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Abstract

The smoothness and angle quality of a surface mesh are two important indicators of the
“goodness” of the mesh for downstream applications such as visualization and numerical
simulation. We present in this paper a novel surface mesh processing method not only to reduce
mesh noise but to improve angle quality as well. Our approach is based on the local surface fitting
around each vertex using the least square minimization technique. The new position of the vertex
is obtained by finding the maximum inscribed circle (MIC) of the surrounding polygon and
projecting the circle’s center onto the analytically fitted surface. The procedure above repeats until
the maximal vertex displacement is less than a pre-defined threshold. The mesh smoothness is
improved by a combined idea of surface fitting and projection, while the angle quality is achieved
by utilizing the MIC-based projection scheme. Results on a variety of geometric mesh models
have demonstrated the effectiveness of our method.
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1 Introduction

Surface meshes are frequently used for two primary purposes: 3D visualization and

numerical simulation. Accordingly, the “goodness” of a surface mesh is typically measured
by its smoothness and angle quality. Good smoothness implies less reconstruction noise or
artifact on a surface model while high-quality angles means that no angle should be close to
0° or 180°. The smoothness property is critical in 3D visualization — noisy surface meshes
often result in inaccurate interpretation of the models. On the other hand, the angle quality
makes a significant impact on the approximation accuracy of humerical solutions. Ideally,
meshes with uniform angles would be most desirable in simulation.

In pratice, however, many meshes fail to satisfy one or two of these requirements. For
instance, triangular surface meshes generated by iso-surfacing techniques such as the
Marching Cube method (Lorensen and Cline, 1987) possess good smoothness but often
contain very sharp angles (see Fig. 1a), which make the meshes inappropriate for use in
numerical simulation. On the other hand, quadrilateral surface meshes can be simply
generated from 3D imaging data by extracting the outward faces of segmented voxels. These
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meshes, if converted into triangular meshes, have very good angles (either 45° or 90°) but
are so noisy that it is hard to visualize the structural details on the surface (see Fig. 1b). The
goal of this paper is to present a set of efficient algorithms to process an abitrary surface
mesh so that both the smoothness and angle quality will be significantly improved.

A wide variety of mesh smoothing algorithms have been proposed in recent years. Most of
them, however, are designed just from the graphical point of view, i.e. to improve the mesh
smoothness or, in other words, to reduce mesh noise for reconstruction, rendering or
visualization purposes (Alliez et al., 2005). Laplacian iterative smoothing is one of the most
common and simplest techniques for mesh smoothing (Field, 1988). During each iteration,
all the vertices of a mesh are adjusted to the barycenter of the neighboring region. Because
of its simplicity, many variants of this method have been developed (Freitag, 1997; Canann,
1998). Taubin (1995) proposed a mesh smoothing method by using a simple, isotropic
technique to improve the smoothness of a surface mesh. Desbrun et al. (1999) extended
Taubin’s work to smooth irregular meshes by using geometric flows. Ohtake et al. (2000)
extended the Laplacian smoothing by combining geometric smoothing with
parameterization regularization. Peng (2001) gave a denoising algorithm for geometric data
represented as a semiregular mesh on the basis of adaptive Wiener filtering. Despite their
high speed, these methods often yield significant volume shrinkage and undesired mesh
distortion. Another popular smoothing approach is based on the energy minimization
technique. Welch and Witkin (1994) described an approach to designing and fairing
freeform shapes represented by triangulated surfaces. Kobblet (1997 2000) proposed a
general algorithm to fair a triangular mesh with arbitrary topology in R3 by estimating the
curvature for the mesh model. These methods are time-consuming due to the complicated
energy functions to be minimized. Recently, feature-preserving mesh smoothing methods
(Clarenz et al., 2000; Desbrun et al., 2000; Zhang and Fiume, 2002; Bajaj and Xu, 2003;
Jones et al., 2003; Fleishman et al., 2003; Sun et al., 2007, 2008; Li et al., 2009) have drawn
more and more attention. Bajaj and Xu (2003) proposed a partial differential equation
(PDE)-based anisotropic diffusion approach for processing noisy surfaces and functions
defined on surfaces. Although these methods can achieve high smoothness of mesh, they
rely on the formation of a “shock” term to preserve details, resulting in significant
computational costs. Jones et al. (2003) developed a feature-preserving smoothing algorithm
by adopting local first-order predictors statistically defined on triangulated surface meshes.
Fleishman et al. (2003) introduced a similar method based on iterative bilateral filtering, a
non-linear variation of Gaussian smoothing that weighs sample points based on their
similarity to the one being processed. However, finding a set of appropriate parameters is
not an easy task. Sun et al. presented fast feature-preserving mesh denoising approaches by
normal-filtering and vertex-updating (Sun et al., 2008) and random walks (Sun et al., 2007).
Li et al. (2009) adopted the weighted bi-quadratic Bezier surface fitting and uniform
principal curvature techniques to smooth surface meshes.

