of

texture maps for a surface mesh and blended dynamically according to the

view-point used. The input to view-dependent rendering is the image plane

correspondence for each model vertex in the camera views. A triangle-centred

vertex weight is defined to blend between the texture for each camera. A

vertex-centred weight is also defined in order to derive surface colour where the

mesh cannot be textured. The mesh is then rendered in multiple passes, first

using a view-dependent colour and then texturing from the camera images.

In rendering we use the camera images closest the virtual view to provide the

view-dependent appearance. A blend weight bim is calculated at each vertex

i for each image m. The proximity of a camera to the virtual view is defined

as the cosine of the angle from the camera viewing direction to the view-

ing direction of the virtual view, bim = cos φim [23,21] as shown in Figure

3. The vertex weights are normalised to sum to one across all visible views

b̂im = vimbim/
∑

m vimbim. The colour at each model vertex I i is defined as the

weighted average of the image colour in each image, I i =
∑

m b̂imI im. Some

vertices may be occluded in all camera views, in which case a vertex colour

cannot be derived. Each vertex with no colour assignment is therefore itera-

tively assigned an average of the adjacent vertex colours to give a complete

description of the surface appearance.

Techniques for view-dependent texturing make use of the subset of the avail-

able camera images closest to the rendered viewpoint [5,18,23]. In the general

case where cameras are located at arbitrary positions in space, camera se-

20



virtual
view

xi

camera m

angle

im

virtual
view

xi

camera 1

i1
camera 2

i12

(a) Vertex colour weighting (b) Vertex texture weighting

Fig. 3. The virtual viewing angles used to define (a) view-dependent vertex colour,

and (b) view-dependent texture weighting.

lection has been based on the three closest cameras surrounding the virtual

viewpoint. In our studio, cameras are located in a circle in order to surround

a person from a limited set of views. The two closest cameras to the de-

sired virtual view are therefore selected for view-dependent texturing. A view-

dependent weight is derived at the triangle vertices of the mesh to define the

relative influence of these two closest views in texturing each triangle.

The view-dependent vertex weight bimf for each vertex i on each triangle

facet f is again defined by the proximity of the camera viewing direction to

the virtual view given by the angle φim. The blend weight is now defined as

bimf = cos φim − cos φi12, where φi12 is the angle between the two viewing

directions to the cameras used for texturing at the vertex as proposed by

Pighin et al. [21], shown in Figure 3. Blending now favours the original camera

views exactly when the virtual viewing direction is coincident with a camera

viewing direction. The view-dependent vertex weight is set to zero, bimf = 0,

if any of the vertices are not visible in the camera view or if any of the vertices

project to the segmented background region of the image. The vertex weights

are finally normalised to sum to one across the two texture views to give b̂imf .
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The virtual view is generated using hardware accelerated OpenGL rendering.

The mesh is first rendered with the vertex colours I i. Multi-pass texturing

is then used to render the mesh from each camera image with the texture

modulated by the blend weights b̂imf at each polygon vertex. In the first

instance of texturing a polygon, blending replaces the colour rendered mesh

and subsequent passes add modulated texture.

6 Results

In this section we present and discuss the performance of the proposed tech-

nique for the estimation and rendering of view dependent geometry and ap-

pearance from multiple view video sequences. The technique is first compared

against ground truth data for a synthetic test case. Results are then presented

for dynamic sequences of people captured in the 3D Virtual Studio.

6.1 Comparison with ground truth

We now consider the idealised problem of reconstructing the shape and ap-

pearance of a simple cube object located within the capture volume for the

studio. Idealised camera views are rendered for the cube as illustrated in Fig-

ure 4. A colour photograph is texture mapped onto the cube to provide a

surface appearance for stereo matching. This test case provides ground truth

data to test the reconstruction and rendering, allowing an objective evalua-

tion of the proposed technique in comparison with shape from silhouette and

multiple view stereo.