Many of the methods mentioned above are devoted only to improving the smoothness of a
mesh. The angle quality of a mesh is equally if not more important, especially when the
numerical simulation based on the mesh is taken into consideration (Zhang et al., 2006). The
quality of a mesh can be measured by either geometry-dependent (Liu and Joe, 1994) or
solution-dependent (Berzins, 1998) criteria. The one we use in our study is by measuring the
angles of the triangulated surfaces, a strategy commonly used in the mesh generation and
smoothing community (Zhou and Shimada, 2000; Xu and Newman 2005). The mesh quality
may be improved by a combination of three major techniques: inserting/deleting vertices
(Shewchuk, 2003; Coll et al., 2006), swapping edges/faces (Gooch, 2002; Yamakawa and
Shimada, 2009), and moving the vertices without changing the mesh topology (Field, 1988;
Wang and Yu, 2009). The last one, also known as mesh smoothing, is the strategy we will
explore in the present paper. Different criteria can be utilized to move a vertex, including the
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local angle-based methods (Zhou and Shimada, 2000) and global optimization methods
(Chen, 2004, 2007; Nealen et al., 2006).

To enhance the smoothness of a mesh and improve its angle quality, we propose an effective
mesh smoothing approach based on quadric surface fitting and maximum inscribed circle
(MIC) techniques for 3D triangular or quadrilateral meshes. As shown in Fig. 2, the basic
idea of this method is to project the center of the MIC at each vertex onto the locally fitted
surface and update the current vertex with the projection point to achieve both good mesh
smoothness and high angle quality. Numerous experiments on biological and engineering
models have demonstrated the effectiveness of our approaches in achieving these two goals.
The remainder of the present paper is organized as follows. Section 2 is focused on the
details of the mesh smoothing algorithm. The mesh quality improvement is described in
Section 3. We present some experimental results and quality analysis in Section 4, followed
by the conclusion in Section 5.

2 Mesh Smoothing Algorithm via Surface Fitting

As illustrated in Fig. 2, the input in our method is a triangular surface mesh that may be
corrupted with noise. For extremely noisy surface meshes with, the volume-preserving
Laplacian smoothing method (Desbrun et al., 1999) with uniform weights is performed
before we carry out the following surface fitting-based mesh smoothing. For each vertex, the
k-ring neighboring vertices are found according to the topological relationship present in the
mesh model. The local surface patch around a point can be approximated with a quadric
surface: S(u, v) = (u, v, h(u, v)), a parametric representation in a local coordinate system, as
shown in Fig. 3, where p is the origin, h-axis is along the normal vector n at p on S, and u-,
v- axes are orthogonal vectors in the tangent plane at p. According to the surface theory (do
Carmo, 1976), the local shape of a surface around p can be represented with the Darboux
system D(p) = (Tq, To, N, kq, ko), where (Tq, T»), (kq, ko) are principal directions and
curvatures, respectively.

We extend this principle to discrete mesh models and construct the local coordinated system
for each vertex on the meshes. Since the construction of a local system mainly relies on the
h-axis, i.e., the normal vector of the vertex, we first estimate the normal vector for each
vertex with the area-weighted averaging method as follows:

N
’I’L,—:Zj:lAfi ‘N, f:, eF; @)

where As, s are respectively the area and normal vector of face f in Fj. We consider vj, nj as
the origin and z-axis of the local coordinate system respectively. Then the x- and y- axes of
the local coordinate system are arbitrarily chosen in the plane located at vj and orthogonal to
the normal n;. After constructing the local coordinate system, we find all the neighboring
vertices for each vertex within the k-ring neighborhood. The optimal value of k depends on
local surface geometries. In the implementation of our algorithm, the user can choose either
a fixed ring number or an adaptive ring number. For the latter case, the standard deviation of
curvatures within a neighborhood (up to 10 layers) is used to adaptively determine the value
of k. In other words, the vertices within the chosen k-ring neighborhood should have
relatively small curvature variation.

For each vertex, the global coordinates of all the neighboring vertices are transformed to the
local coordinates by homogeneous transformation and then the local coordinates obtained
are used to fit an analytical quadric surface:
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h(u, v)=a142+l7uv+cv2+eu+fv+g 3)

The classic least square fitting method is adopted to find the coefficients in Eq (3), although
more advanced techniques, such as the moving least-square method (Levin 1998), may be
used. After the quadric surface is fitted at a vertex, the new position for the vertex must be
chosen somewhere on the surface. A simply way to do is by projecting the vertex along its
normal vector onto the quadric surface and updating it with the projection position (Wang
and Yu, 2009). Because the normal vector is exactly the z-axis in the local coordinate
system, the local coordinate of the projected point of the vertex should be (0, 0, g). The
mesh is smoothed by finding the global coordinate with an inverse homogeneous
transformation from the local coordinate (0, 0, g). This method is very easy to implement
and works well in reducing the noise of the surface mesh.

3 Mesh Quality Improvement via Optimized Projection

Although the simple projection method described above can produce smooth meshes, the
resulting meshes may contain very skinny angles and sometimes mesh self-intersection may
occur. In fact, there are many directions in which a vertex can be projected onto the fitted
surface without loss of surface smoothness. To achieve both mesh smoothness and angle
quality, however, we must choose a good projection direction among all such candidates.
Let us first consider a simpler but analogous problem for angle quality improvement in 2-D
meshes (see Fig. 4a): Given a vertex and its adjacent neighbors forming a polygon, finding
the new position for the vertex such that the new mesh within this polygon would have the
highest angle quality.

Ideally the new vertex should be the one that maximizes the minimal angles in all the
triangles in Fig. 4(a). However, finding exactly such a point inside a general planar polygon
is nontrivial and is typically approximated by using such methods as Laplacian smoothing
(Field., 1988) or angle-based (Zhou and Shimada, 2000) techniques. These approximation
approaches, as will be shown shortly, can lead to very low angle quality or even twisted
edge connections. In this paper, we adopt another criterion for finding the optimal position

of a vertex inside an arbitrary planar polygon. A point ‘, inside a polygon P is said to be
optimal if the minimal distance from v, to the polygon edges is maximized:

== i )

(4)

where P1 stands for the interior of the polygon P and PE for the edges of P. The
optimization problem above can be thought of as a skeletonization or thinning problem
using so-called grassfire model (Blum, 1967): the boundary of an object (a polygon in our
case) is set on fire that propagates in the same speed in all directions and the skeleton is the
loci where the fire fronts meet and quench each other. Apparently the position that is last
quenched inside the polygon is the one that satisfies Eq. (4). Equivalently, the skeletons can
be detected with the centers of maximum disks within the polygon (Blum, 1973). Among all
such disks, the one with the maximal radius is known as the maximum inscribed circle

(MIC) of the polygon and its center would give the optimal position xl in Eq. (4).