Volumetric reconstruction of the visual hull is performed with a voxel size of
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Fig. 4. Synthetic views rendered with an ideal camera model for a 1m cube located

at the centre of an 8 camera studio.

10mm to encompass the reprojection error in the real camera data. Camera

calibration error is simulated in the images by adding a fixed displacement of

up to 10mm in a random direction to the cube when rendering the synthetic

camera views shown in Figure 4. The image correspondence for rendering the

visual hull and merged 2.5D stereo depth-maps is obtained using the projected

image plane location of the mesh vertices.

An objective measure is proposed to assess the quality of the rendered images.

It is not possible to make a comparison directly with views synthesised from

the original cube as we cannot expect the camera images to reproject to the

same original position in the presence of calibration error. Instead we note

that the quality of the rendered images is degraded by the misalignment of

the multiple camera textures used in view-dependent rendering. This produces

the blurring and double exposure effects shown later in Figure 7. We therefore

define an error metric that measures the difference in the RGB colour between

the two camera textures used in rendering. The camera textures are first ren-

dered independently to the virtual view-point without modulation. The root

mean square RMS difference between the RGB colour is then computed across

all pixels for which the colour is defined in both rendered images. For the ex-
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act colour balanced cameras used in the synthetic images we can expect that

the RMS colour difference will be minimised where the camera textures are in

alignment.

Six virtual viewpoints are considered, positioned midway between the 7 cam-

eras forming the frontal ring in the studio. The RMS difference in rendering

is shown in Figure 5, for a range of simulated calibration errors. The graphs

quantify the misalignment in the camera textures used in view-dependent ren-

dering for the visual hull, merged 2.5D stereo depth-maps and the optimised

shape of the visual hull derived in this work. The reconstructed shape for one

virtual view is shown in Figure 6 and the rendered images shown in Figure 7

for simulated errors of 0mm, 5mm and 10mm.

Fig. 5. The RMS RGB colour difference between textures used in view-dependent

rendering for a range of simulated calibration errors.

The quantified colour difference shown in Figure 5 illustrates the performance
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of the proposed technique in comparison with the visual hull and multiple

view stereo. The visual hull represents an upper bound on the shape of the

cube and so the surface will not be in correspondence even with exact camera

calibration. A closer approximation to the underlying geometry can be ob-

tained by making use of a greater number of image silhouettes, however the

visual hull cannot reproduce any concavities in a scene which will always be

out of correspondence. Stereo matching derives geometry by directly consid-

ering image correspondence and provides an improved estimate of geometry

in this test case where there is a sufficient appearance variation in the images

for matching. However, the accuracy degrades with the simulated error as the

technique does not consider the reprojection error in the images and differ-

ent stereo pairs will also provide different geometry estimates. In this work

both silhouette and stereo data are used as complementary shape cues and

the image correspondence is derived in the presence of calibration errors. This

provides a more robust estimate of geometry and reduces the misalignment of

camera images in rendering, providing an improved visual quality in virtual

view synthesis.

6.2 Reconstructing and rendering people

The technique is now applied to reconstruct the shape and render virtual views

of people from multiple view video sequences. Reconstruction and rendering

is first compared with the visual hull and multiple view stereo. Figure 8 shows

a rendered viewpoint along with the corresponding geometry derived for each

technique. A voxel size of 20mm is now used to merge the noisy stereo depth-

maps over a larger region. The visual hull, Figure 8(b) shows the blurring effect
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0mm simulated calibration error.

5mm simulated calibration error.

10mm simulated calibration error.

(a) Visual hull (b) Merged stereo (c) This work

Fig. 6. Reconstructed geometry for rendering a virtual viewpoint at 0mm, 5mm and

10mm simulated calibration error.

with incorrect geometry. The merged stereo, Figure 8(c), shows improved res-

olution but suffers from missing and incorrect sections of geometry due to the

lack of appearance variation in the camera images for stereo matching. Figure

8(d) shows the optimised shape of the visual hull using both silhouette and

stereo shape cues, and demonstrates the highest resolution with the recovered

sub-pixel correspondence.