In general, the skeleton (or medial axis) of a planar polygon is a combination of line and
parabolic segments, on which any interior point is equidistant from the polygon boundary
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(Lee, 1982). According to (Held and Huber, 2001, 2009), the center of the MIC of a planar
polygon is located on one of the joint points of such segments. Fig. 4 illustrates the MIC-
based mesh smoothing approach. Fig. 4(a) shows the original 2D meshes centered at v and
the surrounding polygon is P = {vq, vy,..., Vg, V1}. With Held’s (2001 With Held’s (2009)
fast algorithm, the medial axis and the MIC of P can be calculated as shown in Fig. 4(b), in
which the medial axis of P is depicted by the red curve segments and cpc is the center of the
MIC (in yellow). By choosing cpic as the new vertex of v, the smoothed mesh is given in
Fig. 4(c). The minimal and maximal angles in the original mesh are 15° and 149°, which are
improved to 28° and 113°, respectively in the smoothed mesh.

Fig. 5 shows a more complicated case. The original mesh with 13 vertices and 24 triangle
faces is shown in Fig. 5(a). During the mesh smoothing, the boundary vertices are assumed
to remain unchanged. Fig. 5(b) & (c) are the mesh smoothing results with the Laplacian and
angle-based smoothing methods. The result with the MIC-based method is given in Fig.
5(d). Clearly our method can still produce decent results even in this extreme case, while the
meshes become distorted with the other two methods.

To further quantify the mesh smoothing quality, we consider another example as shown in
Fig. 6, consisting of 447 vertices and 892 triangle faces. We compare the mesh smoothing
results generated by the Laplacian method, angle-based method and the MIC-based method.
The angle and size of the original and smoothed meshes are given in Table 1. Because the
boundary vertices are fixed, the triangles incident to the boundary vertices are excluded
from the calculation. From the table, we can see that the MIC-based method yields the
highest mesh quality compared to the Laplacian method and the angle-based method in
terms of angle and size attributes.

The MIC-based method described is well suited for 2-D mesh smoothing. To extend it to 3-
D surface mesh smoothing, we need to make some modifications because the polygon
surrounding a vertex is most likely non-planar. Let S be the quadric surface fitted with the k-
ring neighboring vertices of vertex vj. We outline the surface smoothing algorithm as
follows. For every vertex v,

Step1 Fita plane pln using the incident vertices NV (v;) of v;, (see Fig. 7).

Step 2  Project all vertices in NVq (v;) onto pln and get the new positions NVP(i) =
{vwpjli=1,2,..., m}.

Step 3 For the new projection points that form a planar polygon, solve the 2-D mesh
smoothing problem using the MIC-based method. In other words, find a new
position, denoted as V;, for vj so that the triangles within the polygon are
optimized.

Step 4 Project vg; onto the quadric surface along the normal of pin, yielding the final
position v,

This above surface smoothing procedure is iterative and terminates when the maximal
displacement among all the vertices of the mesh is less than a pre-defined threshold. Fig. 8
gives the final result of the molecule 2CMP. In Fig. 8(c), the minimal and maximal angles of
the final mesh are 19.31° and 133.32° and the minimal and maximal sizes are 0.26 and 3.23
respectively.

The method described can achieve high angle quality and smoothness from relatively blunt
surface meshes. For meshes with sharp features, the quadric fitting and projection may blur
sharp features, due to the use of isotropic k-ring neighborhood. To cope with this problem,
we take advantage of anisotropic surface fitting and projection strategies. For each vertex,
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we first identify one of its incident faces, having the most similar normal vector to the
normal vector of this vertex. The found face is treated as a seed face and then a region
growing process is performed by adding the surrounding faces whose normal vectors are
close to the normal of the seed face. This process is terminated when the number of faces
within the current region reached a pre-defined value. The surface fitting and optimized
projection described above are then applied to this anisotropic neighborhood of the current
vertex. By using this anisotropic surface fitting and projection strategy, sharp features of
mesh can be faithfully preserved.

4 Results and Discussion

All algorithms described have been implemented in Visual C++ and OpenGL, running on a
Pentium IV PC with 2.0GHz. A user-friendly GUI has been created encapsulating the
implemented algorithms and will be made freely available to the community. Many 3D
models have been tested and a number of them are demonstrated below. To compare the
performance of different methods, we attempt to generate the best results for each method
by adjusting their parameters. The smoothness of all surface meshes below is mainly judged
by eyes, while the angle quality is quantitatively measured by histograms (in percentage)
with respect to angle degrees (0° — 180°). Additionally, the angle quality is visually
illustrated by color map in the zoomed-in meshes — The color of a triangle is green if its
minimal angle is greater than 40° and red if its minimal angle is less than 15°. Otherwise,
the color is linearly interpolated from red (15°) to green (40°). In our algorithm, two
important parameters are the rings number of neighboring vertices k and the maximum
vertex displacement threshold Ty.

In Fig. 9, we give the mesh smoothing result for the molecule model 2HAO, chosen from
the Protein Data Bank. Shown in Fig. 9(a) is the original mesh generated by using the
approach proposed by Yu (2009). This quadrilateral mesh has 228,132 vertices and 228,096
faces. The smoothing result using the direct projection method without MI1C-based angle
quality improvement is shown in Fig. 9(b). Figure 9(c) shows the final result after two
iterations of applying the MIC approach described. This mesh demonstrates visually very
good surface smoothness, in contrast to the original cube-like noisy mesh. The angle quality
of this mesh is illustrated in a small, enlarged mesh in Fig. 9(c). Fig. 10 gives the angle
histograms (in percentage) of the meshes smoothed by the present approach with and
without the MIC scheme, where the angles used are obtained by dividing each quadrilateral
into two triangles. Apparently, The MIC method can improve the angle quality of the mesh,
as compared to the direct projection approach (Wang and Yu, 2009).

Fig. 11 and Fig. 12 demonstrate the mesh smoothing results from 3D imaging data. Fig.
11(a) shows a cross section of the 3D electron tomographic reconstruction of the T-tubule
structure. The initial surface mesh, illustrated in Fig. 11(b), was extracted using the
automatic image segmentation method (Yu et al., 2008). Fig. 11(c) shows the mesh after
applying our surface smoothing algorithm. Fig. 12(a) is an MRI image of the heart and Fig.
12(b) is the segmented surface model made of cube-like noisy quadrilateral meshes. Using
the mesh smoothing method proposed; the final mesh is shown in Fig. 12(c). Fig. 13 shows
the angle histograms of the two meshes generated by our approach. From both examples, we
can see that our mesh smoothing approach can be used in conjunction with image
segmentation for geometric modeling of 3D biomedical imaging data.

With three different mesh models shown in Figs. 14, 16, and 18, we aim to compare the
algorithms described in this paper with several recent mesh smoothing approaches including
Zhou et al.’s (2000),0htake et al.’s (2002),Fleishman et al.’s (2003),Jones et al.’s
(2003),Sun et al.’s (2007 2008), and Nealen et al.’s (2006) methods. In all the three
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examples, our method can effectively smooth the surface noise. The enlarged meshes in
Figs. 14,16, and 18 as well as the histograms in Figs. 15,17, and 19 also demonstrate that our
approach can achieves significantly higher angle quality, as compared to the aforementioned
methods. An additional nice property of our approach is that, in smoothing a surface mesh,
our method is capable of preserving sharp features by choosing an anisotropic, curvature-
sensitive k-ring neighborhood when performing the least square surface fitting. This is
demonstrated in Figs. 14 and 16 and especially in Fig. 18, where the sharp corners in the
fandisk model are very well preserved. The result by Nealen et al.’s method has the best
angle quality in Fig. 14, while the sharp features around the boundaries of “i” and “H” are
significantly blurred. These examples show that our methods can perform as effectively as
Sun et al.”’s methods (2007 2008) in smoothing mesh noise and preserving sharp features,
but our approaches can achieve significantly higher angle quality. The computational costs
are given in Table 2.