Sequences of rendered views are now shown Figures 9 for virtual view-points
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0mm simulated calibration error.

5mm simulated calibration error.

10mm simulated calibration error.

(a) Ground truth (b) Visual hull (c) Merged stereo (d) This work

Fig. 7. Rendered virtual view-point for the visual hull, merged 2.5D stereo

depth-maps and this work shown in comparison with the ground truth image at

a 0mm, 5mm and 10mm simulated calibration error.

scripted to move and pan around several different dynamic scenes. This demon-

strates the flexibility in viewpoint control that is given by the 3D description

of the scene. The virtual views approach the resolution of the original cam-

era images and the dynamic appearance of the clothing wrinkles produces a

video-realistic result. The corresponding movie sequences can be viewed at [3].
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(a) Camera image (b) Visual hull (c) Merged stereo (d) This work

Fig. 8. Rendering a virtual view mid-way between two cameras.

7 Concluding remarks

In this paper we have demonstrated a technique to reconstruct the shape and

render the appearance of people from multiple view video sequences captured

in a 3D Virtual Studio. The technique considers two important problems,

robust scene reconstruction and the recovery of image correspondence for ren-

dering.

The framework makes use of multiple shape cues through shape from silhou-

ette and stereo matching. A robust initial estimate of geometry is derived from
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Fig. 9. Virtual views rendered from multiple view image sequences of people.

the visual hull which is then updated to match available stereo and silhou-

ette data as a deformable mesh. The mesh is optimised in a coarse to fine

algorithm in which the search range for stereo matches is gradually reduced

to the calibration accuracy of the camera system. Surface optimisation pro-

vides the means to deform the shape derived from image silhouettes to satisfy

stereo matching between views for the recovery of image correspondence. The

29



framework incorporates silhouette data where stereo matches are poor due to

lack of appearance variation in the images or occlusion boundaries. This can

demonstrate improved shape reconstruction compared to the use of silhouette

or stereo data alone.

Current techniques for view generation rely on rendering a novel view using

reconstructed scene geometry under the assumption that the scene model is in

correspondence between views. Errors in correspondence can arise either due

to inaccuracies in reconstruction or inexact camera calibration. This becomes

apparent as a misalignment and blurring of texture in rendering. The sur-

face optimisation technique presented in this work returns sub-pixel accurate

correspondence for view-dependent rendering in the presence of camera cali-

bration errors. The technique demonstrates improved resolution in rendering

virtual views compared to shape from silhouette and multiple view stereo.

We have demonstrated that it is possible to render virtual views from multiple

video sequences with a resolution approaching that of the original captured

images. This is achieved by optimising the geometry used in rendering to

match the texture between the views used for view-dependent texturing and

by recovering image correspondence up to the expected calibration accuracy

of the camera images. The iterative optimisation technique runs as an off-

line process and so can be considered as a potential post-production tool to

improve the resolution in virtual view synthesis from multiple view video.

One limitation of the framework currently lies in the number of cameras re-

quired for reconstruction. In this work short baseline stereo matching is used

to derive image correspondence, limiting the relative position of the cameras

in the studio. A viewing range of 120o is achieved with 8 cameras, however
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this would require 19 cameras to achieve full 360o coverage. Future research

should address the problem of recovering image correspondence from wide

baseline camera positions allowing for a greater viewing range for a limited

set of cameras.

The framework is also limited to considering each time frame of the multiple

view video sequences independently. There is therefore no structure in the

temporal sequence of surface meshes to edit or re-purpose the recorded event.

Future research should address spatio-temporal image correspondence to de-

form a surface mesh over time as well as space, or the use of a model based

approach to give a consistent structure with a prior surface model.
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