While the histograms seen above have clearly shown the effectiveness of our method in
improving mesh angle quality, we make here a comparison among our MIC-based
algorithm, the Laplacian optimization method (Nealen et al., 2006), and the 3D version of
the angle-based method (Zhou et al., 2000) that was developed specifically to improve the
mesh quality for 2D polygonal meshes. Figs. 20 and 21 show the comparison of the mesh
improvement on the angel mesh model. In this example, Laplacian optimization method
yields the lowest angle quality compared with the other two methods. The angle-based
method is able to improve the angle quality to some extent (see Fig. 21b), but our method
can achieve higher mesh quality in terms of angle distribution as well as minimal and
maximal angles in the mesh (see Fig. 21d).

To demonstrate the fidelity of the smoothed mesh relative to the original surface, the
Hausdorff distance between the two meshes is calculated using the software tool called
Metro (Cignoni et al., 1998). Fig. 22 shows a detailed comparison of the Hausdorff distance
results, where the horizontal axis is the absolute distance value between the smoothed mesh
and the original mesh, and the vertical axis is the corresponding histogram (in percentage)
with respect to each distance value. From this figure, we can see that our method yields
small Hausdorff distances, indicating that our method produces very close surface mesh
relative to the original model, in addition to its high efficiency in noise removal and angle
quality improvement.

It is worth noting that the MIC strategy used in our algorithm shares similar intuition to the
angle-based method (Zhou et al., 2000) in that the new position of a vertex should be as far
as possible to the surrounding polygon (1-ring neighbors of the vertex). In fact, these two
methods give exactly the same result when the surrounding polygon is a triangle, because
the center of the MIC is identical to the intersection of the angular bisectors. When the
surrounding polygon has 4 or more edges, however, the behavior of the angle-based method
would be unpredictable because the new position of the vertex is the sum (or weighted sum)
of the projections on all angular bisectors. With the MIC method, the new position, as the
center of the MIC, is unique and is always optimal in terms of the distance to the
surrounding polygon.

In the MIC-based method, the input mesh must not be self-intersecting. Otherwise, the MIC
is not well defined where self-intersection occurs. In the present work, we do not have
theoretical guarantees on the convergence of the algorithm. However, our method is iterative
and terminates when meshes in two subsequent iterations are almost the same (measured by
the maximum of vertex displacements). The numerous examples tested have shown a fast
convergence of our method (typically converged in 2-3 iterations). While we do not have
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mathematical proof on the quality improvement of angles, all examples we studied have
shown significant angle quality improvement.

5 Conclusions

In this paper, we have developed a novel, effective mesh smoothing method based on
surface fitting and optimum vertex projection techniques. The local surface is fitted using a
small neighborhood around each vertex so that the fitted surfaces vary smoothly from a
vertex to its neighbors and accordingly the projected new positions on the fitted surfaces
also vary smoothly, which guarantees the high smoothness of the final mesh in our method.
On the other hand, the angle quality and size uniformity of a mesh are achieved by
employing an optimization method based on the maximum inscribed circle of a polygon. An
added benefit of our approach is its ability of preserving sharp geometric features (such as
edges, corners, etc.) by choosing anisotropic neighborhoods in the surface fitting procedure.

Our mesh smoothing algorithm can handle a variety of meshes, including molecular models,
imaging data and industrial CAD meshes. As demonstrated in the results, the method
proposed can generate meshes with high quality in terms of the smoothness, angle and size
attributes. This is useful and critical in such applications as surface reconstruction,
visualization, and particularly numerical simulation. As part of our future work, we plan to
explore more theoretically the convergence of the MIC-based mesh smoothing. The
gurantee on quality improvement of mesh angles using the MIC strategy is also an
interesting problem we would like to tackle in the future.
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Figure 1.

(@) An example of triangular meshes generated by the marching cube method, showing very
good smoothness but low angle quality. The color of a triangle is green if its minimal angle
is greater than 40° and red if its minimal angle is less than 15°. Otherwise, the color is
linearly interpolated from red (15°) to green (40°). (b) An example of quadrilateral meshes
having uniform and regular squares but showing very noisy surfaces
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Figure 2.
The flowchart of mesh smoothing method
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Figure 3.
An illustration of the local coordinate system on a surface
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(a) Original mesh (b) The MIC of the surrounding polygon (c) Smoothed mesh

Figure 4.
[llustration of the mesh smoothing approach based on the maximum inscribed circle (MIC)
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Figure 5.
Mesh smoothing for (a) a 2D mesh, using (b) the Laplacian method, (c) the angle-based
smoothing method, and (d) The MIC-based smoothing method
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Figure 6.
Mesh smoothing for (a) a 2D mesh, using (b) the Laplacian method, (c) the angle-based
smoothing method, and (d) the MIC-based smoothing method
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Figure 7.
[llustration of the surface projection algorithm
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Figure 8.
Mesh smoothing result of (a) the original mesh with (b) 1 iteration, and (c) 2 iterations
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Figure 9.

Mesh smoothing of the molecule 2HAO. (a) The original mesh. (b) The mesh smoothed by
our method before the MIC-based quality improvement. (c) The mesh smoothed by our
method after quality improvement
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Figure 10.

The angle histograms of the meshes shown in Fig. 9(b) and (c). (a) Before the MIC-based
quality improvement. (b) After the mesh quality improvement. The angle bounds of (a) and
(b) are [10.12°, 153.81°] and [14.56°, 143.62°], respectively. It is clear that the MIC-based
method significantly improves the angle quality of the mesh. The red bars in the histograms
indicate the minimal and maximal angles in the meshes
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Figure 11.

Mesh smoothing of the surface model extracted from 3D imaging data. (a) An electron
tomographic reconstruction of t-tubule structures (courtesy of Dr. Masahiko Hoshijima, UC-
San Diego). (b) Segmented cube-like noisy surface mesh. (c) The mesh smoothing result
with our method
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Figure 12.

Mesh smoothing of the surface model extracted from MRI imaging data. (a) A cross section
of the MRI data of the heart (courtesy of Dr. Masahiko Hoshijima, UC-San Diego). (b)
Segmented cube-like surface mesh. (c) The mesh smoothing result with our method,
showing more informative details on the surface
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Figure 13.
The angle histograms of the two meshes in Fig. 11(c) and Fig. 12(c). The angle bounds of

(@) and (b) are [15.41°, 148.30 °] and [11.27 °, 130.38 °], respectively
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Figure 14.

Smoothing results of the noisy Stanford bunny mesh with “i” and “H” as shown in (a). (b)
Ohtake et al.’s method with n = 8 (Ohtake et al. 2002). (c) Nealen et al.’s method with
Laplacian matrices of uniform weights, and f =0, s = 0.3 (Nealen et al., 2006). (d) Our
method with N = 20 and T4 = 5% X the mean edge length of mesh. The color of a triangle is
green if its minimal angle is greater than 40° and red if its minimal angle is less than 15°.
Otherwise, the color is linearly interpolated from red (15°) to green (40°). (e) The front view
of Nealen et al.”’s smoothing result. (f) the front view of our smoothing result. Note that
sharp features, such as the boundaries of “i” and “H”, are significantly blurred in (e).
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Figure 15.
The angle histograms of the meshes in Fig 14(a—d). The angle bounds of (a), (b), (c) and (d)
are [0.05°, 175.23°], [1.32°, 170.42°], [9.00°, 158.65°], and [7.81°, 161.39°], respectively
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Figure 16.

Smoothing results of the dragon head mesh. (a) Original noisy mesh. (b) Jones et al.’s
method (Jones et al., 2003), where ot =4, oy = 1. (c) Sun et al.’s method (Sun et al., 2007),
where nl =5, n2 =25, T = 0.55. (d) Our method (k = 3, Tq = 4% X the mean edge length of
mesh)
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The angle histograms corresponding to the meshes in Fig. 16(a—d). The angle bounds of (a),
(b), (c) and (d) are [0.10°, 177.54°], [0.29°, 177.01°], [0.13°, 177.91°], and [13.82°,
147.02°], respectively
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Figure 18.

Smoothing results of the fandisk mesh. (a) Original noisy mesh. (b) Fleishman et al.’s
method (Fleishman et al., 2003), where n = 5. (c) Sun et al.’s method (Sun et al., 2008),
where nl =4 and g = 8. (d) Our method (N = 10, T4 = 6% X the mean edge length of mesh)

Graph Models. Author manuscript; available in PMC 2012 July 1.



1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnuei\ Joyiny Vd-HIN

Wang and Yu Page 29

s3% as%
(a) (b)

v o]
3 3
g g
g am g 2aw
5 g
& [
o S

o% o% =

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 © 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180
Angle (degree) Angle (degree)
B1% 0%
© (G

v b
g g
& &
g a g 20w
8 )
& ]
o e

o o

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 0 10 20 30 40 50 60 70 50 90 100 110 120 130 140 150 160 170 180
Angle (degree) Angle (degree)

Figure 19.
The angle histograms of the meshes in Fig. 18(a—d). The angle bounds of (a), (b), (c) and (d)
are [6.02°, 159.53°], [2.41°, 167.82°], [1.29°, 137.89°], and [25.29°, 127.16°], respectively
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Figure 20.

Smoothing results of the angel mesh. (a) Original surface mesh. (b) The 3D implementation
of Zhou et al.’s method (Zhou et al., 2000), where n = 3. (c) Nealen et al.’s method with
Laplacian matrices of uniform weights, and s = 1.0 (Nealen et al., 2006). (d) Our method (k
=3, Tq = 4% X the mean edge length of mesh). Again, the color of a triangle is green if its
minimal angle is greater than 40° and red if its minimal angle is less than 15°. Otherwise,
the color is linearly interpolated from red (15°) to green (40°)
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Figure 21.
The angle histograms of the meshes in Fig. 20(a—c). The angle bounds of (a), (b), (c) and (d)
are [1.24°, 173.49°], [3.83°, 167.06°], [0.62°, 167.06°] and [11.38°, 152.74°], respectively
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Figure 22.

The histograms show the Hausdorff distances between the meshes obtained by each
approach and the original meshes. The horizontal axis is the error (absolute distance value)
from the denoised mesh to the original mesh, and the vertical axis is the corresponding
percentage to each error value. (a) Data set, and the corresponding Hausdorff distances in
(b), (c), (d) by Ohtake et al.’s, Jones et al.’s, Fleishman et al.’s, Nealen et al.’s, Sun et al.’s
and our methods, respectively
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Table 2

The comparison of computational time (sec.)

Fandisk v/t: 7123/14242

Bunny v/t: 35325/70646

Dragon v/t: 100056/199924

Ohtake et al.’s - 3.013 -
Fleishman et al.’s 0.071 - -
Jones etal.’s - - 61.237
Sunetal.’s 0.133 - 2.018
Nealen et al.’s - 2.486 -
Our 1.175 5.889 17.324
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